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This is shown by direct measurements of length and by observing
the changes in orientation (inclinations of up to 30° were observed
for the cubic fracture plane). The same applies to crystals wetted
without load (cf. Fig. 195). Extension occurs also in specimens
with the axis parallel to one of the body diagonals, but on a smaller
scale, presumably by cubic glide [(551), (552), (554)]. The fractured
rods can be more easily coloured by ultra-violet light as a con-
sequence of the preceding deformation (556). A tensile test in
which the load is increased rapidly with the object of minimizing
extension so far as possible is described in (548).

4. Tempered crystals whose strength in the dry state had been
reduced almost by half, attain in the Joffé tensile test the same high

Fie. 195.—Glide Bands on a Wetted NaCl Crystal without
Load after Subsequent Fracture in the Dry State (551).

values as are exhibited by material which has not been previously
treated [(551), (552)].

5. High tensile strengths are exhibited by rock salt crystals even
when dissolved in more or less saturated solutions of NaCl (investi-
gated in up to 80 per cent. saturated solutions) [(551), (559)]. The
effect is said to be absent if the solution is saturated (546). The
same mechanical properties as in water were also obtained in con-
centrated sulphuric acid and in a 25 per cent. solution of SO, in
H,S0, in which NaCl is decomposed (557).

6. The Jofté effect was found with crystals of potassium chloride
and potassium iodide immersed in water, and with potassium iodide
immersed in anhydrous methyl alcohol [(558), (557)].

There is still some uncertainty as to the relation between the
increase of strength on the one hand, and the initial stress, degree of
solution and the deformation which precedes fracture, on the other.
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The experimental results differ in regard to the after-effect of
solution. Whereas in the bending test the increase in plasticity
ceases as soon as the water is removed (547), in the tensile test the
normal strength of the dry state is not regained until after a few
days (548). The time required for this after-effect varies with the
solvent (559).

With NaCl specimens oriented parallel to the cube edge it is very
noticeable that down to a definite initial stress of 216 g./mm.2 no
increase in strength takes place (551). In this case the crystals do
not fracture where the cross-section is smallest, but in the zone that
has remained dry, about 0-1-0-5 mm. above the water level. The
tensile values are therefore identical with the initial stress, which is
about 50 per cent. lower than the normal dry strength. These
tests give no indication as to the strength of the portion which has
been exposed to the solvent. Where the initial stresses are small
there is appreciable solution, fracture takes place in general at the
narrowest part of the crystal, and high tensile strengths are obtained.
Dependence of the strength upon the magnitude of the applied
stress, if it exists at all within this range of initial stress, merely
takes the form of a slight increase of strength as the initial stress is
reduced. Complete independence of the initial stress would involve
the independence of the resultant strength from the degree of solu-
tion. This conclusion is not borne out by the tests carried out with
wetted specimens under no load, mentioned under (1).

Owing to the shape of the wetted crystals the recognition of a
relationship between the increased tensile strength and previous
deformation is difficult (cf. Fig. 194). The extension is by no means
distributed evenly over the wetted portion of the crystal. In any
case, so far all tests devised to reveal a clear connection between
strength and the degree of deformation have failed. Even speci-
mens with axis parallel to a body diagonal show the same increase
in strength, although the extension is very slight.

There is still no satisfactory explanation of the solution effect.
The explanations attempted hitherto differ in their basic assumptions.

According to the interpretation suggested by the discoverer of
the effect, the cause of the increase of strength is to be sought in the
elimination of surface cracks which, by their notch effect, tend to
lower the strength (546). The inherent strength of the crystal is
not raised; the technical strength obtained in the normal tensile
test is less than that of the true strength of the crystal owing to the
notch effect of the fine cracks which are always present. In support
of the view that stresses of the order of 100 kg./mm.? can actually
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occur in the interior of crystals, tests have been carried out with
spheres of rock salt whose temperature had been suddenly raised
from the temperature of liquid air (560). The stress produced
within the specimen on immersion in a lead bath at 600° C.; which
was calculated at 70 kg./mm.2 and which did not lead to fracture,
was regarded as a confirmation of the high inherent strength of the
crystal.

An objection to this interpretation is that it assumes a very great
depth for the surface cracks, since no increase in strength is produced
until a large part (more than 50 per cent.) of the section has been
removed. The “ sphere ”’ experiment has also been objected to on
the grounds that plastic deformation occurs in the surface layers,
thus preventing the development of high stresses in the interior (561).

Recently this view has been discussed again with the necessary
addition that the depth of the crack depends on the dimensions of
the crystal (562); in this way an explanation can also be found for
the increase of strength observed with very thin crystals in the dry
test (563).

According to a second explanation of the Joffé effect, the increase
in strength is to be ascribed to the preceding deformation. It is
assumed that the strength of the undeformed crystal is small and
that it rises only as a result of deformation to the high values which
are theoretically required (561). The effect of the water is believed
to consist in the removal of impediments from the surface, thus
assisting the crystal to deform (547).

This interpretation assumes the existence of a definite relationship
between the observed strength and the degree of deformation which,
however, has so far not been proved. In this connection attention
is again drawn to the results which were obtained with specimens
parallel to the body diagonals and which are difficult to reconcile
with this assumption.

A combination of the two conceptions is discussed briefly in (553),
(564). The high strength is attributed exclusively to the effects of
work hardening. The requisite high degree of plasticity exhibited
by the wetted crystals is believed to be due to the removal by solu-
tion of cracks which develop in the course of gliding, and which in
the dry test lead to fracture.

Further attempts at elucidation assume that water penetrates
into the crystal. While on the one hand the crystal is presumed to
acquire in this way a very great capacity for strain strengthening
(° Reissverfestigung ) (565), it is also believed, especially in view of
experiments on the dependence of the Joffé effect upon orientation,
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that changes in the interior of the crystal due to the penetration of
water are mainly responsible for the high strengths obtained (551).
That plastic deformation is not an indispensable condition for the
change in the mechanical properties of wetted crystals is suggested
by the increased scratch hardness of crystals subjected to extensive
solution (566); however, in later tests in which solution was less
severe this increase was not found (567). An increase in the ionic
conductivity also points to an internal effect of the water (565).

Although it was not possible to obtain a direct verification of the
penetration of the water by measuring the lattice constants and the
density [with an accuracy of about 0-1 per thousand (566)], this proof
has been supplied for wetted crystals by observing in them the
ultra-red absorption typical of water (568).

With the object of disproving the theory that penetrating water
is responsible for the increase in strength, experiments were carried
out in which narrow strips of crystal were protected against solution
by a coating of vaseline; the observed strengths agreed with those
obtained in the dry test (569).

From what has been said it will be seen that a satisfactory explana-
tion of the Joffé effect has still to be found. An important contribu-
tion to the solution of this problem would probably result from
tensile tests carried out on crystals in varying stages of dissolution,
and in which plastic deformation during the tests had been minimized
(low temperature, short distance between the clamps).



INTERPRETATION OF THE BEHAVIOUR OF SINGLE CRYSTALS
AND CRYSTAL AGGREGATES

CHAPTER VIII

THEORIES OF CRYSTAL PLASTICITY AND CRYSTAL
STRENGTH

The deformation and fracture of crystals obeys a number of
laws. Although the criterion of mechanical twinning has not yet
been established, the most important of the deformation mechanisms
(gliding) has already been largely elucidated. The principal facts
are given in Section 50; they can be recapitulated as follows :

1. Shear stress law.

2. Low critical shear stress which, down to the lowest
temperatures, is only slightly dependent on temperature.

3. Increase in the shear strength with increasing glide; work
hardening.

4. Dependence of work hardening on temperature (and speed
of deformation). This is insignificant at the lowest tempera-
tures and close to the melting point, but substantial at inter-
mediate temperatures.

A simple law has also been discovered governing the cleavage
fracture of crystals (Sohncke’s normal stress law). The values for
the critical normal stresses are as low as for the critical shear stresses
for glide.

A physical theory should have for its object the formulation of a
conception of the structure of the solid which explains the empirical
laws, and the quantitative derivation therefrom of the observed
values of the mechanical properties. In addition, the processes of
recovery and recrystallization which are observed in plastically
deformed crystals (Section 49 and Chapter VI, G) have also to be
explained.

It is naturally a condition of the theoretical interpretation of the
tensile and shear strengths of crystals that the effective binding
forces and the laws by which they are governed should be known.
It is precisely in this field, however, that our knowledge is limited.
According to whether the lattice particles are ions, or atoms showing
no polarity, a distinction is made between polar and non-polar
binding. Theoretically the position is clearest in the case of the

polar (heteropolar) crystals, such as salts. Here electrostatic
265
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forces are responsible for holding the lattice together; the law
assumed for these has been generally confirmed. To the crystals
of non-polar binding belong, first of all, the metals. According
to present conceptions a metal crystal is held together by positively
charged atom cores embedded between the free metal electrons.
However, there is still no satisfactory theory on the subject.!  Other
non-polar crystals are the molecule lattices (Hy,N,,CO and many
organic compounds) and the crystals of the rare gases. In this case
it has been possible, with the aid of quantum mechanies, to account
for the attractive forces which hold the lattice together by attribut-
ing them to the deformability of the molecules or atoms. The
forces decrease with the inverse seventh power of the distance.
Special difficulties arise with a series of non-polar crystals, such as
materials of the diamond type with tetrahedral bonds, benzene, etc.

73. Theoretical Tensile Strength

The mechanical property which, so far, has been examined
theoretically in greatest detail is the tensile strength. The only
calculations carried out strictly on the basis of the lattice theory
relate to the tensile strength of rock salt, that is of an ionic crystal.
This is because the ionic crystals best illustrate the laws of the inter-
atomic forces. Two forces are mainly effective in these heteropolar
crystals : electrostatic (Coulomb) forces between the ions, and a
repulsive force which prevents the ions from penetrating into each
other. The electrostatic forces are governed by Coulomb’s law,
repulsion by the interaction of the electron clouds of the ions. In
view of the existence of a stable equilibrium, repulsion is bound to
diminish much more rapidly with the distance than the attraction.
At a given distance, represented by the lattice constant, attraction
and repulsion are in equilibrium. From this we obtain for the
force (K) the equation (570)—

e? b .
K:;—m. N 27
in which e and g represent the charge and the distance between the
ions, while b and n are constants (cf. Fig. 196). n~9 was deter-
mined for the alkali halides from the lattice constants and the
compressibilities. In order to arrive at the tensile strength it is
necessary to know also the ‘“lattice energy ” ¢, i.e., the energy
which must be employed in order to dissociate completely 1 g.

1 Translator’s Note. This statement is no longer true : see the works of
Mott and Jones, Brouillin, Seitz, Hume-Rothery and others.
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molecule of the crystal (to place infinite distance between the
ions).

If now a crystal of rock salt is stressed parallel to a cube axis,
then the cubic lattice (with the lattice constants, ;) is transformed
into a tetragonal lattice (with the constants @ and 4). In this

Force

A

Attraction

AQa / Interatomic distance

/H,—Kz Q

Repulsion

F1e. 196.—Overlapping of the Coulomb Attractive and Repulsive Forces

in Ionic Crystals.
process, of course, the lattice energy of the crystal depends on h.
But since Poisson’s ratio results solely from elongation, then

<a<{>(a, h))

2 Ve SR
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from which the functional connection of @ and A is obtained. If
inserted in the expression for ¢, then the lattice energy is obtained
solely as a function of 4. If the tensile stress K is necessary in order
to increase & by dh, then clearly K . dh is equal to the reduction of
the lattice energy d¢ :

K:—%’i. Coe .. L (T13)2)

If b increases from @, onwards, then initially the repulsive force
increases also in an attempt to restore the original undeformed
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condition. This increase in strength, however, does not persist
at greater deformations. After a maximum has been exceeded the
energy soon becomes negligibly small as dilatation continues. The
maximum K, corresponds to the tensile strength. It can be
2
calculated from (73/2) for a constant A characterized by 3752) = 0.
The calculated tensile strength for cubic specimens of rock salt (571)
was 200 kg./mm.? with an elastic elongation of 14 per cent.!
Similar elongations before fracture are also to be expected for
other ionic crystals, so that about one-tenth of the modulus of
elasticity in the direction of stress may be regarded as a rough
indication of the theoretical tensile strength.

The same order of magnitude for the tensile strength of crystals
was derived from energy considerations (573) which, owing to their
independence of the valid law of energy, are by no means limited to
ionic crystals. The basic idea is as follows. The additional surface
energy which results from the development of the two fracture
planes must at the moment of fracture be available in the crystal as
elastic energy of deformation. In order that the surface energy
may be fully effective, it is necessary that the distance between the
two fracture planes shall be greater than the range of action of the
molecular forces. Let Al be the elastic extension of the specimen
immediately prior to fracture. If the grips are held rigidly in
position, this amount is also the distance between the two fracture
planes. Ifnow a«is the free surface energy and Z the tensile strength,
then

Z Al >20 . . L . L (T3/3)

since the elastic stress energy is certainly smaller than Z . Al.  With
the aid of the values for o and Z it is therefore possible to calculate
a lower limit for the range of molecular forces. For rock salt
(x NaCl ~ 150 dyn/em., Z = 2-2. 107 dyn/em.? for fused crystals)
the value is ~1400 A. Undoubtedly this value is unduly large
since we know from other sources that the radius of action of the
lattice forces is no greater than the distance between the lattice
points (amounting to a few A.). This contradiction could be
resolved only by assuming a tensile strength which was 100-1000
times greater than that experimentally determined.

1 Recently in place of (73/1) a law of energy was quoted in which repulsion
is represented by an experimental function and in which allowance is made
for the van der Waals forces of attraction which are always present (572). A
new calculation of tensile strength has not yet been undertaken. It is true,

however, that the lattice energy will vary by no more than 0-2 per cent. if
rock salt is used.
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If this method of estimating the theoretical tensile strength is
applied to metallic crystals, values are obtained which again exceed
the test values by many orders of magnitude. In zinc crystals, for
instance, Al is ~9000 A. when fracturing about a basal plane disposed
obliquely to the tensile direction (a,, g ~800 dyn/em.* Z 4901, =
1-8.107 dyn/em.2).

The main conclusion to be drawn from these considerations is
that the observed tensile strengths of crystals cannot be regarded
as due to a breakdown of the lattice forces over the whole of the
fracture area. The lattice strengths are higher than the technical
strengths by 2-3 orders of magnitude. Independently of any
calculation this is readily shown by the fact that the modulus of
elasticity is constant nearly to the point of fracture (574). If the
forces which hold the crystal together were, in fact, overcome at
the moment of fracture, then this would correspond to a modulus
of elasticity of zero, parallel to the tensile direction, and thus
appreciable reductions in the modulus should be observed at an
earlier stage.

74. Calculations of the Theoretical Shear Strength

The conception underlying a (lattice) theoretical calculation of
the shear strength of glide planes is that the forces which are effective
between the lattice planes can be represented by a model resembling
a file (575). A reciprocal displacement in a longitudinal direction
of two files in direct contact is possible only if they are slightly
separated from each other before each stage of glide begins. Normal
dilatation perpendicular to the glide planes is also stated to be a
condition of glide in crystals. Before glide can take place, therefore,
it is necessary to reduce the cohesive forces. A mathematical
analysis of this model in terms of the lattice, making certain assump-
tions for the sake of simplicity, gives the same order of magnitude
for the relationship between shear strength and shear modulus
(1:10) as was found above for the relationship between tensile
strength and modulus of elasticity. Just as the elastic extension
should amount to about 10 per cent. at the point of fracture, so, too,
the elastic shear should be about 10 per cent. at the start of glide.
The theoretical shear strengths, like the tensile strengths, amount
to several hundred kg./mm.2. This gives for the magnitude of
normal dilatation perpendicular to the glide plane a value of 1-2 per

* The (unknown) surface energy of the crystal is greater; it implies there-
fore an even greater value of Al.
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cent. of the tangential displacement. Fig. 197 shows clearly that
glide cannot proceed along these lines. It shows the movement
perpendicular to the glide plane which is exhibited at the yield point
by zinc crystals of various orientations. Whereas normal dilatation
occurs when the basal plane makes a

& / large angle with the crystal axis, glide
- isaccompanied by normal contraction
where the initial position of the basal
. w plane in relation to the longitudinal

S direction exceeds 27° 30"
2 2 The same order of magnitude for
S // the theoretical shear strength of glide
T systems is derived from a rough
.;f / estimate which assumes that the two
s X halves of a crystal would have to be
§ / elastically displaced with reference to
= ¥ each other by about half a glide unit,
if they are to pass into the new posi-
i tion without additional stress (576).
Actual shear stress values are

2

2 2 & &% gmaller than these high values by
A"g,l,fd"d?:é?;gz g;%"zs% gllde more than three orders of magnitude
Fie. 197.—Normal Dilatation (about 100 g./mnl.z). Here, too, then,
(e;) Perpendicular to the Glide the lattice forces are by no means
Flsue &t th%fiiﬁslbomt of Zn yvercome—a fact which appears

s = s té thr ‘§13 —r— clearly from the low shear values

(about 10-4) which prevail at the yield
point. Just as crystals fracture long before the tensile strength of the
lattice is reached, so, too, glide, and probably mechanical twinning,
occur long before the shear strength of the lattice is attained.

75. Attempts to Resolve the Difference between the Theoretical and
Technical Values

Although it is generally impossible to realize in practice the tensile
shear strengths which have been determined theoretically, it is,
nevertheless, quite obvious that the lattice strengths must exceed
the experimental values by several orders of magnitude. The
failure of the crystals under mechanical stressing (start of gliding
and twinning; fracture) is premature and takes place long before
the lattice forces have been overcome. In an attempt to account
for this great difference, Voigt drew attention to the significance of
structural and thermal inhomogeneities in the actual crystals (577).
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Both of these ideas have been further developed. The structural
inhomogeneities provide the basis of Smekal’s theory of vacant
lattice sites [(578), (579)]. According to this theory, real crystals
differ fundamentally from the ideal crystal by reason of the defects
in their lattice (holes, defective orientation, foreign atoms). In the
case of transparent crystals these defects can be experimentally
demonstrated in a number of ways (e.g., coloration, absorption).
Some idea of the prevalence of lattice faults can be gained from an
estimate which gives one fault for every 10,000 atoms built perfectly
into the lattice. Since the faults originate while the crystal is grow-
ing, their frequency and their nature depend both on the material
itself and on the conditions under which it crystallizes. The proper-
ties of the crystal which are decisively influenced by these faults
(the structurally sensitive properties) contrast with the structurally
insensitive properties which in the main are determined by the ideal
lattice units distributed between the faults (cf. Section 60).

The significance of the faults in the lattice for bridging the large
gap between technical and lattice strengths is to be sought in their
notch effect. This is due to the fact that, when cracks are present
in an elastically stretched solid, appreciable changes in the stress
distribution will occur in the vicinity of the cracks. Initially,
elastic deformation will increase with stress, yet only up to the
point at which either the maximum stress achieved is equal to the
lattice strength, or until less energy is required (surface energy) to
enlarge the crack than to increase the stress. The stress attained
at this point represents the technical tensile strength.

In the case of a plate with an elliptical hole (radii @ and b) which
is subjected to a tensile stress ¢ in the undisturbed zone, in the plane
perpendicular to the major axis, a maximum stress will occur at
the edge of the hole

cm,:o<1+%“) Co. .. (1)

at the ends of the major axis, while at the ends of the minor axis
2
there will be a compression stress of — o (580). If (p = Z_;_) represents

the radius of curvature at the apex of the ellipse, then the expression
for the maximum stress becomes

Omax. =— 6,\/2/ . . . . . (75/1(1)

In order to calculate, on an energy basis, the technical strength
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required to extend a crack, it is first necessary to ascertain the
elastic energy inherent in a thin plate containing a slot (581). Tt
will be found that in a plate (thickness I) subjected to stress o the
stored elastic energy is less by

1
446 = E 7!'0/262

(E = modulus of elasticity, @ = half the length of the slot) than in
a plate that is intact. Also there is in the plate with the crack an
amount of energy equal to 4a« (« = surface energy) which originates
from the surfaces of the crack. Fracture of the crystal will occur
without the addition of further energy if the elastic energy which
has been acquired by widening the crack just suffices to supply the
surface energy needed to enlarge the surface. Therefore

d (I 55 0

o (Frate?) = 5 (4ax)
is the equation for determining the tensile strength s, ; it results in
the expression
2H o
Ta

0'1:

by means of which the tensile strength of an elastic solid can be
calculated from its shape, that is, from the length of the existing
cracks and from its physical properties. This theory has been
tested and confirmed on scratched glass and quartz.

The notch effect associated with the microscopic cracks discussed
above is also influenced by the faults in the crystal referred to earlier
in this section. With the aid of the formula (75/2), and if the tensile
strength, modulus of elasticity and surface energy are known, then
a length of crack corresponding to the faults can be calculated (582).
For example, the following values were obtained for rock salt and
zinc: rock salt (o, =2:2.107 dyn/em.?; o« =150 dyn/cm.;
E =49 .10" dyn/em.?) 2¢ = 0-2 cm.; zinc (fracture along the
basal plane; o= 1-8.107 dyn/em.?; o =800 dyn/em.; K =
3-5. 101 dyn/em.?) 2¢ = 1-1 em. Naturally, no real significance
attaches to such large cracks. Formula (75/2), of course, can be
used only if the maximum tensile stresses at the edge of the notch
do not exceed the strength of the lattice. But for the cracks whose
lengths have already been obtained from the plausible assumption
that the radius of curvature at the base of the notch is of the same
order of magnitude as the lattice constants (5.10-®% cm.), this has
already occurred. (75/la) gives for rock salt 6, = 630 kg./mm.2,
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for zine opae — 1200 kg./mm.2, which values are about three
times higher than the lattice strengths recorded in Section 73.
(75/1a) shows that cracks ten times as short would suffice to over-
come the lattice strength at the base of the notch. Even in that
case, however, the cracks would still be of macroscopic dimensions,
which is contrary to the prevailing conception of the nature of a
fault in a crystal. An attempt to postulate even shorter cracks
with the aid of plastic glide will be found in (583).

Although we have been unable to account quantitatively for the
low mechanical properties of crystals along these lines, qualitatively
the concept employed leads to a plausible interpretation of a series
of phenomena (578). The selection of fracture planes would be
decisively influenced by the spatial distribution of crystal faults,
for instance, along planes of minimum surface energy. The Sohncke
normal stress law is derived from the fact that the maximum stress
at the base of the notch results from the stress components per-
pendicular to the crack. Likewise the small effect of temperature
on the critical normal stress is also explained. Further, the increase
in the tensile strength of polycrystalline specimens with decreasing
grain size (582) has been accounted for by assuming that the cracks
are halted initially at the grain boundaries and do not penetrate
into the adjacent grain until the external stresses have been in-
creased (584). In order to avoid the long cracks which, in thin
crystals at least, are obviously impossible, attention has been drawn
on the one hand to the reciprocal intensifying effect of neighbouring
cracks (578). On the other hand, it was assumed (cf. Section 72)
that the crack length ceases to be a constant of the material if the
dimensions of the solid come within its order of magnitude (584).

The effect of surface cracks on the tensile strength of mica sheets
is made very clear in (585). By removing the load from the edges
of the specimens (the width of the specimens was greater than the
width of the grips) the tensile strength was increased tenfold.
Consequently, it amounted to about one-tenth of the theoretical
value, which shows that in this instance the effect of internal faults
was no longer decisive. This can be explained in terms of the notch
theory by assuming that, in the mica under investigation, the
structural faults were disposed mainly parallel to the cleavage plane,
i.c., parallel to the direction of pull.

It was only natural that the notch effect of cracks and faults
should be adduced to account also for the low shear strength of
crystals. To facilitate calculation an extended ellipse was again
substituted for the crack, the stress distribution being determined

T
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along the boundary of the ellipse [(586), (587)]. The result is wholly
in line with that obtained in the tensile test. The decisive factors
are the length of the crack and the radius of curvature at its end.
Stress concentration again occurs at the ends, and the direction
of maximum shear stress coincides with the direction of the crack
itself. In spite of lower total effective shear stress, it is there that
the shear stress of the lattice is said to be reached and that glide
begins. According to this conception, therefore, the glide elements
of the crystals would be decisively influenced not only by the
anisotropy of the lattice strength but also by the distribution of the
faults.

The formula for the shear strength ~;, which, like formula (75/2),
is obtained by balancing the energy, is as follows :

T — ZN/Ea—(Ii—p) @ . . . (70/3)

in which @ represents the modulus of shear and p Poisson’s ratio
(587). Cracks of the same order of magnitude as those which have
already been derived from the formula for tensile strength are
obtained.

A theory which avoids these large cracks can be developed if the
following conception of the mechanism of glide is adopted (589).
Glide starts locally at random points in the crystal as a result of
“ dislocations 7 (deviations from the strictly geometrical lattice
structure; caused probably by thermal movement) which become
separated from each other, under the influence of the local shear
stress, by migration parallel to the direction of gliding. In the
ideal crystal the migration of the first few * dislocations 7, or in
other words the plastic deformation, would begin at minimum
shear stresses. It is fundamental to this theory that these dis-
locations do not migrate through the whole crystal, but very soon
meet with obstacles which prevent them from scattering beyond a
mean distance L. It is mainly from this picture that the slope
of the hardening curve is derived. From a comparison between
observed and calculated curves a value of about 10-* ¢m. is obtained
for the length L.

In order to explain the experimentally determined final values
for yield point, reference is made to the mosaic structure which is

L The weakening effect of the notches described above has nothing to do with
the shear hardening which is produced in plastic crystals by subsequently
perforating or notching them (Fig. 198). In this case it is a question of
producing lattice disturbances which impede glide in the vicinity of the
notches.
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often observed in natural crystals. The crystal is composed of

(a) Tensile specimens of a
perforated Mg crystal.

lattice blocks, having roughly the same
linear dimensions as L, which are
rotated from each other about small
angles of approximately 1’ (590). In
consequence, internal stresses develop
within the crystal. An estimate gives
shear stresses approximately one ten-
thousandth of the shear modulus. Not
until these stress limits have been over-
come can the dislocations start to
migrate in the crystal mosaic, and
plastic strain occur. It will be seen
that the order of magnitude of the
experimentally determined critical
shear stresses has in this way been
correctly given.

Dislocations are also assumed to be
nuclear points of glide in (591) and in
(592) (in the former they are illustrated
by the picture of a vernier).

Hitherto, low strength was always
attributed to faults which, while their
orientation corresponds to the aniso-
tropy of the crystal, are statistically
distributed throughout it. A theory
of a more sweeping nature assumes
the existence of regularly distributed
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(b) Stress—strain curves of magnes@um
crystals with and without longitudinal
grooves.

Fic. 198 (a) and (b).—Shear Hardening of a Crystal Caused by Subsequent
Drilling and Notching (588).
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inhomogeneities, and connects these with a reduction in the potential
energy of the crystal and consequently with the creation of a more
stable condition than that represented by the normal lattice (593).
The normal lattice structure is said to be overlaid by a ““ secondary ”
structure, characterized by the periodical occurrence, at distances
of a multiple of the lattice constants, of planes which are abnormally
close packed. According to (594), (595), however, the calculation
carried out for the crystals of alkali halides cannot be regarded
as valid for a less symmetrical lattice of higher stability. Con-
sequently, although there is much experimental data to support
the theory of the construction of actual crystals from the lattice
blocks, it is unlikely that an explanation along these lines will be
possible.  Moreover, it has been shown that the mosaic texture is
not a general but an individual property which is appreciably
dependent on the conditions of growth and deformation (596).
How far this applies to the adsorption of small additions into the
internal surfaces of crystals [for ionic crystals cf. (597); for Bi
(598)] cannot yet be decided. An attempt to account for the great
difference between the theoretical and experimental values on the
basis of a secondary structure would therefore appear to be
inadmissible.

In this connection, attention is drawn to the very different function
performed by the system of internal surfaces in the glide theory
based on the migration of ** dislocations ” which has been outlined
above. In this theory the  dislocations ™ serve solely to restrict
migration; the process of deformation takes place in the interior
of the blocks.

The theories we have been discussing assume that structural
inhomogeneities are the cause of the premature failure of actual
crystals. The second type of inhomogeneity to which reference has
already been made, namely thermal, originates in the thermal
movement of the atoms. Becker has very carefully studied their
effect on glide [(599), (600)]. In this case, however, it was not, as
hitherto, the onset of plastic flow that was calculated, but the speed
of flow (u) as a function of the applied shear stress (S) and of the
absolute temperature (7). The line of thought is roughly as fol-
lows : irregular thermal movement in the neighbourhood of the
glide planes causes stress fluctuations to be superimposed on the
applied shear stress. After short periods the shear stress increases
to the value of the lattice shear strength (S*) : the crystal glides by
discreet amounts.  The increase in length of the crystal per second
(the speed of flow) is obtained from the product of Z, the number of
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glide-plane sections involved in a unit of glide, the average length
Al by which the specimen is extended as a result of such a unit of
glide and the probability W that such glide will occur :

w=Z.A.W . . . . . (15/4)

For the probability W, i.e., the frequency with which the limiting
stress S* is exceeded in the vicinity of the glide plane, within a
volume V' we obtain

. S* — 8)2 -
W—e— A '-zchL)’ ... . (75/4a)
in which @ represents the modulus of shear and k the Boltzmann
constant (1-37,. 106 erg/degree). In experiments with tungsten
erystals (599) and polycrystalline copper (601) the marked depend-
ence of the speed of flow upon temperature (the speed being doubled
when temperature rises by 10°), which follows from formula (75/4),
was very well confirmed.

However, an attempt to account for the low experimental shear
strengths exclusively in terms of thermal fluctuations meets with
difficulties owing to the low values for critical shear stress which
have also been observed at very low temperatures. The observed
dependence of the flow speed upon temperature can also be regarded
as an effect of crystal recovery, which works in opposition to the
work hardening which accompanies increasing deformation (Section
49). Since recovery depends on the effect of thermal fluctuations
(¢f. Section 77), it should be easy to interpret the results of the flow
experiments (576).  On the other hand, in the case of the amorphous
solids, plasticity seems, in fact, to result exclusively from thermal
fluctuations (cf. also Section 77).

In (592) the effects of both structural and thermal inhomogeneities
are combined to explain the low shear stresses of crystals. Notches
are held mainly responsible for the wide discrepancy between
theoretical and experimental shear strengths; they cause stress
concentrations amounting to about one-third of the theoretical
shear strength. Nevertheless, thermal fluctuations are said to
impose characteristic features on crystal glide. If certain allow-
ances are made, the slight dependence of the critical shear stress
of zinc and cadmium crystals upon temperature also agrees in
general with the theory. On the other hand, the marked dependence
upon temperature of the flow speed of these metals, on which the
application of the thermal theory rests, has still to be proved.
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76. Theory of the Work Hardening of Crystals

It has been shown that so far no reliable explanation of the low
tensile and shear strength of crystals has been forthcoming. Even
less is known of the phenomenon of work hardening, which consists
in an increase in the mechanical properties with increasing deforma-
tion. This subject still remains within the realm of speculation.

Recent theories of the notch effect naturally assume that harden-
ing results from changes in the strength-reducing notches. The
shear and tensile strengths of the lattice are assumed to be fixed ;
the experimentally determined values can only approximate to them ;
they can never exceed the lattice strength ; a hardening of the lattice
is impossible. Several opinions have been expressed as to the kind
of changes which must occur in the notches in order to reduce their
effect. Forinstance, as a result of deformation, the cracks associated
with the faults in the structure of the crystal could be shortened.
It is therefore reasonable to suppose that the dangers to which they
give rise are reduced, where simple glide is involved, for the latent
planes, while in the case of complex glide the relief is more general.
Owing to the movement of the glide ““ packets ™ the cracks are
further subdivided, and the individual portions displaced stepwise
in relation to each other (584). The relatively slight changes in the
tensile strength of metals with unique glide planes (Sections 53 and
54) are also in agreement with this conception. In regard to the
shear hardening of the operative glide plane, it has been pointed out
that glide occurs at an increasing number of points as deformation
proceeds. Whereas the stress concentration at the ends of the
cracks which first become effective is very high, by reason of the
fact that the load has been removed from large areas in the vicinity,
the areas which remain undeformed diminish as elongation proceeds.
In terms of the notch-effect theory it follows that the new cracks
must be increasingly short, and their stress concentration corre-
spondingly low : thus, the glide plane hardens (586). According
to the more recent conception of glide as a migration of dislocations
(589) the shear hardening is similarly interpreted as an increase in
the number of dislocations. As the distance between the disloca-
tions is reduced (perpendicular to the plane of gliding) the shear
strength increases. This theory yields the following expression for
the connection between shear strength (S) and gliding (a), t.e.,
for the shear-hardening curve

S=x.GVANL.Va . . . . (16]1)
in which ¢ represents the modulus of shear, 2 the identity period
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in the glide direction, L the distance of the free migration of the
dislocations (size of the lattice blocks; approx. 104 em.) and x
a constant (approx. 0-2). The shear-hardening curves are thus
represented by parabolas, and there is, in fact, close agreement with
the experimental results obtained with cubic metals.

In this connection mention must be made of a theory which
associates strain hardening with increasing disorientation along the
glide planes (578). This is related to the rotation of portions of
the lattice in the vicinity of the glide planes (cf. Section 59), which
has been theoretically deduced and experimentally demonstrated
from the stress distribution at the crack [(587), (586)]. As strain
along the operative glide planes is intensified the single crystal is
said to disintegrate into lattice blocks of increasingly variable
orientation. This not only impedes further glide (shear hardening),
but it also renders more difficult the formation of smooth fracture
planes permeating the entire crystal (tensile hardening). It should
be noted, however, that if the direction of stress is reversed the
degree of disorientation will be reduced, but the hardening will con-
tinue to increase (cf. Sections 59 and 61).

The hypotheses of the nature of work hardening so far described
relate to changes which take place, during gliding, in the strength-
reducing faults present in the crystal. The tendency of these
changes is to increase the effective lattice strength with the per-
centage of working. According to other hypotheses, which take no
account of the discrepancy between the theoretical and actual
strengths of crystals, the phenomenon of hardening is due to modi-
fications of the crystal lattice. These include the earlier modifica-
tion hypotheses, together with the version in which they are best
known : the amorphous layer hypothesis [(602), (603)] which
assumes the formation of a brittle and amorphous layer between
the gliding lamellee, and at the grain boundaries, as a result of
friction. Apart from the fact that no proof could be adduced for
the occurrence of such layers, there are thermodynamic grounds
for rejecting this assumption (604). In this context mention
should also be made of the displacement hypothesis (experimentally
disproved) (605), which assumes a lattice displacement, to the point
of complete destruction, in the course of deformation.

According to the interference hypothesis (606) local disturbances
of the crystal lattice, and consequently of the interatomic forces,
are regarded not only as an important cause of hardening by cold
working, but also of hardening through alloying. A more precise
picture of local lattice disturbances of this type is obtained if the
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glide lamellz are visualized as being elastically bent (Fig. 199). In
the case of glide accompanied by bending [(607) and especially
(608)] the lamellee are not displaced parallel to each other; instead,
in the course of gliding they curve about an axis which in the glide
plane is perpendicular to the glide direction. Compared with its
original intact condition, the lattice in the bent crystal is changed.
In the first place the boundary planes of the bent lamell® represent
“internal separation planes”, while, secondly, elastic stresses
(tensile or compressive stresses on the convex or concave side of the
lamelle) are distributed inhomogeneously in the crystal. In the
present case the model of the macro-
scopically bent crystal does not limit
application of the general theory,
since undulations of the glide planes
have also been determined by X-ray
) ‘ y diffraction in crystals which have
%‘,;gc 0;3?);"(311‘53C}{u:ﬁ];];gg‘n(ﬁl}:; been extended uniformly. Harden-
(608). - ing,especiallyhardening of the latent
glide systems, isnow attributed to the
internal separation planes. These prevent glide planes which intersect
the first planes from becoming effective. Hardening of the primary
system, together with that of other systems, occurs from the start
of deformation, although these act only in a subordinate capacity.
The conditions occurring on the internal separation planes are
subjected to mathematical analysis in (609). It is shown there that
the disorientation of a single atom in a series of atoms is unstable
and that the atom must revert of its own accord to its position in the
lattice. On the other hand, linear groups of disoriented atoms be-
come stabilized. Consequently the resultant stresses remain even
after the externally applied stress has been removed. A model
illustrating very clearly the stability of these groups has already
been shown in (610). The relationship between the two forces
operating on irregular atoms (elastic energy exerted by one-half of
the lattice on an atom belonging to it, but which has been forced
out of equilibrium ; energy which is present in the opposite half of
the lattice and which changes periodically with the displacement) is
assumed to be such that at least two stable equilibria are available
for the displaced atoms. The transition from one position of
equilibrium to the other proceeds by jumps when a given relative
displacement of the lattice halves has been achieved. If the direc-
tion of stress is reversed, then in order to restore the original state
it will be necessary to remove the load to a point at which the

7
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deformation is smaller than that which is necessary to cause in-
stability at that load. Thus, dependent upon the previous history,
two different states of deformation can result from one and the same
effective stress. This would explain elastic hysteresis in single
crystals (cf. Section 55). The cause of the appearance and per-
sistence of closed loops under alternating stress should be sought,
not in the crystallographic mechanism of deformation, but in the
mechanically reversible atomic movement between two adjacent
stable positions (611).

The model described above has also been used to explain the low
elastic after-effect of crystals. Thermal energy, and not the supply
of elastic stress energy, is held to account for the jump from one
state of equilibrium into another. The requisite amounts for over-
coming the shear stress of the lattice are thus supplied locally in
exactly the same way as was assumed in the theory of crystal flow
by gliding (cf. Section 75).

According to a third group of hypotheses the cause of hardening
must be sought in the atoms themselves. Control of the speed of
solution, and the change which is produced in the colour of alloys
by cold working, have been accounted for in this way (604). The
circumstance that the lattice distortions which are revealed by
X-ray photographs do not entirely correspond to the changes in
the mechanical properties and the electrical resistance, and that the
effect of hardening and recovery varies for different properties of
metals of the same lattice type, has been put forward as evidence
that a deformation of the electron shells of the atoms is the primary
cause of the work hardening effects. These atomic deformations
can be accompanied by slight disturbances of the crystal lattice, but
they need not be so accompanied [(612), (613)]. Without denying
the possibility of such atomic deformations, it should be pointed out
that they ought rather to be regarded as a secondary effect of the
primary lattice distortions (614).

It cannot be said at present which of these theories of work hard-
ening will survive when our knowledge of the subject is more com-
plete. Itis, however,anadvantage ofthe first group of hypotheses that
they approach work hardening phenomena from the same angle as the
equally unsolved problem of the low mechanical properties of crystals.

7. The Theory of Recrystallization—Atomic Migration
Plasticity
The phenomena and principles of recrystallization (and crystal
recovery) have been discussed in previous sections (49, 61-65 and
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71). The process underlying this phenomenon is the magration
of the atoms brought about by the increased thermal movement
incidental to heat treatment. We shall discuss theories which
enable us to understand the recrystallization temperature and the
shape of the recrystallization diagrams. Then we shall describe a
type of plasticity which, while it occurs with crystalline material,
does not proceed in a regular crystallographic fashion but is also
probably due to atomic migration.

There are two explanations for the existence of the temperature
of recrystallization. The first, which applies to cubic crystals,
relates to the thermal migration of atoms while also describing the
diffusion processes (614a). A condition of atomic migration is that
the energy of the atoms in question must be greater than a given
limiting value (#), and this applies to that part of the atomic array

B

which is represented by (e 7). With the aid of the specific
atomic frequency (v) both the number of migrations per second
and the time required until all the atoms have migrated can be
calculated. The deformed material is distinguished from the
undeformed by an increase in energy (AL), which is characterized
by the change in the specific resistance. The probability of migra-
tions is thereby increased, since the quantity of energy to be pro-
duced by the thermal movement of the atoms is now only £ — AK;
the time required for the migration of all atoms is reduced. An
important prerequisite for the occurrence of recrystallization is the
unsymmetrical distribution of energy accumulations in the deformed
material, which otherwise would be indistinguishable from material
at high temperature.

The points at which maximum accumulation of energy occurs
determine the course of recrystallization. In order that the whole
specimen may recrystallize, it is necessary that at several places all
the atoms shall migrate during heating. The time of heating must
therefore be stated in order that the temperature of recrystallization
can be fixed. The connection established in this way, at a con-
stant percentage of working, between recrystallization temperature
T rapsy, time of heating ¢ and atomic frequency v, is as follows :

const
A nvt

T

@)

If, then, two related values of 7; and ¢ are known, the heat-
ing period corresponding to another temperature of recrystalliza-
tion can be calculated (thus an increase of 7'z by 1 per cent. reduces
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the time of heating by 35 per cent). This formula has been tested
experimentally on various materials, and the results have confirmed
theoretical expectations.

According to the second explanation the temperature of recrystal-
lization is said to be that at which the speed of recrystallization
changes abruptly (609). This phenomenon can be best explained with
reference to the groups of disoriented atoms which occur in hardened
crystals and which have already been described. The state of
metastable equilibrium in which the disoriented atoms find them-
selves at the boundaries of the glide lamelle increases with the
number of atoms that are interlocked ; the limiting energy required
to overcome this equilibrium is therefore correspondingly great.
If we heat a hardened crystal in which such interlocked atoms are
dispersed, then, in accordance with Maxwell’s Law of the distribu-
tion of energy, only a few interlocked atoms will have sufficient
energy at low temperatures to free themselves from the bond. At
such temperatures very long heating periods will be necessary to
attain the final recrystallized state of equilibrium. If, however, the
heat treatment supplies sufficient energy within a short time to a
large number of interlocked atoms, then, as the mathematical
analysis shows, all interlockings are dissolved simultaneously owing
to the reduced stability. The temperature at which this occurs in a
short time is the temperature of recrystallization.!

The shape of the recrystallization diagrams [coarse grain size after
low percentage of working and high annealing temperatures; fine
grain size after heating at low temperature specimens which had
been heavily worked (cf. Fig. 169)] was derived qualitatively from
thermodynamic considerations which avoid the still unknown details
of atomic processes (600). The atomic migrations which take place
at a temperature above that of recrystallization increase in fre-
quency with the growing confusion of the atomic arrangement which
augments with the percentage of working (increased hardening). If,
as a result of this migration, a number of atoms arrive in positions
which are crystallographically suitable, they will remain in these
positions for a much longer period : a crystal nucleus will form.
This means that the frequency of the migrations will decisively
influence the formation and subsequent growth of crystal nuclei.
In the first place it will be observed that not every new grouping of
atoms is capable of serving as a nucleus. For instance, if the

1 However, it is difficult to reconcile with this explanation the fact that the
temperature of recrystallization falls as the percentage of working increases,
while the number of interlockings, far from being reduced, probably grows as
hardening proceeds.
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number of related atoms is too restricted and the fragment of crystal
too small, its stability will not exceed that of the deformed material
in the immediate vicinity. If the nucleus remains below a certain
critical size it will disappear again, since its vapour pressure exceeds
that of its surroundings. The problem is, therefore, to represent
the vapour pressure of the basic material as a function of the per-
centage of working and of the temperature of annealing, and that
of the newly formed nuclei as a function of size and temperature.
From an equalization of the two we obtain the minimum size (r) of
the stable nucleus as a function of the percentage of working
[measured by the heat of recrystallization (3) and temperature (77)].
The expression for r is as follows :
1 d
‘ " 2eM

(77/2)

in which 7' represents the melting point, d and « the density and
surface tension of the erystal, M the molecular weight of the vapour.
The dependence of the nuclear size (r) upon 3 and 7' which results
from (77/2) agrees with the shape of the recrystallization diagrams.

The foregoing discussion has dealt with the average grain size
of the recrystallized structure. Observations relating to the dis-
tribution of grain sizes will be found in (615). In (616) grain-size
distribution has been calculated on the basis of an assumed constant
frequency of nucleus formation and constant linear speed of growth.
This distribution should be the same both for the cast and recrystal-
lized structures, but apparently it does not entirely conform to
actual experience. To assume a constant speed of nucleus formation
is to simplify the problem unwarrantably, at least so far as recrystal-
lization is concerned.

In connection with this discussion of the recrystallization of
hardened crystalline materials, attention should also be drawn to
another consequence of the atomic migration phenomena. There
is a type of plasticity which accompanies recrystallization (and
phase transformations) in the course of stressing, and which strictly
speaking cannot be regarded as a movement due to crystallographic
glide. On the other hand, it can easily be explained as a result of
atomic migration, since under stress those migrations are naturally
preferred which lead to stress relief or to deformation consistent
with the stress.  This type of plasticity has therefore been designated
“amorphous plasticity ” because migration is the mechanism by
which an amorphous vitreous material deforms. In this way it
may happen that at temperatures above recrystallization a recrystal-
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lized material, which has been annecaled and softened, will be
stronger than work-hardened unannealed material in which vigorous
migration takes place as heating proceeds (600). Experiments
with tungsten coils (617) and with copper and aluminium wires
(618) reveal, in fact, that pronounced flow accompanies recrystalliza-
tion. In Fig. 200, by way of example, flow curves are shown which
were obtained in a filament-stretching apparatus with hard and soft
copper wires treated at 600° C.; in every case the hardened recrystal-
lizing wire flows more readily than the one which has been previously
annealed.

Similar results have also been obtained when investigating the
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“creep 7 strength of iron and nickel and of some of their alloys at
elevated temperatures (619). The extensions in this case were not
determined by mirror reading, but were compensated for by changing
the temperature. It was again found that material which had been
pre-heated was very much stronger (in terms of creep strength) at
temperatures above the range of recrystallization. The technical
significance of these facts is obvious. If the observed phenomenon
is generally valid, then metals used within the temperature range
in which recrystallization and recovery occur could in many cases
be better employed in the heat-treated than in the cold-worked
state.

In view of these facts it was natural to expect a reduction in flow
resistance in cases of phase changes also. Here, too, atomic migra-
tion supplies the mechanism by which the lattice is reconstructed.
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Detailed investigation of the y—a phase change of nickel steel (30
per cent. nickel) has confirmed this expectation (620). If the phase
change occurred while the wire specimen was being stressed, then
extensions of more than 10 per cent. were observed to take place
at the same time. Since the specimen had been merely cooled, it
follows that in this case it cannot have been a question of migration
of thermal origin. Tt is therefore the occurrence of active atomic
migration, and not the manner in which this migration is brought
about, which is the essential feature of the mechanical weakness.



CHAPTER IX

THE PROPERTIES OF POLYCRYSTALLINE TECHNICAL
MATERIALS IN RELATION TO THE BEHAVIOUR
OF THE SINGLE CRYSTAL

Having discussed the phenomena of the plastic deformation of
single crystals, we saw in the previous chapter how far we still are
from a satisfactory theoretical interpretation of the observed facts.
The present and last chapter will be devoted to an examination of
the problem—scientifically less impressive but technically very
important—of the relationship between the properties of poly-
crystalline aggregates and the properties and arrangement of the
individual grains (texture). An understanding of this relationship
will enable us not only to explain the behaviour of aggregates, but
also to estimate what properties can be obtained in the material
under optimum conditions. A calculation of the properties of the
material from the behaviour of the single crystal and the arrange-
ment of the grains will be particularly successful if the effect of the
grain boundaries does not make itself felt in the polycrystal.

In the first place it is the properties which are structure insensitive
(cf. Section 60) for which crystalline behaviour and structure are
the sole determining factors (e.g., the elastic properties, thermal
expansion). But even in the large group of plastic properties which
are structure sensitive, we may expect to find a manifestation of
polycrystalline behaviour which is at least qualitatively correct,
owing to the directionality of these properties being frequently very
marked. In this way we gain a clearer insight into a number of
technological problems and so are enabled to make more effective
use of the material. . But in so far as the influence of the grain
boundaries predominates, the method of approach outlined above
becomes less applicable. Properties which are based on inter-
crystalline processes occurring at the grain boundaries, such as hot
shortness caused by melting of a eutectic, intercrystalline disintegra-
tion due to corrosion—do not, of course, come within the scope of the
present discussion.

Before dealing with the mathematical side of the problem, and
before noting examples from the technology of metals, we will
discuss the methods in use for determining the crystalline arrange-
ment in polycrystalline material, and we will describe and trace to
their origin the textures which are produced in metals by the various
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methods of working. We have omitted rock structures from this
discussion. These have been widely investigated in recent years,
and the subject is treated exhaustively in the monographs [(621),
(622)].

78. Determination and Description of the Textures (see 623)

In principle, the same methods are used for determining the
distribution of orientations of the grains of a polycrystalline aggre-
gate as for determining the orientation of single crystals (cf. Chapter
IV). The superiority of the X-ray method has been clearly demon-
strated, especially where fine-grained and intricate textures are
involved, and it is this method which we propose to discuss almost
exclusively.!

Supplementing the information contained in Chapter IV, we give
below, briefly, the solution of the following two problems.

1. Determination of the orientation of crystal grains relative to a
direction imposed by the shape or previous history of the specimen
(e.g., direction perpendicular to the cooling surface in cast material,?
and to the longitudinal axis in drawn, rolled or recrystallized wires
and extruded bars).

2. Determination of the texture relative to a co-ordinate system of
axes suggested by shape or previous history (e.g., the rolling, trans-
verse and normal direction in sheets).

If, in the first case, one and the same lattice direction in each crystal
grain coincides with the imposed direction (axis of the fibre), then the
simplest type of crystallite arrangement is present and we obtain a
simple fibre texture (625).3  In this case a monochromatic X-ray dia-
gram perpendicular to the working direction coincides with the dia-
gram of a crystal which has been rotated about the relevant lattice
direction. Inthe specimen all those crystalline positions are spatially
distributed which appear successively as the crystal is rotated. The

1 If a quick and rough estimate of the anisotropy of rolled sheet is required,
the Chladni resonance figures can be used (624).

? Fig. 201 shows the structure of a technical casting. Several different
zones can be clearly distinguished. At the outer edge, close to the wall of
the die, there is a thin layer of fine-grained equiaxed crystals, which is followed
by a fairly coarse-grained layer of columnar crystals, the longitudinal direction
of which is perpendicular to the cooling surface. The interior of the bar is
made up again of smaller crystals of irregular shape. Deviations from the
random arrangement of the crystals are to be expected mainly in the columnar
zone. The prevailing texture in this layer is known as the casting texture.
When determining the texture by X-ray methods it is advisable that the test
bars taken from the casting should have their axis parallel to the direction of
growth of the crystals.

3 Fibre—the name originates from the discovery of this type of texture in
natural fibres (626).
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interference patches are located on the layer lines, and it is from the
distance of the latter that, knowing the crystal structure, and using
formula (21/2a), the identity period along the fibre axis and the

Cast Structure. Section through a
Copper Ingot.

F1a. 201.

crystallographic nature of the texture can be determined. The
nature of the fibre axis can be checked by examining the distribu-
tion of the interferences on the layer lines, which, as mentioned in
Section 21, is entirely regular. Examples of a cast specimen and of

Fra. 202.—Pattern of a Cast Texture. Al (627); Axis of the Fibre || [100].
a recrystallized wire are shown in Figs. 202 and 203, which were
obtained by irradiation perpendicular to the axis of the fibre.
Fig. 204, a and b, reveals the presence of a so-called “ double fibre
texture ” represented by the superimposition of two simple fibre
textures with a fibre axis common to both. In this case there are
U
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two groups of crystallites, each of which is characterized by a definite
crystal direction parallel to the axis of the fibre.

: Recrystallized Aluminium Wire (628); Axis
of the Fibre || [111].

F1a. 203.—Fibre Pattern

As an example of the determination of the orientation of the
crystallites in relation to a three-axial rectangular system of co-
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ordinates, attention is drawn to the so-called pole figure method
which was applied to metals for the first time in (631). This does
not merely consist in giving the crystallographic directions which lie
parallel to the three axes in the individual crystals, but also—and
this is the main advantage—in a representation, characterized by
pole figures of the more important crystal faces, of the whole dis-
tribution of orientations present in the specimen. In order to obtain
these pole figures the interferences on the Debye—Scherrer circles are
plotted in the stereographic representation of the normals of the
reflecting planes (cf. Section 24, where this plot is shown for the
Laue interferences). This method is used especially for defining
the textures of sheets, and it is to such an application that the
following remarks apply. If the distribution of orientations is to
be fully accounted for, a single diagram taken approximately per-
pendicular to the plane of the sheet will by no means suffice. If the
specimen is not moved, then reflections can be obtained only from
those crystal planes which, according to Bragg’s formula, are in an
exact position to reflect. If therefore a complete picture is required,
it will be necessary to irradiate the sheet obliquely in various direc-
tions to produce a series of photographs. It is preferable so to
arrange the directions of radiation that they lie in the planes : sheet
normal—rolling direction and sheet normal—transverse direction.
In such oblique photographs the primary ray is no longer per-
pendicular to the rolling plane of the sheet, that is, to the projection
plane. It will now be a question of transferring the interference
positions of the oblique photographs to the stereographic projection,
and so to a representation of the reflecting lattice planes. This is
achieved by projecting the interferences first of all in the same way
as the photographs which have been taken perpendicularly. The
primary ray is then perpendicular to the projection plane. The
plane of the sheet, however, does not coincide with the projection
plane, as would be necessary for a uniform representation. On the
other hand, the inclination of the sheet normals to the primary
ray is known. For instance, if, in a photograph, the primary ray
in the plane containing the sheet normal and the rolling direction
has been inclined at an angle « to the sheet normal, then the sphere
of reflection, which initially was projected perpendicularly, must be
rotated about the transverse direction by the angle «. In this way
the rolling plane will coincide with the projection plane, while the
primary ray will impinge obliquely at angle «. Thus, a number of
photographs can be evaluated and the results entered on the same
stereographic projection. Finally, the points obtained are repro-



292 The Properties of Polycrystalline Technical Materials

duced in accordance with the existing symmetry elements of the
texture. With a view to a more exact definition, the density of
distribution in the pole figure is estimated from the intensity of the
reflections. The diagram is prepared either in terms of the different
degrees of density (see Fig. 205) or by suitably shading the pole
figure (see Fig. 206).

(b) Pole figure of the (111) plane. (¢) Pole figure of the (110) plane.
Fic. 205 (a)—(c).—Rolling Texture of a-brass (632).
WR = direction of rolling. QR = transverse direction.

Table XXXI contains particulars of the casting textures of a
series of metals and solid-solution alloys based on the resulis of
teature determinations [in particular the determinations in (627)].
In the columnar zones there is a simple fibre texture : an important
lattice direction coincides more or less in the fibre axis of all crystal
dendrites. Zinc and cadmium are the only exceptions. Here a
““ circular 7’ fibre texture is present (634); in all crystals the longi-
tudinal direction is distinguished only in so far as it lies in the basal
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(a) Pole figure of the (0001) plane (basal).

(b) Pole figure of the (1010) plane (¢) Pole figure of the (10I1) plane
(prism type I, order 1). (pyramid type I, order 1).

F16. 206 (a)—(c).—Rolling Texture of Zinc (633).

WR = direction of rolling. QR = transverse direction.
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plane; otherwise it presents a different direction from crystal to
crystal.l

The deformation textures, which are distinguished according to
the method of working (drawing textures, rolling textures, etc.),
cannot as a rule be fully described by indicating the principal
crystal orientations. With rolling textures the pole figure is usually
employed. This indicates the degree of scattering, and so affords a
better idea of the distribution of the crystal orientations present.

TasLe XXXI
Cast Textures
) Parallel to the longitudinal
Metal. direction of the crystals.

Al
Cu . v . . ’ ])
A8 - | [100]
Pb . J
a-Brass
a-Fe o me
B-Brass } [106]
B-Sn B [110]
Mg . . . . . [1120]
%g : : : : : } [0001] Perpendicular
Bi . . . . . [111]

But other refinements in the structure of the deformation textures
must also be taken into account. They relate mainly to the inhomo-
geneity of the texture with regard to type and scatter in the different
layers of the material. Where a double fibre structure is present it
will also be necessary to indicate the frequency with which the
individual crystal orientations occur. In Fig. 207 are found four
diagrams which have been obtained from copper wire etched to
different depths. It will be seen immediately from the varying

1 Regular textures also occur, under suitable conditions, in metals which
have been electrolytically deposited from aqueous solutions; they are simple
fibre textures with the direction of the current flow serving as the fibre axis.
A whole series of factors is responsible for the selection of this axis—solvents,
ions in solution, amperage, the material of the cathode. For a summary of

the observed textures, together with particulars of the working conditions, see
(623).
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- ™
S

The same wire etched down to
1-3 mm.

(@) 1-75 mm. diameter. (b

=

F . 7

Y f \

(¢) Etched down to 1:0 mm. (d) Etched down to 0-4 mm.
Fic. 207 (a)-(d).—Texture Present in Different Layers of Drawn Copper
Wire (629).

length of the interference arcs that the pattern is much sharper in
the centre of the wire than in the peripheral zones. That this
discrepancy in scatter is not due to differences in the thickness of
the wire will be clear from Fig.
208, which illustrates drawn,
unetched wire 0-05 mm. in dia-
meter. In addition to the
sharpness of the pattern, in-
homogeneity affects also the
texture (note the absence of
symmetry in Figs. 207, a—c, and
208). ‘
The real drawing texture re- gy, 208.— Texture Pattern of Copper
sulting from uni-axial tension can  Wire which has been Substantially
be described as follows in the case tHiged Doswn (6231)1'1“1 Dismeter = 003
of cubic face-centred and prob- '
ably also cubic body-centred metals : in the interior of the wire thereis
a normal fibre texture ; towards the exterior it merges gradually into
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of the peripheral zones of the specimens even if not that of the
interior. The particulars of the preferred orientations contained in
Tables XXXII-XXXIV can therefore serve only as a first rough

TaBLE XXXIT

Drawing Textures

Metal. Parallel to the axis of the wire.

e e I
1. 2.
Al . . . 3 [111] —
Cu . . . . N
Au 5 . . .
Ni S SN [100]
Pd . i " . J
Ag ) . ) . [100] [111]
a-Fe . . : .
w . . : ) [110] -
Mo
Mg : drawn . . 3 (0001) —
scraped . . 5 [1010] —
Zn . . ) ) (0001) -
Inclined at an
angle of 18°
TasLe XXXIII
Compressive and Torsional Textures
_ [ e
Compression. Torsion.
Metal. Parallel to the direction | Parallel to the longitu-
of compression. dinal direction.
Al : . . : .
cu .- } [LL0] [111]
a-Fe . . . : [111] 1. [L1o] 2. [112]

Mg . . . 3 [0001] -

approximation. In regard to Table XXXII (drawing textures) it
should be observed that, despite the different method of fabrication,
the same texture appears also in the interior of fracture cones of
tensile bars, as well as in the interior of cold-rolled wires (copper,
aluminium, p-brass). It would therefore appear as though the type
of deformation employed, rather than the method of applying the
force and the actual stress distribution, is mainly responsible for
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the development of the structure [(638), (639); cf. also Section
80].

It is not easy to generalize regarding the textures which result
from the heat treatment of cold-worked metals—recrystallization
structures (cf. Sections 63 and 64). 1In this case, history, degree of
purity and type of heat treatment profoundly influence the behaviour

TaBLE XXXIV
Rolling Textures

Parallel to the rolling
Metal.
Direction. Plane.
Al ! ‘L
Ag 9
a-Brass . . . L (123 (110)
ey ] J
1C\Illl T - - 1. [112] 1. (110
. - » . 9 = s 9
(Au) . . . . 2. (1] % (112)
_F ,
e b0 (001)
Mg . . . . — (0001)
Zn . . . . [1120] (0001)
Inclined at an | Inclined at an
angle of 20° angle of 20°
Cd . . . . — (0001)
Inclined at an
angle of 30°

of the material. Three main types of recrystallization can be
distinguished in rolled sheets (640). First, the orientation of the
new grains can be entirely random ; secondly, a regular texture can
appear at the onset of recrystallization, but it will be unstable, and a
random distribution of orientations will be produced as treatment
continues at higher temperatures; in the third case, the regular
texture may persist at the highest anncaling temperatures. As
already mentioned, however, it is impossible to distribute the various
metals accurately among these three groups. Aluminium, for
instance, was at one time placed in the first group (640), but sub-
sequent experiments revealed the presence of a regular recrystalliza-
tion texture (641). In silver foil, which is representative of the
second group, the recrystallization texture was found to disappear
at 750° C. (642); but another type of silver foil retained the texture
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even at high temperatures of heat treatment (632). Recrystallized
copper foil, in particular, was considered by various authorities to

Fie. 213.*Te);£11re Pattern of Re-
crystallized Copper Sheet (632).
Cube Position.

sented as three superimposed

belong unquestionably to the
third group. In this case the
very simple recrystallization posi-
tion shown in Figs. 213 and 214
persists up to the highest tem-
peratures. The hexagonal metals
probably belong to this group
also. The rolling texture of these
metals has been observed always
to correspond to the recrystalliza-
tion texture [(645), (646)].

The recrystallization textures
of rolled sheets as defined by their
main positions are shown in
Table XXXV. The pole figures
obtained with iron can be repre-
preferred positions, the first two

oceurring with nearly the same frequency, while the third is much

more rare (647).

TasLe XXXV
Recrystallization Textures of Rolled Sheets

Metal.

Parallel to the rolling

Direction. Plane.

Ag .
a-Brass . .
Bronze (59, Sn)

[112] (311)

Al
Cu
Ni
Au
[110] (001)
a-Tron [112] (111)

. N
. }. [100] (001)

[110] (112)

Tn annealed drawn wires the recrystallization texture at low
temperatures is usually observed to be identical with that of the
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drawing texture; the drawing texture still persists to some extent,
however, in material which has been annealed at high temperatures.
In pure aluminium wire the recrystallized texture is even more
marked than the drawing texture (cf. Fig. 203). The recrystalliza-

Pits in Recrystallized
Cu Sheet (643).

tion texture of copper wire which has been annealed at high tempera-
tures differs from the drawing texture, being a simple fibre texture
with [112] parallel to the direction of the wire.

79. Behaviour under Strain of a Grain Embedded in a Poly-
crystalline Aggregate

Before we discuss the development of textures we propose to
examine in the present section, with reference to the formation of
deformation textures, the behaviour under plastic strain of a single
grain embedded in a polycrystalline aggregate, since the deforma-
tion of the aggregate also usually takes the form of a stretching
of the individual grains and not of their displacement along the
grain boundaries [cf. Fig. 215 and also (649)]. It is, of course, a
fact that continuity on all sides with neighbouring crystals of
different orientation results in considerable difference between the
behaviour of the aggregate and that of the deformed, free, single
crystal.

In order to make this difference clear, let us examine the case of
a single crystal. If, for instance, two tin crystals are joined together
along a short boundary, and if the crystals are then stretched, it
will be noticed that the unjoined parts elongate with the typical
formation of glide bands, while the region of the junction remains
unchanged (650). It is obvious that the point of coalescence (the
grain boundary) has a restrictive effect on elongation. If the stress
were increased, the bi-crystal, too, would deform, but this would be
accompanied by very substantial strains and distortions along the
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i AN s L
(¢) Glide in a deformed Fe polycrystal (644).

i

Fra. 215 (a)-(¢).—Grain Deformation Resulting from the Stretching of a
Polycrystal.

grain boundary. These can develop to a point at which they cause
grain boundaries to split, as has already been demonstrated in the
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case of bi-crystals of bismuth. Indirectly the high strains along
the grain boundaries are rendered visible by a greatly increased
local capacity for recrystallization. Under annealing conditions
which, in the elongated single crystal of tin, produce only a few large
grains, the elongated bi-crystal changes into a fine crystalline
structure.

These facts become intelligible when it is realized that the
coalesced surface has to accommodate itself to the deformation of
both crystals. This requires, however, that the crystals shall glide
along the grain boundary, which would be impossible without over-
coming the intercrystalline forces. If the stress is insufficiently

Fia. 216.—Slightly Bent Zn Sheet, with
Chains of Deformation Twins (651).

raised, or if fracture takes place earlier, then the crystals deform in a
way less suited to their inherent mode of deformation. Pronounced
distortions of the crystal lattice occur, especially in the vicinity of
the grain boundary, accompanied by such phenomena as greater
work hardening and an increased capacity for recrystallization.

The grain boundary effect is even more considerable in poly-
crystalline aggregates than in bi-crystals. The single grain is much
more restricted in its deformation by glide, being stressed along the
whole of its surface by forces which distort it and impose upon it a
very general modification of shape which cannot be achieved by
simple glide alone. But if only a single glide plane is available, as
in the case of the hexagonal metals, then the individual grains are
but insufficiently equipped to bring about a general change in shape.
In this case heavy additional distortions will be necessary, and in
particular twinning, which results in greater hardening of poly-
crystalline aggregates than of the freely stretched single crystal for
the same percentages of working.  Fig. 216 shows by way of example
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a coarse-grained zinc sheet which has been slightly bent, and which
exhibits deformation twins in numerous grains. It should be noted
that the twinning lamelle often originate at the point of contact
of three crystals and that connected chains form across the grain
boundaries. Consequently, any portion of a grain boundary on
which a deformation twin impinges is liable, owing to the very marked

concentration of stress at this

4 point, to give rise to another twin
22 in a neighbouring crystal.

& Polyerystal The position is different for cubic
20 i crystals, wheresthere are many

possibilities for glide. Face-centred
crystals possess already twelve
76 crystallographically  equivalent
octahedral glide systems. Con-
sequentlyin their case deformation

78

] is by no means restricted to the
. system which is initially the most

420 ’(2” favourable, and multiple glide
8 makes it much easier for the crystal

I / S to adapt itself to the imposed
] / 7‘;’% z/a";vﬂ 75%30) change in shape. Mathematical

1 /;;M analysishasshown thatany desired

/ A shape can be obtained if glide
4 == takes place simultaneously on five
different glide systems (652). In

j such cases, therefore, much smaller
Heemgaon % differences may be expected in the
Fia. 217.—Stress—Strain Curves of o .

Mg Crystals of Various Orientations, hardenlng of Slngle and POly'
and of a Mg Polycrystal (655). The  crystals. This is confirmed by the
Initial Angles of the Basal Plane . . ]
are Included for the Curves of the Stress—strain curves of single and
Single Crystals. polycrystals of magnesium and
aluminium which are shown in
Figs. 217 and 90a (page 121). It will be seen that, for the
magnesium polycrystals, the stress applied is greatly increased and
the ductility reduced compared with the single crystal; while for
aluminium the stress—strain curve of the polycrystal falls within the

limits of the curves for the single crystal [(653), (654)].

A similar contrast between the behaviour of hexagonal and
cubic metals is observed under dynamic stressing. While with
magnesium polycrystals subjected to alternating torsional stress
fracture starts as a rule along the grain boundaries (high stress

Stress in kg./mm.* of the original cross-sectional area

aq w80 w0 W0 200 240
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concentration caused by restricted ductility), with aluminium poly-
crystals the course of fracture is mainly transcrystalline [(656), (657),
(658)].

The interaction between the crystals becomes increasingly import-
ant with decreasing grain size. Similarly, work hardening is observed
to increase with decreasing grain size for the same amount of
deformation (659). Hardness, too, increases with decreasing grain
size (cf. 660). It is possible that the experiments which revealed
an exceptional increase in the tensile strength of zinc sheets with
increasing fineness of the grain admit of a similar explanation (661).
This would mean that, despite the low temperature of the test
(—185° (.), the results could be interpreted in terms of tensile
hardening dependent upon grain size (compare with this the very
different interpretation in Section 75).

80. On the Origin of Textures

The cast structure usually results from the location of the longi-
tudinal axes of the columnar crystals at right angles to the cooling
surface (wall of the mould). This also holds for relatively intricate
moulds (662). A principle of selection which explains the columnar
arrangement and the existence of an orderly structure in terms of
geometry and crystallography can be obtained from Fig. 16 (page 28).
Having regard to what has already been said in Section 13, the fibre
axis which corresponds to the longitudinal direction of the columnar
crystals should be identified with the direction of maximum speed
of growth in the crystal. According to this conception the crystal
directions given in Table XXXI must also represent the directions
of maximum speed of crystallization.*

The reorientations experienced by the individual grains in the
course of working are closely related to deformation textures. This
has been strikingly confirmed by the interpretation of the deforma-
tion textures of hexagonal metals, and by the great difference in
behaviour of zinc and cadmium on the one hand and magnesium on
the other (663). The mechanism which is mainly responsible for
the change of shape, namely basal glide, makes the basal plane
approach a position parallel to the direction of deformation. In the
case of magnesium it is impossible for twinning to follow gliding,
since with the basal plane in the above position, twinning would
be accompanied by a contraction in the tensile or rolling direction

1 It is probable that the electrolytic textures owe their origin to a similar
selection in growth.
p.<
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(cf. Section 31, and especially Section 39). The process of stretching
therefore results mainly in primal basal glide. The most frequent
end position is one in which the basal plane lies in the tensile direc-
tion or rolling plane. The compression texture observed in mag-
nesium is also what would be expected from the behaviour of the
single crystal. In zinc the formation is somewhat more complicated.
Tensile tests on single crystals have already shown that in this case
primary basal glide is followed by mechanical twinning, which, unlike
the case of magnesium, results in a lengthening of the crystal. The
angle of inclination between the basal plane and direction of tension
at which the new type of deformation becomes effective is between
8% and 16° at room temperature. Twinning brings the basal plane
into a position about 60° to the tensile direction, where it is again
favourably oriented for further glide, with the result that very con-
siderable secondary glide takes place in the twin lamelle. It is in
the texture of rolled sheet that all the stages of this tensile deforma-
tion are present simultaneously (cf. Fig. 206a). The most frequent
final position of the basal plane is found experimentally to be about
10-20° to the direction of deformation (rolling direction). In many
grains, however, the basal planes are inclined at steeper angles, since
twinning leads continually to a reorientation of the basal plane
followed by further gliding. The absence of basal-plane normals in
the plane containing the sheet normal and transverse direction is
readily explained by the fact that grains which are oriented in this
way cannot undergo any lengthening in the rolling direction, and
s0 must be brought, initially by twinning, into an orientation which
is more suitable for subsequent deformation.!

Difficulties often arise, however, when such a direct interpretation
of polycrystalline textures is attempted for cubic metals. For
instance, the tensile and drawing structure of cubic face-centred
metals is a double fibre texture having the [111] and [100] directions
parallel to the tensile direction. In the case of stretched single
crystals the [112] direction finally coincides with this direction.
In spite of numerous attempts, no one has yet quite succeeded
in deducing, quantitatively, the orientations of the crystallites in
deformed components. The various assumptions can be grouped as
follows : a mechanical principle assumes that the deformation
texture is characterized by maximum strength. As cold working

! In heavily rolled sheets of a 99 per cent. zinc alloy a further restricted
area has been found about the rolling direction in addition to the areas already
described for the hexagonal axis. The stability of this orientation is under-
standable, since neither by gliding nor by fwinning can deformation be
achieved in the rolling process (664).
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proceeds, the crystal elements are supposed to rotate gradually into
an end position which is symmetrical to the main directions of
deformation, and which requires a (relatively) maximum of externally
applied force if further deformation is to take place (665). However,
as is shown by the dependence of the yield point on orientation,
the general validity of this principle is not proven. The other
hypotheses relate primarily to the behaviour of the individual grain
in the polycrystalline aggregate which is being deformed in tension.
In (666) the point of departure is the assumption that the glide planes
are bent about an axis perpendicular to the direction of gliding
(direction of curvature). The reorientation of the grain embedded
in the polycrystalline aggregate is said to correspond to this bending.
The final position of the lattice is attained by activating two glide
systems at the most. Although in certain cases the correct textures
can be inferred from these assumptions, this is not always so. In
particular, the case of the rolling textures of cubic metals remains
unexplained.

The third group of hypotheses deals with the differences in the
behaviour of extended free crystals and crystals in an aggregate
which were described in the previous section. In (667) it is assumed
that, if the imposed general change in shape is to be explained
satisfactorily, then all the crystallographically equivalent glide
systems must become active within the extended grain in the
polycrystal. It has been found that, if certain allowances are made
in regard to capacity for glide of glide planes and directions, the ob-
served textures can be conceived as stable final configurations. The
employment of three glide systems for the deformation of grains in
cubic metals is indicated in (668) and discussed in detail in (669).
Since the glide system which operates is determined by the shear
stress, the magnitude of the prevailing shear stress is utilized for
selecting the effective glide elements, and that final orientation is
determined which, for the prescribed deformation, remains resistant
to glide in the three most favourable glide systems. It was along
these lines that the well-known drawing and compression textures
of cubic metals could be interpreted. The main position of the
rolling textures appears as a superimposition of compression and
drawing textures. It is revealed as that final orientation which
remains stable when compressed parallel to the sheet normals and
elongated in the direction of rolling.

Another point of view from which to interpret the deformation
textures is provided by the observation that different types of stress
giving identical deformation yield identical textures. We have
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seen, for instance, that the cold rolling of wires (copper and alu-
minium) produces the same texture as pulling or drawing them (639),
and that steel sheet drawn through flat dies exhibits the same texture
as rolled sheet (638). This emphasizes clearly the importance of
the change in shape for the development of the textures. It there-
fore appears that the symmetry of the direction of flow in the metal
is a more influential factor than the symmetry of the applied forces.!
We again observe the importance of the direction of flow in the case
of the inhomogeneous texture of wires drawn in one direction. In
the centre of the wire the direction of flow coincides with the direc-
tion of drawing. Here the undisturbed texture can develop. At
the surface, on the other hand, the material is compelled by the
conical die wall to flow towards the centre. The axes of the crystals
are rotated relative to the longitudinal direction, the amount of the
rotation corresponding roughly to the taper of the die.

We are still unable to account fully for the origin of recrystalliza-
tion textures—which, as already stated, are largely influenced by the
conditions under which they are produced. However, it is reason-
able to suppose [cf. especially (670)] that, also in the case of deformed
polyerystals, recrystallization proceeds in two phases, namely by
nuclear formation and grain growth—a mechanism which can be
inferred especially from experiments which have been carried out with
deformed aluminium crystals (cf. Section 63 and also 77).  Opposed to
this view is the  single-phase ”” conception of the recrystallization
process (671). According to this theory those parts of the lattice
which are least deformed serve as nuclei for the new lattice ; removal
of the distortions which are present in the deformed state enables
these nuclei to grow. Consequently, over moderately large lattice
areas only a single lattice orientation is present—although in various
conditions, according to the number of distortions (** Gehalt an
Verhakungen ).

2

81. Calculation of the Properties of Quasi-isotropic Polycrystalline
Aggregates

As already pointed out, effective calculation of the behaviour of
crystal aggregates, based on the behaviour of the single crystal,

1 In this connection it might be possible to interpret the deformation
textures by determining the stable end positions of the lattice at which those
three glide systems become active which give maximum extensions in the
preferred directions of flow for the same amount of glide (minimum energy of
deformation). Since for small amounts of glide the strain is obtained by
dividing the amount of glide by the same divisor (sin x cos A) as when calculat-
ing the shear stress from the tensile stress (see Section 26), the same choice of
glide systems becomes available as under the condition of maximum shear stress.
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should be possible especially for those properties for which grain
boundary interferences can be disregarded.

Hitherto, calculations have been carried out principally for the
quasi-isotropic polycrystal (random orientation). Common to all
determinations of average values is the assumption that the grains
are large with respect to the range of the binding forces, but small
in relation to the dimensions of the specimens, and that they com-
pletely occupy the space.

For the elastic properties this averaging (Mittelung) was first under-
taken in (672) at a time when experimental material for testing the
formula was scarce. The adhesion of the grains during elastic
deformation is assured if one assumes that the stresses and strains
are continuous across the grain boundaries. The averaging of the
stress components (equation 7/1) for the polyerystal of random
orientation is then based on the mean value of the elastic para-
meters (.. Integration of these expressions over the total range
of orientation gives the elastic parameters of the polycrystal (in
accordance with the system in Section 8) from which the moduli
of elasticity and torsion are then derived.

It has been shown in (673), as the result of tests carried out on a
number of metals, that while this method of calculation yields fairly
accurate values for crystal material which is slightly anisotropic,
the margin of error increases with increasing anisotropy. This is
attributed to the conditions which exist at grain boundaries. Since
the principle of action and reaction requires that the three stress
components perpendicular to the boundary plane in adjacent
crystals shall be equal to each other, it will usually be possible for
only three, and not for all six, elastic deformations to be equivalent
to each other. Very great difficulties are encountered when arriving
at averages under the new limiting conditions. It becomes neces-
sary to assume a special lamellar type of structure in the polycrystal.
Such calculations yield a noticeably closer approximation to the values
of the moduli as determined experimentally. The first process
mentioned above is found to be an approximation where only slight
anisotropy exists.

Underlying all calculations of averages is the assumption of a
state of uniform stress in all grains (674). The new calculation
proceeds along analogous lines (672), except that in accordance with
the changed assumption the average is reached by way of Sy
[equation (7/2)]. This method of calculation yields values which
are persistently lower than the observed results.

Finally, in (675) averaging is performed by integrating over the
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whole range of orientation the expressions for the moduli of elasticity
and torsion, as given by the theory of crystal elasticity, for a specimen
taken in any desired direction relative to the crystallographic axes
[formulas (10/1, 2) and (10/4, 5)].  Special limiting conditions govern-
ing the constancy of the components of stress or deformation become
superfluous at the grain boundaries. This is justified because the
cohesion of the grains is assured by the distortions which take place
in the outer layers. This can, in fact, be directly observed in the
case of the much larger stresses which lead to plastic deformation.
Integration over the total range of orientation (corresponding to the
random texture of the polycrystal) results in finite expressions for
the moduli of hexagonal crystals, and in rapidly converging series
for those of cubic and tetragonal crystals (676). This method
of averaging reproduces the observed facts with at least the same
degree of accuracy as that described in (673). A statistical compari-
son with the results obtained in practice will be found below in
Table XXXVI (678).

TasLe XXXVI

Calculated and Experimentally Determined Properties of
Polycrystalline Metals (Random Orientation)

Modulus of Modulus of

elasticity, shear, Thermal ex- Specific electrical re-
kg./mm.2, kg, /mm.2. pansion, 1075, sistance, 107% Q/em.
Metal.
20— 0- i
Caleu- | Ob- | Caleu- | Ob- | 100°C. | 100° ¢. | §Heu- | Gateu- .
lated.! |served.?| lated. |served.2| calcu- | ob- (él/‘% 81/2), |served.®
lated. |served.? 3)- | (81/2).
Aluminium " 7,170 | 7,200 | 2,660 | 2,700
Copper 4 . [ 11,950 | 12,100 | 4,280 | 4,400
Silver i .| 7,500 | 8,000 | 2,640 | 2,700 Tsotropic
Gold 7,750 | 8,100 | 2,650 | 2,800 ' :

a-Brass (72% Cu) | 10,500 | 10,200 | 3,550 | 4,100

a-Tron 20,700 | 21,400 | 7.770 | 8.400

Magnesium . | 4,510 | 4,500 | 1,770 | 1,800 | 25:0 | 26:0 | 429 | 432 | 44
Zine . 110040 | 10,000 | 3:620 | 3700 | 307 | 300 | 589 | 501 | 60
Cadmium . .| 6110 | 5100 | 2,130 | 2200 | 318 | 316 | 730 | 787 | 7.4
B-Tin . .| 4,480| 4,650 | 1,570 | 1,700 | 2051 230 ‘ 110 | 114 \ 111

1 All calculations based on the properties of crystals recorded in Tables XVIIT and XX.

? According to Landolt, Bornstein, Roth and Scheel, Physico-chemical Tables, 5th edition.
# According to I'. Kohlrausch, Manual of Practical Physics, 16th edition.

¢ At approximately 20° C.

In this context, mention may be made of Poisson’s equation (cf.
Section 9). It has been found that when applying the averaging
process according to (672), the validity of the Cauchy relations for



