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The effect of plastic deformation on the grain boundary surface area per unit volume and edge

length per unit volume is examined using two methods. The first by applying homogeneous

deformations to tetrakaidecahedra in a variety of orientations and the second by using the

principles of stereology. It is shown that the methods produce essentially identical results. It is

now possible to calculate changes in the grain parameters as a function of a variety of

deformations, for combinations of deformations, for complex deformations and for cases where it

is not necessary to assume an idealised grain microstructure.
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Introduction
Steels and aluminium alloys are produced in very large
quantities using plastic deformation in order to achieve
particular shapes of use in industry. The microstructure
changes during deformation, with an increase in the
defect density and in the amount of grain boundary area
per unit volume SV and grain edge length per unit
volume LV. All of these changes are important in
determining the course of phase transformations in
steels and recrystallisation processes in general.

The evolution of grain shape and its influence on SV

and LV were first considered by Underwood using
stereological methods.1 These assumed that grains are
space filling and equiaxed, but did not require them to
have a specific initial shape. Underwood considered
three types of deformation common in metalworking
processes:

(i) plane strain compression, which was called
‘planar–linear orientation’, typical in flat pro-
duct rolling

(ii) axisymmetric compression, which was called
‘planar orientation’, typical of upset forging

(iii) axisymmetric tensile deformation, which was
called ‘linear orientation’, typical for long
product rolling, wire drawing and extrusion.

The principal strain components were considered to be
homogeneous and no analysis was given of the effects of
redundant shear strains, which always arise and vary
through the cross-section owing to surface friction
effects in all real metalworking processes.

The evolution of grain shape has also been studied
analytically2–6 and experimentally.7 Umemoto et al.8

first estimated the change in SV as a function of strain
by representing the undeformed grains as spheres.
Recently, Bate and Hutchinson9 have used the same
assumption to compute SV for the strain systems
considered by Underwood, and for simple shear.
Additionally, they use a crystal plasticity finite element
model to compute the effects of non-uniform deforma-
tion of grains, arising from the constraints of neighbour-
ing grains of different crystallographic orientation. Since
spheres are not space filling and do not have edges, other
researchers have represented the initial grain shapes as
cubes10–12 or as Kelvin tetrakaidecahedra1,4 to represent
the undeformed grain. Cubes simplify the mathematical
analysis, but clearly are poor approximations to the
shapes of real grains, whereas tetrakaidecahedra give
sections which approximate closely to grain shapes
observed metallographically. They also have angles
between grain faces, which nearly satisfy equilibrium
of interfacial tensions, requiring only minor boundary
curvatures to balance the tensions at grain boundary
junctions.

A tetrakaidecahedron has eight hexagonal and six
square faces, Fig. 1, with 36 edges, each of length a. All
of the edges can be described in terms of just six vectors,
as listed in Table 1. In previous work,4 the axes of the
deformation matrix were defined as illustrated in Fig. 1;
in other words, the orientation of the grain was chosen
in order to conveniently derive the deformation equa-
tions. This may be a weakness since in a real material the
edges of the grains are likely to be randomly oriented
relative to the principal axes of the deformation. The
purpose of the present work is to address these issues
and to generalise the calculations to a greater variety of
industrially important deformations, including redun-
dant shear strains.

Throughout the present work, it is assumed that the
deformation is homogeneous; the potential effects of
shear bands or mechanical twinning are not dealt with,
nor is the creation of new high misorientation bound-
aries by grain subdivision or by annealing twins losing
coherency during deformation.

1Holset Engineering Co. Ltd, St Andrew’s Road, Huddersfield HD1 6RA,
UK
2Institute of Microstructural and Mechanical Processing, The University of
Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD, UK
3Department of Materials Science and Metallurgy, University of
Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK

*Corresponding author, email hkdb@cam.ac.uk

� 2007 Institute of Materials, Minerals and Mining
Published by Maney on behalf of the Institute
Received 18 June 2006; accepted 11 August 2006
DOI 10.1179/174328407X157308 Materials Science and Technology 2007 VOL 23 NO 7 757



Analysis method

Plane strain deformation
A general deformation matrix S acts on a vector u to
give a new vector v as follows3,4,13
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Consider first the orientation of the tetrakaidecahedron
as illustrated in Fig. 1. The tetrakaidecahedron is com-
pletely specified by the six initial vectors listed in
Table 1. For plane strain deformation, all Sij in equation
(1) are zero except that S116S226S3351 to conserve
volume and S116S3351 since S2251. For a diagonal
matrix, the terms S11, S22 and S33 represent the principal
distortions, i.e. the ratios of the final to initial lengths of
unit vectors along the principal axes. It follows that for a
diagonal S, the true strains are given by e115ln(S11),
e225ln(S22) and e335ln(S33).

The application of the deformation to the initial set of
vectors results in the new set of vectors listed in Table 2.
The latter are used to calculate the area and edge lengths
of the deformed object. Using equation (1) and the
conditions for plane strain deformation, it can be shown
that the final to initial area (A/A0) and edge-length (L/L0)
ratios for the deformed tetrakaidecahedron are given by
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where SV0
and LV0

are the values at zero strain, of grain
surface area and edge length per unit volume. These

equations apply strictly to the grain orientation illustrated

in Fig. 1, relative to S. From stereology,1 SV0
~2= -L so

that SV=SV0
:2SV -L, and LV0

~9:088= -L
2
, where L̄ is the

mean linear intercept commonly used to define the grain
size.13,14 It follows that equations (2) and (3) implicitly
contain the grain size as an input variable.

The grain orientation illustrated in Fig. 1 may not be
representative. Suppose that it is required to orient the
tetrakaidecahedron randomly with respect to the defor-
mation. A rotation matrix R can be generated using
random numbers to rotate the object relative to the axes
defining S. Equation (1) then becomes
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The results are illustrated in Fig. 2. For comparison, the
results are plotted against the equivalent strain
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where e11, e22 and e33 are the normal components and c13, c12

and c23 are the shear components of strain (the tangents of
the shear angles). For homogeneous plane strain compres-

sion, e~(2=
ffiffiffi
3
p

)e11. In Fig. 2, the dashed line represents the
outcome for the orientation illustrated in Fig. 1 and the
points are for the 99 other results of randomly oriented
tetrakaidecahedra. It is clear that the orientation of the
tetrakaidecahedron does not make much of a difference to
the outcome as far as the surface and edge lengths per unit
volume are concerned. This is probably because the
tetrakaidecahedron is almost isotropic in shape.

Axisymmetric tension
In wire drawing or rod rolling, S225S33 and volume
conservation requires that S2251/(S11)1/2 (Table 3). For
the tetrakaidecahedron oriented as in Fig. 1
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Table 1 Vectors defining edges of tetrakaidecahedron

Vector Components
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Table 2 Components of six vectors listed in Table 1,
after plane strain or axisymmetric deformation

Deformed vector Components
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The results are illustrated in Fig. 3, where it is
particularly noticeable that the increase in edge length
relative to grain boundary area, as a function of strain, is
exaggerated when compared with the corresponding
case for plane strain compression.

Axisymmetric compression
In axisymmetric compression, S115S2251/(S33)1/2, and
for a tetrakaidecahedron oriented as in Fig. 1
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The results are illustrated in Fig. 4.

Simple shear
Torsion testing, which involves shear deformation, is
often used to determine the constitutive equations for
austenite. During shear deformation, S115S225S3351,
S13 is the shear strain, and all the other elements of S are
zero (Table 3). On substituting these boundary condi-
tions and the undeformed vectors into equation (1), the
deformed vector components listed in Table 4 are
obtained. The resulting analytical equations defining
the deformation of the tetrakaidecahedron oriented as
illustrated in Fig. 1 are found to be
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a area ratio versus equivalent strain; b edge ratio versus
equivalent strain

2 Calculations for plane strain deformation: curve repre-

sents data for tetrakaidecahedron oriented as illustrated

in Fig. 1; small points are 99 other cases where tetrakai-

decahedron is randomly oriented relative to S; triangular

points for area ratio are from equation (21) and for edge

ratio from equation (26) as discussed later

Table 3 Volume preserving deformations*

Type S11 S12 S13 S21 S22 S23 S31 S32 S33

Plane strain compression >1 0 0 0 1 0 0 0 1/S11

Axisymmetric compression 1/(S33)1/2 0 0 0 1/(S33)1/2 0 0 0 (1
Axisymmetric tension >1 0 0 0 1/(S11)1/2 0 0 0 1/(S11)1/2

Simple shear 1 0 zve 0 1 0 0 0 1

*The convention used is that S11.S22.S33.

a area ratio versus equivalent strain; b edge ratio versus
equivalent strain

3 Calculations for axisymmetric tension: curve repre-

sents data for tetrakaidecahedron oriented as illu-

strated in Fig. 1; small points are 99 other cases

where tetrakaidecahedron is randomly oriented relative

to S; triangular points for area ratio are from equation

(21) and for edge ratio from equation (27) as dis-

cussed later

(10)
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The general results for shear are illustrated in Fig. 5,
with the horizontal axes both plotted in terms of shear
strain.

Sequential deformations
The method here is general – all that is needed is
to define the matrix S for the appropriate

circumstances. There are cases where two or more
different kinds of deformation are used in sequence,
for example, cross-rolling in which the plate is
rotated through 90u after a degree of reduction. This is
readily tackled by generalising equation (1). Rotation
through 90u about the compression axis [0 0 1] is given
by13
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Writing the first rolling pass as S and the cross-
rolling pass as T, the net deformation U is given by
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Complex deformations
Flat product rolling is approximated as plane
strain compression, but friction with the rolls leads
to shears. The plane strain condition is strictly

a area ratio versus equivalent strain; b edge ratio versus
equivalent strain

4 Calculations for axisymmetric compression: curve

represents data for tetrakaidecahedron oriented as illu-

strated in Fig. 1; small points are 99 other cases

where tetrakaidecahedron is randomly oriented relative

to S; triangular points are based on equation (21) for

area ratio and equation (28) for edge ratios

Table 4 Components of six vectors listed in Table 1
after shear deformation

Deformed vector Components
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a area ratio versus shear strain; b edge ratio versus
shear strain

5 Calculations for shear deformation: curve

represents data for tetrakaidecahedron oriented as illu-

strated in Fig. 1; small points are 99 other cases

where tetrakaidecahedron is randomly oriented relative

to S
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satisfied only at the centre of the rolled material. The
matrix S can be used to deal with the simultaneous
actions of plane strain compression and simple shear (on
the rolling plane and in the rolling direction) by
generalising the deformation matrix equation (1) as
follows

S11 0 S013

0 1 0

0 0 1=S11

0
B@

1
CA (14)

The final shear strain S913 arises from the imposed shear
strain S13, modified by the compression S11 and is
represented by S136S11.

Metrology
As pointed out in the introduction, real microstructures
will contain a distribution of grain sizes. This is
enshrined on a statistical basis in stereological para-
meters such as the mean linear intercept L̄, etc. It is
useful therefore to see whether the outcomes discussed
in the previous sections can be reproduced using
stereology.

The volume, surface area and edge length of an
undeformed tetrakaidecahedron (Fig. 1) are given by
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The mean linear intercept representing the undeformed
grain size measured on two-dimensional sections there-
fore becomes
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For a deformed grain, given that the number of
boundaries per unit length NL1(NL2(NL3, the surface
per unit volume from Ref. 1 is

SV~0:429NL1z0:571NL2zNL3 (18)

and since L̄51/N, for plastic deformation in which
e11>e22>e33, the linear intercepts are

-L1 ~ -L0 expfe11g -L2 ~ -L0 expfe22g

-L3 ~ -L0 expfe33g (19)

so that
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This equation can be used in association with the
boundary conditions outlined in Table 5 to estimate SV

for a variety of deformations. In Figs. 2a, 3a and 4a, the
triangular points are calculated using equation (21).

When dealing with oriented structures, lines in a given
volume can be categorised into segments which are

aligned parallel to one or more directions, with the
remainder being randomly oriented.1 For the anisotro-
pic grains which result from plane strain compression
(planar–linear oriented structure1), the edge length per
unit volume is the sum of three contributions from
isometric (randomly oriented), planar (compressed) and
linear elements (elongated) components1

LV~LVisometric
zLVplanar

zLVlinear
(22)

For an undeformed tetrakaidecahedron, the relationship
between the edge length per unit volume and the number
of points of intersections of edges with a test plane of
unit area is simple, LV52PA.1 For a deformed grain it is
necessary to specify the three contributions of equation
(22). If ‘1’ and ‘3’ are the rolling and thickness directions
respectively, then from Ref. 1
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normal to the 3-axis, etc. It follows that
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By combining these equations the authors obtain for
plane strain deformation
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The results obtained using this equation are plotted as
triangular points on Fig. 2b, showing good agreement
with the data from equation (3).

Axisymmetric tension is described as a linearly
oriented structure so the planar component in equation
(22) is absent, resulting in a different equation for edge
length per unit volume. Given 1 and 3 as the long-
itudinal and radial directions respectively, the authors
have (equation (3.15)1)

LV~PA1
zPA3

~PA0
½expfe11gzexpf{e11=2g�

LV

LV0

~
1

2
expf{2e33gzexpfe33gð Þ (27)

The excellent agreement between the different methods
is illustrated in Fig. 3b.

Table 5 Strains for substitution into equations (20) and
(21)*

Deformation e11 e22 e33

Plane strain compression zve 0 2e11

Axisymmetric tension zve { 1
2 e11 { 1

2 e11

Axisymmetric compression { 1
2 e33 { 1

2 e33 2ve

*Note that e11ze22ze33 must equal zero to conserve volume,
and it is assumed that e11>e22>e33.
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Axisymmetric compression effectively flattens the
grains normal to the compression axis and hence leads
to what Underwood calls a planar oriented structure
(Fig. 3.13,1). The values of PA in the planes containing
the compression axis grow rapidly whereas they decline
rapidly in those normal to the compression axis. This is
difficult to treat, because the degree of orientation (V in
Underwood’s terminology1) becomes negative. This is
not the case for axisymmetric tension. However, if it is
assumed as an approximation that the planes containing
the compression axis dominate, then

LV

LV0

^expf{(e22ze33)g (28)

The results of these calculations are illustrated as
triangular points in Fig. 4 and unusually compared with
other deformation conditions, they lie above the
maximum value for the tetrakaidecahedra because of
the approximation in equation (28).

Discussion

Deformation mode
In order to determine the flow stress and dislocation
structures relevant for industrial hot working condi-
tions, tension, axisymmetric compression, plane strain
compression and torsion tests are used by different
research groups. It is generally considered that the
results from the different tests are consistent when they
are compared at the same equivalent strain for tests at
the same equivalent strain rate and temperature. The
dislocation structures provide the driving force for
nucleation and growth of recrystallised grains formed
either dynamically or statically. In both cases nucleation
occurs preferentially at grain boundaries, with grain
edges being important at low strains, but grain surfaces
being more important over most of the range of strains
of interest in industrial hot working operations.15

Comparing the effects of equivalent strain on SV=SV0

and LV=LV0
for plane strain compression, axisymmetric

tension and axisymmetric compression in Figs. 2–4, it
can be seen that the maximum values for tetrakaideca-
hedra correspond closely with the results from the
metrology analysis. The values of SV=SV0

also corre-
spond closely with the results for the deformation of
spheres computed by Bate and Hutchinson,9 who
showed that their analysis always gave higher values
than analyses for the deformation of cubes.10–12 In this
context, it is of interest to note that the minimum values
from the present analysis of tetrakaidecahedra are also
always above the values for cubes. In further discussion,
only the maximum values given by equations 2, 3 and 6–
9 will be considered.

The present results for SV=SV0
and LV=LV0

in
axisymmetric tension (long product rolling, wire draw-
ing and extrusion) (Fig. 3) and in axisymmetric com-
pression (upset forging) (Fig. 4) are antisymmetric, so
tension is much less effective than compression in
increasing SV=SV0

and vice versa for increasing
LV=LV0

. Also, axisymmetric compression is more
effective in increasing SV=SV0

than plane strain com-
pression (flat product rolling) (Fig. 2). This difference
arises mainly from the influence of the different
constraints on the values of equivalent strain for a given
reduction in height (e33).

For simple shear, the results in Fig. 5 are plotted
against the shear strain (c5S13), because there is some
controversy about how shear strains should be con-
verted to equivalent strains. Equation (5) leading to
e~c=

ffiffiffi
3
p

is valid for small strains, and Canova et al.16

argued that it is also valid for large strains. This view is
frequently adopted for analysis of the results from
torsion tests and from the effects of redundant shear
strains in rolling and extrusion. However, Bate and
Hutchinson9 derived a relationship for the equivalent
strain from the initial and final states after simple shear
deformation of spheres as follows

e~
2ffiffiffi
3
p ln

c

2
z 1z

c2

4

� �� 	1=2
( )

(29)

This is identical to the equation from earlier analyses for
the shear deformation of spheres17,18 and leads to much
reduced values of e with the increase in c compared with
equation (5). An elementary geometrical analysis of the
effect of simple shear (Fig. 6) leads to the result that the
tensile strain along the diagonal, which undergoes a
rigid body rotation with increasing strain, is

e11~lnfsinw=sinw0g and tanw~(1zc){1 (30)

where w5w0545u when c5u/h050. From standard geo-
metrical relationships and the fact that simple shear is an
invariant plane strain deformation, the equivalent strain is

e~
2ffiffiffi
3
p lnfe11g~

1ffiffiffi
3
p lnf1zczc2=2g (31)

The results for simple shear given in Fig. 5 are
replotted in Fig. 7 against equivalent strain calculated
using equations (5), (29) and (31). The use of
equation (5) to calculate the equivalent strain when
replotting the data for large strains is clearly not
justified.

It is also evident that using equation (31) gives almost
identical results to those for plane strain compression in
Fig. 2. This is intuitively correct as both are plane strain
deformation modes, but this conclusion conflicts with
the result of Bate and Hutchinson9 that torsion is only
half as effective as plane strain compression in increas-
ing the grain boundary area. Overall it is concluded
that equation (31) should be applied to the micro-
structural evolution in hot deformation, unless dynamic

6 Simple shear
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recrystallisation takes place to remove the distortion of
the initial microstructure.

Hot working processes
The use of the appropriate relationships is important in
modelling the effects of hot working by different
industrial processes using the results from a variety of
laboratory tests to discover the effects of initial grain
size and strain on recrystallisation kinetics and recrys-
tallised grain size. However, in applying the equations
for SV=SV0

to multipass hot working conditions, it must
be recognised that the strains involved are only those
since the last cycle of recrystallisation, and that SV0

is
determined from the recrystallised grain size in equation
(17). In practice, the non-uniform strain in grains will
increase the value of SV=SV0

above that for uniform
strain,9 but the irregularities in the grain boundaries that
develop at subgrain boundaries are unlikely to be of
concern, because the critical nucleus size for recrystalli-
sation is larger than the mean subgrain size. Grain
boundary sliding will reduce the value of SV=SV0

and
become significant at low strain rates, e.g. in isothermal
forging, and boundary sliding and grain growth become
dominant in superplastic forming, when grains may not
elongate. At very large strains, grain subdivision may
become more significant than elongation of the original
grains in increasing SV=SV0

. However, for normal
industrial hot working conditions the computed values
of SV=SV0

are considered to be appropriate for model-
ling recrystallisation behaviour.

Non-equiaxed grains
In practice, for example in many aluminium alloys,
recrystallised grains may not be equiaxed, but have
aspect ratios differing significantly from unity as a result
of the prior thermomechanical processing conditions. In
these cases, the number of grains per unit length NL1,
NL2, and NL1 must be measured experimentally in the
three orthogonal directions relevant to the subsequent
thermomechanical processing operation. A nominal
equiaxed linear intercept grain size for an equivalent
grain of the same volume may be defined as

-Lnom ~1=NL(average)~(NL1NL1NL1){1=3 (32)

The grain shape can then be described in terms of
apparent strains

ei(app)~lnfNLi
=NL(ave)g (33)

The effect of subsequent normal strain components can
then simply be found, e.g. from equation (22), by
replacing the applied strain components, ei by eizei(app).
This simple analysis applies only when the axes of the
elongated grain shape are the same as those of the
subsequent deformation. It is also possible to have
elongated grain structures that are not related to the
deformation axes.

One example where the initial grain structure is highly
elongated is the plate shape observed in martensitic
microstructures. The method presented here is able to
deal with this as long as the initial structure can be
represented by a set of vectors.

Figures 8a and b show calculations for an initial
microstructure of thin, square plates in which the
thickness to long edge ratio is 0.05, typical of martensite.
The dashed line represents a plate whose longest edges
are oriented along [1 0 0] and [0 1 0] in the coordinate
system of S. The points as usual represent the 99 other
randomly oriented plates, and the continuous line is the
mean of this large set.

It is noticeable that the scatter is very large when
compared with the tetrakaidecahedron, because the
plate shape is so much more anistropic that its
orientation relative to the deformation becomes impor-
tant. A comparison with Fig. 2 shows that the mean
rates of creation of area and length with strain are
similar, even though the maximum values are greater for
plates.

Figure 8c shows the case for three specific orienta-
tions. Naturally, the change in area ratio is the greatest
when the plane of the plate contains the rolling
direction, and least when the plate thickness is parallel
to the rolling direction.

Sequential deformations
The effect of sequential deformations in different
directions, as for example in the cross-rolling of plate,
is illustrated in Fig. 9 which represents calculations done
using equation (13). In this graph, the rolling strains are
the same in both directions (T115S11) and data for
axisymmetric compression are also included (equations
(8) and (9)). To allow a comparison between these
deformation modes, the data are plotted as a function of
the compressive strain. Notice that the axisymmetric
compression and cross-rolling with equal strains in both
directions give exactly identical results, illustrating that
the results depend on the final strain components and
not on the strain path to reach them.

The area ratio for single direction rolling is only
slightly larger than for the cross-rolling when plotted
against the compressive strain. This is not surprising
given that for the same rolling reduction, the length
along the rolling direction for single direction rolling will
be much larger than obtained by cross-rolling. In
contrast, the edge ratio becomes much larger for the
single direction scenario, reflecting its greater micro-
structural anisotropy.

Complex deformations
Some results based on equation (14) for the combined
effects of plane strain and simple shear deformation are
illustrated in Fig. 10, where it is clear that the shear has

7 Area ratio versus equivalent strains for cases

illustrated
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a large effect on the description of the grain structures.
Note that the shear strain in this combined mode is
given by S136S11. The shear strain is maintained
constant in each case by reducing S13 as S11 becomes
larger. Under these conditions the effect of shear
becomes negligible once e11 becomes about unity. This
is also the reason why the curves go through a minimum
– as e11 increases, S13 decreases in order to maintain a
constant shear, thus eventually making the deformation
matrix of equation (14) identical to that of plane strain
compression.

Redundant shear strains in rolling
The redundant shears influence both the values of
equivalent strain and of SV=SV0

at a given reduction in

thickness. Because the shear strain varies through the
thickness, whereas for plane strain rolling the reduction
in thickness, hence e1152e33, is independent of position
through the thickness, the results in this section are
plotted against e11 to avoid ambiguity. In Fig. 10 the
effects of different constant (final) values of shear strain
on boundary surface area and edge length are shown. It
can be seen that as the grains become flattened by rolling
the effect of a given final value of shear strain is reduced.
In practice during rolling, the shear strain increases with
increasing rolling reduction, with the result that the
trajectories of SV=SV0

and LV=LV0
for any position in

the thickness progressively cross the lines for higher
constant final values of c as shown in Fig. 10.

To achieve high total reductions, multipass rolling
must be applied. If no recrystallisation takes place
between passes, the shear strains of the grains increase
progressively with reduction in forward–forward (tan-
dem) rolling, but may be almost eliminated in forward–
reverse rolling.19 In this context, it is important to
recognise that the shear strain (shear angle) at the end of
one pass is modified both by the reduction in thickness
and by the shear in a subsequent pass. It is only the final
net shear strain and reduction that are used to compute
SV=SV0

and LV=LV0
.

As an example of through thickness effects, Fig. 11a
shows the variation of shear strain through the thickness
of an experimentally rolled slab given two forward
passes of 50% reduction (e1151.386, e51.600). The shear

a area ratio versus equivalent strain; b edge ratio versus
equivalent strain; c effect of plate orientation on area ratio

8 Calculations for plane strain compression for plate

shaped objects: in image c, 1, 2 and 3 correspond to

the rolling, invariant and compression directions

respectively

a area ratio versus compressive strain; b edge ratio ver-
sus compressive strain

9 Comparison of cross-rolling (identical strains in two

rolling directions), axisymmetric compression and sin-

gle direction rolling
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strains are computed from the distortions of finite
element grids, which agree closely with the distortions of
pins inserted through the thickness of the experimental
slabs.19 Figure 11b shows the corresponding effect on
SV=SV0

. It can be seen that the effect is relatively small
compared with the effects of through thickness position
on temperature, equivalent strain rate and strain, which
determine the dislocation structure.

Grain size distributions
In the derivations using the deformation matrices, the
austenite grains have always been assumed to be
uniform in size. This is because it becomes simple to
stack identical grains in three dimensions and fill all
space. In practice there will always exist a distribution in
the size of the grains. A possible method for dealing with
such distributions is suggested here.

When experimental measurements of the grain size
distribution are carried out, the data are presented
without a consideration of the neighbourhoods of
individual grains. In other words, it is known from the
measurements that grains of a certain size have a certain
frequency, but all information about their location is
lost.

Therefore, it would be reasonable to consider the
deformation of each size class separately. Suppose a
volume fraction VVi

is assigned to the ith size class. The
changes in (SV=SV0

)i and (LV=LV0
)i can be calculated

separately for that size class, and weighted with the
volume fraction of that size class. The final values of

these ratios are then given by

SV

SV0

^
P

i VVi
SViP

i VVi
SV0i

and
LV

LV0

^
P

i VVi
LViP

i VVi
LV0i

(34)

The approximation sign is necessary in this equation
because in general, within a distribution of grain sizes,
the grain shapes will not be identical. Furthermore,
compatibilities of the deformations between different
grain sizes have not been addressed.

Conclusions
Two quite different approaches to the quantitative
metallography of deformed grains produce essentially
identical results. The methodology in which a homo-
geneous deformation is applied to a particular shape is
versatile in that equation (1) can in principle be applied
to any grain shape or process, including others not
covered in the present paper.

The software associated with all the calculations
can be obtained freely from www.msm.cam.ac.uk/map/
mapmain.html
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