


recently carried out an analysis of the results of cross-weld creep tests that have been 
reported in the literature using neural networks in a Bayesian framework [9].  This 
analysis suggested that the weld preheat temperature has a significant effect on creep 
life, while the weld heat input was perceived to have an insignificant effect.  It 
appears that, until now, the effects of heat input and preheat temperature on cross-
weld creep life have not been studied systematically.  In this article, preliminary 
results are reported from an experimental study that is in progress.  We will 
commence by summarising the predictions arising from the neural network analysis.  
The experimental method for a programme of cross-weld creep testing is then 
described.  Finally, the preliminary results of the creep testing are presented and 
discussed in the context of the neural network predictions.       
 

2. Analysis of Published Data  
The neural network method has been described elsewhere [10,11].  However, an 
overview is given here to provide the background for the current work. 
A neural network analysis is a form of non-linear regression in which a mathematical 
relationship is established between parameters that are designated as independent (or 
input) variables and one or several dependent (or output) variables.  The relationship 
is generated by presenting a network with a database comprising a set of input 
conditions for which the value of the output(s) is known.  The network then “learns” a 
relationship between the input conditions and corresponding values for the output in a 
procedure that is referred to as training the network.  Owing to their flexibility, neural 
networks are suited to situations in which the number of variables (which could 
include details of the composition of the steel, the heat treatment, welding parameters 
and post-weld heat treatment) is large and where there are no physical models for the 
parameter(s) of interest (such as, for example, cross-weld creep strength). 
An example of the structure of a neural network is shown in Figure 1.  There is an 
input layer, containing the values of the input variables, xj.  There is a hidden layer of 
nodes, and then an output layer which in this case contains only one node.  The 
process of generating a prediction (or output) involves a forward propagation from the 
input layer.  The values of the input variables, xj, are multiplied by the network 
weights, wij

(1), where i denotes the relevant node in the hidden layer, j denotes the 
input variable and the “(1)” indicates that the weights are associated with the first layer 
of nodes.  Thus, each node in the hidden layer receives a value referred to as the 
activation for that node, which is the sum of each input variable multiplied the 
respective weight for that node plus a value referred to as the bias, θi

(1).  (Since there 
is a value of the bias associated with each node the bias is often represented as a 
network weight and multiplied by a “1” in the input layer, as is shown in Figure 1.)  
The activation for each node in the hidden layer becomes the argument of a transfer 
function, which is often chosen to be a smooth function such as a sigmoid or 
hyperbolic tangent.  The output from the transfer function at each node in the hidden 
layer then becomes an input to the next layer (which in the case shown is the output 
layer).  The only difference between the output node in Figure 1 and the nodes in the 
hidden layer is the incorporation of a linear transfer function rather than a hyperbolic 
tangent.  The resulting value for y is the network output. 

A neural network is a transparent mathematical function that is completely 
characterised by the number of input variables, the number of hidden layers and the 
number of nodes in each layer, the transfer functions and the values of the network 



weights.  Prior to training, everything about the network is known except for the 
values of the weights.  Thus, the process of training a network involves finding a set 
of weights that relate the input conditions to the corresponding values for the output.  
In a Bayesian analysis, part of the database is usually withheld during the training 
stage so that the predictions of the trained network can be compared with known 
values of the output for unseen input conditions.  The performance of the network in 
making predictions on unseen data can then indicate whether the trained network has 
captured a meaningful relationship or whether it is likely to make unreliable 
predictions.  Furthermore, the training process in a Bayesian analysis generates 
probability distributions for the network weights rather than discrete values.  
Consequently, the predictions generated by the network also have associated 
confidence intervals.   Thus, a Bayesian framework enables the user to assess when 
the network is confident about the predictions that are made. 
A Bayesian neural network analysis was carried out by the authors on cross-weld 
creep data published in the literature [9].  Three-layer feed forward networks, such as 
the one shown in Figure 1, were used in the analysis.  The network structure had only 
one output, and the rupture stress was chosen as the parameter to be modelled, with 
the test temperature and creep life being treated as input conditions.  The justification 
here is mathematical [12]; the rupture stress always has a finite value, whereas the 
creep life tends to infinity as the stress becomes low.  The database is summarised in 
Table 1.  There were 53 sets of data on type IV failures in 9-12 Cr steels for which 
details of the composition of the steel, the heat treatment, welding parameters, post-
weld heat treatment and creep test conditions had all been reported.  Neural networks 
are not able to deal with situations in which there is an absence of data, so the 
selection of input variables had an impact on the number of complete sets of data that 
were available.  The variables in Table 1 were thought to constitute a pragmatic list.  

A valuable feature of a neural network analysis is the ability to assess the extent to 
which each input variable is correlated with changes in the output.  The significance 
of each input variable in explaining changes in the cross-weld creep strength, as 
perceived by a Bayesian network, is shown in Figure 2 [9].  The perceived 
significance is analogous to a partial correlation coefficient, but does not necessarily 
indicate the magnitude of the effect.  It can be seen, however, that the creep life and 
test temperature have been identified as having the strongest correlations with the 
rupture stress.  The well-known effects of normalising temperature [12], tempering 
temperature and tungsten content [2] were also correctly identified.  Interestingly, the 
preheat temperature during welding was also perceived to have a significant effect on 
rupture stress, while the weld heat input was perceived to have an insignificant effect.  
Given that the network had recognised well-known effects it was possible, for the first 
time, to infer the effects of preheat temperature and weld heat input with some 
confidence.  In a Bayesian framework, the significance does not indicate the sign of 
the effect, but this can be established by making predictions with the trained network.  
The sign of the effect is indicated in Figure 2 for each variable that was perceived to 
have a high significance.  Increases in preheat temperature were predicted to translate 
to an increase in the rupture stress for a given creep life and test temperature. 

 
3. Cross-Weld Creep Tests 
A programme of cross-weld creep testing was initiated to investigate the effects of 
welding parameters.  A section of P91 pipe with an outer diameter of 356 mm and a 



wall thickness of 53 mm was used as the base material in all experiments.  This 
material was cut so that in all cases a welded joint was formed between two 180 mm 
long sections of pipe.  The pipe was supplied in the normalised and tempered 
condition.  The chemical composition was measured by optical emission spectroscopy 
and is summarised in Table 2. 

3.1 Welding 
One-sided welding was carried out in a semi-mechanised manner.  The pipe was 
rotated during welding and the torch was maintained in the downhand position for all 
weld passes.  Preheating was carried out with resistance heating blankets.  The pipe 
manufacturer recommended a preheat temperature of 250 oC, and an interpass 
temperature always within the range between 200 and 300 oC.  After welding, it was 
recommended that the joint be allowed to cool to a temperature below 100 oC to 
complete the transformation to martensite.  A post-weld heat treatment procedure was 
also necessary, and all welds were heat treated at 760 oC for 2 hours. 

At the time that welding experiments were initiated, the compilation of published 
cross-weld creep data and the associated neural network analyses had not been 
completed.  Thus, it was decided to follow the manufacturer’s recommendations 
regarding preheat and interpass temperature.  As such, early experiments investigated 
the effects of heat input and joint preparation, noting that an effect of the joint 
preparation angle has recently been reported [5].   

The joint preparations used in the experiments are illustrated in Figure 3.  A single-
Vee preparation with an included angle of 30 degrees was used in the majority of 
experiments (Fig. 3(a)).  A weld with a single bevel at 45 degrees was also prepared 
to enable the effect of the preparation angle to be studied (Fig. 3(b)).  After the 
completion of the neural network analyses an additional joint was fabricated to test an 
improved welding procedure.  This joint utilised a preheat temperature of 350 oC and 
had a joint preparation with an included angle of 10 degrees, as shown in Figure 3(c). 
In the early experiments the root runs and one additional “hot pass” were made by 
manual-metal-arc welding (MMAW).  The filling passes were completed using flux-
cored arc welding (FCAW) in all cases.  For the additional joint with a higher preheat 
temperature, gas-tungsten arc welding (GTAW) was used for the root pass and hot 
pass, while FCAW was used for filling passes.  In all cases the welding consumables 
were chosen to match the composition of the base material.  
 
3.2 Extraction of Specimens 
Creep specimens with a diameter of 11.3 mm and a gauge length of 62 mm were 
extracted from each of the welded joints.  In the majority of experiments, the 
specimens were extracted in such a way that there was only one HAZ in each sample 
(Figs. 3(a) and 3(b)).  For the weld with a high preheat temperature and an included 
angle of 10 degrees, this was not possible owing to geometry, so there were two 
HAZ’s in the samples extracted from this weld (Fig. 3(c)).  In all cases, the axis of the 
creep specimen was parallel to the axis of the pipe and transverse to the direction of 
welding, and the distance between the nearest shoulder of the specimen and the HAZ 
was approximately 15 mm.  Furthermore, all coupons were extracted from locations 
in the weld that corresponded to filling passes, which were made by FCAW in all 
cases, rather than the root region. 
 



3.3 Test Conditions 
The test stresses were chosen so that the most probable location for rupture was in the 
type IV region.  The authors have shown previously that type IV failures predominate 
in 9-12 Cr steels when the stress level is below 100 MPa [13].  At higher stress levels 
failures in the parent material become increasingly likely.  Two stress levels were 
selected in this work; 93 and 81 MPa.  The test temperature was 620 oC and the tests 
were carried out in air in all cases.  P91 steels are intended for service at 600 oC.  It is 
desirable to utilise a test temperature that is close to the intended service temperature 
for the material, so that the thermodynamic stability of the test coupons does not differ 
significantly from intended service conditions.  In all cases creep testing was carried 
out in accordance with ASTM E 139 – 83. 
A summary of all experiments is given in Table 3.  It can be seen that three different 
weld heat inputs were utilised; namely 0.8, 1.6 and 2.4 kJ/mm.  These heat inputs 
were thought to span a representative range of welding conditions. 

 
4. Results and Discussion 
The results of creep testing are plotted in Figure 4.  Metallographic analyses 
confirmed that all of the ruptured samples had failed in the type IV region.  The solid 
points in the figure correspond to samples that were extracted from welds that differ 
only in heat input.  It can be seen that these points appear to be grouped at both stress 
levels.  It is possible that there is a slight increase in creep life with increasing heat 
input, since the longest creep lives correspond to the highest heat input.  However, the 
experiments cover a significant range (0.8 to 2.4 kJ/mm) and it can be concluded that 
any effect of heat input is small.  This result is consistent with the predictions that 
were made by the Bayesian neural network analysis. 

The included angle in the joint preparation appears to have a significant effect on 
cross-weld creep life.  However, it appears that benefits are only realised for included 
angles close to zero (i.e. with the fusion line perpendicular to the loading direction).  
The majority of the creep tests were conducted on welds with an angle of 30o, and it 
appears that there is no penalty in creep life associated with increasing the included 
angle from 30 to 90o.  Although this effect has been reported previously [5], at present 
the reasons are unclear.  It is curious that benefits only arise once the included angle is 
reduced to less than 30o (as this corresponds to a fusion line/HAZ orientation only 15o 
off normal to the loading direction).  It was not possible to assess any effect in the 
neural network analyses, owing to insufficient reporting of this parameter in the 
literature.  It is possible that the effect is mechanical in nature, since the maximum 
macroscopic shear stresses in a uniaxial cross-weld specimen will occur in planes that 
make a 45o angle with the weld centre line, whereas these shear stresses are nominally 
zero in planes that are parallel to the weld centreline.  With increasing joint 
preparation angles, the type IV region may become more favourably aligned with 
planes of maximum shear stress, thus promoting localised damage.  Regardless of the 
mechanism, the results suggest that narrow-gap welding configurations and U-
preparations can offer significant benefits to creep performance. 

The samples extracted from the weld made with a 350 oC preheat temperature and the 
joint preparation shown in Figure 3(c) are achieving the highest creep lives.  This 
weld was fabricated in order to validate an improved welding procedure.  Although an 
included angle of zero appears to be desirable, it may not always be practical, since 



welding torches with narrow-gap configurations will generally be required.  
Furthermore, in components such as headers and the main steam pipe, the quality of 
the root run is critically important, and it may not be feasible to deviate from a more 
conventional GTAW configuration.  As such, an included angle of 10o was seen to 
provide a sensible compromise. 
While the performance of the samples with a 350 oC preheat temperature is superior 
to welds made with 250 oC, it is at present difficult to assess the relative contributions 
of preheat temperature and joint preparation angle to the improved creep life.  It 
appears that reducing the included angle from 90 to 30o offers no benefit, whereas 
significant benefits arise when it is reduced from 30o to zero.  The degree to which 
benefits arise with angles between 30o and zero is unknown.  Nevertheless, it is 
plausible that the predictions of the Bayesian neural network analysis, in perceiving 
increases in preheat temperature to be beneficial, are correct.  The sample with a 350 
oC preheat temperature and an included angle of 10o appears to match the 
performance of the sample with a 250 oC preheat temperature and an included angle 
of zero.  It should be noted that the samples with a higher preheat temperature are also 
the only samples to have two HAZ’s in the gauge length, which will generate a 
downward bias in creep lives relative to the other samples.  Further creep testing is 
currently being initiated to gain further insight.   
 
5. Conclusions 
In this work, it has been demonstrated that there is scope to improve resistance to type 
IV cracking in 9-12 Cr steels through the optimisation of welding procedures.  Further 
testing is now required to confirm that the effects of welding procedures translate to 
service lives greater than 10,000 hours. 

The weld heat input does not have a significant effect on the propensity for type IV 
failure.  This result was predicted by a Bayesian neural network analysis and has now 
been confirmed by experiments. 
The joint preparation angle has a significant effect on cross-weld creep life.  In cross-
weld creep tests, the best creep performance is achieved when the included angle is 
zero (so that the fusion line and HAZ are perpendicular to the loading direction).  This 
is consistent with the findings of other researchers but it remains unclear whether the 
effect translates to service lives greater than 10,000 hours.  The mechanism is also 
unclear. 
Higher preheat and interpass temperatures during welding have been predicted to 
improve cross-weld creep life in 9-12 Cr steels.  This prediction appears to be 
plausible but, at present, it is difficult to assess the extent of the benefits arising due to 
increased preheat temperatures.  However, creep tests are still in progress and further 
tests are being initiated.  
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Tables 
Variable Minimum Maximum 
C (wt. %) 0.09 0.13 

N 0.041 0.078 
B 0 0.003 
Cr 8.45 12.0 
Mo 0.34 0.96 
Nb 0.05 0.13 
W 0 2.21 
Mn 0.40 0.81 
Si 0.02 0.35 
Cu 0 3 

Normalising Temp. (oC) 1050 1080 
Normalising Time (h) 0.5 2 
Tempering Temp. (oC) 760 820 

Tempering Time (h) 1 6 
Heat Input (kJ/mm) 0.8 3.8 

Preheat Temperature (oC) 100 250 
PWHT Temperature (oC) 740 760 

PWHT Time (h) 0.25 8 
Internal Pressure Test (0/1) 0 1 

Test Temperature (oC) 600 700 
Test Duration (h) 113 11220 

Rupture Stress (MPa) 40 150 

Table 1: Range in composition, heat treatment, welding parameters and test conditions 
covered by the database on type IV failures [9]. 
 
C Si Mn P S Al Cr Ni Mo V Nb N 
0.09 0.28 0.40 0.01 0.01 <0.005 8.5 0.15 0.89 0.21 0.06 N/A 

Table 2: Composition of the base material as determined by optical emission 
spectroscopy (wt. %). 
 

 
Sample 

Welding 
Process 

(root/fill) 

Heat 
Input 

(kJ/mm) 

Preheat 
Temp. 
(oC) 

Joint Angle -
included 

(deg.) 

Stress 
(MPa) 

Temp. 
(oC) 

1 MMAW/FCAW 0.8 250 30 93 620 
2 MMAW/FCAW 1.6 250 30 93 620 
3 MMAW/FCAW 2.4 250 30 93 620 
4 MMAW/FCAW 1.6 250 0* 93 620 
5 MMAW/FCAW 1.6 250 90* 93 620 
6 MMAW/FCAW 0.8 250 30 81 620 
7 MMAW/FCAW 2.4 250 30 81 620 
8 GTAW/FCAW 1.6 350 10 93 620 
9 GTAW/FCAW 1.6 350 10 81 620 

Table 3: Summary of cross-weld creep testing conditions.  The “*” denotes equivalent 
single-Vee included angle for samples extracted from weld shown in Figure 3(b).  



Figures 
 

 
Fig. 1: Example of a three-layer feed forward neural network used to analyse 
published data [9].  The lines that link inputs and nodes represent network weights.  
 
 

 
 
Fig. 2: Significance of each input variable in explaining the variation in type IV 
rupture stress in cross-weld creep tests on 9-12 Cr steels, as perceived by a Bayesian 
network [9].  The perceived significance is analogous to a partial correlation 
coefficient, but does not necessarily indicate the magnitude of the effect.  The sign of 
the effect for input variables that were perceived to have a significant correlation with 
rupture stress is indicated in the figure.  The alloying additions refer to the base metal. 



 

 
Fig. 3: Schematic representation of the joint preparations and locations of extracted 
creep specimens.  In a) and b) there is only one HAZ within the gauge length.  In c) 
there are two HAZ’s within the gauge length.  In all cases the HAZ’s were 
approximately 15 mm from the nearest shoulder of the specimen. 
 
 

 
Fig. 4: Preliminary results of cross-weld creep testing at 620 oC in air.  The samples 
are distinguished by the weld heat input, joint included angle and preheat temperature 
respectively.  All of the ruptured specimens failed in the type IV region. 


