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Abstract

The transformation strain associated with displacive phase transfor-

mations can be utilised to improve mechanical properties of structural com-

ponents in steels. The advantages of the transformation plasticity can be

fully utilised by allowing the transformation to occur under the influence of

external stress or strain. In this thesis, mathematical models have been for-

mulated to calculate the transformation strain and texture during martensitic

and bainitic transformations. The models are able to deal with a variety of

complexities including various starting austenite textures and different states

of externally applied stress.

A variant selection model has been proposed based on Patel and Co-

hen’s theory and the effect of variant selection on the transformation strain

and texture has been discussed in detail. A new theory has been proposed to

calculate the extent of variant selection. An attempt has been made to sep-

arate the effects of stress and strain on transformation plasticity and variant

selection. It has been shown that Patel and Cohen’s plastic strain theory is

more suitable than the elastic infinitesimal strain deformation model to cal-

culate the interaction energies between crystallographic variants and external

load.

Using theoretical knowledge and with the help of a neural network

model, new alloys have been prepared to be used as the welding filler met-

als to reduce the residual stress and to achieve higher toughness. Neutron

diffraction studies have revealed that newly developed filler metals do indeed

reduce the residual stress.

Synchrotron X-ray data have been utilised to determine the texture

of austenite and martensite as transformation occurs under load. A mathe-

matical model has been developed to predict the Debye diffraction patterns

observed experimentally.
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Chapter 1

Introduction

Displacive transformations in steels such as bainite and martensite gener-

ate dilatational and shear strains of about 0.03 and 0.22-0.26 respectively

[1]. However, the shear strains associated with the plates of transformed

products tend to cancel when the plates are randomly oriented in the overall

microstructure. There are ways, for instance using externally applied stress

or strain, by which it is possible to bias the microstructure and exploit the

full extent of the shear strain in particular technological applications.

Many major engineering failures occur due to fatigue exacerbated by

residual stresses introduced during welding. The conventional way of cop-

ing with this is to reduce design stresses, conduct heat treatments to relieve

residual stresses (although this is not always an option) or to avoid stress

concentrations. An alternative approach in the case of steels, which avoids

many of the difficulties of the usual methods, is to exploit solid-state phase

transformations to control the development of stresses [2, 3]. Here the trans-

formation plasticity during the cooling of weldments might be engineered to

compensate for thermal contraction strains in constrained assemblies. To

do this most effectively requires the shear strain of the transformation (by

far the biggest component of the transformation strain) to be visible on a

macroscopic scale. That is, there must be a bias in the microstructure as

1
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described above.

That solid state transformations can be used to reduce weld stresses,

has been demonstrated in some simple experiments on weld distortion [4].

Recent work in Japan [2] on similar lines, using welding consumables with

very low transformation temperatures has shown that it is possible not only

to reduce the residual tensile stresses but to introduce residual compression

into the weld region, with consequential enhancement of fatigue life.

The non-random orientation in the microstructure arises due to two

major factors, variant selection and the prior orientation of the austenite

phase. But it is not clear how these factors influence the transformation strain

and texture, which directly influence the material properties. A seminal part

of the work presented in this thesis has been dedicated to create mathematical

algorithms which can estimate the transformation strain and texture during

displacive transformations. Most of the existing models [5–9] tend to ignore

the totality of phenomenological theory of martensite crystallography [10,

11], which correctly describes the shape and crystallography of martensitic

transformation and resort to unrealistic simplification or introduce undue

complications. Many such models can estimate the transformation texture,

but not the (anisotropic) strains due to transformation in a polycrystalline

substance.

An effort has been made here to strictly comply with the theory of

crystallography and the plastic work model of Patel and Cohen [12]. These

are the two rigorous tenets of stress-affected transformation theory. There

are also some unanswered questions about the exact role stress, as opposed

to plastic strain in the austenite, plays during displacive transformations. An

attempt has been made to separate out the effects of stress and strain on the

transformation. Electron back scattered diffraction has been used in some

cases to measure the microtexture, particularly from single crystals of the

parent phase in order to validate variant selection criteria. In other cases,
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data from the published literature have been exploited.

The external load is responsible for variant selection during displacive

transformation, its effect manifesting as mechanical free energy whose mag-

nitude depends on the orientation of the plate. Some plates will in this sense

be favourably oriented, i.e, their transformation strains comply with the im-

posed load. But the extent of variant selection is not explained with any

existing theory. A theory has been introduced here to quantitatively express

the extent of variant selection.

Synchrotron X-ray sources have also been used to study the orientation

bias in the microstructure as a function of applied load.

Using the principles of physical metallurgy and a variety of models,

new welding alloys have been designed which are tough and transform at

low temperatures to take advantage of the transformation plasticity as a

compensating mechanism for thermal strains in welded joints. The idea was

to reduce residual stresses. Experimental joints were prepared using the new

alloys and the residual stresses were measured using neutron diffraction.

To summarise, original theory has been formulated to deal with the de-

velopment of texture and macroscopic strains during the course of displacive

transformation in steels. This has then been exploited to design certain

welding alloys which should have an advantage from the point of view of

the mechanical behaviour of large, constrained assemblies fabricated using

localised heat sources.



Chapter 2

Shape deformation in displacive

transformations and properties

2.1 Shape deformation

An invariant-plane strain (IPS) occurs for example, when a dislocation shears

a crystal plane in such a manner that the slip plane remains crystalline with

no change in the relative positions of the atoms. A similar deformation

occurs when phases like martensite or bainite grow in the form of thin plates.

The difference is that the IPS associated with martensite or bainite has a

dilatation in addition to the shear component as shown in Fig. 2.1.

The parameters δ, s and m represent the magnitudes of the dilatational

strain, shear strain and total displacement respectively. If d is a unit vector

in the direction of the displacements involved, then md represents the dis-

placement vector, where m is the magnitude of the displacement. md may

be factorised as md = sz1 + δz3. Fig. 2.1c depicts the shape deformation ac-

companying the formation of martensite or bainite, with s ≃ 0.22−0.26 and

δ ≃ 0.03 [1]. Here z1 and z3 are unit vectors parallel to the shear component

of the deformation and the unit normal to the invariant plane respectively.

4



2.1 Shape deformation 5

(a) uniaxial tension (b) simple shear

(c) general IPS

Figure 2.1: Three kinds of invariant plane strain. After Bhadeshia [13].

These deformations are much larger than elastic strains in a tensile test,

which are of the order of 10−3. The strains s and δ, therefore, have profound

effects on microstructure and properties. The invariant plane is generally

known as the habit plane.

As displacive transformations are deformations, externally applied

stress will affect their progress [12, 14]. The work done by the external

stress may be added to the chemical free energy change accompanying trans-

formation. The mechanical driving force is therefore [12] :

∆Gmech = σNδ + τs (2.1)

where σN and τ are the normal and shear stress respectively on the habit

plane, and δ and s are the normal and shear strains respectively, due to the
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shape deformation (Fig. 2.2) [1].

Figure 2.2: Resolution of the applied stress σA. The normal stress σN , and
the shear stress τ , both act on the habit plane. The vector d is the direction
along which the shear displacement of the shape deformation lies. τmax is the
maximum shear stress on the habit plane, but τ is given by resolving τmax

along d. Note that d differs slightly from the displacement vector of the
invariant-plane strain, which includes a dilatational component in addition
to the shear [1].

There are in general 24 variants of martensite so it is likely that at

least one of these variants will be favoured by the resolved shear stress. The

term τs should therefore always be positive irrespective of the sign of the

uniaxial stress. But the sign of σNδ depends on that of σN . For α′ in steels

the shear component is relatively large so a uniaxial stress always gives a

positive ∆Gmech in a polycrystalline state, thus leading to an increase of the

transformation temperature. A hydrostatic stress has no deviatoric compo-

nent and thus only interacts with the dilatational component of the shape

change. In steels, hydrostatic pressure on its own should therefore suppress

transformation. Stress affected transformation will also bias the microstruc-

ture since certain variants are favoured over others [15, 16]. For example,

with a uniaxial stress those variants with habit planes inclined at 45◦ to the

stress axis are favoured. This factor may have practical consequences on the

properties and will be discussed latter.
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2.2 Phenomenological theory of martensite

crystallography

The crystallography of the martensite transformation has been a story of

exciting scientific development over the years. First, the austenite (γ) to

martensite (α′) transformation has been described with the help of Bain

strain which on its own is proved to be insufficient to describe the crystallog-

raphy of transformation and the observed shape change. The phenomeno-

logical theory of martensite crystallography (PTMC) [10, 11] resolves the

problem. Martensitic transformation is associated with a dilatational and a

shear strain. The latter is much bigger in magnitude (0.22) than the for-

mer (0.03) but generally gets cancelled on a macroscopic scale when many

variants of martensite form.

However it has been observed that if the martensite is formed under

the influence of external stress there is a preferred direction along which

the plates tend to be aligned. Under this condition the martensite plates

are not randomly oriented but a biased microstructure results. Some work

has been published on the prediction of martensite pole figures formed with

or without the influence of stress [5, 6, 8]. But the work is often based

on assumptions which are inconsistent with the crystallographic theory of

martensite. In many cases the model has been developed considering only

the Bain strain, which is one component of the total deformation [9]. It is

often assumed that the orientation relationship between the austenite and

martensite is that due to Kurdjumov–Sachs or Nishiyama–Wasserman [17–

20], but it has been known for some time that the true relation must be

irrational [10, 11, 13, 21]. Although the difference between this irrational

and assumed orientation may seem less than a few degrees, it is vital be-

cause the assumed orientations do not in general lead to an invariant–line

between the parent and product lattices. The existence of an invariant line
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is an essential requirement for martensitic transformation to occur. It is

not surprising therefore, that Nolze [22] in his experimental study of several

hundred thousand γ/α orientation relations, found detailed deviations from

assumed Kurdjumov–Sachs etc. orientations.

2.2.1 Definition of a basis

The notations used in this thesis are due to Bowles and MacKenzie [10].

Fig. 2.3 shows a unit cell of austenite. To specify the direction and magnitude

of a vector, for example u shown in Fig. 2.3, it is necessary to have a reference

set of coordinates. A convenient reference frame can be formed by the three

right handed orthogonal vectors a1, a2 and a3 which lie along the three sides

of the unit cell. All these vectors have magnitude aγ , lattice parameter of

austenite. So a1, a2 and a3 form a orthogonal basis. In the special case

when all these vectors are mutually perpendicular and of unit length the

basis is called orthonormal. ‘F’ represents a orthonormal basis where as

corresponding reciprocal basis is expressed as ‘F∗’. Any column vector d =

[d1 d2 d3] can be represented in a orthonormal basis as [F;d] and any row

vector p = (p1 p2 p3) is expressed as (p; F).

Any coordinate transformation matrix is represented by a 3 × 3 ma-

trix, which is written as (B J A). It transforms the components of vectors

referred to the A basis to those referred to the B basis. The matrix (A J B)

and (B J′ A) represent the inverse and transpose of the matrix (B J A)

respectively. The determinant of a matrix is represented by : det(matrix).

Any deformation is represented as a 3×3 matrix, which in the austenite

reference frame can be written as (F S F). Deformation matrix does not

involve in any change of basis and that’s why the basis symbol is the same

(F, in this case) in the both sides of S. Similarly the matrix (F J F) represents

rotation. A detailed description of the notations can be obtained from [13].
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Figure 2.3: An unit cell of face-centred cubic (FCC) crystal.

2.2.2 Outline of the theory

For the α′/γ interface to be glissile, it must as a minimum contain an invariant

line. Such a line is one, which is undistorted and unrotated by the invariant-

line strain. Fig. 2.4 shows that the austenite unit cell can also be represented

as a body-centred tetragonal (BCT) cell lattice. For martensite to be a

body-centred cubic unit cell a compression is needed along the b3 axis and

expansion along b1 and b2. This is the Bain strain (F B F). However the

Bain strain does not leave any line invariant as demonstrated in Fig. 2.5a,b.

A sphere of austenite is deformed into an ellipsoid by the Bain strain.

It can be seen that the lines a′b′ and c′d′ remain unextended due to the de-

formation. In fact, the undistorted lines form a right circular cone along a3.

However, they are all rotated by an angle θ so they are not invariant. How-

ever if a rigid body rotation is now added to the Bain strain, then Fig. 2.5c
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Figure 2.4: (a) FCC unit cell (b) Relations between FCC and BCT (body-
centred tetragonal) cells of austenite (c) BCT cell of austenite (d) Defor-
mation due to Bain strain which convert a BCT cell to body-centred cubic
(BCC) cell.
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Figure 2.5: (a) and (b) represent the effect of the Bain strain on austenite,
shown initially as a sphere of diameter ab. On deformation it takes the shape
of an ellipsoid. (c) Shows the invariant-line strain obtained by a combined
effect of Bain strain and the rigid body rotation [13].

illustrates that the rotation makes the initial and final cones of the unex-

tended lines touch along the line c′d′. If the overall deformation is expressed

as (F S F) = (F B F)(F J F) which is a combination of the Bain strain and

a rigid body rotation, then it leaves a line both unrotated and undeformed.

However this strain is no longer a pure strain as the principal axes are rotated

to new positions a′
i.

The shape change due to martensite transformation has been charac-

terised and found to be an invariant-plane strain (F P F). This can be

represented as:

(F P F) = I + m[F;d](p; F∗) (2.2)

where the basis F is for convenience chosen to be orthonormal, although the

general form of the equation is valid for any basis. [F;d] is an unit vector

in the direction of shape deformation and (p; F∗) is an unit reciprocal lat-

tice vector normal to the habit plane. However for FCC → BCC martensite



2.2 Phenomenological theory of martensite crystallography 12

transformation lattice transformation strain (F S F), which is an invariant

line strain, does not equal the observed shape deformation (F P F). (F S F)

is therefore inconsistent with the observed deformation (F P F). This ap-

parent anomaly has been resolved with the help of PTMC and is illustrated

in Fig. 2.6. Fig. 2.6a shows the starting austenite crystal before transfor-

mation. Fig. 2.6b shows its shape after transformation, with the observed

invariant-plane strain. However this intermediate state is not the required

crystal structure as an IPS on its own can not transform austenite into BCC

martensite [13]. But it has the correct shape as observed experimentally.

To correct the crystal structure it is necessary to implement a second IPS,

(F Q F) with magnitude n, on a plane with unit normal (q; F∗) and in the

unit direction [F; e].

(F Q F) = I + n[F; e](q; F∗) (2.3)

The combination of (F P F)(F Q F) is of course an invariant-line strain.

It is recalled that for the austenite to martensite transformation the necessary

crystallographic change requires an invariant-line strain (F S F) so this is

consistent with (F P F)(F Q F). However the final shape is not that what

is observed (Fig. 2.6c). To obtain the correct shape it is necessary to cancel

the effect of (F Q F) without changing the crystal structure.

This is possible using a heterogeneous lattice-invariant deformation

such as slip or twining. The magnitude of this deformation must on av-

erage be equal and opposite to that of (F Q F). Fig. 2.6d shows the final

martensite with the right crystal structure as well as the correct shape. There

is one important characteristic of (F Q F), that it must not cause a volume

change since it has to be cancelled by a lattice-invariant shear. Therefore,

any dilatational strain is attributed entirely to (F P F), as observed ex-

perimentally. The determinant of a deformation matrix gives the ratio of
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Figure 2.6: The IPS associated with the martensite transformation [13].

the volume after deformation to the entire volume so it follows that and

det(F P F) = det(F S F).

Hence, the theory of martensite can be summarised as follows:

(F S F) = (F J F)(F B F) = (F P F)(F Q F) (2.4)

2.2.3 Factorisation of invariant-line strain

It seems obvious that a combination of two invariant-plane strains leaves a

line invariant at the intersection of the two invariant planes. However it is im-

portant to get an insight into the problem from mathematical point of view.

The derivation given by Bowles and MacKenzie [10, 11] will be described

here. An invariant-line strain (F S F) (S for convenience) is always charac-

terised by the presence of an invariant line [F;xi] and an invariant normal
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(ni; F
∗) such that (F S F)[F;xi] = [F;xi] and (ni; F

∗)(F S F)−1 = (ni; F
∗).

The first step of the factorisation of (F S F) is to show that the displace-

ment of all the vectors on a plane with plane normal (p2; F
∗) containing the

line [F;xi] can be achieved by an IPS on another plane having plane normal

(p1; F
∗) which also contains the line [F;xi]. If we assume [F;y2] to be a def-

inite vector on the plane (p2; F
∗), then, (p2; F

∗)[F;y2] = (p2; F
∗)[F;xi] = 0.

So any other vector on the plane (p2; F
∗) can be written as x = ay2 + bxi,

where y2 = [F;y2] and xi = [F;xi] and x = [F;x]. The displacement of any

vector x by the ILS is can be written as:

Sx − x = a[Sy2 − y2] + b[Sxi − xi] = a[Sy2 − y2] (2.5)

which indicates that the displacement direction is same for all x on the plane

defined by the normal (p2; F
∗). It is also understood that since (ni; F

∗)[Sx−

x] = 0, all the vectors on the plane (p2; F
∗) are displaced in the same direction

which lies in the plane with the invariant normal (ni; F
∗). An IPS on a plane

(p1; F
∗), in the same direction of the displacement of all the vectors on plane

(p2; F
∗) due to the ILS, (F S F) can be expressed as:

(F P1 F) = I + k[Sy2 − y2](p1; F
∗) (2.6)

The displacement of the vectors [F;x] by the invariant line strain (F S F) and

the invariant plane strain (F P1 F) are same provided: a = k(p1; F
∗)[ay2 +

bxi] = ak(p1; F
∗)y2, because (p1; F

∗)[F;xi] = 0. As the two planes (p1; F
∗)

and (p1; F
∗) are distinct so (p1; F

∗)[F;y2] 6= 0 and there exist a unique value

for k for all possible x. So the IPS on plane (p1; F
∗) can be written as:

(F P1 F) = I + [Sy2 − y2](p1; F
∗)/((p1; F

∗)y2) (2.7)

The remaining part of the ILS (F S F) is a strain which must leave

invariant the plane generated from the plane (p2; F
∗) due to the ILS. That
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invariant plane would be (p2; F
∗)(F S F)−1. The strain on this plane must

also displace all the vectors in the plane (p1; F
∗) to their final positions. So

if [F;y1] be any vector (also mentioned in some of the equations as y1) in the

plane (p1; F
∗) and distinct from [F;xi] then the second IPS can be written

as:

(F P2 F) = I + [Sy1 − y1](p2; F
∗)/((p2; F

∗)S−1y1) (2.8)

So the ILS can be factorised as:

(F S F) = {I + [Sy2 − y2](p1; F
∗)/((p1; F

∗)y2)}

{I + [Sy1 − y1](p2; F
∗)/((p2; F

∗)S−1y1)} (2.9)

It is thus proven that it is possible mathematically to factorise one ILS

into two IPSs.

2.2.4 Other forms of phenomenological theory of

martensite crystallography

The other form of PTMC was proposed by Wechsler, Lieberman and Read

[21] (WLR theory). The shape deformation is given by E, which will not

generate the product lattice from that of the parent. The matrix E can be

written as:

E = RBG (2.10)

where R is a rigid body rotation, B the Bain deformation and G is the

second shear which is compensated for by the lattice invariant deformation.

As demonstrated by Christian [23], the Bowles MacKenzie and the Wechsler,

Lieberman and Read theories are identical.
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2.3 Stress, strain and transformation texture

The crystallographic texture in materials can be described, using pole figures,

by measuring the intensities of diffracted X-rays [24]. For example, texture in

rolled sheets is often described as {hkl}〈uvw〉, which means that for most of

the crystals the {hkl} planes lie parallel to the sheet surface and the rolling

direction is roughly parallel to the 〈uvw〉 direction. The texture can be com-

plex with many components,
∑

λi{hkl}〈uvw〉, where λi is a weighting factor

describing the relative intensity of each component. The position of {200}

poles are useful in visualising texture components. Fig. 2.7a shows the {200}

pole figure of some well known deformation/recrystallisation components of

austenite texture, and Fig. 2.7b martensite. Of the components of marten-

site, the {332}α′〈113〉α′ forms from austenite with {110}γ〈112〉γ texture, the

{113}α′〈110〉α′ component is similarly derived from {112}γ〈111〉γ. Further-

more {100}α′〈011〉α′ is produced from the major recrystallisation component

of γ, i.e, the Cube component {100}γ〈001〉γ [25].

2.3.1 Texture from strained austenite

The term “variant selection” must be discussed in detail now as it plays

a crucial role in the formation of transformation texture. It is well known

that there are 24 variants of martensite in steels, for example according to

the Kurdjumov-Sachs orientation relationship. The chemical driving force for

transformation is the same for all, a function of temperature and composition.

In general, each variant has an equal chance of existence. Since martensitic

transformation is a deformation, an applied stress will favour those variants

that comply with the stress, i.e., variant selection occurs. It has been shown,

for example, by Gey et al. [8] that different deformation textures in austenite

result in different orientations of martensite. Figs 2.8a and 2.9a show the

experimentally determined Cube and Goss components of austenite and the
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Figure 2.7: 2 0 0 pole figures relative to the rolling (RD) and transverse (TD)
directions (a) austenite and (b) martensite [25].
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subsequent transformation textures due to these components (Fig. 2.8b,c and

Fig. 2.9b,c). Fig. 2.8b and Fig. 2.9b show the experimentally determined

martensite texture, where there is variant selection as transformation occurs

under stress. On the other hand Fig. 2.8c and Fig. 2.9c show the pole figure

of martensite calculated without any variant selection criteria. This clearly

shows that variant selection leads to a stronger texture.

Figure 2.8: (a) Cube type deformation texture in austenite (experimental).
(b) Transformation texture of martensite formed from Cube textured austen-
ite with variant selection (experimental). (c) Calculated martensite texture
from Cube type austenite texture (without imposing variant selection) [8].

Figure 2.9: (a) Goss type deformation texture in austenite (experimental).
(b) Transformation texture of martensite formed from Goss textured austen-
ite with variant selection (experimental). (c) Calculated martensite texture
from Goss type austenite texture (without imposing variant selection) [8].

A variety of variant-selection models have been proposed, each of which

is now discussed.
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Shape deformation model: Following Patel and Cohen [12], the

interaction energy between a plate of martensite and the applied stress is

given by Eq. 2.1. The angle between the direction of applied stress acting

on the habit plane with the plane normal is different for each variant. For

this reason the value of σN and τ are also different for different variants of

martensite and so is the value of ∆Gmech or U . A greater value of ∆Gmech

increases the possibility of that variant forming. This model is appropriate

when martensite forms under stress below the yield strength of the austenite.

However it will later be shown that it can also be used in the plastic region.

Bokros-Parker (BP) Model: It was first proposed by Bokros and

Parker [26] and later supported by Durlu et al. [27], that there is an interac-

tion between slip systems and habit plane variants. In a study of plastically

deformed single crystals of Fe-Ni, variants with habit planes nearly perpen-

dicular to the active slip plane were found to be favoured. This behaviour is

attributed to the formation of anisotropic dislocation substructures during

deformation, which interferes with the growth of α′ plates, the exact growth

direction being normal to the sub-boundaries. Such effects become promi-

nent at large strains [28] but might otherwise be neglected. For example, it

has been shown in the present work that when an austenitic stainless steel

is elongated by 10% and then transformed to martensite, the resulting crys-

tallographic texture can be calculated using the Patel and Cohen criterion

alone. This is described in detail in Chapter 5.

Twinning-Shear (TS) Model: This was proposed by Higo et al.

[29], based on the double shear mechanism of martensite crystallography. It

is argued that the first shear for FCC to BCC transformation is that which

gets affected by the applied stress. The critical atomic movement to ini-

tiate martensite formation is said to be the first shear along {111}γ〈2̄11〉γ

direction. This is consistent with Bogers and Burger’s [30] mechanism for

martensitic transformation, which described the orientation relationship be-
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tween the product and the parent phase by the movement of dislocations on

suitable slip systems. The other variety of this theory which has been devel-

oped by Kato and Mori [31, 32] relies upon the concept proposed by Bogers

and Burger’s [30] which was based on a dislocation movement mechanism

during martensitic transformation. Although the orientation relationship

between parent and the product phase could be described correctly by this

theory, it failed to predict the habit plane and the shape deformation matrix

necessary for the martensite transformation.

Bain-Strain (BS) Model: Proposed by Furubayashi et al. [9, 33]

is based on the interaction of the applied stress with the Bain strain alone.

There are three Bain variants in martensite with [100]γ, [010]γ and [001]γ as

their compression axes respectively. A compressive stress is applied along

[100]γ direction stimulates only those variants that originate from that Bain

distribution. This model also demarcates between texture formation when

transformation takes place during rolling and after rolling.

2.3.2 Comments on variant selection model

Furubayashi et al. carried out computer simulations of the various models

discussed so far and compared then with experimental results [9]. The sim-

ulation was carried out for martensite transformed from austenite having a

Cu-type rolling texture with 360 or 720 initial orientations representing the

initial texture of austenite. Fig. 2.10 shows the comparison between experi-

mental and model-predicted texture development in a Fe-Ni steel. Fig. 2.10a

shows the experimental texture generated from austenite having Cu-type

texture, Fig. 2.10b and Fig. 2.10c show respectively the model prediction

following the Bokros-Parker and Twinning-Shear theory. It can be said that

in TS theory texture prediction is much better than that obtained following

the BP theory.

However the prediction from the Bain strain model looks to be the
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Figure 2.10: 100 pole figure of martensite (a) Experimental texture developed
from austenite with Cu-type texture. (b) Model prediction following the
Bokros-Parker model. (c) model prediction following the TS model. [25].

most promising one amongst all the models described so far. A compari-

son between the predicted result and the experimental one is shown in the

Fig. 2.11. Nonetheless the justification of using the Bain orientation as the

orientation relationship between martensite and austenite can be questioned.

It is well known that Bain orientation deviates by 11.06◦ and 9.7◦ from the

well known Kurdjumov-Sachs or Nishiyama-Wasserman relationships. The

twinning-shear model is based on the double shear theory of martensite crys-

tallography, which for the sake of brevity has not been explained here, is in

fact inconsistent with the existence of a glissile interface. So the applicability

of twinning-shear model is also not beyond question. Both the Bain-strain

model and the twinning-shear model neglect the total deformation due to

martensite transformation. As a result these models would fail when the

transformation strain is also needed.

The Patel-Cohen theory is the only one that uses the total deformation

of α′ and thus can be incorporated into a model for predicting the trans-

formation strain in a polycrystalline system. In Furubayashi’s work [9] no

systematic comparison was made between the Patel-Cohen model and the

other theories.
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Figure 2.11: 100 pole figure of martensite obtained experimentally from
austenite with Cu-type orientation (a) transformation after rolling, (b) trans-
formation during rolling. Model prediction using Bain strain model, (c)
transformation after rolling simulation, (d) transformation during rolling sim-
ulation. [25].
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2.4 Microstructural and kinetics effect

2.4.1 Effect of stress

In an Fe-Ni alloy martensite can form 70◦C above the ordinary MS (marten-

site start temperature) temperature under stress (known as Mσ) [34].

Maxwell et al. [34] found that the shape of the martensite formed under

the influence of stress depends on the temperature at which it forms. Plates

formed just above MS are similar to ordinary martensite but become irreg-

ular and smaller in size at higher temperatures (Fig. 2.12). On the other

hand, others [35, 36] have reported that martensite formed under stress is

completely different, and suggested a change in the nucleation or the growth

process.

The effect of stress on variant selection during the bainite transforma-

tion has been studied in detail by Shipway et al. [16] and Hase et al. [37].

Fig. 2.13 shows bainite transformed isothermally at 300◦C under uni-

axial compression (4 MPa and 200 MPa) in Fe-0.79C-1.56Si-1.98Mn-0.002P-

1.01Al-0.24Mo-1.01Cr-1.51Co (wt%) alloy. There is a clear tendency for the

bainite to align roughly parallel to the planes of maximum shear stress. The

sheaves tend to be flatter in the stressed samples, as there is less interference

from other variants. The transformation rate also changes as ∆Gmech con-

tributes to the overall free energy change (Fig. 2.14). The effect is smaller at

larger under cooling below bainite start temperature (BS) since the chemical

driving force then dominates.

2.4.2 Effect of strain

Strain significantly influences the morphology of martensite [34, 35, 38]. Fine

laths form along slip bands or twin boundaries in the austenite, as much as

200◦C above the Mσ temperature [34].
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Figure 2.12: Microstructure of a Fe-32Ni-0.017C (wt%) alloy (MS = -72◦C)
tested in tension to failure at (a) -70◦C (b) -50◦C (c) -30◦C (d) 0◦C

. After Maxwell et al. [34].

Figs. 2.15 and 2.16 show strain-induced martensite on a twin boundary

and along slip bands in austenite respectively.

Fig. 2.17 shows that stress accelerates transformation kinetics in a Fe-
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Figure 2.13: Optical micrographs of bainite transformed at 300◦C under
compressive stress. Stress axis is vertical in each case [37]. HV represents
hardness in Vicker’s scale.
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Figure 2.14: Isothermal transformation kinetics of bainite at various tem-
peratures and stress. Composition : Fe-0.79C-1.56Si-1.98Mn-0.002P-1.01Al-
0.24Mo-1.01Cr-1.51Co (wt%). After Hase et al. [37].

Figure 2.15: Preferential nucleation of martensite at twin boundary in a
Fe-30Ni-0.02C (wt%) (MS = −25◦C) alloy strained 20 % at -20◦C [35].
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Figure 2.16: Morphology of strain-induced martensite formed along the
{111}〈11̄0〉 slip system of austenite in a Fe-20Ni-0.6C (wt%) alloy (MS =
−36◦C). Specimen is tensile tested to failure at 106◦C [35].

Figure 2.17: Effect of stress on the isothermal transformation kinetics of
martensite at 173 K [39].
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Figure 2.18: Effect of strain on the isothermal transformation kinetics of
martensite at 77 K. After Ghosh [39].

23.2Ni-2.8Mn-0.009C (wt%) alloy [39] by increasing the nucleation rate. The

effect of the stress progressively decreases as the transformation temperature

is reduced. In contrast, transformation from plastically strained γ is retarded

when the strain is large (Fig. 2.18). ǫP in Fig. 2.18 denotes the plastic strain

that the specimen is subjected to before transformation. This phenomenon is

known as mechanical stabilisation. Plastic deformation hardens the austenite

and hinders the growth of martensite or bainite, which requires the move-

ment of interfacial dislocations. The initial increase in rate (as shown in

Fig. 2.19 for bainitic transformation from strained austenite) is associated

with a greater number density of nucleation sites.

Durlu [41] pointed out that in a Fe-Ni-C alloy, martensite forms in par-

allel packets in an austenite grain, the number of parallel groups, increasing

with plastic strain. This can be taken as indirect evidence of the variant

selection for martensite in plastically strained austenite and such evidence

has been shown for bainite by Umemoto et al. [42].
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Figure 2.19: Effect of pre-strain on the bainite transformation at 475◦C in a
Fe-0.12C-2.03Si-2.96Mn (wt%) alloy. After Singh [40].

2.5 Stress/strain-induced transformation

and mechanical properties

The shape deformation during certain phase transformations may have a

significant impact on the properties of engineering alloys. It is possible to

exploit these in order to design better engineering alloys.

2.5.1 Residual stress

Manufacturing processes frequently introduce unwanted residual stresses in

mechanical assemblies [43]. This affects the fatigue life of the engineering

structure. There are various material properties like heat capacity, ther-

mal expansion coefficient, density and strength which significantly affect the

development of residual stress [44, 45]. However, in steel the phase transfor-

mation itself can affect the development of residual stress. The work done

by Albery and Jones [3] showed how transformation temperature influences
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the evolution of stress in materials when a constrained tensile specimen is

cooled from the austenite phase.

Figure 2.20: Axial stress in uniaxially constrained samples during cooling of
a martensitic (9Cr1Mo), bainitic (2.5Cr1Mo) and austenitic steel (AISI 316)
[3]. Also plotted is the yield strength of austenite [15].

Fig. 2.20 shows the evolution of stress with temperature for alloys with

a variety of transformation temperatures. If the thermal expansion coeffi-

cients of ferrite and austenite (eα and eγ) are taken to be 13 × 10−6K−1 and

21 × 10−6K−1 respectively the amount of stress generated due to thermal

contraction would be 4 MPa per 1 K cooling in the austenite phase (given a

Young’s modulus of 210 GPa). However the accumulated stress due to this is

larger than the yield strength of austenite which therefore released by plastic

relaxation. This is why the stress in the austenite roughly follows its yield

strength. The 2.5Cr1Mo sample begins to transform to bainite at ∼ 600◦C;

when this happens, the transformation strain associated with the transfor-

mation partly compensates for the thermal contraction stress. It is also clear

from Fig. 2.20 that lowering the transformation temperature (9Cr1Mo) of the

alloy leaves a lower stress at ambient temperature, i.e. an alloy with lower

transformation temperature is a better choice for combating the development
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of stress. The reasons for this are as follows:

1. If transformation is exhausted much before ambient temperature is

reached, it is ferrite that contracts on cooling. Ferrite has a higher

yield strength at low temperatures and thus better resists thermal con-

traction, allowing the stress to accumulate.

2. Displacive transformation at lower temperatures should give rise to a

greater bias in the microstructure because of the larger stress reached.

Thus the macroscopic shear strain generated during transformation

would be much higher. This is more effective in countering the thermal

contraction strain.

2.5.2 Fatigue

Many engineering components are fatigue limited. Cracks are initiated and

grow slowly under the influence of an oscillatory stress whose magnitude

is below the yield stress. The failure in the component occurs when the

crack size reaches a critical value. Residual stress reduces the allowable

externally applied stress. A secondary effect is that the shape strain due

to martensite or bainite may be partially plastically accommodated. The

resulting dislocations help in increasing the fatigue strength. Dislocations

can increase the fatigue strength by increasing the resistance to the plastic

flow. This conclusion follows from the fact that pre-straining a component

prior to fatigue loading can increase its life [4] especially during low-strain

fatigue [46]. The defects introduced by phase transformation have a similar

effect to the “pre-straining” and thus are believed to be helpful in resisting

fatigue crack growth [47].

In recent years, attempts have been made to make use of transformation

plasticity in welded joints [2, 48, 49] in order to increase fatigue life.

Fig. 2.21 illustrates distortion caused by welding. The angle θ is a
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Figure 2.21: Distortion caused by welding two plates which were originally
flat [4].

Table 2.1: The chemical compositions (wt%), calculated transformation tem-
perature range (∆T ) and measured distortion θ for two manual metal arc
multipass weld deposits [4].

C wt% Si Mn Ni Mo Cr ∆T/◦C θ/◦

0.06 0.5 0.9 - - - 802-400 14.5
0.06 0.3 1.6 1.7 0.4 0.35 422-350 8

measure of the distortion caused by the rotation of the unconstrained plate

during cooling after the solidification. Table 2.1 shows θ as a function of the

transformation temperature range, for two welding alloys deposited within a

60◦ V-joint. The distortion is clearly larger for the case where the transfor-

mation is exhausted at a higher temperature.

Ohta et al. [2, 48, 49] designed an alloy with a low MS temperature

of ∼ 180◦C in comparison to conventional alloys with MS, 400 − 500◦C

(Table 2.2). Fig. 2.22a shows that the net strain due to cooling from MS to

the ambient temperature is a contraction for the conventional alloy, whereas

a net expansion results for the low MS alloy while cooling. This cancels the

contraction stress in the latter case (Fig. 2.22b).

When fatigue tests are done on welded sections, low-MS weld metal

gave much higher fatigue strength than conventional weld metal, as shown
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Table 2.2: The chemical compositions (wt%), and measured MS tempera-
tures of conventional and novel welding alloys [2].

Alloy C wt% Si Mn Ni Mo Cr MS/◦C
conventional 0.10 0.39 0.90 - - - 590
10Cr10Ni 0.025 0.32 0.70 10.0 0.13 10.0 180

(a)

(b)

Figure 2.22: (a) Transformation of weld metal during unconstrained cooling;
(b) development of stress during constrained cooling. The chemical compo-
sitions of the alloys are given in Table2.2. The low–MS alloy is designated
10Cr10Ni in Table 2.2 [2].
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in the Fig. 2.23. This is because of the compressive residual stress due to

the suppressed transformation. This development may radically change the

design and lifting philosophies for structural components. This result has

been recently confirmed by Ekerlid et al. [50] using a different alloy.

Figure 2.23: Improvement in the fatigue performance of welded structure
using a low transformation temperature welding alloy [4].

2.6 Evolution of martensitic transformation

2.6.1 Koistinen-Marburger equation

This is the most widely used empirical equation for estimating the fraction

of martensite below MS [51]. Iron carbon alloys were prepared by vacuum

melting and the MS temperatures were determined following the technique

of Digges [52] and Greninger [53]. The alloys were then austenitised and

quenched to various known temperatures. The amount of retained austenite

was measured using X-ray diffraction. Then results for a variety of steels

were plotted logarithmically against (MS − Tq), where Tq is the quenching
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temperature. A straight line was fitted to the data points,

Vγ = exp[−b(MS − Tq)] (2.11)

where the value of b is 1.10×10−2 K−1, Vγ is the volume fraction of austenite

and Tq is the quenching temperature.

Figure 2.24: Experimental data plotted on semi-logarithmic coordinates and
the empirical equation derived by fitting a straight line. The data obtained
by Harris and Cohen [54] are shown together with the equation they have
proposed [51].

It has been shown by Magee [55] that an equation of the form Eq. 2.11

can be derived based on martensite nucleation theory.

2.6.2 Justification of Koistinen-Marburger equation

The amount of martensite that forms at any temperature increases with

the under cooling below MS. The difference in free energy per unit volume

between austenite and martensite can be written as ∆Gγ−α′

V , which is negative

below MS. If it is assumed that the number of new plates of martensite dN
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(per unit volume) at any temperature Tq is proportional to the driving force

we get:

dN = −ϕd(∆Gγ−α′

) (2.12)

where ϕ is an empirical proportionality constant. The change in the volume

fraction martensite, df , and the change in the number of new plates per unit

volume is related:

df = V̄ dNv (2.13)

where V̄ is the average volume of the plate formed. Since dNv = (1 − f)dN

and d∆Gγ−α′

v = d∆G
γ−α′

v

dT
dT , on rearranging equation 2.12 we get:

ln(1 − f) = V̄ ϕ

(

d∆Gγ−α′

v

dT

)

(MS − Tq) (2.14)

or

f = 1 − exp

[

V̄ ϕ

(

d∆Gγ−α′

v

dT

)

(MS − Tq)

]

(2.15)

On comparing with Eq. 2.15 it is clear that b in the Koistinen-

Marburger equation is equivalent to the term

V̄ ϕ
∂∆Gγ−α′

v

dT
(2.16)

of Magee’s equation. It is often assumed that V̄ remains more or less constant

during the course of transformation. Brook et al. [56] have shown that b can

be correlated directly with ∂∆Gγ−α′

v /dT . Bohemen et al. [57] demonstrated

for steels of different carbon content, that b does not change much with

∂∆Gγ−α′

v /dT or V̄ but a larger effect comes from ϕ. They have attributed

this effect to the varying dislocation densities in the microstructure. A higher

dislocation density would effectively increase the number of potential embryos

in the material apart from those present in the austenite initially. They

have argued that the dislocation density in the steel would increase until 0.6
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wt% C because with the increase in carbon content in steel more dislocation

will be involved in slipping caused by the shear stress associated with the

transformation. For steels containing more than 0.6 wt% carbon, Brook et

al. argued that the transformation strain would be partially accommodated

by twinning which leads to fewer dislocations in the microstructure. The

evolution of martensite fraction should be different from that described above

if transformation occurs from a plastically deformed austenite [58].

2.7 Summary

The importance of the shape deformation during martensitic or bainitic

transformation is clear. The crystallographic theory of martensitic trans-

formation is elegant in that it rigidly links all its features in a mathematical

framework. There is clear evidence that the theory may be extrapolated in

understanding the evolution of transformation texture. The importance of

variant selection and its effect on the transformation texture has been given.

Various mathematical models developed by different scientists to predict the

variant selection from stressed and strained austenite have been presented

and a critical assessment of these models has been made. The effect of stress

and strain on the kinetics and morphology of martensite and bainite trans-

formation has been discussed in detail. It has been shown that the stress and

strain affect the transformation texture, microstructural features and the ki-

netics of martensite transformation to a high degree and this might influence

the important properties like residual stress and fatigue.

The topics discussed in this chapter provide the background of the

present study. The importance of the shape deformation in determining

the transformation texture and the transformation strain will be discussed

in detail in latter chapters. Mathematical models will be presented based

on the phenomenological theory of martensite crystallography to predict the
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texture and strain during martensite or bainite transformation.



Chapter 3

The transformation strain

3.1 Introduction

When displacive transformations such as bainite or martensite occur the

strain consists of a volume and a shear component. The latter is generally

invisible when all the possible variants form. They then tend to cancel their

shear components. However, when transformation occurs under the influence

of stress, some of the variants have a larger probability of formation and this

generates a texture allowing the shear strain to make a greater contribution

to the macroscopic shape. A model has been developed here to predict both

the change in macroscopic strain and the texture.

Crystallographic data justified by the theory of martensite [10, 11, 21].

are used to calculate the interaction between the transformation product and

the applied system of stresses. It is this interaction which leads to the bias

in the microstructure since compliant variants are favoured [12].

The work to create a model for these phenomena is inspired by attempts

to design welding alloys which counter the build up of residual stresses in

welded joints [2, 4, 48, 50, 59]. The strains caused by displacive phase trans-

formations can in principle be manipulated to counter those due to thermal

39
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contraction in constrained welded joints. The technological benefit of doing

this is to dramatically improve the fatigue performance of the joints [59]. It

would be useful therefore to be able not only to estimate the development

of transformation texture, but also the anisotropic transformation strains

caused by the biased microstructure that develops under the influence of

stress.

This chapter begins with a self-consistent crystallographic description

of the transformation strain in a polycrystalline aggregate of austenite and

then shows the model predicted results along with those from experiments.

An interesting theory is proposed to predict the extent of variant selection

from the knowledge of mechanical and chemical free energy available for the

transformation.

3.2 Crystallography

Figure 3.1: The deformation of an initial vector u by the formation of bai-
nite or martensite. (a) An austenite grain prior to transformation, with the
ultimate location of a plate of bainite/martensite marked. (b) Following
bainitic/martensitic transformation.
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Throughout this work, the vector and matrix notation due to Bowles

and MacKenzie is used because it is particularly good at avoiding confusion

between frames of reference [10, 13]. Consider a polycrystalline sample of

austenite which is subjected to external stress. The sample axes are defined

by an orthonormal set of basis vectors [F; a1], [F; a2] and [F; a3], collectively

identified using a basis symbol ‘F’. The term “orthonormal” implies that

the basis vectors are of unit magnitude and mutually perpendicular. The

crystallographic axes of the ith austenite grain are similarly identified using

the basis symbol Fi and its corresponding reciprocal basis by the symbol F∗
i .

When austenite transforms into martensite or bainite, there is a shape

deformation which is an invariant–plane strain [1, 60, 61]. This change in

shape can be represented by a 3 × 3 deformation matrix P such that:

(F P F) = I + m[F;d](p; F∗) (3.1)

where m is the magnitude of the shape deformation, [F;d] is a unit vector in

the direction of displacement and (p; F∗) is the unit normal to the invariant–

plane (i.e., the habit plane). There will in general exist 24 crystallographic

variants of bainite or martensite in any given austenite grain, i.e., 24 different

invariant–plane strains.

Consider an arbitrary vector u traversing a grain of austenite prior to

transformation, as illustrated in Fig. 3.1a. This vector makes an intercept

∆u with a domain of austenite that eventually ends up as a plate of bainite

or martensite. As a consequence of the transformation, the vector u becomes

a new vector v given by:

v = P∆u + (u− ∆u) (3.2)

When considering the formation of large number of bainite/martensite plates

in many austenite grains, u traverses a polycrystalline sample of austenite
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so this equation must be generalised as follows:

v =

n
∑

k=1

24
∑

j=1

Pk
j∆uk

j +

(

u −

n
∑

k=1

24
∑

j=1

∆uk
j

)

(3.3)

where j = 1 . . . 24 represents the 24 crystallographic variants possible in each

austenite grain, and k = 1 . . . n represents the n austenite grains traversed

by the vector u. In this scenario of a large number of bainite or martensite

plates, it is assumed that the intercepts ∆uk
j can be approximated by fk

j u

where fk
j is the fraction of sample transformed by variant j in austenite grain

k.

The deformation caused by a particular plate j in austenite grain k,

i.e., (Fk Pj Fk) ≡ Pk
j is known from the crystallographic theory originally

developed for martensite [10, 21]. The remaining 23 such matrices for grain 1

of austenite can be deduced from this using symmetry operations. They can

then be expressed in the reference frame of the sample using a similarity

transformation as follows:

(S Pk
j S) = (S R Fk)(Fk Pj Fk)(Fk R S) (3.4)

where (S R Fk) is the rotation matrix relating the basis vectors of the kth

austenite grain to the sample axes, and (Fk R S) is the inverse of that ro-

tation matrix. In this way, the calculation described in equation 3.2 can be

conducted in the sample frame of reference.

3.3 Variant Selection

Variant selection occurs because the shape deformation of a martensite or

bainite plate may or may not comply with an external stress. Following

[12], the compliance of a particular variant with the applied stress can be
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expressed in terms of an interaction energy:

U = σNδ + τs (3.5)

where σN is the stress component normal to the habit plane, τ is the shear

stress resolved on the habit plane in the direction of shear and δ and s are

the respective normal and shear strains associated with transformation.

The applied system of stresses can be described by a 3×3 stress tensor

σlm which when multiplied by the unit normal to the bainite/martensite

habit plane gives the traction t describing the state of stress on that plane.

The traction can then be resolved into σN and τ in the normal manner [62]:

σN = |t| cos{θ}

τ = |t| cos{β} cos{φ} (3.6)

where |t| is the magnitude of t, θ is the angle between the habit plane normal

and t, β the angle between t and the direction of the maximum resolved

shear stress, and φ the angle between the latter and the direction of shear

for the bainite/martensite plate concerned. A positive U means that the

bainite/martensite variant is favoured by the applied stress and vice versa.

The experiments reported here are based on stress–affected transfor-

mation, i.e., the external stress was kept below the yield strength of the

austenite at the temperature concerned. Plastic strain in the austenite can

have other effects, for example the favouring of variants which grow across

slip–planes and hence avoid mechanical stabilisation [26, 27]. However, it is

not clear how these modes of variant selection would affect the transformation

strain.
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3.4 Generation of random and bias texture

data

The relationship between the sample and crystal frames of reference can be

described using Euler angles φ1, φ and φ2. These are the three angles by

which the sample reference frame must be rotated in order to coincide with

that of the crystal. The rotation matrix relating the frames is given by:









cosφ1cosφ2 − sinφ1cosφsinφ2 sinφ1cosφ2 + cosφ1cosφsinφ2 sinφsinφ2

−cosφ1sinφ2 − sinφ1cosφcosφ2 −sinφ1sinφ2 + cosφ1cosφcosφ2 sinφcosφ2

sinφ1sinφ −cosφ1sinφ cosφ









(3.7)

To generate a random set of austenite grains, the angles φ1 and φ2

(ranging from 0 to 2π) and the value of cosφ (between ±1) are selected using

a random number generator [63]. To simulate a polycrystalline state, a set

of 500 austenite grains was assembled, each identified by a rotation matrix

relating it to the sample frame. Fig. 3.2 shows the model generated 1 0 0γ

pole figure. The increase in the density at the middle of the pole figure is

expected in a stereographic projection due to the angular distortion. The

distribution of poles is otherwise random. This contrasts with the work of

Han et al. [5, 6] where large regions of the stereogram were inexplicably left

blank.

It is interesting to notice how the model fails to generate a random tex-

ture if the random rotation matrix is calculated for a polycrystalline spec-

imen by using random numbers to generate a random rotation axis and a

random rotation angle. The equation for generating rotation matrix using
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Figure 3.2: Model generated 1 0 0γ pole figure for 1000 randomly orientated
austenite grains.

this method is given below:









u1u1(1 − m) + m u1u2(1 − m) + u3n u1u3(1 − m) − u1n

u1u2(1 − m) − u3n u2u2(1 − m) + m u2u3(1 − m) + u1n

u1u3(1 − m) + u2n u2u3(1 − m) − u1n u3u3(1 − m) + m









(3.8)

where u = [u1 u2 u3] is the rotation axis, θ is the rotation angle and m = cosθ

and n = sinθ. If u and θ are generated using random numbers and it is used

to generate 1 0 0γ pole figure, it does not give a random texture (Fig. 3.3).

The matrix described in Equation 3.7 will also not give a random texture

(Fig. 3.4) unless cosφ is generated randomly as described earlier.

Gamma textures are the Goss {1 1 0}γ〈0 0 1〉γ, Cube {1 0 0}γ〈0 0 1〉γ

and Copper {1 1 2}γ〈1 1 1〉γ varieties [64–66]. These biased orientations

were also generated in the austenite microstructure using a model. First,

one austenite grain in an aggregate of 500 grains is introduced in such a
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Figure 3.3: Model generated 1 0 0γ pole figure for 1000 randomly orientated
austenite grains generating orientation relationship following equation 3.8.

Figure 3.4: Model generated 1 0 0γ pole figure for 1000 randomly orientated
austenite grains after obtaining orientation relationship following equation
3.7 without generating cosφ randomly.
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manner that it exactly corresponds to one of the textures described above.

For example in the Goss scenario:

[1 1 0]γ‖[0 0 1]S [0 0 1]γ‖[1 0 0]S

Another 499 grains are then generated by randomly choosing rotation axes,

but limiting the right–handed angle of rotation to the range 0–45◦ to avoid a

random distribution. The model generated biased textures are shown in the

form of 1 0 0γ pole figures in Fig. 3.5.

3.5 Transformation strains

3.5.1 Uniaxial stresses

Although the method described in the preceding sections can be applied

to calculate the transformation strain in both martensite and bainite, the

results of the models are given for bainitic steels. In the following sections

of this chapter the influence of various systems of stress and the nature of

transformation strains in a polycrystalline sample of austenite is discussed.

The three sample axes are henceforth referred to as [1 0 0]S, [0 1 0]S

and [0 0 1]S, where “S” is the basis symbol and it may be assumed that

the stress is applied along [1 0 0]S. The true strains are then calculated by

examining how unit vectors along the sample basis vectors are stretched due

to transformation. The true strain in each case is ln{|v|/|u|}, where v is the

final and u is the initial vector. This neglects rotation of vectors but in a

polycrystalline sample the effect is negligible on average. Furthermore, the

method is rigorously correct when the sample is constrained by a grip of a

tensile testing machine, in which v rotates to become parallel to u. It is clear

from Table 3.1 that the vectors u and v are always parallel if all the possible

24 variants are forming, but not so if only the most favoured variant forms.
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(a)

(b)

(c)

Figure 3.5: Calculated 1 0 0γ pole figures for (a) Goss (b) Cube and (c)
Copper textured austenite.
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Table 3.1: Angle between vector u and v for various number of grains with
different number of variants forming.

No. of grains No. of variants Angle between
v and u

1 1 3.87◦

24 0◦

10 1 0.30◦

24 0◦

100 1 0.28◦

24 0◦

300 1 0.21◦

24 0◦

500 1 0.13◦

24 0◦

On the other hand the, angle between v and u becomes very small as the

number of grain increases.

Equation 3.6 was used to determine the interaction energy U of each

bainite plate with the applied stress; the variants were then ranked in de-

scending order of U . The transformation strain was then calculated for all 24

cases within a given austenite grain, beginning with the most favoured vari-

ant consuming the maximum fraction of austenite permitted – this fraction

is 0.63 for the specific experiments analysed here [37]. Subsequent calcula-

tions assumed groups of most favoured variants forming in equal fractions up

to the maximum allowed. The results are presented in Fig. 3.6 for uniaxial

tension and compression.

It can be noticed that the strains need not be isotropic when variant

selection occurs [16, 55, 67]. The variants are naturally selected in such

a manner that the transformation strain supports the nature of the applied

stress. Fig. 3.6a shows that the variant selection under tensile stress happens

in such a manner that transformation strain becomes tensile in the direction
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(a) (b)

Figure 3.6: Strains developed due to transformation along the [1 0 0]S direc-
tion (labelled longitudinal, along the stress axis), and the transverse direc-
tions [0 1 0]S and [0 0 1]S, (a) tensile stress, (b) compressive stress.

of applied load ([1 0 0]S) and compressive in two transverse directions. A

similar trend is observed when the applied load is compressive, the trans-

formation strain in this case becomes compressive in [1 0 0]S direction and

tensile in other two directions ([0 1 0]S and [0 0 1]S) as shown in Fig 3.6b.

The true strain along [1 0 0]S is different between tension and compres-

sion mostly because the natural logarithm function scales the ratio of the

initial to final length of [1 0 0]S differently depending on whether the ratio is

greater or less than one. However, some difference is expected because unlike

tension, the positive dilatational transformation strain opposes compression.

When all 24 possible variants are allowed to form, the shear strains essen-

tially cancel, so both cases lead to an almost isotropic expansion, Fig 3.6a

and b. However, when variant selection occurs, none of the three directions

show equal strain.

It is interesting to analyse the effect of prior austenite texture on trans-

formation plasticity.

Fig. 3.7 shows the longitudinal strain along [1 0 0]S when polycrystalline

samples of austenite undergo martensitic transformation under the influence
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Figure 3.7: The longitudinal strain along [1 0 0]S when a polycrystalline
sample of austenite undergoes displacive transformation (Table 3.2) under
the influence of a uniaxial tensile stress. There are four different austenite
textures represented, random, Goss, Cube and Copper.

of a uniaxial tensile stress applied along the same direction. The important

observation is that the strain is larger when stress–affected transformation

occurs in certain textured austenite (Goss or Cube) where as it is lower

with some textures (Copper). This is not surprising since the elongation

in this case would be like that from a single crystal of austenite. And the

transformation strain in a single crystal depends on its orientation with the

axis of the applied stress. It is shown in the Table 3.3 how the strain in a

single crystal with Cube or Copper orientation varies with the number of

active variants.

It is clear, that for a single crystal austenite with Copper orientation

transformation strain is substantially lower than that of Cube orientation and

that is what is reflected in the Fig. 3.7 for a polycrystalline material. For a

randomly oriented single crystal the value would vary between a maximum

(in this case Goss or Cube orientation) and a minimum (Copper orientation).
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Table 3.2: The longitudinal strain along [1 0 0]S when a polycrystalline
sample of austenite (500 grains) having Cube and Copper texture undergoes
bainitic transformation under the influence of a uniaxial tensile stress. Each
value corresponds to a particular number of active variants, with the first
and the last one representing 1 and 24 active variants respectively.

Cube 0.064 0.064 0.064 0.063 0.062 0.062
0.061 0.060 0.054 0.049 0.045 0.041
0.038 0.035 0.032 0.029 0.025 0.021
0.017 0.014 0.011 0.008 0.005 0.002

Copper 0.043 0.042 0.041 0.039 0.038 0.037
0.035 0.034 0.032 0.030 0.028 0.026
0.024 0.022 0.020 0.018 0.016 0.014
0.012 0.011 0.009 0.006 0.004 0.002

Table 3.3: The longitudinal strain along [1 0 0]S when a single crystal sample
of austenite with Cube and Copper orientation undergoes bainitic transfor-
mation under the influence of a uniaxial tensile stress. Each value corre-
sponds to a particular number of active variants, with the first and the last
one representing 1 and 24 active variants respectively.

Cube 0.075 0.075 0.073 0.072 0.072 0.073
0.072 0.072 0.064 0.057 0.052 0.047
0.043 0.040 0.037 0.035 0.029 0.024
0.019 0.015 0.011 0.008 0.005 0.002

Copper 0.036 0.034 0.032 0.030 0.028 0.027
0.026 0.024 0.023 0.022 0.020 0.019
0.018 0.017 0.015 0.014 0.013 0.012
0.010 0.009 0.007 0.006 0.004 0.002
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When a large number of grains are considered for a randomly orientated

sample the transformation strain will take a value that is in between these

two limits as evident from Fig. 3.7.

3.5.2 Multiaxial Stresses

The cases considered above deal with uniaxial stress – there exist circum-

stances, for example when conducting welding, in which combinations of

stresses are imposed during transformation. The system is then represented

by a stress tensor σlm and the traction t on any plane is then given in the

usual way by the product of the tensor with the unit normal h to the plane

concerned. The traction can then be resolved into a normal and shear stress

on the plane. The axes of the stress tensor correspond to those of the sample.

For a pure shear, σ11 = −σ33 with all the other components of the tensor

being zero. Fig. 3.8a shows the strains that develop in a polycrystalline

sample of austenite subjected to pure shear. The anisotropy of strain is

pronounced, with the minimum strain naturally along the [0 1 0]S direction.

Notice that unlike ordinary plastic deformation, the strain along [0 1 0]S is

non–zero. This is because the basic unit of deformation is not shear, but an

invariant–plane strain with a finite volume change δ directed normal to the

habit plane.

The case for hydrostatic compression (σ11 = σ22 = σ33 < 0) is il-

lustrated in Fig. 3.8b. The shear component of the invariant–plane strain

does not in this case interact with the pressure, so the only contribution

to the transformation strain is from δ. This explains why the strains are

about an order of magnitude smaller. However, the individual strains are

still anisotropic since the volume expansion is directed normal to the habit

plane of each plate.

Some specific experimental data on bainite will now be compared with

the model results. Whereas the measured transformation strains are from
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(a) (b)

Figure 3.8: (a) Transformation strain when the specimen is subjected to pure
shear. (b) The case for hydrostatic compression.

published work [37], the crystallographic measurements are new.

3.6 Comparison with experiments: Transfor-

mation Strain

Measured radial strains due to isothermal transformation to bainite under the

influence of a stress are illustrated in Fig. 3.9 [37]. The maximum transverse

strain at 200 MPa is 0.017 and that at 4 MPa is 0.004. The values of stress

essentially correspond to transformation greatly influenced by stress and not

affected, respectively. The strain data are macroscopic measurements made

on polycrystalline samples of austenite. The data are therefore simulated

by considering a cluster of 500 randomly oriented austenite grains, each of

which makes a contribution to the overall strain during transformation.

The interaction energy for each of the 24 bainite variants, in each of

the 500 austenite grains, is calculated for two different stress conditions in

which the applied stress were compressive with a magnitude of 200MPa and 4

MPa respectively. The data were then arranged in descending order for each

grain (as in Table 3.4 and Table 3.5). Of course, the most favoured variants
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Figure 3.9: Radial strain for isothermal transformation at 300◦C as a function
of compressive stress [37].

and indeed the values of U will be different for each grain as a function of

its orientation. But it then becomes possible to pick the n most favoured

variants from each of the 500 grains in the descending arrays of U . Fig. 3.10

shows the calculated transverse strains to be expected when a number n of

the most favoured variants form in each of the 500 austenite grains.

It is evident that the observed strains can be explained if it is assumed

that between 12–14 of the most favoured variants form when transformation

occurs under the influence of a large stress (200 MPa). By contrast, in the

absence of a significant stress (4 MPa in this case), it is necessary to assume

that most variants form, i.e., there is almost no variant selection. From

the data presented in Table 3.4, it is clear that the first 12-14 variants have

higher values of positive (or very low negative) interaction energy and so these

variants have higher probability of formation. Whereas Table 3.5 shows that

the values of the interaction energy even for the most preferred variant is

very low compared to the chemical driving force, which is 1225 J mol−1 [37],

so the extent of variant selection will be less and most of the variants will

form. This is for why in this case the experimental strain matches with the

model prediction when 22 out of total 24 variants are allowed to form (Fig.
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Table 3.4: Interaction energy U (J mol−1) for a uniaxial compressive stress
of magnitude 200 MPa, for each of the 24 possible variants of bainite in three
grains of austenite chosen arbitrarily from an aggregate of 500. The energies
are arranged in descending order, with positive values corresponding to a
favourable interaction with the applied stress and vice versa.

Grain 1 Grain 2 Grain 3
Variant U Variant U Variant U

2 126.4 15 112.8 6 137.1
10 126.4 9 91.8 15 133.6
21 108.8 13 81.3 14 115.7
20 108.8 11 63.2 9 110.7
3 48.3 6 61.4 16 89.4
8 48.3 12 40.6 12 89.2
23 30.7 1 26.9 7 71.8
18 30.7 14 26.3 1 70.0
19 26.1 16 20.1 22 37.4
24 26.0 5 8.1 13 31.4
17 -9.8 4 -0.7 24 25.1
22 -9.9 22 -7.3 11 18.7
11 -15.1 7 -7.8 17 -13.6
4 -15.2 23 -12.6 19 -15.4
13 -51.0 24 -29.3 5 -16.8
5 -51.0 21 -46.5 4 -18.2
16 -63.8 18 -48.7 8 -100.9
14 -63.9 8 -49.8 23 -103.4
7 -73.5 17 -53.5 10 -121.5
6 -73.5 19 -58.5 21 -124.4
9 -87.3 20 -73.3 3 -127.1
12 -87.5 3 -75.6 18 -128.5
15 -97.0 10 -87.6 2 -137.2
1 -97.1 2 -96.4 20 -138.2
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Table 3.5: Interaction energy U (J mol−1) for a uniaxial compressive stress
of magnitude 4 MPa, for each of the 24 possible variants of bainite in three
grains of austenite chosen arbitrarily from an aggregate of 500. The energies
are arranged in descending order, with positive values corresponding to a
favourable interaction with the applied stress and vice versa.

Grain 1 Grain 2 Grain 3
Variant U Variant U Variant U

1 3.0 23 3.1 8 3.0
7 2.7 13 3.0 3 2.7
12 2.7 18 2.8 22 2.5
16 2.3 11 2.8 24 2.0
14 2.1 5 2.5 17 1.9
9 2.1 21 2.5 10 1.9
15 1.8 20 2.3 2 1.7
6 1.7 4 2.3 19 1.5
5 0.9 8 0.5 23 1.0
4 0.7 15 0.5 18 0.8
17 0.4 3 0.4 6 0.3
19 0.2 9 0.4 14 0.0
13 -0.1 2 -0.1 21 -0.1
11 -0.1 1 -0.1 20 -0.1
24 -0.3 10 -0.1 7 -0.4
22 -0.3 12 -0.1 16 -0.4
18 -2.3 22 -2.9 13 -2.1
3 -2.5 6 -2.9 15 -2.4
20 -2.6 17 -3.1 5 -2.4
23 -2.8 16 -3.1 11 -2.6
2 -2.8 24 -3.2 12 -2.7
8 -2.9 14 -3.2 9 -2.8
21 -2.9 19 -3.3 4 -2.8
10 -3.0 7 -3.3 1 -1.4
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3.10). However, the analysis leaves open the question of the degree of variant

selection as a function of the magnitude of the applied stress. This is tackled

next.

Figure 3.10: Radial strains for isothermal transformation at 300◦C as a func-
tion of the number of most favoured variants allowed in each of 500 austenite
grains. The measured strains are plotted as horizontal lines.

3.6.1 Extent of Variant Selection versus Stress

The total free energy available for transformation is the sum of chemical and

mechanical components, the latter being zero in the absence of an applied

stress during transformation:

∆G = ∆Gchem + ∆Gmech (3.9)

It would be reasonable to assume that there is strong variant selection when

the ratio of ∆Gmech/∆G is large. Given relevant dilatometric data, the extent

of variant selection can be determined as in Fig. 3.10. The free energies can

readily be calculated using standard methods.

Table 3.6 was compiled using data from the published literature. The

data cover a pressure vessel steel [67], a low–temperature bainitic steel [37]
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Table 3.6: Calculated data for a variety of steels. T is the transformation
temperature and σ is the stress.

Reference T / ◦C σ / MPa U/J mol−1 ∆Gchem n ∆Gmech

∆G

/J mol−1

Bhadeshia et al.[67] 400 98.4 61.84 1758 21 0.017
” 420 98.4 61.75 1620 20 0.019
” 440 98.4 61.67 1486 18 0.020
” 460 96.5 60.67 1354 19 0.022
” 400 41.5 26.08 1758 24 0.007
” 420 41.6 26.11 1620 24 0.008
” 440 41.4 25.95 1486 24 0.009
” 460 47.8 30.05 1354 23 0.011

Hase et al.[37] 300 -200 130.62 1225 12 0.051
” 300 -150 97.97 1225 16 0.038
” 300 -100 65.31 1225 19 0.026

Matsuzaki et al.[16] 450 -25 29.69 1199 23 0.006
” 450 -50 14.84 1199 20 0.012

and a high–silicon steel [16].

It is evident from Fig. 3.11 that there is a strong linear correlation

between the ratio ∆Gmech/∆G and the number of most favoured variants

allowed to form in each of the austenite grains. This is an important obser-

vation in that it allows for the first time the extent of variant selection, and

hence the transformation strains, to be calculated as a function of stress for

any steel.

3.7 Stress–free Transformation from austen-

ite

In their classic work on the stress–free transformation to bainite, Davenport

and Bain in 1930 [68] noticed that “the volume change (due to transforma-

tion) is not necessarily uniformly reflected in linear change in all dimensions”.
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Figure 3.11: ∆Gmech/∆G versus the number of most favoured variants per
grain (n), for a variety of steels.

They even found that the thickness of a flat disc specimen actually decreased

as the volume increased! Bhadeshia et al. found a similar effect and explained

it qualitatively in terms of transformation from textured austenite [67].

Fig. 3.12 shows calculated strains along three orthogonal directions for

a cluster of 100 austenite grains having a Cube texture (Fig. 3.12a) or random

orientation (Fig. 3.12b) which transform to bainite, as a function of the num-

ber of variants that form. It is evident that in both the cases the transforma-

tion strain might be negative in certain directions (which means compression

along that direction) when the number of variants form is less than the max-

imum possible 24 variants. This explains Davenport and Bain’s observations

if the number of variants that form in the austenite is limited, which might

occur because the special grain boundaries present in such austenite limit

the variants of bainite that can nucleate.
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(a)

(b)

Figure 3.12: Transformation strains observed in three arbitrarily chosen
perpendicular directions when (a) Cube textured (b) randomly orientated
austenite transforms into bainite under no applied stress.
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3.8 Summary

A theory has been compiled for calculating the macroscopic strains which de-

velop when polycrystalline samples of austenite are transformed into bainite

or martensite under the influence of applied stress or a system of stresses or

without any applied stress. Indeed, the theory can be applied to any scenario

where the shape deformation due to displacive transformation is defined.

There is one approximation in the method described in this chapter.

It has been assumed that in a polycrystalline sample the state of stress in

any particular grain does not affect the state of stress of the other grains.

Although in stricter sense that will never be the case in practice. But for

the sake of simplification it has been assumed that there is no interaction

between the various grains in the microstructure.

The transformation strain has been observed to be anisotropic when

there is variant selection during transformation. However, when all the vari-

ants form, transformation strain becomes same the as the volume strain.

It has been shown that there is a direct correlation between the na-

ture of the transformation strain with the nature of the applied stress. In

case of a compressive stress the variants are selected in such a way that the

transformation strain becomes compressive in the direction of applied stress

and tensile in two transverse direction. The opposite trend is observed when

transformation occurs under a tensile load.

The model is developed in such a way that it is capable of taking into

account any texture that is present in the austenite prior to transformation.

It has been shown that the prior texture present in the microstructure has a

strong influence on the transformation strain. This observation is significant,

as the transformation strain plays an important role in determining the me-

chanical properties like fatigue strength or residual stress in a welded joint.

Comparisons with experimental data on a bainitic steel are encouraging.
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One of the most interesting outcomes of this work is that a strong

correlation has been obtained between the proportion of the driving force

attributed to stress, and the extent of variant selection. The correlation

is entirely expected when it is considered that the driving force has both

chemical and mechanical origins, and hence can be used quantitatively to

estimate transformation plasticity.

The model seems to also be able to explain an experimental observation

made long ago, which showed that during bainite transformation, although

there is a net volume expansion, the length of the specimen in one direction

might be decreased. The model explains this observation and shows this

is possible when transformation occurs from both textured and randomly

orientated austenite with some limitations in the total number of variants

that can form. The limitations in the number of variants forming could be

due to the presence of some special grain boundaries.

The theory developed here will be used in the next chapter to develop

another model capable of explaining the experimentally observed texture of

bainite obtained when transformation occurs under stress.



Chapter 4

Transformation texture: Single

crystal analysis

4.1 Introduction

Crystallographic texture is said to exist when a polycrystalline material has

a non–random distribution of crystal orientations relative to the sample axes.

This phenomenon is of particular importance in the processing and properties

of steels. Texture can arise in many ways but the topic of interest here is

that which develops as a consequence of the displacive transformation of

austenite. There have been previous studies on the calculation of textures in

these circumstances, but they involve a variety of assumptions which prevent

rigourous predictions.

As has been discussed in Chapter 3, when transformation occurs un-

der the influence of stress certain variants of martensite/bainite are favoured

out of all that might possibly occure [12]. This gives rise to the formation

of crystallographic texture. In this chapter, suitable crystallographic theory

[10, 11, 21] and data have been used to identify the favoured variants dur-

ing bainite formation from stressed austenite and then pole figures obtained

64
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from those variants are compared with the corresponding experimental data

obtained form electron back scattered diffraction patterns. The result are

obtained assuming a single crystal austenite. The experiments discussed are

based on stress–affected transformation, i.e., the external stress was kept

below the yield strength of the austenite at the temperature concerned. Plas-

tic strain in the austenite can have other effects, for example the favouring

of variants which grow across slip–planes and hence avoid mechanical stabil-

isation [26, 27]. Such effects become particularly prominent at large strains

[28] but might be neglected when the debris associated with plasticity is in-

sufficient to hinder the progress of the growing plates. For example, it has

been shown that when an austenitic stainless steel is elongated by 10% and

then transformed to martensite, the resulting crystallographic texture can

nevertheless be calculated using the variant selection criterion inherent in

equation 3.5 of Chapter 3.

4.2 Orientation relationship between

martensite and austenite

It is important to define the crystallographic relationship (α J γ) between

the parent austenite and the martensite. If (γ S γ) is the matrix representing

the total transformation strain then it can be shown [13] that:

(α J γ)(γ S γ) = (α C γ) (4.1)

where (α C γ) is the Bain correspondence matrix. It follows that:

(α J γ) = (α C γ)(γ S γ)−1 (4.2)
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(γ S γ) can be determined as shown in [13]. The Bain correspondence matrix

can, for example be expressed in the austenite reference frame as:









1 1̄ 0

1 1 0

0 0 1









It is known that in the cubic crystal system there are 24 symmetry

elements, each of which can be represented by a matrix. So there are 24

(α J γ) matrices, determined by multiplying (α J γ) with each of the sym-

metry matrices in turn. Associated with each (α J γ) will be a variant of the

habit plane and displacement vectors.

4.3 Methodology for drawing pole figure

Pole figures are drawn in the sample reference frame so an orientation rela-

tionship must be defined between the sample axes and those of the austenite

crystals, labelled as (S J γ) where “S” is the sample basis. If the {h k l} pole

figure of ferrite (martensite) is to be drawn, then each {h k l} pole of marten-

site must be expressed in the austenite frame and then in the reference frame

of the sample. Writing the pole as (h; α∗) = (h k l), (h; γ∗) = (h; α∗)(α J γ)

and this is repeated for 24 variants of h. To convert the indices to the sample

reference frame (h; S∗) = (h; γ∗)(γ J S). This procedure must be repeated for

each martensite plate within the same austenite grain. For example, there

are 6 {1 0 0} poles per plate so if the total number of plates within one γ

grain is n then the number of poles becomes 6n.
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4.4 Determination of matrix (S J γ)

First the 1 0 0γ pole figure of a austenite crystal is experimentally determined,

which is shown in Fig. 4.1. Only three poles are shown here because the figure

is from the lower hemisphere.

Figure 4.1: 1 0 0 pole figure of austenite.

In the second step the angles between the {1 0 0} poles and the sample

axes are measured to determine the vectors a, b and c from the direction

cosines, and the rotation matrix, (S J γ), is calculated using the procedure

described in [13]. The geometry needed to plot the pole figure is illustrated

in Fig. 4.2.

“C” corresponds to the centre of the stereographic sphere. The inter-

section of a pole from a crystal located at the centre, with the sphere is then

projected through the north or south poles. The resulting projection on the

equitorial plane defines the position of that pole on the stereogram.
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Figure 4.2: Construction of pole figure in gamma reference frame.

All the above discussion is for a single crystal of γ, but the principles

are identical when dealing with a polycrystalline sample.

4.5 Data

The transformation texture can in principle be calculated from the knowledge

of the initial texture of austenite, and by taking into account variant selection

due to the applied stress. But in doing so, it is important to realise that the

shape deformation, habit plane and orientation relationship of any particular

plate of bainite are mathematically connected by the crystallographic theory

[10, 21]. A complete set of crystallographic data is therefore necessary be-

fore rigourous calculations can be attempted. Unfortunately, such data are

frequently not available, so one purpose of the present work was to study the

sensitivity of the texture predictions relative to the crystallographic inputs

and the accuracy of routinely available experimental techniques.

The set of data designated (i) in Table 4.1 refer those used to model
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the martensitic transformation texture in an austenitic stainless steel (results

described in the next chapter), but adapted using the theory described in [13]

for the lattice parameters of interest in the present work, i.e., aγ = 0.3619 nm

and aα = 0.2882 nm [37]. This results in a macroscopic transformation–strain

which is a shear of 0.2292 and a dilatational strain of 0.01 normal to the habit

plane. The maximum fraction of bainite possible in the alloy system studied,

for a transformation temperature of 300◦C, is 0.63 [37].

The analysis that follows assumes the first set of data listed in Table 4.1

to describe the displacive transformation to bainite. The remaining data will

be discussed towards the end of the chapter to illustrate the sensitivity of

the calculations to crystallographic characteristics.

4.6 Comparison with experiments: Variant

selection

Bainite was formed in a high carbon steel under uniaxial compressive load in a

thermo–mechanical simulator (Thermecmaster Z) following the experimental

procedure described in [37]. The specimens were later studied metallograph-

ically on their longitudinal sections, and subjected to electron backscattered

diffraction (EBSD) in a Hitachi S–4300 and JEOL, JXA6400 scanning elec-

tron microscope with a step size of 0.25 µm.

Fig. 4.3 is an orientation image of a sample transformed to bainite under

the influence of a uniaxial compressive stress. The colours represent crystal-

lographic orientation using a standard technique called electron backscatter

diffraction (EBSD) [74–76]. The rectangles mark particular grains of austen-

ite which were subjected to detailed analysis.

The crystallographic data from the EBSD analysis can be represented

on stereographic projections in two common ways, by plotting the raw poles

or by using pole–density contours on the projections. Both methods are
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Table 4.1: Sets of crystallographic data. (i) The first set was used by [69]
to successfully estimate the martensitic transformation texture of austenitic
stainless steel, but adjusted for the lattice parameters relevant here – the
habit plane is close to {2 9 5}γ. Although there are no complete data available
for the bainitic steel analysed in the present work, the first set is the most
appropriate given the approximate habit plane recently reported for the same
steel by [70]. The other two sets correspond to what are conventionally
referred to as (ii) {2 5 2}γ [71], and (iii) {3 15 10}γ [72, 73] habits. Each
set describes the features of a single plate. γ and α refer to austenite and
bainite respectively.

Habit plane pγ Shape change (γ P γ)

(i)





−0.168640
−0.760394
−0.627185









0.992654 −0.033124 −0.027321
0.026378 1.118936 0.098100
−0.027321 −0.123190 0.898391





(ii)





0.362929
0.853900
0.373011









0.986887 −0.030853 −0.013478
0.040751 1.095879 0.041883
−0.051772 −0.121809 0.946790





(iii)





−0.169270
−0.761321
−0.625890









0.992602 −0.033274 −0.027355
0.026503 1.119202 0.097997
−0.027355 −0.123033 0.898853





Orientation (γ J α)

(i)





0.575191 0.542067 0.097283
−0.550660 0.568276 0.089338
−0.008610 −0.131800 0.785302





(ii)





0.584634 0.519305 0.119189
−0.529661 0.583719 0.059597
−0.046858 −0.118861 0.813418





(iii)





0.575371 0.542097 0.097510
−0.550726 0.568476 0.089244
−0.008855 −0.131888 0.785465
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Figure 4.3: All Euler image. The colours represent different crystallographic
orientations.

used here for illustrative purposes. The predicted pole figures are presented

using open circles for each variant and superimposed on the experimental

pole figures for easy comparison.

Considering the autesnite in grain A first, the 1 0 0γ pole figure is shown

in Fig. 4.4a,b. There is a clear spread in the orientation of the austenite

grain, presumably due to strains caused by transformation. It is well known

that the formation of bainite introduces dislocation debris in the adjacent

austenite [61, 77]. The plotting of pole–density contours somewhat exagger-

ates the spread in orientation, as can be seen by comparing Fig. 4.4a,c with

Fig. 4.4b,d. This is because the latter are produced using data binned into

5◦ bins with gaussian smoothing.

Table 4.2 lists the interaction energies between the bainite variants and

the applied stress, with a positive energy denoting a favourable interaction.

There are, therefore, 12 favoured variants, within which the first eight are in
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Table 4.2: Interaction energy U (J mol−1) for a uniaxial compressive stress of
magnitude 200 MPa, for each of the 24 possible variants of bainite in three
grains of austenite. The energies are arranged in descending order, with
positive values corresponding to a favourable interaction with the applied
stress and vice versa. Rank 1 in this listing corresponds to the most favoured
variant.

Ranking 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24

Grain A 151.2 144.2 133.4 124.6 111.6 111.1 95.7 93.9
35.6 26.7 24.4 15.7 -7.8 -7.8 -10.9 -12.2

-126.8 -131.7 -139.0 -145.1 -147.3 -148.8 -152.8 -153.0

Grain B 152.2 151.8 150.4 149.8 143.5 142.9 141.4 141.0
12.8 12.8 10.9 10.7 10.5 10.3 8.4 8.4

-167.0 -167.3 -168.8 -169.3 -173.9 -174.5 -175.9 -176.3

Grain C 139.6 128.0 95.4 73.1 71.8 65.9 64.6 64.0
63.2 38.9 4.1 0.9 -4.8 -21.1 -40.0 -40.5
-64.1 -83.7 -96.1 -98.6 -110.1 -119.3 -119.8 -126.7

a class of high values of U with the remainder with much smaller positive

interaction energies.

It is clear from Fig. 4.4e, which compares experimental versus calcu-

lated data, that allowing the eight most favoured variants explains the major

intensities in the experimental data. Allowing all 12 of the favoured variants

(Fig. 4.4f) completes the match between the calculated data, and all positions

on the stereogram where measured intensity exists. It is interesting that the

addition of a further four favoured variants with lower values of U in Fig. 4.4f

explains the residual lowest–intensity components of the experimental data.

Fig. 4.5 shows reasonable agreement between the experimental data and

calculations for grain B. The high intensity areas designated ‘H’ correspond

the eight most favoured variants, whereas those designated ‘L’ are of lower
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Pole figures for grain A, relative to the sample frame of reference.
(a,b) 1 0 0γ pole figures, (c,d) 1 0 0α′ pole figures. (e) Comparison with
calculated 1 0 0α′ pole figures, allowing the 8 most favoured variants to form.
(f) Comparison with calculated 1 0 0α′ pole figures, allowing the 12 most
favoured variants to form.
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intensity and are explained by the next four less favoured variants listed in

Table 4.2. This confirms that the strongest intensities observed correspond

to the most favoured variants.

Grain B happens to be roughly in Goss orientation relative to the sam-

ple axes. For this orientation, a different transformation texture has been

demonstrated both by measurement and by calculation when martensite is

induced by tensile deformation [8, 69], compared with that illustrated in

Fig. 4.5c,d. To explain this, the transformation textures were calculated for

both compression (consistent with the present experiments) and tension, for

an austenite grain in the exact Goss orientation. The results are illustrated

in Fig. 4.6a,b which shows that both the tensile [8, 69] and compression

data can be explained by the present model by assuming the formation of all

twelve of the favoured variants.

The result from grain C needs special discussion – the interaction ener-

gies are again listed in Table 4.2. A maximum of twelve favoured variants can

form, but it is not possible to explain all of the observed intensity using the

12 variants for which U > 0, Fig. 4.7. There are some low–intensity regions

which are not explained. These discrepancies indicate additional variants

which are not favoured by the applied stress. Fig. 4.7 confirms that the

low–intensity regions correspond to the two variants with interaction ener-

gies of -4.8 and -21.1 J mol−1, i.e., the unfavourable variants with the least

interaction with the applied stress.

The formation of unfavourable variants with low interaction energies is

easy to understand when it is realised that at the transformation temperature

of 300◦C, the chemical free energy change is about −1225 J mol−1 [37], a

value much greater than the magnitude of U . This chemical driving force

can therefore stimulate transformation even though it opposes the applied

stress.
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(a) (b)

(c) (d)

Figure 4.5: Pole figures for grain B, relative to the sample frame of reference.
(a,b) 1 0 0γ pole figures, (c) 1 0 0α′ pole figure. (d) 1 0 0α′ pole figure with
calculated data superimposed.
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(a) (b)

Figure 4.6: Calculated 1 0 0α′ pole figures relative to the sample frame of
reference, showing the twelve most favoured variants of bainite. (a) Tensile
and (b) compressive uniaxial stress. In this figure poles are allowed to form
from both hemispheres.

4.7 Observed variant intensities and relation

to interaction energies

A favoured crystallographic variant is one for which the interaction energy

with the applied stress is positive, i.e., its macroscopic transformation strain

complies with that stress. The purpose here is to demonstrate that favoured

variants correspond to the highest observed intensities. Fig. 4.3 shows the

three grains from which EBSD data were collected to produce the pole figures.

An attempt is made in this section to show conclusively that the ob-

served diffraction intensities can only be systematically explained by the

selection of those variants which comply best with the applied stress during

transformation.

Additional work has been done to clarify the plot in Fig. 4.3. Although

it has been argued in the previous section that in grain A (Fig. 4.3) 12

variants are favoured, it is not clear from Fig. 4.3 that in grain A, there are

indeed 12 variants, because the All Euler photograph is not clear on that
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(a) (b)

(c) (d)

Figure 4.7: Pole figures for grain C, relative to the sample frame of reference.
(a) 1 0 0γ pole figures, (b) 1 0 0α′ pole figure. (c) 1 0 0α′ pole figure with cal-
culated data superimposed for the 12 most favoured variants. (d) 1 0 0α′ pole
figure with calculated data superimposed for the 14 most favoured variants.

aspect.

Figs 4.8 and 4.9 show that it is not possible to explain all the observed

intensities without allowing all the twelve favoured variants to form in grain

A. Note that in the EBSD analysis presented there, it is not possible to

distinguish closely oriented bainite variants. To further analyse the data, the

closely oriented variants (8 variants in each group) are clubbed together in

groups of similar orientation for the purposes of variant–selection analysis. It

is noted that the 24 variants fall into 3 groups of eight each with very similar
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(a)

(b)

Figure 4.8: 100α′ pole figure from grain A. Red circles are model predictions.
Comparisons with the experimental pole figures is made allowing (a) 2, (b)
4 most–favoured variants to form in the model.
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(a)

(b)

Figure 4.9: 100α′ pole figure from grain A. Red circles indicate model pre-
dictions. Comparisons with the experimental pole figures is made allowing
(a) 8 and (b) 12 most–favoured variants to form in the model.
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orientations. These are designated X, Y, Z. The 8 most favoured variants

all lie in group X (only in case of grain C, 6th most favoured variant lie in

group Y) and the remaining 16 are distributed between the other groups.

The interaction energies for all 24 variants in the three grains from Fig. 4.3

are given in Table 4.2.

From Figs 4.10, 4.11 and 4.12, it is evident that the high intensity

regions of the experimental pole figures consistently correspond to the vari-

ants with the greatest interaction energies, orientations designated X. The

interaction energies plotted in the bar charts therein represent the average

interaction energy for that cluster of variants. The average interaction energy

for each cluster can be deduced from Table 4.2. For example, in Fig. 4.10 the

average interaction energy for the cluster “X” orientations is 121 J mol−1,

which is the average of the interaction energies of the first 8 most favoured

orientations listed for grain A in Table 4.2.

In summary, whilst it has not been possible to isolate the intensities cor-

responding to each individual crystallographic variant within a given austen-

ite grain, the work does clearly establish that the largest observed intensities

do indeed correspond to the most favoured variants.

4.8 Sensitivity to Crystallographic Data

It is a fact that detailed crystallographic data of the kind listed in Table 4.1

are few and far between. However, a large number of ferrous alloys fall

roughly within the range of the three sets in Table 4.1 [1, 73]. It is instructive

therefore to analyse the sensitivity of the calculated texture to the data.

Fig. 4.13 shows the analysis for grain B. A comparison of the stereograms

shows that the texture is reasonably predicted for all three sets, although

there are detailed differences for the {2 5 2}γ. These differences are important

if the accuracy of the experimental technique is greater. Large numbers of
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(a)

(b)

Figure 4.10: 100α′ pole figure from grain A. There are total 24 variants, which
includes both favoured and unfavoured variants. (a) The poles are grouped
into three regions, X, Y and Z. The numbers indicate variant rankings as
listed in Table 4.2. The colours are indicative of the intensities of poles.
(b) Bar chart showing the intensity as a function of region, and the average
interaction energy for that region (Table 4.2).
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(a)

(b)

Figure 4.11: 100α′ pole figure from grain B. There are total 24 variants, which
includes both favoured and unfavoured variants. (a) The poles are grouped
into three regions, X, Y and Z. The numbers indicate variant rankings as
listed in Table 4.2. The colours are indicative of the intensities of poles.
(b) Bar chart showing the intensity as a function of region, and the average
interaction energy for that region (Table 4.2).
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(a)

(b)

Figure 4.12: 100α′ pole figure from grain C. There are total 24 variants, which
includes both favoured and unfavoured variants. (a) The poles are grouped
into three regions, X, Y and Z. The numbers indicate variant rankings as
listed in Table 4.2. The colours are indicative of the intensities of poles.
(b) Bar chart showing the intensity as a function of region, and the average
interaction energy for that region (Table 4.2).
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accurate measurements can indeed be made, as demonstrated by [22] with

respect to the orientation relationship between the austenite and martensite

but such accuracy is not common, particularly when EBSD measurements are

reported. There also is a need for complete crystallographic measurements

of the shape deformation, habit plane and orientation relationship of the

transformation products in the new steels.

4.9 Summary

A theory has been compiled for calculating the crystallographic texture which

develops when austenite is transformed into bainite or martensite under the

influence of applied stress. Indeed, the theory can be applied to any scenario

where the shape deformation due to displacive transformation is defined. The

orientation of the prior austenite grain has been shown to be very important

in determining the texture of the product phase.

Comparisons of the model predicted pole figure with experimental ones

on a bainitic steel are encouraging. It has been shown that when transfor-

mation occurs under the influence of stress only, the variant selection criteria

follows the theory given by Patel and Cohen [12].

It has been shown theoretically how the reversal of sign in the applied

stress, will change the texture of bainite or martensite. It has also been

proved that the variant selection will be more prominent from the pole figures,

when transformation occurs under tensile stress than compressive stress.

Analysis has been presented to show that the ares of highest intensity

in the pole figures consistently correspond to the variants having highest

interaction energies. This conclusively proves that the variant selection model

presented here is sound.

The results shown in this chapter indicate that change in crystallo-

graphic data set, which comprises of habit plane, displacement direction,
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(a)

(b)

(c)

Figure 4.13: 1 0 0α′ pole figures for grain B, assuming crystallographic data
corresponding to the following approximate habit planes (Table 4.1): (a)
{2 9 5}γ (reproduced from Fig. 4.5d), (b) {2 5 2}γ, (c) {3 15 10}γ.
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orientation relationship matrix (between product and parent phase) and the

shape deformation matrix, has little effect on the crystallographic texture.

A theoretical comparison of pole figures of bainite calculated using three

different data set shows minor difference in texture.



Chapter 5

Texture of martensite formed

from plastically deformed

austenite

5.1 Introduction

Displacive transformation is influenced by externally applied stress as de-

scribed in Chapter 3 and 4. However, the effect of prior strain on displacive

transformation is not fully understood. The austenite may be considered to

be plastically deformed but eventually stress-free. Alternatively, it may have

experienced deformation and be under the influence of external stress. Stress

or strain can of course influence variant selection and hence crystallographic

texture.

A more subtle effect is that the austenite may acquire a deformation

texture prior to transformation, in which case this will influence the devel-

opment of transformation texture. This second effect is easy to deal with

but the role of plastic strain in the austenite in determining transformation

texture is not all that clear. Understandably this is an aim of this chapter.

87
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5.2 Experimental Procedure

5.2.1 Tensile Tests

A Fe-30Ni-0.3C (wt%) steel was studied because it is austenitic at room tem-

perature and hence can be easily deformed prior to transformation. Tensile

specimens were prepared as shown in Fig. 5.1. These were then sealed in

quartz tubes filled with argon and given a homogenising treatment for 48

hours at 1200◦C. This results in a coarse austenite grain size, Fig. 5.2, and a

further treatment is needed to reduce the size. This was achieved by cooling

the coarse grained samples in liquid nitrogen to form martensite and then

reaustenitising at 900◦C for 20 min to form finer austenite grains. The sam-

ples were air cooled from 900◦C. The fine grains are conducive to texture

analysis.

Samples for electron back scattered diffraction (EBSD) analysis were

prepared by straining to 20% elongation in tension (“Schenck” 50 kN Elec-

tric Screw Machine). They were then unloaded and transferred into liquid

nitrogen to form martensite from plastically deformed austenite but without

any influence of applied stress. Such samples are designated “30Ni-Strain”.

To form martensite under the influence of both stress and strain, a

special experimental set-up was designed as shown in Fig. 5.3. A rubber disc

was press-fitted onto the tensile specimen (Fig. 5.3a) and then one of the

two grips of the specimen was inserted into a plastic container (Fig. 5.3b)

through a hole at its base. The hole was then blocked by the rubber disc to

make the container water-proof, and the assembly was connected to a tensile

testing machine in the usual manner. The cross head movement was kept

at 0.1 mm s−1. After 20% elongation with the specimen still under stress

liquid nitrogen was poured into the container to induce martensite. These

samples were designated “30Ni-Stress”, containing martensite formed under

the influence of both stress and plastic strain. The sample was then unloaded
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Figure 5.1: Diagram of the tensile specimen.

Figure 5.2: Microstructure of austenite after homogenising treatment.
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(a) (b)

Figure 5.3: (a) Tensile specimen fitted with the rubber disc. (b) Tensile
specimen in a water-proof plastic container.

for further studies.

5.2.2 EBSD analysis

Samples were cut from the tensile test specimens as shown in Fig. 5.4.

Figure 5.4: Dimension of the EBSD specimen cut from a tensile sample.



5.3 Pole figures from single crystals of γ 91

Variant selection is probably best studied by mapping the distribu-

tion of crystallographic orientations. Therefore, samples were prepared for

electron backscattered diffraction (EBSD) analysis in an orientation imag-

ing scanning electron microscope at Tata Steel in India. The samples were

prepared as for optical microscopy, but then polished again using a colloidal

silica solution for 30 min for a better finish and to minimise the influence of

any stressed surface layer. An EBSD analyser (make:HKL) attached with a

scanning electron microscope (JEOL, JXA6400) was used for the crystallo-

graphic studies with a step size of 0.5 µm, a minimum of 600× 120 µm area

was scanned for each specimen. The data were analysed using the ‘Channel

5’ software to construct experimental pole figures.

In the next two sections the applied stress direction is expressed in the

sample reference frame as [1 0 0]S and the transverse direction in the same

reference frame is represented as [0 1 0]S.

5.3 Pole figures from single crystals of γ

In this section the predicted pole figures are presented using open circles

for each variant and superimposed on the experimental pole figures for easy

comparison.

5.3.1 Analysis of “30Ni-Stress”

Fig. 5.5 shows the “All Euler” photograph of the scanned area from the sam-

ple 30Ni-Stress. An “all Euler” photograph gives useful information about

the orientation difference of a phase (in this case γ) at various places in the

microstructure. Thus it can be useful in determining the prior austenite

grain boundaries as different austenite grain areas would be shown in dif-

ferent colours. The pole figures were measured from the two grains A and

B. The macroscopic stress tensor acting on these grains was assumed to be
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Figure 5.5: All Euler image from EBSD analysis of the sample “30Ni-Stress”.
Pole figures were computed from the two grains marked as ‘A’ and ‘B’.

purely tensile, for calculating the interaction energies associated with each

variants using the Patel and Cohen method. The orientation relationship

matrix between the sample and the crystal axes was determined following

the procedure described in section 4.4. Fig. 5.6a shows the measured 1 0 0α′

pole figure of Grain A and Figs 5.6b and 5.6c show the model predictions

superimposed on the experimental data assuming 12 and 18 most favoured

variants.

From Table 5.1 it can be seen that there are 12 variants which have

positive interaction energies. However if only these are allowed to form then

not all the observed areas of intensity are explained (Fig. 5.6b). To recover

consistency it was found necessary to use 18 variants including six which do

not comply with the stress.

This is not unreasonable given the large chemical driving force associ-

ated with forming martensite in liquid nitrogen. In these circumstances it is

possible to induce unfavourable variants. Nevertheless the regions of greatest
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Table 5.1: Interaction energy U (J mol−1) for a uniaxial tensile stress of
magnitude 300 MPa, for each of the 24 possible variants of martensite in grain
A and grain B of alloy 30Ni-Stress. The energies are arranged in descending
order, with positive values corresponding to a favourable interaction with the
applied stress and vice versa.

Grain A Grain B
Variant U Variant U

22 271.0 19 277.6
17 268.2 24 268.0
6 267.6 14 249.2
16 265.4 16 248.8
19 252.0 7 232.0
7 246.6 6 202.7
24 237.0 17 186.4
14 232.3 22 167.1
3 4.1 1 23.5
8 3.8 12 19.6
9 2.1 2 18.1
15 1.1 10 4.4
2 -21.8 15 -11.6
10 -29.9 9 -33.2
1 -45.8 3 -45.1
12 -46.4 8 -72.8
23 -145.3 5 -100.2
11 -148.4 20 -112.8
13 -149.4 21 -127.1
18 -155.9 4 -135.9
21 -173.8 13 -141.2
20 -187.0 18 -176.2
4 -196.4 11 -182.8
5 -196.8 23 -204.1
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(a) (b)

(c)

Figure 5.6: 1 0 0α′ pole figures of Grain A from 30Ni-Stress steel. (a) Exper-
imental. (b) Model predicted, allowing 12 most favoured variants to form.
(c) Model predicted, allowing 18 most favoured variants to form.

intensity are in fact covered by the first 12 variants associated with positive

interaction energies.

To further check the variant selection model another grain has been

chosen (shown as Grain B in Fig. 5.5) which is smaller in size and thus it

is more likely that not all the variants of martensite would form. Fig. 5.7a

shows the experimental 1 0 0α′ pole figure from this grain where the data are

fully explained by the first 8 most favoured variants listed in Table 5.1. The
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model predicted pole figure is shown in Fig. 5.7b.

(a) (b)

Figure 5.7: 1 0 0α′ pole figures of Grain B from 30Ni-Stress steel. (a) Exper-
imental. (b) Model predicted, allowing 8 most favoured variants to form.

5.3.2 Analysis from alloy “30Ni-Strain”

Figure 5.8: All Euler image from EBSD analysis of the samples “30Ni-
Strain”. From two grains marked as ‘A’ and ‘B’ pole figures are constructed.



5.3 Pole figures from single crystals of γ 96

Fig. 5.8 shows the all Euler photograph of the of sample “30Ni-Strain”.

This figure shows the total area scanned in EBSD, pole figures were obtained

from two grains marked as Grain A and Grain B. Although the sample was

unloaded prior to cryogenic treatment, the analysis that follows assumes that

variant selection can be determined on the basis of the interaction of α′ with

stress. The purpose was to see how far this might succeed in explaining tex-

ture on the crude hypothesis that the unloaded, plastically strained austenite

retains a memory of the original stress in the dislocation or other strain in-

duced structure during tensile deformation.

The stress tensor acting on the sample before quenching is assumed to

be pure tensile. This is of course a simplified assumption as the real stress

tensor here should be the residual stress acting on these grains which is very

difficult to measure or calculate.

Following the same procedure described in the previous section 1 0 0α′

pole figures have been predicted for the two grains. It can be seen from

Fig. 5.9 and Fig. 5.10 that the experimental and model predicted pole figures

matches very well.

(a) (b)

Figure 5.9: 1 0 0α′ pole figures of Grain A from 30Ni-Strain steel. (a) Exper-
imental. (b) Model predicted, allowing 12 most favoured variants to form.
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(a) (b)

Figure 5.10: 1 0 0α′ pole figures of Grain B from 30Ni-Strain steel. (a)
Experimental. (b) Model predicted, allowing 10 most favoured variants to
form.

The following conclusions can be made form the results produced in

this section.

1. When transformation occurs from plastically deformed austenite under

stress variant selection can be described using Patel and Cohen’s theory

[12].

2. When transformation takes place from plastically strained austenite

but without any influence of external load variant selection can still be

explained using Patel and Cohen’s theory. It seems under low degree

of plastic strain austenite retains the memory of the original stress.

3. The results presented here contains 12-18 variants of martensite in each

grain due to large chemical driving force . The large number of vari-

ants makes it difficult to validate the variant selection model with high

precision in some cases. If the under cooling can be restricted and for-

mation of martensite is limited to 20-30% variant selection models can

be validated more rigorously.
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5.4 Texture prediction in a 304 austenitic

stainless steel

In an elegant experimental study on 304 austenitic stainless steel, Gey et al.

[8] found that not all of the 24 possible crystallographic variants of martensite

(α′) formed when the alloy was deformed to 10% elongation in tension at -

60◦C.

Variant selection was particularly noticeable in austenite (γ) grains

belonging to the Goss and Cube components of texture, which transformed

to smaller fractions of martensite. This is presumably because the early

stages of transformation are dominated by the α′ variants most favoured

by the external stress. The selection process was explained qualitatively

by associating the martensite with the slip systems that have the greatest

Schmidt factors, although even on the “activated” {111}γ planes, only a

fraction of the possible variants were found.

The transformation texture for the data published by Gey et al. [8]

was modelled using a self-consistent set of crystallographic parameters. The

set associated with a single martensite variant, gives a habit plane close to

the approximately {2 5 9}γ plane reported by Lagneborg [78] for the same

steel. The lattice parameter of austenite in 304 stainless steel is estimated to

be 0.3589 nm [79] and that of the martensite is taken to be 0.2873 nm. This

standard set is given as follows, calculated as in [13]:
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Habit plane (−0.183989 0.596344 − 0.781359)γ

Shape deformation matrix (γ P γ)





0.991342 0.028064 −0.036770
0.028064 0.909040 0.119180
0.029429 −0.095386 1.124979





Coordinate transformation matrix (γ J α)





0.579356 0.542586 0.102537
0.014470 0.133650 −0.788984
−0.552000 0.572979 0.086936





The matrix notation used above is due to [10]. This set implies that

(1 1 1)γ = (0.012886 0.981915 0.978457)α

[1 1 0]γ = [0.927033 1.055684 − 1.071623]α

It can be noticed that (1 1 1)γ is approximately parallel to (0 1 1)α and [1 1 0]γ

is approximately parallel to [1 1 1]α. The actual relationship is irrational to

ensure the invariant–line necessary for martensitic transformation.

The full twenty four crystallographic sets corresponding to the 24 vari-

ants of martensite possible in each austenite grain can be generated using

symmetry operations. The interaction energy for each of the 24 variants in a

500 γ grain aggregate have been calculated using the procedure described in

section 3.3. δ and s are the dilatational and shear strains due to the shape

deformation of martensite, which can be shown using (γ P γ) to be 0.02536

and 0.2245 respectively [13]. It is to be noted that calculating the interaction

energy in this way is complete [12] compared with the approach in which only

the symmetrical part of the shape deformation is used [20, 80].

To model the martensite texture beginning with that of austenite it

was necessary to replicate the latter first. This was done for Goss and Cube

texture for a 500 austenite grains aggregate following the procedure described

in section 3.4 of Chapter 3.



5.4 Texture prediction in a 304 austenitic stainless steel 100

A variant is said to be favoured when interaction energy adds to the

driving force for transformation. Each austenite grain is then allowed to

transform to only the favoured variants, thus allowing the transformation

texture to be calculated. It is emphasised that each austenite grain is

transformed equally into the selected variants having equal fractions of each

favoured variant. This is because the relationship between the interaction

energy and fraction transformed is not clear. Therefore, although the crys-

tallography should be correctly predicted, the detailed intensities may not

be accurate.

For the Cube component of austenite texture, Fig. 5.11a shows the

measured pole figure for martensite [8], Fig. 5.11b the calculated pole figure

allowing only the favoured variants, and finally, Fig. 5.11c illustrates what

should happen if all possible variants are allowed to form. Similar results for

the Goss oriented austenite grains are shown in Fig. 5.12. The agreement

between the calculated transformation texture based on favoured variants

and the measured data is remarkably good.

The following conclusions can be made form the results produced in

this section.

1. Variant selection has a substantial effect on the crystallographic texture

during displacive transformation.

2. Variant selection can be explained with the help of Patel and Cohen’s

[12] theory.

3. Not only under stress but Patel and Cohen’s theory is able to explain

the variant selection when the transformation occurs from plastically

deformed austenite. However the degree of plastic deformation has to

be low.

4. The model is fully capable of predicting the transformation texture
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(a) (b)

(c)

Figure 5.11: 100α′ pole figures for transformation of Cube oriented austenite
grains. (a) Experimental data [8]. (b) Calculations allowing only favoured
variants of martensite to form in each austenite grain. (c) Calculations al-
lowing all possible variants of martensite to form in each austenite grain.

using a self-consistent crystallographic data set generated following the

phenomenological theory of martensite crystallography.

5.5 Texture in rolled steels

It has been discussed in Chapter 2, Furubayashi et al. [9, 33] attempted

various variant selection models to estimate the transformation texture in
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(a) (b)

(c)

Figure 5.12: 100α′ pole figures for transformation of Goss oriented austenite
grains. (a) Experimental data [8]. (b) Calculations allowing only favoured
variants of martensite to form in each austenite grain. (c) Calculations al-
lowing all possible variants of martensite to form in each austenite grain.

two high Ni alloys (composition is given in Table 5.2).

Through proper heat treatment and rolling (shown in Fig. 5.13) Cube

and Copper type texture was introduced in the austenite of the two Fe-Ni

alloys. Martensite transformation was then induced either by cooling the

austenite below the MS temperature (Transformation After Rolling, TAR

process) or by deforming the austenite below the Md temperature (Transfor-

mation During Rolling, TDR process). Furubayashi et al. has shown that
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Table 5.2: Composition of the two alloys used by Furubayashi et al. [9].

Alloy Composition / wt%
Ni Mn Al C N Si Fe

26Ni 25.76 0.085 0.025 0.001 0.0012 0.002 bal.
30Ni 29.67 0.085 0.025 0.001 0.0012 0.002 bal.

Figure 5.13: Thermo-mechanical treatment given by Furubayashi et al. to
produce desired texture in Fe-Ni alloys [9].

the “Bain strain model” was most accurate in predicting the transformation

texture amongst all the models they considered. The Bain strain alone is

however an incomplete description of the shape deformation associated with

the martensite transformation.

There exist a few more limitations in the work done by Furubayashi et

al.. First of all, experimental evidence has been given about the formation of

Cube type texture after a particular heat treatment and rolling cycle (TMT-3

and TMT-4 as shown in Fig. 5.13) but the same for Cu type texture (TMT-

1 and TMT-2 as shown in Fig. 5.13) has not been presented in [9]. From

the experimental pole figure presented in another work by the same author

[33] and from the simulated austenite pole figure presented in [9], it seems
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that a pure Cu-type texture in austenite has not been achieved. Which

is quite expected, as rolling of steel almost always results in a mixture of

various texture components. Fig. 5.14a,b show the experimentally observed

and simulated “Cu-type” texture by Furubayashi et al.. If this is compared

with the pure Cu-type texture presented in Fig. 3.5c the difference is evident.

(a) (b)

Figure 5.14: “Cu-type” texture in austenite, (a) experimental [33] and (b)
simulated [9].

To reproduce the initial austenite texture for the TMT-1 and TMT-2

treatments a combination of common texture components of austenite were

composed and compared with observation. It was found (Fig. 5.15) that a

mixture of 50% Cu and 50% S type texture gave a good match with the

texture used by Furubayashi et al. (as shown in Fig. 5.14). So in the present

model for TMT-1 and TMT-2 rolling sequence prior austenite texture has

been assumed to be a mixture of 50% S and 50% Cu.

Furubayashi et al. assumed that the stress during rolling is a triaxial

compressive type. But the exact nature of the stress tensor during rolling is

a subject of study in its own right [81–84]. Although a triaxial compressive

stress may be relevant to TDR process, this is not the case for TAR process
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Figure 5.15: Simulated 1 0 0γ pole figure assuming 50% Cu and 50% S
component.

where the residual stress due to plastic deformation plays a role.

According to Wang et al. [85] the residual stress tensor varies with

the type of austenite texture. Furubayashi et al. did not begin with such a

tensor but rather varied the stress components until a fit could be obtained

with the transformation texture. Indeed four empirical parameters were ad-

ditionally introduced to deal with variant selection. The work presented in

the next section addresses this without fitting the stress tensor and using

better justified variant selection criteria.

5.5.1 Modelling the TAR process

An attempt was made to separate the effects of stress and strain by assuming

that variant selection is affected by stress only. Strain manifests by influenc-

ing the prior texture of austenite and by generating a pattern of residual

stress within the material. The residual stress tensor associated with the

prior austenite texture has been taken from the work of Wang et al. [85], Ta-
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ble 5.3. To model the TAR process the initial austenite texture was assumed

to be a mixture of Cu and S components (50% each) and the residual stress

tensor (equation 5.1) was calculated using the data presented in Table 5.3 :









−219 0 −35

0 −35 24

−35 24 −52









(5.1)

Table 5.3: Stress tensor for major texture components in the austenite phase
of cold-rolled stainless steel [85].

Texture σ11 σ22 σ33 σ23 σ13 σ12

components / MPa / MPa / MPa / MPa / MPa / MPa
{1 1 0}〈1 1 2〉 Brass -292 37 73 0 0 ±13
{1 1 0}〈0 0 1〉 Goss 9 64 158 0 0 0

{1 1 2}〈1 1 1〉 Copper -188 -83 -108 0 ±41 0
{1 2 3}〈6 3 4〉 S -250 12 5 ±24 ±30 0

Variant selection model in this work is done following the Patel and

Cohen’s theory. Variants were ranked in terms of the interaction energies and

the first 8 most favoured variants were allowed to form. In any grain if any

of the first 8 variants had negative interaction energy it was not considered

as a favoured variant. The values of the interaction energies are given in

Table 5.4. The experimental [9] and the model predicted pole figures are

shown in Fig. 5.16 and the agreement is good without the assumptions made

by Furubayashi et al.. It must be noted that the stress tensor used in this

model is taken from literature, which is an approximation. If a model is

developed to predict the residual stress tensor for the appropriate rolling

conditions a much better texture prediction can be obtained.
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Table 5.4: Interaction energy U (J mol−1) for 24 variants in five randomly chosen austenite grains from an aggregate
of 1000 grains with an initial γ texture consists of Cu and S components (50% each). The simulation is done for a
stress tensor shown in equation 5.1. The energies are arranged in descending order, with positive values corresponding
to a favourable interaction with the applied stress and vice versa.

Grain 1 Grain 2 Grain 3 Grain 4 Grain 5
Variant U Variant U Variant U Variant U Variant U

23 47.4 8 48.5 23 117.4 18 122.3 23 84.9
8 34.6 23 42.2 18 114.9 23 111.3 18 69.9
13 32.2 22 23.8 8 92.7 5 94.6 13 64.5
18 25.2 18 20.9 3 83.5 4 73.9 8 40.4
15 10.8 3 17.8 20 48.9 20 71.6 5 35.1
3 5.8 13 5.5 21 45.5 13 66.7 11 31.1
11 0.7 6 2.2 10 23.9 21 58.1 3 22.6
22 -0.6 24 -2.7 13 20.2 11 43.6 21 12.1
6 -9.2 10 -8.8 5 18.3 8 41.3 4 10.8
5 -10.1 15 -9.8 2 14.4 3 41.2 15 8.9
21 -16.9 14 -17.8 4 -7.9 1 -2.7 20 6.1
9 -20.9 21 -19.4 11 -11.8 12 -5.6 9 -14.7
20 -24.0 20 -24.1 22 -44.0 10 -6.9 12 -24.9
4 -26.5 11 -25.2 15 -61.5 2 -14.6 1 -30.5
10 -26.7 2 -31.4 17 -66.1 15 -27.9 10 -31.1
24 -29.1 5 -33.7 12 -69.5 9 -38.7 2 -42.5
14 -31.3 17 -43.3 1 -69.8 22 -116.5 22 -52.7
12 -31.4 9 -43.4 24 -73.0 17 -122.0 6 -63.8
2 -46.4 12 -47.7 9 -80.0 24 -134.6 14 -83.3
1 -48.2 4 -47.9 19 -95.4 14 -135.7 24 -84.8
17 -62.7 19 -61.7 6 -101.0 7 -138.2 17 -90.6
16 -74.2 1 -67.3 14 -109.6 6 -141.1 16 -107.4
7 -81.4 16 -67.9 7 -122.8 19 -147.8 7 -108.9
19 -82.1 7 -73.9 16 -132.3 16 -157.3 19 -116.2
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(a) (b)

(c) (d)

Figure 5.16: 1 0 0α′ pole figures from 26Ni steel after TAR simulations.
(a) Experimental and (b) simulated [9]. Model prediction from the present
work following Patel-Cohen theory, (c) allowing 8 most favoured variants (d)
allowing all 24 variants.

5.5.2 Modelling the TDR process

Transformation during rolling occurs below the Md temperature (Fig. 5.13).

Furubayashi et al. have modelled the texture assuming triaxial compressive

stresses, but the components of stress were chosen empirically.
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Figure 5.17: Arrangement of rolls in the finite element simulation done in
ABAQUS.

Figure 5.18: Finite element mesh distribution in the strip for the rolling
simulation in ABAQUS. The resultant stress tensor is obtained from a mesh
pointed as ‘M’ from the roll bite region at mid-thickness in the strip.

In order to estimate the stress tensor, Mr. Raju Dasu (TATA STEEL)

assisted with a finite element (FE) analysis of an elastic-plastic deformable

sheet using ABAQUS/Standard (version 6.6) in cold rolling reduction of 60%

(Fig. 5.13). Although in [9] the entire reduction was achieved in single pass,

the FE model assumed rigid rolls and elastic-plastic deformable sheet with an

initial sheet thickness of 1.6 mm reduced finally to 0.8192 mm in three equal

passes. The sheet was assumed to be symmetrical about a mid plane through

the thickness of the sheet. Plane strain conditions were assumed to prevail.

The total number of elements for the sheet was 4000. The contact between
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the rolls and the sheet is significant in simulating the rolling processes. These

interactions were modelled with a penalty frictional contact algorithm in

kinematic constraint formulation. The interactions between the rolls and

the strip is modelled with a friction coefficient of 0.3. Figs 5.17 and 5.18

show the rolling arrangement and the mesh distribution, respectively. The

stress tensor (given in equation 5.2) is determined for every element shown

in Fig. 5.18 but used is that from an element mid-thickness in the roll-bite

region (‘M’ in Fig. 5.18).
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0 −386 0

−35 0 −623









(5.2)

Model predictions for 1 0 0α′ texture have been done for the Cube and

a mixture of Cu and S (50% each). For initial Cube texture experimental

and model predicted 1 0 0α′ texture is shown in Fig. 5.19. It can be seen that

excellent match is obtained. For the present model in each grain first four

most favoured variants were allowed to form because in most of the grains

it has been found that the interaction energy values for first four variants

are much higher than the rest. The examples of interaction energies, for

austenite having Cube type texture, are shown in Table 5.5.

Fig. 5.20 shows the experimental and model predicted 1 0 0α′ texture

for TDR process where the initial austenite texture was a mixture of Cu and

S. It can be seen that the match in this case is not as good as it is for the

Cube textured austenite.

There are two possible explanations. The Cube textured austenite is

an accurate representation of the experimental austenite. For TMT-1 and

TMT-2 the texture in austenite is a mixture of various components, it has

been assumed to be a mixture of 50% Cu and 50% S but is likely to be

more complex. Secondly the estimation of the stress tensor is simplistic.
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Table 5.5: Interaction energy U (J mol−1) for 24 variants in three randomly
chosen austenite grains from an aggregate of 500 grains having a Cube type
texture. The simulation is done for a stress tensor shown in equation 5.2. The
energies are arranged in descending order, with positive values corresponding
to a favourable interaction with the applied stress and vice versa.

Grain 1 Grain 2 Grain 3
Variant U Variant U Variant U

21 121.0 18 315.5 20 318.8
23 113.2 20 305.8 21 309.0
13 105.1 23 297.4 18 304.6
11 102.9 21 288.9 23 297.7
20 61.2 3 173.3 10 178.5
18 34.5 8 165.7 2 171.2
8 15.6 10 162.1 8 163.1
10 11.3 2 158.7 3 161.1
2 2.5 5 85.6 4 78.1
15 -3.0 4 81.1 5 71.2
9 -31.1 13 43.4 11 56.8
3 -36.3 11 40.3 13 52.9
4 -51.8 1 -197.4 12 -208.8
5 -68.6 12 -200.7 1 -215.1
22 -157.7 9 -240.1 15 -230.3
12 -164.9 15 -240.9 9 -233.3
6 -168.2 17 -292.6 24 -293.7
24 -172.0 24 -301.3 22 -301.6
1 -197.5 19 -301.9 19 -307.3
19 -222.5 22 -302.9 17 -310.1
14 -235.2 7 -433.3 14 -440.2
16 -238.0 14 -439.4 6 -450.2
17 -251.3 16 -452.0 7 -452.9
7 -309.5 6 -455.7 16 -459.6



5.5 Texture in rolled steels 112

(a)

(b)

Figure 5.19: 1 0 0α′ pole figures from 30Ni steel after TDR process forming
from Cube texture austenite. (a) Experimental [9] and (b) model predicted
following Patel-Cohen theory allowing 4 most favoured variants to form.
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(a)

(b)

Figure 5.20: 1 0 0α′ pole figures from 30Ni steel after TDR process forming
from austenite having a mixture of Cu and S type texture. (a) Experimental
[9] and (b) model predicted following Patel-Cohen theory allowing 8 most
favoured variants to form.
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Fig. 5.21 shows the 1 0 0α′ texture for a pure compressive stress with an

initial austenite texture as in Fig. 5.15, this results in a better match. This

pole figure (Fig. 5.21) is quite different from that in Fig. 5.20 indicating the

sensitivity of the texture to the nature of stress tensor.

Figure 5.21: Model predicted 1 0 0α′ pole figures from 30Ni steel after TDR
process assuming a pure compressive stress tensor operative during rolling.

5.6 Severity of transformation texture

Calculations have been done to compare how the 1 0 0α′ pole figure would

differ when it forms in randomly oriented austenite, and from Cube or Goss

textured austenite. Fig. 5.22a shows the texture developed from random

austenite under the same conditions as for the Cube and Goss varieties shown

in Figs. 5.11 and 5.12 respectively. It has been assumed in all cases that the

transformation occurs under tensile stress and 8 most favoured martensite

variants are formed. It is evident from Fig. 5.22a,b that transformation from

randomly oriented austenite leads to a weaker martensite texture. The effect
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is more pronounced when a compressive load is applied to randomly oriented

grains (Fig. 5.22b). The conclusion is valid even if a stronger variant selection

criteria is used. Fig. 5.23a,b shows the same pole figure as in Fig. 5.22 but

allowing only two favoured variants to form. It is clear that the texture

becomes slightly stronger but not as much as shown in Figs 5.11 and 5.12.

5.7 Summary

It has been shown for both single crystal and polycrystalline austenite that

Patel and Cohen theory can be employed to predict variant selection during

martensite transformation that takes place under the influence of stress or

indeed, small plastic strain. The method developed here can correctly predict

the transformation texture of martensite and capable of incorporating the

influence of persisting texture in austenite.

An attempt has also been made to study variant selection in heavily

deformed austenite and has been met with partial success in separating the

effects of plastic strain and stress. When transformation occurs during the

rolling deformation of austenite, variant selection can be reasonably well

explained by a triaxial compressive stress. But when transformation occurs

on quenching heavily deformed austenite variant selection depends on the

nature of residual stresses the characteristics of which is difficult to estimate

as a global tensor. It has also been shown that transformation texture is

influenced more by the prior austenite texture rather than variant selection.
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(a)

(b)

Figure 5.22: Model predicted 1 0 0α′ pole figures from randomly oriented
austenite matrix allowing 8 most favoured variants to form under (a) tensile
load and under (b) compressive load.
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(a)

(b)

Figure 5.23: Model predicted 1 0 0α′ pole figures from randomly oriented
austenite matrix allowing 2 most favoured variants to form under (a) tensile
load and under (b) compressive load.



Chapter 6

Texture and intervening

transformations

6.1 Introduction

It has been argued in a recent study that the transformation texture of

austenitic stainless steels should be calculated in two stages [7]. The austenite

first transforms into ǫ-martensite and this then undergoes ǫ → α′ reaction,

where α′ is the body centred cubic martensite and ǫ the hexagonal close

packed martensite.

This is because the γ → α′ transformation is said in reality to occur in

two stages [86, 87]. A different approach is used to calculate the interaction

energy between the applied stress and the transformation strain [7], based

on infinitesimal strain elasticity theory rather than the plastic work model

of Patel and Cohen [12].

The purpose of the work presented in this Chapter was to see whether

it is in fact necessary to account for ǫ-martensite when estimating the trans-

formation texture due to α′. There is after all no a priori reason to suppose

that anything but the macroscopic shear deformation due to α′ can influence
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the selection of variants. There should be twenty four of these variants pos-

sible irrespective of the way in which the α′ develops. The second aim was

to assess the different interaction energy criterion used in [7].

There were two sets of results presented by Humbert et al. [7]. First,

for the transformation of a polycrystalline aggregate of austenite and sec-

ondly the detailed assessment of transformation texture in a particular grain

of austenite. Using various variant selection criteria they managed to ex-

plain the observed crystallography with reasonable amount of success. The

following section includes a consideration of their procedure alongside the

methodology presented in Chapter 3 and Chapter 4.

6.2 Interaction energy for γ → ǫ transforma-

tion

The mechanical component of free energy, due to the interaction between

an applied stress and the shape deformation associated with each marten-

site variant has been evaluated following the Patel-Cohen method [12], as

described in Section 3.3. This is because the transformation strains are large

and are plastic rather than elastic. Table 6.1 lists the interaction energies

evaluated by Humbert et al. [7] and according to Patel and Cohen. The vol-

ume strain associated with the transformation was taken as zero. Humbert

et al. have used the following equation for calculating the interaction energy:

E =
1

2
σijǫij ≡

1

2
[σ11ǫ11 + σ22ǫ22 + σ33ǫ33 + σ12γ12 + σ13γ13 + σ23γ23] (6.1)

where E is the strain energy per unit volume, γij represents the strain in the

simple shear, σij is the applied stress presented in the austenite reference

frame and ǫij is the strain tensor associated with γ → ǫ or ǫ → α′ transfor-

mation. The state of applied stress is classified by a tensor in the austenite
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basis, which for a uniaxial stress becomes;









σ 0 0

0 0 0

0 0 0









(6.2)

If the shape deformation for any martensite transformation is an

invariant-plane strain on a plane with a unit normal (p; γ∗) = (p1 p2 p3),

with a displacement in the unit direction [γ;d] = [d1 d2 d3] and with a mag-

nitude of the displacement given by ‘m’ then it can be written as follows [10]

:

(γ P γ) =









1 + md1p1 md1p2 md1p3

md2p1 1 + md2p2 md2p3

md3p1 md3p2 1 + md3p3









(6.3)

For γ → ǫ, p||(1 1 1), d||[1̄ 2 1̄] and m = 1√
8

if there is no volume change

accompanying transformation. There will be 11 other crystallographically

equivalent variants as listed in Table 6.1.

According to Humbert et al., the strain tensor is obtained as follows:

ǫij =
(γ P γ) + (γ P′ γ)

2
− I (6.4)

where as usual, (γ P′ γ) is the transpose of the matrix (γ P γ), so that:

ǫij =









md1p1 (md1p2 + md2p1)/2 md1p3 + md3p1)/2

(md1p1 + md2p1)/2 md2p2 md3p2 + md2p3)/2

(md3p1 + md1p3)/2 (md3p2 + md2p3)/2 md3p3









(6.5)

In their approach, for a uniaxial tensile stress, the interaction strain energy
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Table 6.1: Calculation of interaction energies associated with γ → ǫ trans-
formation following Humbert et al. [7] and Patel and Cohen [12] for
σ = 200 MPa and austenite grain oriented with gγ = [128.99◦, 48.27◦, 24.27◦].
The ranking is in a descending order of interaction energy. A positive value
of interaction energy corresponds to a favourable interaction with the applied
stress and vice versa.

Variant Plane and Interaction energy Interaction energy Ranking
number direction /MJ m−3 /MJ m−3

of shear [7] [12]
1 (1 1 1)[1̄ 2 1̄] -0.77 -1.54 7
2 (1 1 1)[1̄ 1̄ 2] 7.54 15.09 3
3 (1 1 1)[2 1̄ 1̄] -6.78 -13.55 10
4 (1̄ 1 1)[2 1 1] -11.58 -23.17 12
5 (1̄ 1 1)[1̄ 1 2̄] -5.64 -11.28 9
6 (1̄ 1 1)[1̄ 2̄ 1] 17.23 34.45 1
7 (1 1 1̄)[1 2̄ 1̄] 12.37 24.75 2
8 (1 1 1̄)[1 1 2] -2.12 -4.23 8
9 (1 1 1̄)[2̄ 1 1̄] -10.26 -20.51 11
10 (1 1̄ 1)[2̄ 1̄ 1] 0.13 0.27 4
11 (1 1̄ 1)[1 1̄ 2̄] -0.1 -0.2 6
12 (1 1̄ 1)[1 2 1] -0.04 -0.07 5
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per unit volume is therefore given by:

E =
1

2
md1p1σ (6.6)

This value is now compared against that obtained using Patel and Cohen’s

method.

6.2.1 Patel and Cohen approach

From Fig. 6.1a, the displacement along d can be resolved into components

normal to the habit plane (δp) and another on the habit plane (se), where p

and e are unit vectors, ‘δ’ is the dilatational strain and ‘s’ is the shear strain.

The traction σt acting on the habit plane is resolved into a normal stress σN

and a shear stress τ parallel to e.

σt =









σ 0 0

0 0 0

0 0 0

















p1

p2

p3









=









σp1

0

0









(6.7)

∴ σt||[1 0 0]γ.

σN = σt.p = (p1 p2 p3)[σp1 0 0] = σp2
1 (6.8)

As σN ||p, ∴ σN = σp2
1p. From Fig. 6.1b it can be written:

σt − σN = τmax =









σp1

0

0









−









σp3
1

σp2
1p2

σp2
1p3









(6.9)

Taking dot product with e in both sides:

τ = τmax. e = (σp1 0 0)[e1 e2 e3] − (σp3
1 σp2

1p2 σp2
1p3)[e1 e2 e3] = σp1e1

(6.10)



6.2 Interaction energy for γ → ǫ transformation 123

(a)

(b)

Figure 6.1: (a) Shape deformation associated with the martensite transfor-
mation. (b) State of stress on a habit plane.

∵ τ ||e

∴ U = δσp2
1 + sσp1e1

= σp1[δp1 + se1]

≡ md1p1σ (6.11)
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This differs by a factor of 2 from equation 6.6, because the latter incorrectly

assumes that the stress-strain relationship is elastic whereas in fact the trans-

formation strain is plastic. The absolute value of the interaction energy is

therefore wrong by a factor of exactly 2, as can be seen from Table 6.1. The

proof presented here that the two approaches are equivalent other than the

factor of 2 can be verified to be valid for a general stress tensor as follows:

σt =









σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

















p1

p2

p3









=









σ11p1 + σ12p2 + σ13p3

σ21p1 + σ22p2 + σ23p3

σ31p1 + σ32p2 + σ33p3









(6.12)

σN = σt.p

= σ11p
2
1 + σ12p1p2 + σ13p1p3

+σ21p1p2 + σ22p
2
2 + σ23p2p3

+σ31p1p3 + σ32p2p3 + σ33p
2
3

=
3

∑

i=1

3
∑

j=1

σijpipj (6.13)

As σN ||p, ∴ σN =
∑3

i=1

∑3

j=1 σijpipjp.

σt − σN = τmax. (6.14)

So τ can be written as:

τ = τmax. e = [σt − σN ]. e = σt. e (6.15)

∴ τ =
3

∑

i=1

σ1ipie1 +
3

∑

i=1

σ2ipie2 +
3

∑

i=1

σ3ipie3
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=
3

∑

i=1

3
∑

j=1

σijpjei (6.16)

Form here the interaction energy can be written as:

U =

3
∑

i=1

3
∑

j=1

[δσijpipj + sσijeipj ]

=
3

∑

i=1

3
∑

j=1

σijpj [δpi + sei]

=
3

∑

i=1

3
∑

j=1

σijpjmdi

≡ σijǫij (6.17)

6.3 Texture prediction, single γ crystal

Humbert et al. reasonably assumed that the most favoured variant should

correspond to the highest interaction energy. They argued that from a single

ǫ variant it is possible to generate 6 α′ variants of which only three variants

are favoured when interacting with a uniaxial tensile stress. Fig. 6.2 shows

their measured and model predicted pole figures for the α′ transformation

reaction. The poles are distributed in three different groups designated here

as ‘A’, ‘B’ and ‘C’. According to Humbert et al. ‘C’ corresponds to the “main

variants”, presumably on the basis of the observed intensities. Fig. 6.2b shows

that the poles from region ‘A’ are not reproduced theoretically.

Humbert et al. assumed different variant selection criteria for γ → ǫ

and ǫ → α′ reactions. For the first transformation a “strong” variant selection

criteria was used. In this case all the variants having less than 90% of the

highest interaction energy were considered to be not favourable. On the

other hand for the ǫ → α′ reaction variants having more than 20% of the

highest interaction energy were assumed to be forming. Variant selection
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(a)

(b)

Figure 6.2: 1 0 0 pole figure of α′ martensite for an austenite grain having
orientation gγ = [128.99◦, 48.27◦, 24.27◦] (here the angles represent Euler
angles), (a) measured (b) model by Humbert et al. [7].

criteria in this case was much “weaker” than the previous one. The reason

behind choosing a different criteria for variant selection in two reactions are

not clear.

The texture of α′ phase from the same austenite grain has also been

modelled here using the method described in Chapter 4 directly for the trans-
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formation γ → α′, neglecting any intervention of ǫ martensite. Taking the

parent austenite grain orientation from [7], the interaction energies associated

with the 24 possible variants of martensite have been calculated as shown

in Table 6.2. The crystallographic data used to define the α′ are shown in

Table 6.3, the data have been obtained following the procedure described in

[13].

The first 13 most favoured variants listed in Table 6.2 are all assumed

to form. Fig. 6.3 shows the comparison between experimental and model pre-

dicted 1 0 0α′ pole figure. It is obviously possible to explain all the observed

intensities.

6.4 Summary

The results show that it is not necessary to consider ǫ-martensite in order

to predict the α′-martensite transformation texture in austenitic stainless

steel. Furthermore, that the Patel and Cohen method, which correctly treats

the transformation strain as plastic can be directly used to calculate the

interaction energies. The two-step method in contrast requires additional

assumptions.
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Table 6.2: Calculation of interaction energy associated with γ → α′ trans-
formation following Patel-Cohen [12].

Ranking Variant No. Interaction energy
J mol−1

1 2 110.64
2 10 108.68
3 21 100.36
4 20 88.80
5 3 79.43
6 8 72.52
7 23 61.11
8 18 60.21
9 19 59.17
10 24 41.87
11 17 37.87
12 22 23.94
13 11 5.70
14 4 -4.72
15 13 -9.68
16 5 -18.51
17 16 -22.90
18 14 -36.34
19 7 -45.22
20 6 -52.25
21 9 -74.18
22 12 -86.10
23 15 -106.72
24 1 -120.73
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Table 6.3: Cryallographic data set for α′ martensite in 304 stainless steel.

Habit plane (−0.183989 0.596344 − 0.781359)γ

Shape deformation matrix (γ P γ)





0.991342 0.028064 −0.036770
0.028064 0.909040 0.119180
0.029429 −0.095386 1.124979





Coordinate transformation matrix (γ J α)





0.579356 0.542586 0.102537
0.014470 0.133650 −0.788984
−0.552000 0.572979 0.086936







6.4 Summary 130

(a)

(b)

Figure 6.3: Model predicted 1 0 0α′ pole figure for α′ martensite. Coloured
areas corresponds to experimental observation of Humbert et al.. Open cir-
cles represent model predictions. (a) Shows the details of predicted variants,
(b) without detail.



Chapter 7

Alloy design

7.1 Introduction

Significant progress has been made in the development of welding alloys

which lead to an improvement in the fatigue strength of welded structures

[2, 48, 49]. The alloys exploit transformation plasticity, which compensates

for thermal contraction stresses, thereby reducing the levels of residual stress

in the welded construction as it reaches ambient temperature [4]. A low

transformation temperature is essential in this process because if transfor-

mation becomes exhausted prematurely then residual stresses due to con-

traction strains are able to accumulate during subsequent cooling to ambient

temperature. In some cases, a state of compressive stress is achieved at the

end of the cooling process.

Previous welding alloys have achieved the required reduction in residual

stress but have exhibited poor toughness [2, 48, 49]. The alloys are essentially

martensitic; the achievement of a low MS (martensite-start) temperature

whilst maintaining toughness requires a difficult alloy design procedure; cost

is another factor which must be considered. That aim of the present work

was to optimise the composition of the weld metal without compromising
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the toughness of the weld metal or the fatigue properties of welded joints.

The search conducted to find appropriate weld metal compositions was much

wider than reported here; only the narrow search-range associated with the

final choices is documented.

7.2 Mechanical properties

The effects of various solutes and heat treatment on the mechanical properties

of welds have been studied by Murugananth [88]. This work was used as a

starting point for the present studies, although calculations were carried out

over a much broader range of compositions in order to avoid bias. The alloy

compositions selected for detailed study are listed in Table 7.1, based on

the use of established neural network models to estimate toughness, yield

strength, tensile strength, elongation and the martensite-start temperature

[89]. The MS temperatures were also calculated using a thermodynamic

model [90, 91]. The heat treatment and other input parameters are listed in

Table 7.2. The sequence A, B, and C in Table 7.1 represents an evolution of

the input parameters towards an optimum composition.

Figs 7.1 and 7.2 show the calculated variation in toughness and MS tem-

perature with composition in the Series A alloys. It is clear from the contour

plot that in the composition range where an acceptable impact toughness of

50 J is achieved, the MS temperature is too high to take advantage of any

transformation plasticity.

The results of Series B alloys are more promising. A reasonable amount

of toughness is obtained along with a low MS temperature. Figs 7.3 and 7.4

show that an alloy with 0.4 wt % Mo has an impact toughness of 55 J

at -60◦C with an MS temperature of 240◦C. The marked region shows the

composition range of interest (12Ni,1Cr, wt %) where the desirable properties

can be achieved. The uncertainty in the Charpy impact value is about 30-35
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Table 7.1: The chemical compositions of trial alloys.
Alloy composition Series A Series B Series C

(wt%)
C 0.03 0.03 0.03-0.07

Mn 0.5 0.5 0.5
Si 0.4 0.65 0.4
Cr 0-2 0-2 0.25
Ni 1-10 2-14 6-18
Mo 0.25 0.4-1.0 0.4
V 0 0.011 0.011
Co 0 0.009 0.009
Al 0 0.02 0.02
W 0 0.005 0.005
Cu 0 0.03 0.03
Nb 0 0.001 0.001
Ti 0 0.008 0.008
B 0 0.0001 0.0001
N 0.005 0.018 0.018
O 0.038 0.038 0.038

Table 7.2: Details of heat treatment and testing conditions.
Condition Value

Heat Input / kJ mm−1 1.5
Interpass Temperature / ◦C 250

Post weld heat treatment temperature / ◦C 250
Post weld heat treatment time / h 16

Testing temperature for Charpy toughness / ◦C -60
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Figure 7.1: Effect of chromium and nickel on impact toughness (Joules) of
Series A alloys at -60◦C.

Figure 7.2: Effect of chromium and nickel on MS temperature (K) of Series
A alloys.
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J (±1σ); the corresponding uncertainty in MS is about ±60 ◦C.

(a)

(b)

Figure 7.3: Effect of chromium and nickel on the Charpy toughness (Joules)
of Series B alloys at -60◦C. (a) Predictions (b) ±1σ uncertainty.
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(a)

(b)

Figure 7.4: Effect of chromium and nickel concentration on MS temperature
(K) of Series B alloys. (a) Predictions (b) ±1σ uncertainty.

Fig 7.5 shows the variation of yield strength of the welded joints with
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Figure 7.5: Effect of chromium and nickel concentration on the yield strength
(MPa) of Series B alloys.

composition in series B alloy. It is seen that in the composition range of

interest the yield strength is around 1000 MPa.

Series C is conceived on the basis of these results (Figs 7.6 and 7.7).

The alloys with 0.045 wt % carbon and 14 wt % Ni, can achieve a Charpy

toughness of ∼ 50 ± 35 J with an MS temperature of ∼ 220 ± 70◦C.

The effect of alloying elements on the yield strength of the Series C

alloys is also assessed in Fig. 7.8. As expected the yield strength increases

with the Ni concentration. However, when the concentration exceeds 12 wt%,

an increase in carbon causes a reduction in the yield strength. This might

be caused by the retention of a greater amounts of austenite.

As the results of the MS temperature predictions are associated with

a large amount of uncertainty, the temperatures were calculated again for

the Series B and C alloys using a thermodynamic model. Fig. 7.9 compares

the two methods (neural network and thermodynamic); there is in general
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(a)

(b)

Figure 7.6: Effect of carbon and nickel concentration on MS temperature (K)
of Series C alloys. (a) Predictions (b) ±1σ uncertainty.
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(a)

(b)

Figure 7.7: Effect of carbon and nickel concentration on Charpy toughness
(Joules) of Series C alloys at -60◦C. (a) Predictions (b) ±1σ uncertainty.
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Figure 7.8: Effect of carbon and nickel concentration on yield strength (MPa)
of Series C alloys.

reasonable agreement, indicating that the large uncertainties associated with

the network are simply warnings that the calculations are being conducted in

regimes where knowledge is sparse, but that the predictions may nevertheless

be reasonable.

The effect of welding heat input and the temperature for the Charpy

test on the toughness values have been analysed. A greater heat input

leads to a better toughness but the improvement is marginal. The analy-

sis also shows that the Charpy value is insensitive to the test temperature

(Fig 7.10). Fig 7.11 shows that as the interpass temperature increases so

does the strength. An increased heat input slightly reduces the strength.

For the last two analyses (Fig 7.10 and Fig 7.11) series C has been used.

From this discussion it can be concluded that both Series C and series

B alloys seem to have a good combination of transformation temperature and

toughness and may therefore enhance the fatigue life of the welded structures
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(a)

(b)

Figure 7.9: Comparison of MS temperature predicted using neural network
model and thermodynamic model. (a) Series B alloys (b) Series C alloys.
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Figure 7.10: Effect of test temperature and heat input on the toughness
(Joules) of the weld.

Figure 7.11: Effect of interpass temperature and heat input on the yield
strength (MPa) of the weld.



7.3 Comparison of properties 143

whilst maintaining toughness. However, it is important to compare the prop-

erties of these materials with some alloys in which the low transformation

temperature has already been exploited successfully with respect to fatigue

properties [2, 48, 49, 92].

7.3 Comparison of properties

A comparison of the chemical composition and various mechanical properties

of three recently developed welding alloys with the Series C and Series B

alloy is presented in Table 7.3. In a few cases where the data have not been

provided by the original authors, they have been calculated with the help

the neural network and/or the thermodynamic models used in the present

study.

Although the composition of the alloy B206 is quite similar to that

of alloy 13Cr/LC35, it has much higher impact toughness than the latter.

This is because B206 is welded using a gas tungsten arc welding technique

which keeps the oxygen concentration very low. Based on these model pre-

dicted results experimental weld have been made at ESAB AB (Sweden) and

mechanical properties have been evaluated.

7.4 Restriction on the lowering of MS tem-

perature

From the above discussion it may appear that a low MS temperature is bet-

ter for the utilisation of transformation plasticity; however there may be a

difficulty. The lowering of the MS below a certain level may not allow the

austenite to martensite transformation to be completed; the untransformed

austenite clearly cannot contribute to transformation plasticity. The Ta-

ble 7.4 shows the MS temperature of the alloy along with the temperature
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Table 7.3: Properties of various welding alloys developed to take advantage of transformation plasticity.
Series C Series B Ohta [2] B206 [50] 13Cr / OK

LC35 [50] 75.78
C 0.045 0.03 0.025 0.01 0.04 0.05
Si 0.4 0.65 0.32 0.4 0.5 0.29
Mn 0.5 0.5 0.7 1.8 0.8 2.09

Comp- Ni 14.0 12.0 10.0 6.7 12.3 3.04
osition Cr 0.4 1.0 10.0 12.5 7.3 0.43
/ wt% Mo 0.4 0.5 0.13 2.5 2.2 0.59

V 0.03 0.011 0.019
N 0.018 0.018 0.01
O 0.038 0.038 0.03

MS/◦C Neural 223 ±70 242 ±60
Network
Thermo- 193 238 218 200 214 388
dynamic

Charpy Neural 50 55 39 100 30 65
Tough Network at -60◦C at -60◦C at -20◦C at -40◦C at -40◦C at -60◦C

-ness / J
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Table 7.4: Variation of T90 with MS.

MS / ◦C T90 / ◦C
400 175
350 125
300 75
250 25
200 -25
150 -75
100 -125

at which 90% martensite is obtained (T90), assuming that the Koistinen-

Marbuerger equation [51] applies. T90 should be as close as possible to room

temperature, but not below it.

Note that the austenite, when constrained, plastically deforms prior to

the martensitic transformation. It is possible that this can affect the devel-

opment of the martensite, either by accelerating transformation (due to a

greater number density of nucleation sites), or by retarding it through me-

chanical stabilisation [39]. It is also possible that martensite which forms in

deformed austenite may not be randomly oriented [41], with consequences on

the transformation plasticity. Fig. 7.12 represents schematically how trans-

formation strain evolves with cooling.

The data presented in Table 7.4 show that an MS temperature ∼ 250◦C

would be ideal for the present purposes. The variation of residual stress with

MS temperature of the welding alloy is shown in Table 7.5. The data for

the first two alloys (10Cr-10Ni and MSG-63B) are taken from the work done

by Ohta et al. [2] and for the alloy 9CrMo data is taken from the work of

Jones and Alberry [3]. It is clear that the residual stress at room temperature

gradually decreases with lowering of the transformation temperature of the

alloy. It is also clear from the trend that at sufficiently low transformation

temperatures it is possible to have a residual stress which is compressive in
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Table 7.5: Variation of residual stress (at room temperature) with MS tem-
perature as calculated by Ohta et al. [2] and Jones and Alberry [3].

Alloy MS or BS / ◦C Residual Stress
/ MPa

10Cr-10Ni 210 ∼-180
MGS-63B 620 ∼400
9CrMo 510 ∼220

nature. The reappearance of the tensile residual stress due to further lowering

of MS (T90 less than room temperature) could not be tested due to lack of

data.

Figure 7.12: Definition of strain due to transformation.

7.5 Alloy preparation and properties

Based on the predicted properties presented in Table 7.3, three alloys have

been prepared. The first two are the Series B and Series C as described earlier

and the third one was prepared based on the work done by Wang et al. [92]

and Lixing et al. [93], designated as LTTE3 in Table 7.6. A fourth alloy,

which has been widely used as filler material with a mixed microstructure
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(bainite and martensite) called OK75.78 has also been made. OK75.78 was

prepared primarily to compare its properties with the newly designed alloys.

All these alloys mentioned here are used as the electrode (filler) material. An

ISO 2560 type joint has been prepared by welding a low carbon steel plate

with the help of the newly developed filler materials. The composition of the

welded plate (Weldox 960) and the chemical composition of filler alloys are

given in the Table 7.6.

Table 7.6: Measured composition (wt%) of the filler material and the base
plate.

Material Name Fe C Si Mn Cr Ni Mo
Plate Weldox 960 bal. 0.2 0.5 1.6 0.7 2.0 0.7
Filler 1 OK75.78 bal. 0.05 0.19 2.01 0.41 3.14 0.63
Filler 2 LTTE3 bal. 0.07 0.2 1.25 9.1 8.5 -
Filler 3 seriesB bal. 0.03 0.65 0.5 1.0 12.0 0.5
Filler 4 seriesC bal. 0.03 0.55 0.57 0.34 12.3 0.48

The welding was done after buttering the sides and the base plate to

avoid chemical dilution. After welding, a 15 × 15 × 150 mm section was cut

from the middle of the welded zone and used for preparing the samples for

mechanical testing as well as for the synchrotron studies. The details are

shown in Fig. 7.13.

Figure 7.13: Preparation of the welded joints.

The micrstructures of Series B, Series C and LTTE3 are quite similar
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Table 7.7: Hardness value of Series-B alloy.
Alloy Hardness Average

/HV hardness
Series-B 375 353 401 368

(as received) 366 358 357
Series-B 365 365 358 364

(quenched) 358 365 371

and shows typical dendritic structure containing very fine plates of martensite

(Figs 7.14 and 7.15). Fig. 7.16 show the photograph obtained from a scanning

electron microscope of the Series B alloy, at a higher magnification. It is

clear from the figure that the microstructure consists of martensite plates.

To further prove the presence of martensite in this alloy hardness values

have been taken from the welded specimen made from Series-B filler metal

and compared with the same obtained from a sample prepared from Series-

B alloy after austenitising and quenching it in water. This heat treatment

is certainly going to produce martensite and Table 7.7 shows the hardness

obtained from the quenched Series-B alloy is almost the same as in the weld

specimen. This proves that the new alloys are martensitic.

Tables 7.8 and 7.9 summarise the mechanical properties of the alloys.

It shows that the newly developed alloys have satisfactory mechanical prop-

erties including a very low bending angle (described in Fig. 2.20 in Chapter

2) which is an indication of lower residual stress generation. The calculated

transformation temperature values are presented in Table 7.8. The MS tem-

peratures were calculated following a thermodynamic model [91] and the BS

temperatures are calculated using an empirical equation [94]. It can be seen

from Table 7.8 that apart from that of alloy OK75.78, all other alloys are

having bainite start temperatures lower than the martensite start tempera-

tures. It clearly indicates that these alloys are predominantly martensitic in

nature, however for OK75.78 a mixed microstructure is expected, which has
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(a)

(b)

Figure 7.14: Optical image of (a) Series B alloy. (b) Series C alloy.
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Figure 7.15: Optical image of LTTE3 alloy.

been experimentally observed by Lord [95]. It can be seen from the given

data (in Tables 7.8 and 7.9) that although newly designed alloys (LTTE3,

Series B and Series C) have got good properties in general but the toughness

of these alloys are much lower than widely used welding alloys like OK75.78.

The percentage elongation obtained for these alloys are also poor. The frac-

tographs obtained for Series B and Series C alloy are presented in Fig. 7.17.

Fractographs for both alloys show predominantly cleavage type fracture.

7.6 Summary

Neural network and thermodynamic models have been used to determine the

chemical composition of welding alloys with sufficiently low transformation

temperature and good toughness. Taking clues from the already published

literature three different alloys have been proposed. Due to their low transfor-
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Figure 7.16: Scanning electron micrograph of Series B alloy.

Table 7.8: Mechanical properties and transformation temperature of various
filler materials.

Alloy MS/◦C BS/◦C Yield Tensile % Elongation
(calculated) (calculated) Strength Strength

/ MPa / MPa
OK75.78 388 421 951 957 19
LTTE3 200 -264 1135 1287 6
Series C 193 169 790 958 3
Series B 238 214 600 600 0
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(a)

(b)

Figure 7.17: Fractographs of (a) Series B alloy (b) Series C alloy.
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Table 7.9: Charpy toughness and bending angle values for various filler ma-
terials.

Alloy Charpy energy / J Bending angle
-60◦C -40◦C -20◦C +20◦C

OK75.78 65 79 90 96 6◦

LTTE3 15 17 15 20 5◦

Series C 28 30 32 37 3◦

Series B 28 22 27 28 0-3◦

mation temperatures these alloys are expected to give compressive residual

stress in the welded joints and thereby improve the fatigue life. However,

actual tests show that these alloys have relatively poor toughness and elon-

gation, although better than previous low transformation temperature alloys

[2]. The microstructure of these alloys are predominantly martensitic as ex-

pected from the calculated transformation temperature and hardness, the

fracture surface of the broken tensile specimen for Series B and Series C

alloy show cleavage type fracture.

The welded joints made with these alloys have been used for neutron

diffraction and synchrotron studies as described in the following chapters.



Chapter 8

Interpretation of Debye rings

from synchrotron X-rays

8.1 Introduction

Crystallographic texture can be revealed using many diffraction techniques.

This Chapter deals with X-ray data from synchrotron experiments in which

it is necessary to interpret Debye rings. The high intensity of synchrotron

X-ray permits in situ experiments which makes it possible to obtain X-ray

data at high temperatures. The experimental data come from alloy Series-

B (Chapter 7) which is a weld metal with a martensite-start temperature

of about 240◦C. Both stress-free transformation, and transformation of con-

strained samples have been studied and modelled.

The synchrotron experiments have been done by Dr Howard Stone on

an alloy designed by the author, who with Dr Stone’s help performed the

data analysis. The author also developed the computer model for simulating

the experimental results.

154
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8.2 Generation of diffraction pattern

Polycrystalline specimens when subjected to X-radiation, will have some

crystals oriented to satisfy the Bragg condition for a variety of crystal planes.

Fig. 8.1a shows an {h k l} reflection from a Bragg oriented single-crystal; in

a polycrystalline sample, this diffraction beam becomes a cone of diffracted

beams as illustrated in Fig. 8.1b.

Figure 8.1: (a) Reflection from lattice plane of a single crystal. (b) The same
reflection from a polycrystalline sample [24].

A flat photographic plate which is placed normal to the incident beam

will reveal circles when exposed. These Debye circles will have uniform

intensities along their circumferences if the crystal in the sample are ran-

domly oriented, assuming there are sufficient crystals exposed to the incident

beam. This will not be the case when sample is crystallographically textured

(Fig. 8.2).

8.3 The Bragg law in reciprocal space

Fig. 8.3 shows the Ewald sphere of radius 1
λ
, where λ is the X-ray wavelength,

constructed in reciprocal space. Here CO is the incident beam, O is the origin

of the reciprocal space and P defines a normal to a Bragg oriented plane.
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(a) (b)

Figure 8.2: Debye rings obtained from synchrotron radiation impinging on
a steel specimen. (a) A sample with negligible texture at 900◦C. (b) From
aluminium wire with strong crystallographic texture [96].

Figure 8.3: The Ewald construction to express Bragg’s law in reciprocal
lattice space. The Bragg angle is designated as θ.

OP thus has a magnitude of 1/dhkl as P is a lattice point in reciprocal space.



8.4 Construction of the model 157

The Bragg law is satisfied when OP is also a reciprocal lattice vector since,

sinθ =
OP/2

(1/λ)
≡

(1/2d)

1/λ
(8.1)

which on rearrangement gives λ = 2dsinθ. In vector form Bragg law is

satisfied when
k

λ
=

k0

λ
+ g (8.2)

where k and k0 are unit vectors along the diffracted and incident beams re-

spectively and g≡OP is the reciprocal lattice vector representing the diffract-

ing planes.

8.4 Construction of the model

Figure 8.4: Sample orientation with respect to the incident beam and forma-
tion of the Debye circle .

In Fig. 8.4, z is the radius of the circle, y is the distance of the sample
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from the receiving screen and θ is the Bragg angle. The incident beam k0 is

assumed to always be parallel to the [0 0 1]S direction of the sample reference

frame identified with the basis symbol ‘S’. Its components can be transformed

into the crystal reference frame of a grain of austenite using (S J γ),

(k0; γ
∗) = (k0; S

∗)(S J γ) (8.3)

Here the symbol ‘*’ refers to the reciprocal basis. Given k0 and ghkl, equation

8.2 can be used to calculate k. In the computer program equation 8.2 is

assumed to be satisfied if the diffracting vector CP has a magnitude within

±2% of the value of 1/λ. The diffracted beam is then expressed in the sample

reference frame:

(k; S∗) = (k; γ∗)(S J γ) (8.4)

The locus (x,y) of the points like P, Q, R etc have been calculated following

the simple geometry shown in Fig. 8.4. This is done for all the austenite

crystal to generate points which form the Debye ring. For diffraction from

martensite, the diffracted beam is first transformed into the γ reference frame

and then into that of the sample.

(k; S∗) = (k; α∗)(α J γ)(γ J S) (8.5)

For each austenite grain there are 24 possible (α J γ) matrices originating

from 24 possible martensite variants.

8.5 Experimental procedure

Samples were tested using a thermo-mechanical testing rig mounted on the

ID11 beam line at the European Synchrotron Radiation Facility in Grenoble,
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France. The sample is heated via a direct current applied across it through

water-cooled brass grips. With a uniform volumetric heat generation rate,

this should produce a parabolic temperature distribution along the 16mm

length of the exposed sample.

To control the temperature, a type-R thermocouple was ball-ended with

an oxy-acetylene torch and spot welded on to the surface at its mid-length.

This is the position at which the peak temperature occurs. To limit the effect

of temperature gradients across the diffraction gauge volume slits positioned

in the incident beam path were used to define a 400 micrometer wide beam at

the centre of the sample, giving and anticipated 2◦C variation in the region

illuminated by the X-ray beam at a mean temperature of 900◦C.

To further ensure correspondence between the measured temperature

and that encountered in the diffraction gauge volume the sample, the test rig

was translated horizontally across the beam until the centre of the thermo-

couple bead was located from the observed diffraction patterns. The sample

was then translated vertically such that the diffraction gauge volume was

immersed in the sample directly below the centre of the thermocouple bead,

at a point at which no further diffraction signal was detected from the ther-

mocouple.

A nominal photon energy of 50.5 keV was selected using a double

Si{111} monochromator. Diffraction data were acquired with a FReLoN

(Fast-Readout Low-Noise) camera system possessing 2048×2048 channels of

46.8×48.1 µm. The camera was mounted downstream of the sample with its

centre roughly aligned with the transmitted beam. In this position the full

Debye-Scherrer rings could be captured for reflections with 2θ diffraction an-

gles less than 13◦. This range covered the first four reflections from ferrite and

the first five from austenite. Incomplete diffraction data was also acquired

towards the corners of the field of view of the camera to a 2θ diffraction angle

of 19◦.
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To eliminate contributions from the background signal, a long exposure

image was acquired in the absence of a sample and the recorded intensities

scaled for direct subtraction from the subsequent diffraction images acquired.

The camera length and incident beam wavelength were determined to

be 188.1mm and 0.2453 Å respectively through calibration against a lan-

thanum hexaboride standard powder sample of known lattice parameter, in

a glass capillary positioned in place of the sample in the testing rig. This

also enabled the centre of the diffraction pattern on the detector to be un-

ambiguously determined.

To monitor the effect of applied loads on the development of texture,

samples were subjected to a thermal cycle consisting of a heating to 900◦C at

10◦Cs−1, an isothermal dwell of 60 s at 900◦C and continuous cooling back

to ambient at 10◦C s−1. During the first part of this thermal cycle, the

mechanical stage was run under load control with a set point of zero load

thereby permitted free thermal expansion and contraction of the samples.

During cooling the mechanical stage switched to load control and a load of

between 90 MPa and 311 MPa was applied to the sample (at ∼ 410◦C). This

temperature is sufficiently above the martensite start temperature to avoid

initiating a stress-induced transformation during loading and sufficiently low

to limit any plasticity in the austenite.

Diffraction images were acquired in 1 s intervals with 0.5 s exposures.

Processing of the raw diffraction images were done using the Fit2D image

processing software [97, 98], correcting for spatial distortion inherent in the

camera system [99, 100] and the efficiency of the detector pixels. The back-

ground signal was removed by subtraction of the scaled image gathered in

the absence of the sample.



8.6 Results and Discussion 161

8.6 Results and Discussion

Experimental results show that there is no texture formation in austenite

or martensite at zero load. This is expected as without loading there is no

chance of any deformation texture formation in austenite. Martensite will

also not have any texture as the texture of martensite originates from the bias

in the orientation of austenite or due to variant selection due to externally

applied load. A similar result, as observed in the sample transformed without

external load, has been obtained for the sample transformed under a constant

stress of 222 MPa. The Debye circles obtained from austenite and martensite

(at 400◦C and room temperature respectively) are shown in Fig. 8.5, it is clear

from this figure that no texture is present in austenite, possible reason behind

this is the applied stress is below the yield strength of the material. However

when a 311 MPa stress is applied austenite develops deformation texture

and subsequently the martensite also developed texture as shown in Fig. 8.6.

The stress in this case is beyond the yield stress and plastic deformation

leads to formation of deformation texture in austenite. Martensite, when it

transforms from textured austenite also has a bias in orientation.

Deformation texture of austenite is a mixture of various texture com-

ponents and for predicting the martensite texture it is necessary to know

the percentage of each texture component in austenite. Copper, Goss, Brass,

Cube are the common texture components of austenite, for these components

the orientation relationship between the sample and the crystal axes are also

well known. However it is not known how the Debye circle should appear if

it forms from austenite having any one of the texture components mentioned

above.

Fig. 8.7 shows the model predicted Debye rings for austenite containing

either Copper or Goss or Brass or Cube component only. It is clear from this

figure that none of these components can fully describe the experimentally
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(a)

(b)

Figure 8.5: Debye rings of austenite and martensite obtained at 400◦C and
room temperature respectively with a load of 222 MPa. (a) Austenite. (b)
Martensite.
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(a)

(b)

Figure 8.6: Debye rings of austenite and martensite phase obtained at 400◦C
and room temperature respectively with a load of 311 MPa. (a) Austenite.
(b) Martenisite.



8.6 Results and Discussion 164

(a) (b)

(c) (d)

Figure 8.7: Model generated Debye ring for austenite having (a) Brass (b)
Copper (c) Goss and (d) Cube texture.

observed austenite texture. This is because the austenite texture is a mix-

ture of various possible texture components. As in this work the deformation

texture of austenite is not modelled, to get the match between the experi-

mental and the model predicted Debye circle for the austenite phase, many

possible combination of texture component were tried. It can be seen that
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the experimentally observed texture matches well with the model prediction

(Fig. 8.8) when the austenite texture is assumed to have a combination of

70% copper and 30% Goss component.

This observation is similar to what has been found by Grigull [101]

in a AISI 304 stainless steel. Taking this as the initial austenite texture,

prediction has been made for the martensite phase. The variant selection

model follows Patel-Cohen [12] as described in Chapter 3. From Fig. 8.9 it

is clear that the model predicted Debye circle for martensite has reasonable

match with the experimental one.

From Table 8.1 it can be seen that in most of the grains first 7/8 variants

have mechanical free energies which is within 45% of the highest mechanical

free energy available for that grain. So it was decided that in the simulation

first eight most favoured variants will be considered to form in each γ grain.

There is an interesting observation. As there is no texture in the austen-

ite loaded up to 222 MPa, it can be argued that the yield strength of austenite

at 400◦C is at least 222 MPa. Transformation then is stress induced with

texture formation due to variant selection. However that is not observed.

The reason behind this is twofold. Firstly, the texture from stress induced

martensite in randomly oriented austenite will be weak, and secondly the

technique is not sensitive enough to measure such weak textures. But when

the austenite has some deformation texture and martensite forms under the

influence of both stress and strain there should be a stronger transformation

texture, which is visible from the Debye rings formed at 311 MPa load. The-

oretical evidence in favour of this argument has also been shown in section

5.6.
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(a)

(b)

Figure 8.8: (a)Experiental and (b) model generated Debye ring for austenite
having 70%Copper and 30% Goss component.
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(a)

(b)

Figure 8.9: (a)Experiental and (b) model generated Debye ring for martensite
transformed from austenite having 70 %Copper and 30% Goss component.
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Table 8.1: Interaction energy U (J mol−1) for a uniaxial tensile stress of
magnitude 311 MPa, for each of the 24 possible variants of martensite in four
grains of austenite chosen arbitrarily from an aggregate of 500. The energies
are arranged in descending order, with positive values corresponding to a
favourable interaction with the applied stress and vice versa.

Grain 1 Grain 2 Grain 3 Grain 4
Variant U Variant U Variant U Variant U

16 235.6 20 109.7 20 117.8 19 140.8
14 235.5 2 102.4 4 107.7 7 139.1
7 227.3 21 85.8 21 101.9 17 115.2
19 220.4 4 75.7 5 93.1 16 112.1
6 219.7 10 74.1 2 86.3 24 94.4
24 217.6 5 57.4 1 70.1 14 92.4
17 181.9 19 55.6 18 65.5 2 59.9
22 176.9 18 51.0 11 52.4 1 55.1
12 39.0 1 48.4 10 51.0 10 46.8
9 31.9 3 42.7 12 34.4 22 45.4
1 28.5 17 36.3 3 29.4 6 42.7
15 18.2 7 35.6 23 22.6 12 41.7
2 -2.6 12 18.3 19 20.4 20 10.4
10 -3.1 16 8.9 7 14.3 4 7.3
3 -94.3 11 3.6 13 10.8 3 -15.8
8 -97.1 23 3.2 9 9.9 21 -20.4
4 -102.5 8 -7.5 17 1.2 5 -22.4
11 -110.7 24 -25.4 16 -6.5 9 -23.2
20 -126.8 9 -26.4 8 -23.8 8 -52.2
21 -130.0 13 -38.5 15 -42.9 15 -59.4
5 -141.6 14 -47.1 24 -74.3 18 -69.4
13 -150.9 22 -66.5 14 -80.7 11 -74.9
18 -219.1 15 -74.8 22 -111.3 23 -115.3
23 -223.3 6 -92.2 6 -118.6 13 -119.7
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8.7 Summary

A modelling method to predict the Debye rings obtained from X-ray diffrac-

tion has been presented. The model is capable of predicting the transfor-

mation texture of martensite from a given austenite texture. The variant

selection has been modelled following the Patel and Cohen theory. The re-

sults obtained from the model tally well with the experimental findings. This

modelling technique is new and can be of very good use for primary and quick

analysis of texture with synchrotron X-ray. Debye rings obtained from com-

mon deformation textures have been modelled and presented which might

be used as a data base for future studies. The experimental result indicates

that Debye rings are not good enough for presenting weak texture that might

form due to variant selection in martensite. For such textures it is also nec-

essary to obtain the pole figure or orientation distribution function from the

synchrotron X-ray data.



Chapter 9

Conclusions and future work

Models have been developed to show how variant selection during transfor-

mation can lead to transformation plasticity on a macroscopic scale under

different types of loading conditions. It is thus possible to calculate both

the development of crystallographic texture and the macroscopic strains due

to selective transformation, in a manner consistent with the crystallographic

theory of martensite and various criteria for the interaction of stress with

crystallographic texture. These models have been validated with measured

strains in a bainitic alloy transforming under uniaxial compressive stress. The

influence of austenite texture on the strain developed has been discussed in

detail. It has been shown that transformation strain is equal to the volume

strain when all the possible variants form but that the shear strain manifests

when there is variant selection.

In both polycrystalline and single crystal samples of austenite, variant

selection occurs in a manner consistent with Patel and Cohen’s theory [12]

which emphasises a mechanical component of free energy. A partly empirical

method has been proposed to estimate the extent of variant selection, which

shows that the severity of variant selection is a function of the ratio of the

mechanical to the chemical free energy change.

To predict the crystallographic texture and transformation strain in a
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self-consistent manner a crystallographic data set is required which includes

the precise orientation relationship, shape deformation, habit plane and dis-

placements associated with the transformation. These data are mathemat-

ically related and a neglect of one or more of these parameters, or of the

relationship between them, leads to an improvished analysis. The required

data can be measured or generated using established martensite crystallog-

raphy. It is interesting that some aspects of resulting predictions are not

sensitive to whether the transformation product is martensite or bainite, in

the context of inaccuracies in measurements based on the orientation imaging

technique.

An effort has been made to separate out the effects of stress and strain

on the texture and variant selection during displacive transformation. Vari-

ant selection can be governed by stress either externally applied or which

resides in the material as a consequence of inhomogeneous plastic deforma-

tion of the austenite. Strain can have a separate influence by developing an

orientation bias in austenite.

Transformation texture is naturally sensitive to the nature of the ap-

plied stress-tensor acting on the austenite and its orientation relative to the

austenite. So for complex rolling conditions a complete model must be de-

veloped which is capable of realising the effective stress state at any point

during rolling. Only then it is possible to predict the final texture correctly.

There have been suggestions that the transformation of austenite should

be caused in two stages, first involving the formation of ǫ-martensite, followed

by its decomposition into α′ martensite. It has been demonstrated that this

is not necessary and that only the austenite and final α′ need to be considered

in the calculations. This has the advantage of reducing the complexity of the

problem and at the same time reducing arbitrary choices in variant selection

procedures.

The infinitesimal elastic deformation approach [7] for calculating an
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interaction energy between martensite and applied stress has been shown to

be identical with the Patel-Cohen approach with the proviso that the former

is incorrect by a factor of 2 since the strains are assumed to be elastic.

Consistent with the published results, welding alloys with low transfor-

mation temperature have been found to be capable of compensating for ther-

mal contraction strains. Further work is necessary to improve their tough-

ness.

Synchrotron data have been obtained for martensite transformation

under stress. The resulting texture has been shown to be consistent with

model predictions.



Appendix A

Residual stress measurement

A.1 Introduction

It was possible to reduce the harmful residual stress formation during welding

using low transformation temperature weld filler metals designed by Ohta et

al. [2, 48, 49] and others [92, 93]. Two new alloys have also been designed

during the course of this project (Series-B and Series-C, as mentioned in

Chapter 7) to take full advantage of transformation plasticity in order to

reduce the residual stress formation during welding. Experimental welds

have been prepared using filler metals having a variety of transformation

temperatures and the residual stress was measured with the help of neutron

diffraction technique. The results give a detailed insight of the nature of

residual stress generation in welded joints.

The experiments were done in collaboration with the University of

Manchester on three alloys, one of which was designed by the author (other

two are well established welding alloys). Drs Howard Stone and John Fran-

cis carried out all the experiments and assisted the author in the analysis of

data.
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A.2 Experimental details

A.2.1 Filler metals

Three filler metals were chosen so that their martensite-start (MS) temper-

atures varied significantly. The first filler metal, OK75.78; is a relatively

low-alloy product that is available commercially [95], which should complete

transformation before ambient temperature is reached. The second filler

metal, LTTE3, was recently proposed by Wang et al. [92] as being suitable

to achieve a low MS temperature [3]. Finally, the third filler metal, desig-

nated Series-B, was designed during the course of this study as an alternative

to the LTTE3 filler metal having an intermediate transformation tempera-

ture. The approximate composition of each filler metal is summarised in

Table A.1 below. The transformation temperatures of these alloys are given

in Table 7.7.

Table A.1: Composition (wt%) of the filler metals and the base plate.

Material Name Fe C Si Mn Cr Ni Mo Cu
Plate Weldox 960 bal. 0.2 0.5 1.6 0.7 2.0 0.7 0.3
Filler 1 OK75.78 bal. 0.05 0.19 2.01 0.41 3.14 0.63 -
Filler 2 LTTE3 bal. 0.07 0.2 1.25 9.1 8.5 - -
Filler 3 Series-B bal. 0.03 0.65 0.5 1.0 12.0 0.5 -

Bainite does not occur in the LTTE and Series B alloys which are

martensitic. Note that the shape deformations due to bainite and martensite

are essentially identical so for the present purposes it is only important to

focus on the transformation temperatures.



A.2 Experimental details 175

A.2.2 Manufacture of the welded plates

Three rectilinear plates (375 × 200 × 12mm) were prepared from the high

strength ferritic steel, Weldox 960. Along the centre of each plate, a 5 mm

deep V-groove was machined with an included angle of 60◦, and in each case

a single weld bead was subsequently deposited in the machined groove by

manual-metal arc welding. On one of the plates the commercial filler alloy

OK 75.78 was used, on another the LTTE3 alloy was used, while on the

third one the new candidate filler alloy (series B) was employed. In all cases

welding was undertaken in the down-hand position and the heat input was

maintained between 1.1 and 1.4 kJ/mm. A preheat temperature of 125◦C

was used and the plates were restrained by clamping during welding.

Macrographs were prepared so that the measured residual stress distri-

butions could be correlated with the different metallurgical zones in each of

the welded plates. One 5mm thick slice was removed from the end of each

plate by electro-discharge machining (Fig. A.1). Each slice was then ground

and polished to a 1 µm finish prior to etching in 2% nital for 15 seconds.

The macrographs for each weld are shown in Fig. A.2.

It can be seen from Fig. A.2 that the weld bead penetrations are close

to 6 mm, equivalent to half the plate thickness. Whilst there are minor vari-

ations from one weld to another, the extent of the fusion zone and HAZ in

each weld is similar, as the same nominal welding parameters were used in

each case. The heat-affected zone (HAZ) reveals two distinct bands. The

inner band, which is the darker of the two in the figure, corresponds to the

coarse-grained heat-affected zone (CGHAZ), while the outer band is dom-

inated by the fine-grained heat-affected zone (FGHAZ). The fact that the

HAZ is quite extensive when compared with the fusion zone (at least in the

context of the specimen configuration and welding parameters selected for

this study) means that the phase transformations that occur within the HAZ

will also have a significant effect on the resulting stress distributions. Full
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Figure A.1: Schematic representation of welded plate showing location of
reference combs, slice extracted for macrograph and location of measurement
plane.

austenitisation will occur in the CGHAZ and FGHAZ, and there will also

be an intercritical region (ICHAZ) that experiences only partial austeniti-

sation. Of course, the different regions within the HAZ will transform at

temperatures that are determined by the composition of the parent material.

A.2.3 Neutron diffraction

Measurements of the residual stresses in the welded plates were conducted

be neutron diffraction on the L3 spectrometer, which is part of the Na-

tional Research Council of Canada facility at the NRU reactor, Chalk River.

Monochromation of the neutron beam was achieved through diffraction from

the {1̄1̄5} planes of a germanium monochromator crystal at 92◦. The wave-

length of the neutrons was determined to be 1.5651± 0.0001 Å from calibra-

tion measurements of the first four diffraction peaks from a nickel standard

powder sample. With this wavelength, the {112} peaks from the ferritic and

maternsitic material in the welded plates could be observed at an angle of

2θ ≈ 84◦ which, being close to 90◦, provided optimal spatial resolution and
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Figure A.2: Macrostructure of the welded joints.
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avoided peak asymmetry arising as a result of axial divergence.

Positioning of the sample in the neutron beam was accomplished with

an XYZ translation stage attached to a 360◦ rotational drive. With these

drives, the sample could be positioned with an accuracy of 0.1mm in X, Y

and Z and 0.1◦ in rotational angle. Spatial resolution within the sample was

achieved with cadmium slits inserted in the incident and diffracted beam

paths. For all of the measurements, the slits were positioned within 20mm

of the sample surface to avoid penumbra effects.

Determination of the full strain tensor at each measurement position

requires the measurement of the lattice strain in at least six independent

directions. However, the orientation of one or more of the principal axes

may be assumed from inspection of the geometry of the component. As is

typical for measurements of this type, it was assumed that the principal axes

were coincident with the axes of the plate. Whilst it may be reasonable to

assume that one of the principal axes lies along the welding direction, the

asymmetry of the weld fusion zone may be expected to lead to rotations of

the principal axes from the transverse and normal directions in this plane. To

test this assumption, additional measurements were made at an intermediate

angle in this plane.

Measurements of the lattice strains were made in the plane perpen-

dicular to the direction of the weld across the centre of each plate. For

measurements in the transverse and normal directions, the samples were ori-

entated on the translation stage with the welds vertical. Slits 1mm wide and

10mm long were employed, providing a gauge volume of 1 × 1 × 10mm in

the sample. The use of these slits presupposes that the strains are invariant

over the length of the slits. For the measurement of the longitudinal strains

the samples were orientated with the transverse direction vertical and the

welds parallel to the scattering vector. For these measurements, slits 1mm

wide and 2mm long were used.
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A.2.4 Determination of stress-free lattice spacing

As the composition of the filler material is different from that of the base

metal the lattice spacing is expected to vary at different depths in any welded

joint. To eliminate this effect from the measurement of the residual stress,

stress-free samples were cut from the weld so that the reference lattice pa-

rameters could be determined. The samples were cut by electro-discharge

machining from the last 30mm of each welded plate as a series of combs with

teeth 2mm by 2mm in section and 20mm long (Fig. A.1). The dimensions

of the teeth were chosen to allow the diffraction gauge volume to be fully

immersed in the sample. The long direction of the teeth was aligned parallel

with the welding direction in order to avoid incomplete stress relaxation as

a result of stress gradients in the plane perpendicular to the weld. This also

provided maximum spatial resolution of lattice parameter variations in the

transverse plane. Combs were extracted from each plate at depths of 1, 3.5,

5, 8.5 and 11mm from the top surface of the plate. Measurements of the lat-

tice parameter (designated as do) were made on these samples to a distance

of approximately 60 mm from the weld centre-line, beyond which no further

variation in lattice parameter was observed.

A.3 Results

A.3.1 Calculations of strains and stresses

The measured diffraction peaks were fitted with a Gaussian function on a

constant background. From the Bragg angle, θ{112}, determined, the lattice

spacings, d{112} were obtained from the Bragg equation

λ = 2d{112} sin θ{112} (A.1)
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With these lattice spacings, the corresponding strains ε{112} were obtained

with reference to the measured stress- free lattice parameter from

ε{112} = (d{112} − d◦)/d◦ (A.2)

The measured lattice strain is the resolved component of the strain compo-

nent, εij onto the measurement direction

ǫ{112} =
∑

all i,j

εijαiαj (A.3)

where αi and αj are the direction cosines between the measurement direction

and the principal axes.

With the principal strains acquired by matrix diagonalisation the

stresses may be obtained from

σi =
E{112}

(1 + ν{112})
εi +

ν{112}E{112}
(1 + ν{112})(1 − 2ν{112})

∑

all j

εj (A.4)

where σi is the principal stress in the i direction and E{112} and ν{112} are

the plane specific Young’s modulus and Poisson’s ratio.

A.3.2 Results and discussion

Figs A.3 to A.8 show the results of the residual stress analysis in three welded

joins made using three different filler metals. There is a general trend ob-

served in all these plots, that is, the value of the stress is lowest in the fusion

zone, it reaches its peak at the end of the HAZ and then it decreases again.

The reason behind this is, the fusion zone or the HAZ undergoes phase trans-

formation and as a result there is a transformation strain. This reduces the

thermal contraction stress in this region. However outside the HAZ there

is very little or no thermal contraction nor any transformation strain due
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to phase transformation so the residual stress remains close to zero. At the

border of these two zones the residual stress is maximum due to strain misfit.

It is clear that the nature of the residual stress in welded joints made

with OK75.78 filler metal is quite different from that of weld joints made

with low transformation temperature filler metals LTTE3 and Series-B.

Figure A.3: Variation of residual stress in the longitudinal direction in welded
joints made at a depth of 1 mm from the surface.

It can be seen from Figs A.3 to A.8 that for OK75.78 filler metal,

the residual stress remains almost constant as the depth varies although

substantial change occurs in the lateral direction. The stress is low at the

centre-line region but increases rapidly and reaches its peak at the boundary

of the HAZ. This filler metal is having a transformation temperature which is

much higher than the room temperature. So the transformation exhaust long

before the room temperature is reached and as a result the transformation

strain can not be utilised fully to reduce the tensile residual stress.

For Series-B and LTTE3 filler metals, however, the nature of resid-

ual stress within the fusion zone is very different (Figs A.3 to A.8). As
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Figure A.4: Variation of residual stress in the longitudinal direction in welded
joints made at a depth of 2.5 mm from the surface.

Figure A.5: Variation of residual stress in the longitudinal direction in welded
joints made at a depth of 4 mm from the surface.
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Figure A.6: Variation of residual stress in the longitudinal direction in welded
joints made at a depth of 6 mm from the surface.

Figure A.7: Variation of residual stress in the longitudinal direction in welded
joints made at a depth of 8.5 mm from the surface.
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Figure A.8: Variation of residual stress in the longitudinal direction in welded
joints made at a depth of 11 mm from the surface.

these alloys are having far low transformation temperatures they suppress

the harmful tensile residual stress to a much higher degree and as a result

the stress in the fusion zone becomes compressive. But the nature of the

stress changes with the depth unlike in the case of weld made with OK75.78.

The compressive stress is observed at lower depths (in the fusion zone, A.3

to A.5), however outside fusion zone the stress becomes tensile again (A.6

to A.8). This is because below 5/6 mm from the surface it is the base metal

that cools after welding which has a much higher transformation temperature

than the filler metal. However, even for these low transformation temper-

ature filler metals stress in the HAZ remains tensile, peak value of which

might reach more than 700 MPa which is just about 100 MPa less than that

for OK75.78.

It is evident from these results that the transformation temperature

of the filler metal does not have any significant effect on the residual stress

development outside the fusion zone. Although the harmful tensile residual
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stress is somewhat less in the case of a low transformation temperature filler

metal. However the newly developed filler metal could be more useful for

multi-pass welding. In such joints, the characteristics of the filler metal may

take on increased significance. Firstly, with more substantial substrates the

extent of the HAZ for each weld pass reduces. Perhaps more importantly

though, the HAZ for many of the weld passes will be located within previ-

ously deposited weld metal, and thus will have a transformation temperature

more closely aligned with the filler metal than that of the substrate material.

Whether or not this is likely to translate to increased reductions in the peak

tensile residual stresses is still unclear.

There could be another situation in which solid state phase transfor-

mations may provide an avenue for significant reductions in welding residual

stresses, this is during welding of components made from austenitic stain-

less steels. If, for example, it were possible to use a ferritic-martensitic low

transformation temperature filler metal for austenitic alloys, then the asso-

ciated benefits for residual stresses would not be masked by any solid-state

transformations occurring within the HAZ.

A.4 Summary and future work

1. It has been shown that for all filler metals where transformation takes

place during welding residual stress decreases. For low transformation

temperature filler rods, residual stress in the fusion zone could be com-

pressive.

2. Although low transformation temperature of the filler metals reduces

the residual stress in HAZ but the effect is not as significant as in the

fusion zone.

3. The transformation strain might be more effectively utilised in case
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of multipass welds as in this case the HAZ for a particular pass will

reside within the fusion zone of the previous pass. However further

experimental evidence is required in this aspect.

4. In case of a base metal where there is no transformation taking place

during welding, transformation strain can be better utilised. This is

because in such cases the HAZ will not mask the transformation be-

haviour of the fusion zone.

5. The modelling of residual stress development in ferritic alloys would

require a coupled stress and heat-transfer model with a phase transfor-

mation model.



Appendix B

Computer programs

These programs can be obtained from

http://www.msm.cam.ac.uk/map/mapmain.html

B.1 Subroutine MAP STEEL BAIN STRAIN

(a) Provenance of code.

(b) Purpose of code.

(c) Specification.

(d) Description of subroutine’s operation.

(e) References.

(f) Parameter descriptions.

(g) Error indicators.

(h) Specification.

(i) Accuracy estimate.

(j) Any additional information.
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(k) Example of code

(l) Auxiliary subroutines required.

(m) Keywords.

(n) Download source code.

Provenance of Source Code

Saurabh Kundu and H. K. D. H. Bhadeshia

Materials Science and Metallurgy, University of Cambridge, U. K.

E-mail: sk459@cam.ac.uk

Added to MAP: March, 2007.

Purpose

Calculation of habit plane and displacement direction during displacive

transformation. It also calculates the orientation relationship matrix

between gamma and the ferrite phase.

Specification

Language: FORTRAN

Description

This program takes the lattice parameters of ferrite and austenite as

the inputs. It also takes the correspondence matrix, lattice invariant

plane and lattice invariant directions as inputs. It follows the phe-

nomenological theory of martensite crystallography and calculates the

crystallographic set for any transformation.

Inputs when running the program

PUT THE AUSTENITE LATTICE PARAMETER:

3.619092
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PUT THE FERRITE LATTICE PARAMETER:

2.882

Name

bain strain.for. This is a source code of this program. For the

execution, it needs to be compiled.

Compile example : g77 bain strain.for -o name.out

References

H. K. D. H. Bhadeshia, Worked examples in the geometry of crystals ,

University of Cambridge.

Parameters

HABIT: double precision array of dimension 24×3, Matrix that stores

24 habit planes.

DIRECTION: Double precision array of dimension 24×3. Matrix

that stores 24 displacement directions for 24 variants of martensite.

GM J AL: Double precision array of dimension 72×3. It contains 24

matrix representing orientation relationship between martensite and

austenite, following Bowles and MacKenzie notation can be written as

(γ J α).

AL J GM: Double precision array of dimension 72×3. It contains 24

matrix representing orientation relationship between martensite and

austenite, following Bowles and MacKenzie notation can be written as

(α J γ).

CORRSP MAT: Double precision array of dimension 3×3. This is

the correspondence matrix.

BAIN: Double precision array of dimension 3×3. Matrix represents

the bain strain.
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INV LN STRN: Double precision array of dimension 3×3. This

matrix represents the invariant line strain.

ROT MAT: Double precision array of dimension 3×3. This matrix

represents rigid body rotation.

LAT INV PL: Double precision array of dimension 3×1. Stores the

indices of the plane for lattice invariant deformation.

LAT INV DI: Double precision array of dimension 1×3. Stores the

indices of the direction for lattice invariant deformation.

Error Indicators

None.

Accuracy

No information.

Further Comments

None.

Example

None.

Auxiliary Routines

No auxiliary routines.

Keywords

Martensite crystallography, martensite, steels.

Download

Download source code.
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B.2 Subroutine MAP STEEL TRANS PLAST

(a) Provenance of code.

(b) Purpose of code.

(c) Specification.

(d) Description of subroutine’s operation.

(e) References.

(f) Parameter descriptions.

(g) Error indicators.

(h) Specification.

(i) Accuracy estimate.

(j) Any additional information.

(k) Example of code

(l) Auxiliary subroutines required.

(m) Keywords.

(n) Download source code.

Provenance of Source Code

Saurabh Kundu and H. K. D. H. Bhadeshia.

Materials Science and Metallurgy, University of Cambridge, U. K.

E-mail: sk459@cam.ac.uk

Added to MAP: March, 2007.
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Purpose

Calculation of transformation strain when austenite transforms into

martensite/bainite.

Specification

Language: FORTRAN

Description

This program has the inputs consisting of the habit planes, dis-

placement direction and the crystallographic orientation relationship

between various gamma grains.

(a) It assumes three unit vectors in the principle directions of the

applied stress.

(b) It calculates the interaction energies for each variant in every grain

and rank all the variants according to the interaction energies.

(c) Assuming n number (n vary from 1 to 24) of variants forming in

each grain it allows the unit vectors to get deformed by the shape

deformation matrix of each variant.

(d) The final vector is calculated.

(e) The ratio between the final and initial length of the vectors give

the strain.

(f) User can change the number of grains and amount of martensite

/ bainite.

Inputs when running the program

WRITE THE NUMBER OF GRAINS:

500

FRACTION OF MARTENSITE/BAINITE:
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0.63

INITIAL TEXTURE:

0=RANDOM

1=COPPER

2=BRASS

3=GOSS

4=CUBE

5={110}〈111〉

6=MIXTURE

0 FIRST ELEMENT OF THE STRESS TENSOR:

200.0

Name

trans plast tensor.for. This is a source code of this program. For the

execution, it needs to be compiled.

compile example : g77 trans plast tensor.for -o name.out

References

S. Kundu, PhD Thesis, University of Cambridge.

Parameters

HABIT: double precision array of dimension 24×3, Matrix that stores

24 habit planes.

DIRECTION: Double precision array of dimension 24×3. Matrix

that stores 24 displacement directions for 24 variants of martensite.

GM J AL: Double precision array of dimension 72×3. It contains 24

matrix representing orientation relationship between martensite and

austenite, following Bowles and MacKenzie notation can be written as

(γ J α).
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AL J GM: Double precision array of dimension 72×3. It contains 24

matrix representing orientation relationship between martensite and

austenite, following Bowles and MacKenzie notation can be written as

(α J γ).

DEF MAT: Double precision array of dimension 3×3. This matrix

stores stress tensor of the applied stress in the crystal axis.

STRESS TENSOR: Double precision array of dimension 3×3.

Matrix represents the stress tensor in trhe sample axis.

TRANS MATRIX: Double precision array of dimension 3×3.

Rotational matrix represnting the orientation relationship between

any austenite grain with the sample axis.

SH, VOL, TOT : Double precision. The shear, volume and total

strain associated with any martensite/bainite variant.

Error Indicators

None.

Accuracy

No information.

Further Comments

None.

Example

None.

Auxiliary Routines

No auxiliary routines.
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Keywords

Transformation strain, martensite, steels, crystallography.

Download

Download source code.

B.3 Subroutine MAP STEEL TEXTURE

(a) Provenance of code.

(b) Purpose of code.

(c) Specification.

(d) Description of subroutine’s operation.

(e) References.

(f) Parameter descriptions.

(g) Error indicators.

(h) Specification.

(i) Accuracy estimate.

(j) Any additional information.

(k) Example of code

(l) Auxiliary subroutines required.

(m) Keywords.

(n) Download source code.

Provenance of Source Code

Saurabh Kundu and H. K. D. H. Bhadeshia.

Materials Science and Metallurgy, University of Cambridge, U. K.
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E-mail: sk459@cam.ac.uk

Added to MAP: March, 2007.

Purpose

Calculation of the crystallographic texture obtained when austenite

transforms into martensite. The austenite itself can be textured.

Specification

Language: FORTRAN

Description

This program has the inputs consisting of the habit planes, displace-

ment direction and the crystallographic orientation (γ J α).

(a) It first calculates the angle theta (between applied stress and habit

plane normal and beta (between the maximum shear stress and

the shear stress component resolved on the habit plane).

(b) Then it calculates the mechanical free energy available for each

martensite variant.

(c) It also measures the angle between trace of habit plane on the

plane of observations with the applied stress direction. It must

be noted that by default the sample X-Y plane is taken to be the

plane of observations.

(d) The plot is made with respect to the principle sample axis which

are taken as (100),(010) and (001).

(e) This program plots the martensite pole figure and also the pole

figure for the habit planes active.

(f) User can plot as many variants as desired.
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Inputs when running the program

IF AUSTENITE PUT 0 IF FERRITE PUT 1:

1

WHAT IS THE STARTING TEXTURE OF AUSTENITE:

0=RANDOM

1=COPPER

2=BRASS

3=GOSS

4=CUBE

5={110}〈111〉

6=MIXTURE

3

HOW MANY VARIANTS WORKING?

8

FIRST ELEMENT OF THE STRESS TENSOR:

200.0

FOR (100) POLE FIG PUT 100 :

FOR (111) POLE FIG PUT 111 :

FOR (110) POLE FIG PUT 110 :

100

HOW MANY GRAINS?

500

Name

crystal habit poly.for. This is a source code of this program. For the

execution, it needs to be compiled.

Compile example : g77 crystal habit poly.for -o name.out

References
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S. Kundu and H.K.D.H. Bhadeshia, Transformation Texture in

Deformed Stainless Steel, Scripta Materialia, 55 (2006), 779-781.

Parameters

HABIT: double precision array of dimension 24×3, Matrix that stores

24 habit planes.

DIRECTION: Double precision array of dimension 24×3. Matrix

that stores 24 displacement directions for 24 variants of martensite.

GM J AL: Double precision array of dimension 72×3. It contains 24

matrix representing orientation relationship between martensite and

austenite, following Bowles and MacKenzie notation can be written as

(γ J α).

AL J GM: Double precision array of dimension 72×3. It contains 24

matrix representing orientation relationship between martensite and

austenite, following Bowles and MacKenzie notation can be written as

(α J γ).

DEF MAT: Double precision array of dimension 3×3. This matrix

stores stress tensor of the applied stress in the crystal axis.

AL: Double precision array of dimension 30×3. It stores all the plane

indices for plotting pole figure.

STRESS TENSOR: Double precision array of dimension 3×3.

Matrix represents the stress tensor in trhe sample axis.

TRANS MATRIX: Double precision array of dimension 3×3.

Rotational matrix represnting the orientation relationship between

any austenite grain with the sample axis.

X ST, Y ST: Double precision. X and Y corordinate of any point in

the pole figure.

Error Indicators
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None.

Accuracy

No information.

Further Comments

None.

Example

None.

Auxiliary Routines

No auxiliary routines.

Keywords

Transformation texture, martensite, stainless steels, crysttalography.

Download

Download source code.
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