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B. THE DYNA1\lICS OF GLIDE

We shall now turn from the crystallograpbic to the mechanical
aspect of the phenomenon of glide. 'Ve shall describe the laws
governing the initiation and continuation of glide, with special

Fre. 74.-Schopper Tensile- testing :i\1achinewith
Device for Automatically Recording the Stress-

Strain Curve.

reference to the effcct of alloying (the degree of purity), and to the
time factor.

We shall confine our attention mainly to thc common tensile
test-a particularly simple type of loading-and shall deal only
briefly with the behaviour of crystals subjected to more complicated
types of stress.

Two types of apparatus which are much used for testing the tensile
properties of wire-shaped metal crystals are illustrated in Figs. 74
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and 75. The Schopper instrument records the stress-strain diagram
automatically. With the filament-extension apparatus the load is
determined from the deflection of a piecc of steel sheet carrying the
upper grip (mirror-reading), while the amount of extcnsion is

. I~

Fro. 75.-FiJament-extension
Apparatus-Polanyi (164).

FIG. 76.-Adaptor for Carrying Out
Extension Tests in the Schopper
Tensometer in Baths of the Required

Temperature (165).

measured by means of a micrometer screw attached to the lower
grip. As shown in Fig. 75, the apparatus is also suitable for carrying
out tests at temperatures othcr than room temperature. In the
Schopper tensile machine by means of the adaptor illustrated in
Fig. 76 the specimen can also be wholly immersed in a bath of the
temperature required.
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(a) FUNDAMENTAL LAWS

of the
Metal

Extension -+
FIG. n.-Normal Shape
Stress-Strain Curve of

Crystals.

Fig. 77 represents a stress-strain curve with the usual co-ordinates
-stress per square millimetre referred to the initial cross-section,
and extension-such as is ob-
tained when metal crystals are
extended by glide. The process
of deformation exhibits two
clearly marked phases. In the
first the stress increases sharply,
while extension remains mainly
within the elastic limit. Then
the second phase begins, usually
abruptly, and is characterized
by substantial plastic deforma-
tion at only slightly increasing stress, until finally the crystal
breaks.

40. Initiation of Glide in the Tensile Test (Yield Point).
The Critical Shear Stress Law

Extension %
FIG. 78.-Initial Parts of the Stress-
Strain Curves of Two Cd Crystals (170).
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The initial parts of two stress-strain curves for cadmium crystals
are shown in Fig. 78, in which the extension has been plotted on a

very large scale. It is seen
that a phase of very pro-
nounced work hardening
(steep increase in stress accom-
panied by slight increase in ex-
tension) is suddenly followed
by a phase of appreciable ex-
tension with only a slight
increase in stress. The trans-
ition is so abrupt that a
physical significance may be
justifiably attached to the
stress at which this sudden

fJi glide occurs (166); it is
termed "yield point of the
crystal". It is seen that the
yield point of a metal crystal,

unlike that of the polycrystalline material, is not fixed by convention
(0·2 per cent. plastic extension), but is determined by the nature of
the deformation process itself. Nothing certain is yet known about

,.
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the plastic deformation which precedes the yield point. This is
primarily due to the fact that strain does not take place uniformly
over the whole length of the crystal undcr examination, but starts
instead with local contractions, as shown in Fig. 79.

FIG. 79.-Start of Extension, by Necking, of a Cd Crystal.

FIG. 80.- Flow Curves of a Cad miurn
Crystal. The Heduction in Stress
is a Measure of the Increase in

Length (170).

60

-x-

'Time in seconds
20 '10o

170

The yield point of metal crystals is clearly marked in other ways
too. Fig. 80 shows this by means of How curves obtained with a
cadmium crystal which was exposed to various initial stresses in
the filament cxtension apparatus. It indicates that the speed of
How increases suddenly at a given stress, and that any substantial

increase above this stress is
quite impossible. Table VIII
reveals that the yield point
obtained in this way agrees
closely with that which results
from the stress-strain curve.

It has been found that this
yield point is by no means
constant for crystals of a given
material, but strongly depends
on the orientation of the crystal
lattice to the direction of the
applied stress. In the case of
hexagonal magnesium the yield
point of a crystal oriented to

give maximum strength is forty timcs that of the weakest crystal.
The differences with cubic metal crystals are much less pronounced,
though still discernible.

If, in keeping with the process of deformation, the stress operative
in yield-point tests (Go) is resolved into two components, a shear
stress (So) in the direction of glide (t), on the glide plane (T), and a



40. Initiation of Glide in the Tensile Test 105
normal stress (No) on T, the following two expressions are obtained
(cf. Fig. 39) :

So = 0"0 sin Xo cos AO
No = 0"0 sin2 Xo

(40/1)
(40/2)

in which Xo or AO represent the angles between the direction of the
pull and the glide plane or direction respectively. .

Experimental studies of the relationship between yield point and

TABLE VIII

Comparison of the Yield Points of Cadmium Crystals obtained
from Flow Curves and Stress-Strain Curves

Yield point (g./mm.') obtained from
Angle between the glide plane

and the direction of pull.

21·3°
23·5°
28·8°

43·3°

44·8°

flow curve.

155
189
158

{
106
114

{
87
83

stress-strain
curve.*

159
178
136

115

99

••

* The figures given represent the mean of 2 to 4 determinations on portions
of the same crystal.

the orientation ofthe glide elements have led to the conclusion that a
critical value of the resolved shear stress is required for the initiation of
glide on a substantial scale (Critical Shear Stress Law (166)). It has
been found that the normal stress operating on the glide plane-a
stress for which differences up to 1 : 2500 have been recorded-is of
no importance; this fact had also been ascertained by direct methods
using tensile tests under hydrostatic pressure (up to 40 met~ic
atmospheres) (167).

Fig. 81 gives the results of tests carried out to determine the
influence of orientation on the yield point ofhexagonal metal crystals.
The differences in this case are very considerable, owing to the
uniqueness of the basal glide plane. In these diagrams the yield
point is plotted above the product sin Xo cos AO' which gives the
orientation of the glide elements. The left half of the diagrams
refers to angles between the glide plane and t?e direction of tension,
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106 Plasticity and Strength of Metal Crystals

of 0-45°; the right half to Xo values between 45° and 90°. The
mInImUm values for the yield point are obtained when the glide
elements are in positions of 45° to the direction of tension. The
variation of the yield point, calculated on the assumption of a
constant critical shear stress, is shown as an unbroken curve obtained
from formula (40/1). This theoretical curve is an equilateral hyper-
bola which, in accordance with our diagram, is reflected on the
ordinate which passes through the abscissa at 0·5. In all cases, the
agreement with observed results is satisfactory.

With cubic crystals the orientation possibilities of the operative
glide system are much more restricted. In this case there are

no "unique" planes; conse-
quently, if the geometrical
position of a glide system is
unfavourable a crystallograph-
ically equivalent system in
a more favourable position
always becomes available. The
choice of the operative glide
system for octahedral glide (T
= (Ill), t = [101]) for different
orientations of the direction of
stress has already been shown
in Fig. 61. The experimental
results obtained with cubic
face-centred metals [a copper-
aluminium alloy (172), <x-brass
(containing 72 per cent. copper)
(173), silver, gold, and their

alloys (174), and nickel and nickel-copper alloys (175)] agree very
well with the Critical Shear Stress Law. Deviations occur only
when the orientation is such that the simultaneous operation of
several glide systems disturbs the progress of simple glide. With
crystals of pure aluminium, permanent set was usually observed to
begin very gradually; recently, however, a clearly defined yield
point has been found in this case too, although it is confined to
crystals produced by recrystallization. With crystals of cast
aluminium a permanent set was observed as soon as any stress was
applied (171).

Fig. 82 shows the experimentally determined dependence of the
yield point on the orientation for cubic body-centred <x-iron crystals.
The observed differences are compatible with the validity of the

~ SO(l
.t
t;i,

.~ .(10
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Critical Shear Stress Law for the most probable glide system
(T = (123), t = [H 1]).
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(b) Zinc (169).
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o 0,1 0,2 0,3 0,11 0,5 0,'1 0,3 0,2 D,1 0
sinXo'COSAo Xo < '15° X>IISo-~

(c) Cadmium (170). In this case the three groups of crystals investigated
were drawn from the melt at various speeds (cf. Section 42).

FIG. 81 (a)-(c).-The Yield Point of Hexagonal Metal Crystals as a Function
of Orientation.

Quantitative investigations on metal crystals of lower symmetry
are available only for bismuth (177)and tin (178). These tests, too.
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confirm the existence of a definite yield point characterized
constant value of the critical shear stress in the operative
system.

Since the Critical Shear Stress Law has so far been found con-
sistently applicable, it is tempting to use it for the determination of
slip elements that are still unknown. A comparison of the depend-
ence of yield point on orientation, as calculated on the basis of
various assumptions regarding the glide system, with that obtained

experimentally, can
in some circum-
stances reveal a
preference for cer-
tain glide elements.

In (179) the plas-
ticity condition for
crystals is described
in an entirely differ-
ent way from that
outlined above. The
yield condition is
represented by a
quadratic function
of the principal nor-
mal and shearing
stresses, whichwould
attain a character-

istic constant value at the yield point. However, the results
obtained with cubic metal crystals appear to us to dispose of this
mathematically attractive attempt at a solution, and to confirm the
superiority of the Critical Shear Stress Law (180).

As already explained, the yield point is characterized by the start
of substantial plastic extension. It does not reveal the true start
of permanent deformation. In fact, it is certain that plastic
extension can be observed at much lower stresses, and that its
mechanism is identical with the glide which subsequently causes
large deformations. Owing to the minute stresses involved, as well
as to the very gradual start of deformation, an experimental deter-
mination of the actual beginning of plasticity is very difficult.
Nevertheless, tests carried out on zinc crystals with the filament-
extension apparatus showed that even at a plasticity limit corre-
sponding to a permanent set of approximately 0·002 per cent., an
approximately constant shear stress was found whose value was
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less than half of that at the yield point (181). Moreover, tests
carried out with the Martens apparatus on the elastic limit (0·001
per cent. permanent set) of aluminium crystals (182) indicate an
approximately constant shear stress in the operative octahedral
glide system (183). Furthermore, the recording of the first part of
the stress-strain curve by precision measurement has shown that
the section of the crystal is not without influence, inasmuch as with
increasing diameter of the crystal the shear stress needed to produce
a given amount of glide diminishes. This influence largely dis-
appears within the limits of ordinary measurements (184).

41. Torsion of Crystals
Results are available of quantitative tests which have been

carried out to determine the start of plastic torsion in crystals. A
heat-treated copper-aluminium alloy (5per cent. Cu) was used (185).
In this case, too, a very marked dependence on orientation was
observed. It would, therefore, seem advisable to resolve the applied
stress into components with respect to the relevant octahedral glide
systems.

In the first place it will be necessary to calculate, for a given
torque (M), the shear and normal stresses (8 and N) in a glide
system (186). Let X and A again represent the angles between glide
plane (T) and glide direction (t) and the longitudinal direction, while
r represents the radius of the cylindrical crystal. The tangential
shear stress Tmax., which acts at the surface in an element of the
section, is represented by the equation:

2M
Tmax. ::= TIT3 (41/1)

The point at the surface in which the stress is resolved into com-
ponents is made the origin of a rectangular system of co-ordinates,
the z-axis of which runs parallel to the cylindrical axis, while the
x-axis points radially outwards. In this co-ordinate system the
stress components are as follows:

crx = cry = crz = 0
Txy = Tzx = 0

2M
"ryz =::.: Tmax. :=:: ;r3 •

The glide direction and the normal to the glide plane are in this
system given by the angles A or 90 - X with the z-axis and the
angles '1Jt or '1Jl' between the x-axis and the projection of t, or of the
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normal to T, on to the xy-plane. The condition for t to lie in T
(i.e., to be perpendicular to the normal of the glide plane) is ex-
pressed by the equation:

tgy' = - tg),. cos (o/t - ,)iT) (41/2)

In order to calculate the stress components with reference to the
glide system, the system of co-ordinates is transformed into a new
one, the z' -axis of which coincides with the normal of the glide plane,

FIG. 83.-Torsion of an Aluminium Crystal. Relative Shear Stress in the
12 Octahedral Glide Systems along the Circumference of the Bar (186).

while the y'-axis coincides with the glide dircction. crz" and Ty'Z' are
then the components required. They are given by :

crz• = Tmax .• sin2 y. sin \jJT (41/3)

Ty'," = Tmax .. (cos Y. cos A sin \jJl' + sin X sin A sin o/t) (41/4)

The normal stress varies according to a sine function along the
circumference of the crystal cylinder. A similar dependence holds
also for the shear stress in the glide system, as is seen if \jJt in formula
(41/4) is eliminated by using equation (41/2). Fig. 83 shows an
example for the variation of the shear stress in the twelve glide
systems of an aluminium crystal.

Several series of tests on crystals of aluminium (186), silver (187),
iron (188) and zinc (189) have shown that under torsional stress
(alternating torsion) the operative glide system is the one that is
exposed to maximum shear stress. In the work mentioned at the
outset (185) the question has also been discussed whether, in addition,
a torsional yield point characterized by a constant critical shear
stress (So = Ty'z,) in the operative system exists, The dependence
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of the torque upon the orientation at such a yield point (186, 190)
is given by:

M_7t·3 _- '21 Tmax• -

7t 3 80_r~==================
2 Vcos2 X cos2 A + sin2 X sin2 A - 2 sin2 X cos2 A

(41/5)

In the case of cubic face-centred crystals (octahedral glide) the
extreme values of M are as follows:

M - 7t .38
min. - '21 0

for X= A = 0, i.e., [110] is parallel to the longitudinal axis and
Z = A = 90°, i.e., [Ill] is parallel to the longitudinal axis,

7t 1
Mmax. ='2r38oO'577 = 1·73Mmin.
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FIG. 84.-The Torsional Yield Point of Al Crystals
(with 5% Cn) in Relation to Orientation (in

kg./mm.2) (185).

for X= 35° 16', A = 90° i.e., [100] parallel to the longitudinal axis.
Themaximum torque

at the yield point
should therefore occur
in crystals whose longi-
tudinal direction is
parallel to the cube
edge; it should exceed
by 73 per cent. the
torque valid for orien-
tations parallel to the
face or body diagonal.

The behaviour thus
calculated theoretically
on the basis of a
constant critical shear
stress was, in fact,
approximately con-
firmed by experiments
(cf. Fig. 84, which
represents 't'max. for a
shear strain of 0·2 per
cent.). It is true that the dependence on orientation revealed
by the tests is more pronounced than that deduced from theory .

•



FIG. 85.-The" Mean Plastic Resistance", against
Torsion. of an Al Crystal Tube, in Relation to

Orientation (185).
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The torsional yield point for the cube.edge orientation is 2·2
times greater than for the body diagonal orientation. In order
to explain this difference it was assumed that plastic torsion
begins not only in those parts of the crystal whose orientation
to the applied stress is the most favourable, but simultaneously
in the whole surface layer. A diagram of the "mean plastic
resistance" of a thin· walled crystal tube in relation to the orient·

ation of its longi.
tudinal axis is found
in Fig. 85. It will be

1,8 noticed that on this
assumption a better
agreement with the
experimental result is
obtained. Even so, the
theoretical dependence
on orientation still falls
somewhat short of
the observed depend·
ence.

The val ue of the
critical shear stress in
the torsional test (9--11
kg.jnun.2) approxi.
mates closely to the
value of 9'0 kg.jmm.2

obtained with the same
crystal material in the
tensile test.

If crystals (aluminium) are subjected to substantial torsion very
characteristic changes in shape occur (191): these, too, depend on
the orientation of the crystal; but they have not been investigated
in detail so far.

42. Critical Shear Stress of Metal Crystals
Table IX gives a summary of the values so far measured of the

critical shear stress of the principal glide systems of pure metals.
The figures, which are always of the order of approximately

100 g.jmm.2 (corresponding to a yield point of the crystal, with the
glide system at 45°, of approximately 200 g.jmm.2), reveal how very
slight is the resistance of pure metals to deformation [cf. in this
cOlmection Section 45 and (192a)].
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The table includes also, for the non-cubic metals, the elastic shear
at the yield point parallel to the glide elements. In every case it is
of the order of 10-5• The significance of these minute values in the
theoretical understanding of crystal plasticity will be discussed in
Section 74. The shear is calculated with the aid of the equations

TABLE IX

Critical Shear Stress of Metal Crystals

Critical
shcar ElasticPurity Mcthod of Glide stress Shear shear

Metal. of the produc- elements. at thc modulus at the Liter-
initial tion of yield kg.!mm.'. yield ature.

material. crystal. point, point.kg.!
1'. t. mm.2•

-- ---
Copper >99·9 } Solidified 0·10 }Silver 99-99 in (Ill) [101] 0-060 - - (174)
Gold 99-99 0-092
Nickel 99-8 vacuo. 0-58 - - (175)

--- ---
Magnesium 99-95 Recrystal- (0001) [ll20] 0-083 1700 4-9,.10-' (168)

lization.
Zinc "'"'" } - - 0-094 4080 2-3 (169)
Cadmium. 99-996· Drawn - - 0-058 1730 3-3, (170)

--- -- ---
fI-Tin 99-99· from (100) } (001] 0-189 1790 10-6 } (178)thc

melt. (llO) 0-133 1790 7-4,
--- --- ---- ---- ---

Bismuth 99-9· (Ill) (10il 0-221 970 22-8 (177)
I

* "Kahlballln" Brand.

(7/2). These equat,ions, which refer to the principal crystallographic
system of co-ordinates, must, for the present purpose, be transformed
to a system in which the z-axis is placed at right angles to the
operative glide plane, while the y-axis coincides with the direction
of glide. Yyz is then the required elastic shear in the glide system.
The six stress components occurring in the expression for Yyz> if a

is the applied tensile stress and X and Athe angles between tensile
direction and the elements, are given by :

a:e = a . (sin2 A- sin2 X) ;
ay = a . COS2A

az = a . sin2 X

Tyz = a • sin X cos A
'Tzx:= 0" • sin X vs]'-n-2-A---s-in-2-x
T_ry = a • cos A vsin2 A- sin2 X

(42/1)

The transformation of the modulus of elasticity (Sik) from the
principal crystallographic system of co-ordinates to the new co-
ordinate system (S'ik) proceeds according to the usual transformation
formulre (192).

If these calculations are carried out for the crystal types and glide
I



114 Plasticity and Strength of Metal Crystals

systems contained in Table X 1 (180), it is found that five of the six
elastieity coefficients disappear and that only s'44 differs from zero.
This means that in all such cases the shear Yyz in the glide system is
proportional to the shear stress Tyz• Constancy of shear stress and
constancy of shear strain are therefore identical conditions. It

TABLE X

SheaT Coefficient s' 44 in the Glide System
-~ ~~ -

Glide elements.
Lattice type. Crystal

8'44"class.
1'. t.

NaCI lattice 0" (l01) [10IJ 2 (8" - 812)

Hexagonal close-packed D,,, (0001) [1l20] 8"

Tetragonal CB-tin) D,,, (100) [0011 844

(1l0) [001] 8')'1

Rhombohedral DJd (Ill) [101] 8"
-

naturally follows that the elastic energy of shear at the yield point
is also a constant independent of orientation; it amounts to 10-6

cal./g. for the pure metals listed in Table IX.
However, there is no proportionality between shear stress and

shear strain for the octahedral glide of the cubic crystals. A
decision between the conditions of constant shear stress or constant
shear strain at the yield point can therefore be made as a result of
tests with cubic face-centred metal crystals. Shear in this case is
calculated by :

[4 1 ] V2
Yyz = 3 (Sl1 - S12) + 3S44 • Tyz +3 [S44 - 2(Sl1 - sd] . Txy • (42/2)

Significant deviations from the proportionality between shear stress
and shear strain occur only when the second term of the expression
for Yyz can no longer be neglected beside the first. This is the case
with crystals of a decidedly anisotropic character [isotropy is repre-
sented by S44 = 2(Sl1 - S12)]' and with crystals having orientation
areas in which A is much greater than X (marked deviation of the
direction of glide from the projection of the tensile direction on the
glide plane).

1 In addition to the glide of metal crystals the table contains particulars of
the dodecahedral glide of cubic crystals of the rock salt type.
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The average errors of the mean values of shear stress and shear
strain for the four examples in which the dependence of yield point
on orientation has been examined, are collected in Table XI. For

TABLE XI
Mean SheaT StTe8S and Shea1' Strain at the Yield Point of Cubic

Face-centTed Metal C1'ystals with Octahedral Glide

Critical Degree of

Metal. shear Elastic shear anisotropy
stress, strain. s•• - 2(S11 - SI2)

kg./mm.'. cm.'/Dyn.

Silver (174) 0-060 ± 5-8% 2-69 _10-5 ± 8-5% -43-4 _10-13

Gold (174) 0-092 ± 2-4% 4-12 _10-5 ± 7-0% -43-2 _10-13

a-Brass (173) 1·44 ± 1-9% 43-3 . 10-5 ± 10'8% -41-6 _10-13

AI-ClI alloy (age-
hardened) (l72) 9-2 ± 2-1% 355 _10-5 ± _2-0% - 6-8 . 10-13

the elastically anisotropic metals, silver, gold, a-brass, the differ-
ence between the mean errors is considerable: the mean error for
the shear strain always exceeds substantially that for the shear
stress. In the case of the practically isotropic aluminium there is
no difference. This table would therefore appear to justify the
assumption that it is constancy of shear stress and not constancy
of elastic shear that characterizes the yield point for crystal
glide.

The numerical value of the critical shear stress depends in a very
marked degree on various circumstances. We shall deal in sub-
sequent sections with the importance of impurities (alloying),
temperature, spced of deformation and mechanical pre-working.
At present we shall discuss, briefly, the influence of the method of
production, the speed of growth during formation of crystals, and
annealing.

Magnesium crystals that had been drawn from the melt, and which
contained the same impurities as the recrystallized crystals men-
tioned in Table IX, had an appreciably higher critical shear stress
than these, amounting to 103-3 g.fmm.2 (193). Table XII contains
the critical shear stress of cadmium crystals drawn from the melt at
varying speeds: the slower the rate of crystal growth, the lower the
shear stress.l Subsequent heat treatment can also greatly reduce

1 Zinc crystals behave in a similar manner (194).
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the yield stress of the basal plane if the crystal has been drawn
quickly from the melt. Annealing at an elevated temperature
(300° C.), on the other hand, causes an increase in the critical shear

TABLE XII

Influence of the Speed of Withdrawal from the Melt and of Annealing
on the Critical Shear Stress of Cadmium Crystals (170)

Critical
shear
stress.

58·, g./mm."
43.5
27·,

-

Speed of Critical Heat treatment of crystals
with- shear drawn from the melt at the

drawal. stress. rate of 20 em./hour.

20 em./hour 58·, g./mm." o hours 2750 C.
10 "

39.7 " 16 " 2750 C.
1·5 "

25.5 " 24 " 2750 C.
5-

stress with increasing duration of the heat treatment, amounting to
approximately 75 per cent. after 6 hours' treatment. It would
appear that this phenomenon could be explained by crystal recovery
(Section 49) or by the temperature dependence of the solubility of
impurities (195).

The critical shear stresses contained in Table IX relate to the
principal glide system, at room temperature, of the metal crystal

TABLE XIII

Critical Shear Stress and Closeness of Packing of the Glide
Elements of Tin Crystals (178)

-----
I
------- - ------

Critical Closeness of Spacing ofGlide system.
shear packing. the lattice
stress, planes from T,

T. t. g./mm.". T. t. A.
--- ----- ----- -------
100) [001] 189 1 1 2·91
llO) [001] 133 0·706 1 2·06

101) [101] 160 0·478 0·478

I
2·09 and 0·70

121) [101] 170 0·346 0·478 1·84 " 0·61

concerned. The yield stresses of the next best glide systems
(crystalIographicalIy non-equivalent) have so far only been deter-
mined quantitatively for the tin crystal (Table XIII). In four
crystalIographicalIy different glide systems the critical shear stresses
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differ only slightly. The relationship between capacity for glide and
closeness of packing, which was mentioned earlier and found to have
been more or less confirmed, is now revealed by the example of tin
to be only a rough approximation. Only the lower limits of the
critical stress can be given for the further glide systems of other
crystals. For instance, these can be deduced from the orientation
range in which the main glide system remains operative. Thus the
critical stress of the pyramidal plane type I order 1 of the cadmium
crystal (which, however, has not yet been observed as a glide plane)
is at least 4·7 times that of the basal plane. When we come to
discuss, in Section 48, the
question of extension at
elevated temperatures, we
shall be in a position to
assess more accurately the
capacity for glide of the
second-best glide system, using
the aluminium crystal as an
example.

A graphical representation
of the dependence of the yield
point of crystals on their
orientation, as deduced from
the Shear Stress Law, can
now be given in two figures.
Fig. 86 illustrates the plastic FIG. 86.-Plastic Yield SlU'face of Cubic
yield surface of cubic crystals Crystals with Octahedral Glide (183).

with octahedral glide (or
dodecahedral glide with the body diagonal as glide direction).
The radius vector from the centre of the solid is a measure of
the magnitude of the yield point in the direction concerned. The
model illustrates clearly the way in which resistance to plastic
deformation depends upon direction. The minimum yield point
values occur in directions which include the angles 20° 46', 65° 52'
and 84° 44' with the three axes of the cube (glide plane and glide
direction are in this case at 45° to the direction of stress); the
maximum yield point lies on the body diagonals. The ratio of the
yield point of the strongest crystal to that of the weakest amounts
to 1·84.

An example of the dependence of the yield point on the
orientation of hexagonal crystals with basal glide is given in
Fig. 87, which represents a section through the plastic-yield
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surface with the prism planes types I and II.
The very great differences in the various direc-
tions are here clearly shown. The intersection
of the plastic-yield surface with the basal plane
is not shown. In this case, plastic deformation
results from mechanical twinning, for which the
dynamical law is still unknown (cf. Section 51).
For the same reason the termination of the
surface in the directions lying in the basal
plane has been omitted. The surface is also
open parallel to the hexagonal axis. For such
orientations various mechanisms become opera-

tive with the in-
dividual metals
(twinning with mag-
nesium, basal cleav-
age with zinc, pyra-
midal glide with
cadmium).
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FIG. 87.-Sections through the Plastic Yield Surface
of Hexagonal Crystals with Basal Glide (170).

43. The Prog1'ess of Glide. The Yield-Stress 1 Curve
Having established that the yield point of magnesium is bound up

with the attainment of a definite shear stress in the glide system,
the question now arises whether this shear stress is operative for the
further course of extension, or whether the shear stress in the glide
system changes with increasing deformation. A direct answer to
this question is supplied by a comparison of stress-strain curves
obtained experimentally, with curves calculated on the assumption
that the shear stress in the operative glide system is constant (196).
This calculation is as follows. In first place the equation (40/1)
gives

S
G= 0_

sin Xo cos AO'

_._1_ represents the area of a glide which remains constant during
S1l1 Xo

1 Footnote of '['mnslator. "Yield point" is according to the preceding
sections the stress at which substantial plastic deformation begins in a previously
undefonned crystal. "Yield stress" is the stress at which plastic deformation
continues in a previously deformed crystal (or poly.crystalline specimen).
The yield stress depends on the magnitude of the preceding strain; its value
for the strain 0 is the yield point. In what follows" yield stress" will usually
mean the resolved shear stress in the glide system at which plastic glide
ontinues after H gi,"en glide strain.
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extension. As a first approximation the stressed portion of the
glide ellipse is also given by this expression, since the sickle-shaped
area which becomes exposed in the course of glide is negligible com-
pared with the total area. By means of the factor cos Ao the com-
ponents in the glide direction are obtained from the tensile stress.
Owing to the lattice rotation which accompanies glide, this factor
does not remain constant. Its variation is given by the extension
formula (26/1), so that ultimately we obtain

So 1 So 1
cr = -- -- = -- .-~====

sin Xo • cos A sin Xa J sin2 Ao
1- (J,2

This formula represents the equation of the stress-strain curve for

80°

80°

••

--»- Extension %. (~'zs%)

FIG. 88.-Theoretically Determined Stress-Strain Curves, Based on Constancy
of the Shear Stress of the Glide System (197). ('\0 = Xo is assumed-a

permissible simplification.)

various initial orientations of the glide elements given by angles Xo
and Ao' Fig. 88 contains these theoretical stress-strain curves,
characterized by constancy of shear stress, for a number of orienta-
tions. It will be observed that in all cases extension takes place at
a continuously falling stress; the more transverse the original
position of the glide elements in the crystal, the greater the drop
of stress.

The stress-strain curves in Fig. 89 which were obtained experi-
mentally on cadmium crystals, reveal once more the great import-
ance of the initial position of the glide elements; the energy of
deformation necessary to obtain a given amount of extension (area
below the curve) is very dependent on the orientation. In addition,
the curves show that in most cases the stress increases appreciably
in the course of extension. It is true that, where the initial position
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of the basal plane is transverse, a drop of stress can be observed,
but here, too, the stress increases again as extension proceeds. A
comparison of Figs. 88 and 89, therefore, reveals that when cadmium
crystals are stretched the shear stress in the operative glide system
remains by no means constant, but increases substantially with
increasing deformation.

These two observations (exemplified by cadmium crystals),
namely, that the shape ofthe curve depends on orientation, and that
the operative shear stress increases with increasing deformation,
have been confirmed by all stress-strain curves obtained with other
metals. We meet here for the first time the technologically important
phenomenon of the work-hardening of metal crystals by plastic

o Extension ~o (25 %.= >--<)

FIG. 89.-Experimental Stress-Strain Curves of Cd Crystals (170).

deformation [(198), (199)]. Moreover, it is a question of shear-
hardening, as expressed by an increase, in the operative glide system,
of the shear stress needed for further deformation.

Before embarking upon a detailed analysis of the stress-strain
curves two observations should be made. The first refers to certain
discontinuities in the course of extension. It was found that zinc
crystals, especially after previous deformation by bending backwards
and forwards, stretched in a series of regular jumps, so long as
extension was confined to the lower range (200). The magnitude
of the jumps was about 1 IJ.. With very pure zinc crystals (99·998
per cent.) this stepwise deformation was also observed in the normal
tensile test (201). The magnitude of the jumps depends in a large
measure upon the orientation of the crystal. While there are no
discontinuities if the glide elements are in an oblique position, they
have been observed to amount to as much as 80 IJ. where the glide
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plane was more transverse. The fact that the jumps also occur
when the surface of the crystal is dissolved during extension shows
that they are not due to a surface effect. The phenomenon dis-
appears at a temperature of -185° C. Common to all cases of
markedly jerky glide is the fact that they occur within a range of
the stress-strain curve where the stress is falling, or at least station-
ary. An oblique initial position of the glide plane, reduction of the

12

1 if

j 3
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~
~ 1

o 2(/ lid 6"(/

Extension % Glide strain %
a b

FIG. 90 (a) and (b).-(a) Extension, and (b) Yield-Stress Curves of Al
Crystals (203).

temperature and substantial deformation, all of which lead to a
relatively steep increase of the stress, prevent jerky extension. On
the other hand, a decrease of stress accompanying increasing
deformation is not a sufficient condition for the occurrence of jerky
glide. This is shown by cadmium (or tin) crystals which, in spite of
exceptionally large reductions in load, exhibit only very small jumps
at the onset of stretch.

The second observation relates to local contractions (necking)
which occur with crystals of oblique orientations at the start of
extension (Figs. 79 and 121). In this case, owing to the initial

••
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decrease in stress, the extension is limited at the outset to those
portions of the crystal which are first deformed; not until extension
has proceeded further does the entire length of the crystal participate
in the deformation. However, where there has been only slight
hardening it may happen that the extension will not spread and
that fracture will result from continued glide at the first contraction
(202) (cf. also Fig. 123). If the glide elements are initially in an
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FIG. 91 (a)

oblique position, the crystal will as a rule stretch uniformly from
the start.

Having ascertained that the stress-strain curve of metal crystals,
like their yield point, depends on the position of the glide elements,
we must now enquire whether this curve cannot be explained in
terms of orientation, in the same way as the yield point was related
to the critical shear stress. Obviously, it will be useful to employ
co-ordinates which express the process of glide more adequately
than do extension and stress. Suitable" crystallographic" co-
ordinates for this purpose have been found in the glide strain and
in the resolved shear stress in the glide system [(203), (204)J, with
which we have already dealt in Section 26. One.arrives in this way
at a method by which the whole set of the stress-strain curves for
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various orientations can be satisfactorily represented by a single
curve, the "yield-stress" curve. The extension and the yield-
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stress curves of aluminium and zinc crystals of various orientations
shown in Figs. 90 and 91, may serve as an example.! The shear

1 The calculation of thl'l shear stress from stress, extension and ini tial position
of the glide elements is readily obtained by solving the equation (43/1) with. J sin2;1respect to S : S = a . sm Xo 1 _ ~o.

The glide strain is calculated according to the formula (26/3) .
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stress of the operative glide system continues therefore to be
independent of the normal stress during glide. This is most
impressively demonstrated in the case of aluminium crystals (Fig.
92), for which the yield-stress curves in compression (where the
normal stress in the glide plane is compressive) coincide with those
from the tensile tests (where the normal stress is tensile). As will
be seen from Fig. 90 the yield stress continues without a break even
after double glide starts.

Systematic deviations from the mean curve occur with cubic
crystals only for initial orientations in which more than two glide
systems are almost equally favoured, and in which, consequently,

+ (Jompressive lest, crystal No. 61. 17
" 59,9
•• 72@ 1'enBife

I1
I1
I1~o 20 ¥O 80 100

Glide stmin %
FIG. 92.-Tensile and Compressive Shear-Stress Curves of AI Crystals (205).

Orientation of the crystals: 61, 17: Xo = 44° >'0 = 46·5°
59, 9 33° 35·2°
72 48·1 ° 52'1 °

disturbances in the progress of extension may be expected. In the
case of hexagonal metal crystals the scatter of the individual curves
about the mean curve is to some extent due to the formation of
twins-a phenomenon to which we shall refer later.

A summary of the yield-stress curves obtained hitherto with
crystals of pure metals is given in Fig. 93. The substantially better
glide capacity of the single-glide system of hexagonal crystals and
of the principal glide systems of the tetragonal tin is very clear.1

The yield-stress curve describes the increase in the shear stress of
the glide system that is operative in extensions. Close observation
of the lattice rotation in the course of stretching gives an indication
of the magnitude of the shear hardening in crystallographically
equivalent latent glide systems. If the lattice rotation correspond-

1 An attempt has been made in (214) to explain, in terms of atomic displace-
ments, this striking difference in the behaviour of crystals of the two closest-
packed systems.
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ing to the new system occurs before the achievement of a geo-
metrically equally favourable position, then this system has become
less hardened than the operative one; if, on the other hand, while
the first system is exclusively operated, the symmetrical position is
exceeded, then the latent system has become more hardened.

The results obtained with cubic metals (aluminium, nickel, copper,
silver, gold) indicate that the second glide system always begins to
operate when the symmetrical position has been either reached or

Sn,(;) Cd

, Q fOO ;00 300 II()O SOO 600 700

)ID "- Glide stmin %
FIG. 93.-Yield-Stress Curves of Metal Crystals.
Cn (207); see also (206, 208) Mg (210)
Ag (207) Zn (211)
Au (207) Cd (212)
Al (209) Sn (1): T = (100); t = COOl]} (213)
Ni (208) Sn (2): T = (110); t = [001]

only slightly exceeded (cf. Figs. 62 and 63). This means that in
such cases the latent octahedral glide system becomes as hardened
as, or even slightly more hardened than, the operative system
[(215), (216)]. In the case of tin crystals the end position which is
sometimes observed with crystals stretched in a [101] direction
indicates that a latent glide system with T = (101) t = [101]
hardens substantially more than the crystallographically equivalent
system. No details are yet available regarding the hardening of
crystallographically non-equivalent latent glide systems.

Attempts have often been made to express the yield-stress curve
by an equation. With such an equation, which represents S as a
function of a and hence of d, the dependence of the usual stress-
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strain curves on orientation could be mathematically represented by
substituting it for 80 in (43/1). For the linear increase of the shear
stress, which is often approximately valid for hexagonal metals:

(8 = 80 + ka) . (43/2)

there results (197)

cr = ~._d_ (k + 80 sin Xo - k COS.Ao) (43/3)
sm2 XO Vd2 - sin2 )'0

k, the tangent of the angle of inclination of the yield-stress curve,
becomes the coefficient of hardening.

The yield-stress curve for aluminium crystals shown in Fig. 90 is
expressed approximately by the equation (217)

8= 4·2saO,33 (43/4)

Other formal representations of the yield-stress curve of aluminium
crystals will be found in (218), (219) and especially in (220), which
also contains a theoretical foundation (cf. Section 76).

44. Termination of Glide
Such simple and general principles as the Critical Shear Stress Law

and the yield-stress curve, which govern the inception or progress of
glide, do not hold for its conclusion, since very diverse processes may
bring this about. We will discuss in the first place the relatively
simple behaviour of the hexagonal metals, and afterwards that of
the cubic metals, where rupture is accompanied by necking.

With magnesium crystals glide terminates with the fracture of
the crystal, the fracture occurring variously according to the
orientation of the basal plane to the direction of tension. Where
the initial angle is greater than ~12° a shear fracture showing a
stepped surface occurs in the basal slip plane; as a result of the steps
the surface of fracture lies more obliquely than the basal plane in
the crystal (Fig. 94). Where the basal plane of the crystal is very
oblique, the fracture either passes more or less transversely through
the crystal or it follows a twin plane. With zinc and cadmium
crystals the basal glide is limited at room temperature solely by the
operation of the second crystallographic mechanism of deformation:
mechanical twinning. In both cases deformation twins are formed
on a (1012) plane; a new secondary basal glide develops in the twins
which, accompanied by a drop of load, leads to a marked necking
of the crystal ribbon and to final rupture (cf. Fig. 73; for further
details see Section 52).
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With these crystals and the magnesium crystal, which fails by a

shear fracture, the primary basal glide generally comes to an end
when a limiting shear stress characteristic of the metal is reached
in the glide system. This statement, however, applies only to such
crystals where the basal plane was originally at an angle of more

Fro. 94.-Fracture of Magnesium Crystals l(221}, (210)].

than 15-20° to the longitudinal direction. It is based not only on
experiments at room temperature, but also on a number of experi-
ments designed to test the relationship between crystal plasticity
and temperature (Section 48).

Consequently it is not only the start (yield point) and the slope
(coefficicnt of hardening) which are characteristic for the yield-

TABLEXIV
Conclusion of the Basal Glide of Hexagonal Metal Crystals

Shear strongth of the
basal plane in g./mm".

!\Ietal.

Magnesium (210)
Zinc (222)
Cadmium (223)

at the start
of glide.

83
73
58

at the
conclusion
of glide.

2100
1220
420

Upper
limit of

glide
strain,

%.

350
380
500

Work of
deforma·

tion,
cal./g.

4·09
0·84
0·26

stress curve of these hexagonal crystals: the conclusion of the curve
is also substantially independent of crystal orientation over a wide
range. Thercfore the upper limit of the glide strain and the work
of deformation (the surface below the yield-stress curve) are like-
wise constants independent of orientation. The relevant values at
room temperature for magnesium, zinc and cadmium will be found
in Table XIV.
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On the basis of these values it is now possible, by a simple calcula-
tion, to arrive at the dependence of final orientation, maximum load

I
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FIG. 96.-Sections of the Ultimate
Tensile Stress and Extension Surface
of Zn Crystals with Prism-plane
Type I (Continuous Line) and Prism
Type II (Discontinuous Line) (224).
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FIG. 95.-Final Angle of the Basal
Plane as a Function of its Initial
Angle in the Extension of Hexagonal

Crystals.

Xe

FIG. 97.-Modelofthe
Extension Surface of

Cd (212).

and extension, upon the initial position of the lattice. Assuming
for the sake of simplicity that Ao = Xo (this does not substantially

impair the generality) then formula 26/4a
gives the values shown in Fig. 95 for the
final angle of the basal plane. These
correspond substantially with experimental
results. The extension is derived from the
initial and the final orientation according
to the extension formuhe (26/1, 2), while
the maximum load per square millimetre of
the initial cross-section (the ultimate tensile
stress) is obtained by inserting the limiting
shear stress Se in the equation (43/1). Fig.
96 gives as an example sections of the
extension and ultimate tensile-stress surface
of zinc crystals; while Fig. 97 represents a
model of the extension surface (cadmium).

The true stress corresponding to the
maximum load, unlike the ultimate tensile
stress, is substantially independent of the

initial orientation, owing to the constant final shear stress of
the basal plane and to the very similar final orientations of
stretched crystals.
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We shall discuss in Sections 53 and 54 the question of the termina-
tion of primary basal glide of zinc crystals by basal cleavage, which
occurs at low temperatures.

The extension of cubic metal crystals is in no wise limited by a
condition of constant final shear stress in the glide system, independ-
ent of orientation. In this case, double glide will always occur
sooner or later in two crystallographically equivalent glide systems
which are geometrically equally favourable, leading to necking and
so finally to fracture. With such crystals the end of the uniform
extension occurs when the maximum load has been reached, since
necking itself is accompanied by a reduction of load. Table XV

TABLE XV

Ultimate Tensile Stress and Elongation of Cubic Metal
Crystals

Metal.

Aluminium (226)
Copper (227)
a-Iron (228) .
Tungsten (229) .

Ultimate tensile
stress, kg./mm.2•

5·9-11·5
12·9-35'0

16-23
105-120

Elongation, %.

19-68
10-55
20-80

••

shows the dependence of the ultimate tensile stress (as given by
maximum load and initial section) and of the uniform extension
on the orientation. In addition, Fig. 98 illustrates, with the aid of
models, the experimental results of tensile tests on copper crystals
of various orientations.

A mathematical determination of the maximum-load point can
be attempted by differentiating the equation of the load-extension
curves;

cr =f(d) = S(a). 2. Jl SIn Aosm Xo = -----rJ2

with respect to the extension, and putting ~~ = 0 [cf. (43/1); S(a) is

the equation of the yield-stress curve of the operative glide system].
The following is then obtained;

dS S() sin Xosin2 Ao
da = a. (cos Ao+ a sin Xo)(l+ 2a sin Xocos Ao+ a2 sin2 Xo)
K
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If the equation of the yield-stress curve is known, this expression
connects the glide strain which corresponds to the maximum tensile
stress with the initial position of the glide elements. Whether the

FIG. 98 aj

values determined in this manner really do correspond to a maximum

of the extension curve, is seen from the sign of ~~~. For the extreme

case we have

~~ _ d28 ·1 + 2a sin Xo cos AO + a2 sin2 Xo +
dd2 - da2 • (cos AO + a sin XO)2

. 2 . 238 S1l1 Xo Sill AO
+ . (cos AO + a sin xo)2(1 + 2a sin Xo cos AO + a2 sin2 Xo)

This expression, which in the case of a maximum load would have
to be negative, has always a positive sign whenever the resolved shear
stress increases linearly or with a higher power of the glide strain.
In agreement with what is known of hexagonal crystals, a maximum
load for such yield-stress curves can never be reached with simple

glide; the extreme value obtained from ~~ = 0 represents a mini.

mum in the extension curve. A maximum load can be reached only
when the increase of the shear stress with the glide strain is less than
linear.



44. Termination of Glide 131

•

But even in the cases of the yield-stress curve given above for
aluminium crystals a maximum in the extension curve will not be
reached with simple glide. On the other hand, a maximum load

b

FIG. 98 (a) and (b).-(a) Ultimate Tensile Stress and (b) Extension
Surfaces of Cu Crystals; as Determined Experimentally (225).

will be reached in the region of double glide. The result of the
calculations, which cannot always be carried out exactly and which
we do not propose to discuss here, is graphically represented by the
ultimate tensile stress and extension surfaces of aluminium crystals
shown in Fig. 99. In general, the results are satisfactorily confirmed
by experience, although in the case of extension the discrepancies
amount to as much as 50 per cent .
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a

b
FIG. 99 (a) and (b).-(a) Ultimate Tensile Stress and
(b) Extension Surfaces of Al Crystals; Calculated (217).
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(b) EFFECT OF ALLOYING

Hitherto in dealing with the beginning, progress and termination
of glide, we have confined our observations to the" pure" metals.
In Table IX will be found the purity percentage of these metals.
These materials do not afford a safe guide to the behaviour
of absolutely pure metal crystals, since even very small impurities
have an extraordinarily large effect. The influence of alloying
on the plasticity of metal crystals will be described in the
following two sections.

1200

42 4/1

Atom % Cd
FIG. 100.-The Critical Shear
Stress of Cd-Zn Solid Solutions
as a Function of Concentra-

tion (230).

45. The Start of Glide in Alloyed Metal Crystals

The study of the initiation of glide in alloyed metal crystals is
greatly facilitated by the observation, so far invariably made, that
the yield point of such crystals is
much more pronounced than that
of similarly oriented crystals of the ~

!pure metal. ':.
The example of the critical shear ~ 800

stress of zinc crystals alloyed with .~
cadmium shows how strongly even j
small additions can influence the co1;
plastic behaviour of metal crystals ~
(Fig. 100). A content of 0·60 atomic-
per cent. cadmium (1·03 weight-per
cent.) raises So from the value of
94 g.jmm.2 (for the "Kahlbaum"
material with 0·03 weight-per cent.
cadmium) to 1150 g.jmm.2-a more
than twelve-fold increase.1 Linear extrapolation to a cadmium con-
tent of 0 per cent. gives a shear stress of 40 g.jmm. 2 for the yield point
of the cadmium-free zinc crystal-which, however, still contains
traces of lead and iron. Recently this value was all but achieved
(49 g.jmm.2) with crystal material produced from" Kahlbaum "
zinc refined by distillation, the cadmium content of which was less
than 5 X 10-4 atomic-per cent. (201).

Alloying has a much smaller hardening effect if the added element

1 That cadmium was present in solution in the alloy crystals drawn from the
melt was established by X-ray examination (244). We have here super-
saturated solid solutions, since below 100° C. cadmium is practically insoluble
in zinc .

•



FIG. 10I.-Polished Section of a Zn Crystal
in which Zn-Sn Eutectic is Present (230).
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forms a second phase in the matrix. Fig. 101 shows the polished
section of a zinc crystal alloyed with 2 per cent. tin, in which layers

of zinc-tin eutectic have
come to lie parallel to the
basal plane. The initial
critical shear stress of the
basal plane undergoes as a
result no more than a four-
fold increase.

Fig. 102 relates to the
binary solid solution sys-
tems of aluminium-mag-

'" nesium and zinc-magnes-
ium. It gives the hardening
(ValI.l due to alloying as
a function of the con-
centration of the added
metal; the hardening is
expressed by the quotient
of the critical shear stress

of the solid solution (So.aJd and that of the pure magnesium

crystal (S)· (v = So. all.) The increase of the shear stress isO· all. SO'

approximately linear with increasing content of foreign metal. The
specific effect of the zinc greatly exceeds that of aluminium. The
diagram also indicates the dependence upon concentration of the
lattice parameters c and a, for both solid solutions. Corresponding
to the smaller atomic radius of the added metals (Mg, 1·62 A.; AI,
1·43 A.; and Zn, 1·33 A.) the lattice contracts in both cases. It is
not yet clear whether the hardening effect of the zinc is connected
with the greater reduction of c (i.e., of the spacing of the glide
planes) in the zinc-magnesium solid solutions.

Ternary aluminium-zinc-magnesium solid solutions (232)
exhibited, at a concentration of 2.54 atomic-per cent. Al and 0·36
atomic-per cent. Zn, an So = 766 g.jmm.2; and at a concentration
of 5.02 atomic-per cent. Ai and 0·38 atomic-per cent. Zn an So =
1153 g.jmm.2,1 These values were obtained by means of a good
approximation from the behaviour of the two binary solid solu-
tions on the assumption that the increases in the critical shear

1 These are the technical alloys AZ.31 (with 2·8 per cent. Al and 0'9 per
cent. Zn by weight), and AZM (with 5·6 per cent. Al and 1-0 per cent. Zn by
weight).
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stress due to the two alloying constituents were additive, and that
consequently there was no reciprocal influence.

So, tern. - So = (So, Al - SO) + (So, Zn - SO)
and therefore

Van. tern. = Van. Al + Van. Zn - 1.
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FIG. 102 (a) and (b).-Solid Solutions of AI-Mg and Zn-Mg.
(a) Lattice constants; (b) hardening as a function of concentration (231).

So =.82·9 g./mm? (N.B. In the text VLeg. = VaIl.)

This formula leads to Van. tern. = 8·8 for the first of the two alloys,
and to Van. tern. = 14·5 for the second, whereas experimentally the
values 9·2 and 13·9 were obtained. Thus if the saturation limit of

••
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the ternary solid-solution region is known, it is possible to calculate,
from the behaviour of the binary solid solutions, the concentration
needed to give maximum shear resistance to the glide plane.

In the case of N additions, which do not substantially influence
each other in their hardening effect, let it be assumed that the formula
for calculating the hardening effect is

Vo'L = VoILA + Van. B ... + Von.x - (N - 1)

in which van. A ... Van. N represent the hardening of the appropriate
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FIG. 103 (a) and (b).-a-Brass Crystals.

(a) Lattice constants [x (234), + (245), • (246)]; (b) critical shear stress
[x (234), + (233)] as a function of concentration.

binary series, which corresponds to an alloying metal content of
A, ... ,N.

The hardening of cubic solid solutions is represented in Fig. 103
by the case of a-brass. Here the critical shear stress does not
increase linearly with increasing concentration of the added metal;
the greater the zinc content the smaller is the further increase in
shear stress. The lattice constant indicated in the diagram shows
an expansion due to the formation of the solid solution, and corre-
sponding to the greater atomic radius of zinc (Cu, 1·27 A.; Zn,
1·33 A.). This expansion increases linearly with the atomic con-
centration. In the case of a.brass, therefore, hardening is bound up
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with an increase in the spacing of the operative glide plane. At a
zinc content of 18 atomic-per cent. the strength has increased
approximately three-fold.

Fig. 104 contains the critical shear stress and the lattice constant
for the complete silver-gold solid-solution series. The pure metal
values are followed by a steep increase in the critical shear stress of
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FIG. 104 (a) and (b).-Ag-Au Solid-solution Crystals.

(a) Lattice constants (247), (b) critical shear stress (235), as a function
of concentration. .

the octahedral glide system; the maximum is reached at approxi-
mately equal atomic concentration of both metals. The lattice
constant exhibits a minimum at an intermediate concentration. A
curve for critical shear stress similar to that shown in Fig. 104 has
been obtained for the copper-nickel solid-solution series (236).

An instructive example of the significance of the atomic arrange·
ment in the crystal for its plastic behaviour is found with gold-
copper crystals, whose composition is given by the formula AuCu3

,.
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(237). The disordered arrangement ofthe atoms at high temperature
becomes ordered as the temperature falls; the cubic face-centred
lattice, however, is retained (248). The appearance of super-
structure lines corresponding to the ordered distribution is seen
clearly in Fig. 105. The critical shear stress of these crystals falls
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FIG. 105 (a) and (b).-Hotation Photographs of a AuCu3 Crystal (237).

(a) With random atomic distribution; (b) with ordered atomic distribution.

from 4·4 kg.jmm.2 to 2·3 kg.jmm.2 when passing from the disordered
to the ordered arrangement.

The effect of ageing on the critical shear stress has been demon-
strated by experiments carried out on crystals of an aluminium alloy
with 5 per cent. copper (238), which, in the annealed state (slow
cooling from 5250 to 3000 C., and kept at this temperature for an
hour), gave a value of So = 1·9 kg.jmm.2, but after quenching from
5250 C. followed by precipitation treatment for half an hour at
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1000 C., gave So = 9·3 kg.fmm.2• Fig. 106, referring to a quenched
AI-Mg solid solution with 10 per cent. AI, shows the change in the
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FIG. 106.-Shear Hardening and Precipitation (242). Supersaturated AI-Mg
Solid Solution (10% AI) Annealed at 2180 C. The" Precipitation" is the
Amount of AI actually Precipitated (as Measured by Determination of the
Lattice Constant) Expressed as a Percentage of the Amount Required to

Establish Equilibrium.
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FIG. 107.-Extension Curves of Solid
Solutions of Cd-Zn of Approximately
Similar Orientation. Cd-content Given in

Each Case in Atomic-% (230).

critical shear stress of the basal plane as a function of the duration
of heat treatment at 2180 C. It is seen from the diagram, which
also includes a curve giving
the amount precipitated
from the solid solution, that
hardening and precipitation
go hand in hand.

46. Progress of Glide and
Fracture in Alloy Crystals
Fig. 107 contains exten-

sion curves of zinc crystals,
of approximately similar
orientation, alloyed with 1
varying percentages of cad- ,,;,
mium. They reveal once .;:
more the extremely strong !
dependence of the critical ".l
shear stress on the Cd
content; they also show
that the rate of hardening
due to extension is less,
the higher the original critical
shear stress resulting from alloying. This reduction of the capacity
for work hardening with increased initial hardening has been

••
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confirmed by all subsequent extension tests with alloy crystals

[cf. curves in Fig. 102b with VTr( = ~e, aIL)].
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FIG. 108 (a) and (b).-Yield-Stress Curves of Mg Solid Solutions.
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