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Abstract

Displacive transformations involve the disciplined motion of atoms. As a result, there are clearly
defined relationships between all aspects of the parent and product lattices. The theory for this is
well established but has not been exploited in the calculation of transformation textures. This paper
is a critical assessment of the methods for the estimation of crystallographic textures during the
displacive transformation of austenite into martensite, bainite or Widmanstätten ferrite in steels.
The discussion is limited to the case where austenite is not in a plastically deformed state prior to
its transformation.
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1 Introduction

1 Crystallographic texture is said to exist in a polycrystalline material when the distribution of
crystal orientations is not random relative to a frame of reference. An understanding of texture
can help relate single–crystal properties to those of aggregates of crystals [1, 2]. The texture can
also be used to engineer the properties of grain boundaries [3].

1This paper is a part of a special issue published in honour of Professor Horst Cerjak who has had a life–long and
deep interest in metallurgy. As a gentleman and a scholar, he finds the time to maintain close relationships with
colleagues all over the world and has been a major driving force in the subject. The work presented here is inspired
by the emerging field of texture–controlled weld metals, as a means for counteracting the development of residual
stresses in welds. Welding is of course Professor Cerjak’s favourite field and we hope that he appreciates the contents
of this paper.
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A material can become textured due to grain rotation during deformation; thus in hexagonal close–
packed zirconium, the basal planes of the grains tend to align with the rolling plane during the
production of sheet [4]. Selective phenomena during recovery, recrystallisation and grain growth
can change the character of the final texture [5, 6]. Epitaxy during deposition obviously can lead
to textures in coatings [7, 8] as can heat–treatment in an electrical or magnetic field [9].

In solid–state phase transitions, the transformation texture can be calculated from a knowledge of
the orientations of the parent crystals and their orientation relationship with the product phase
[10]. This assumes that the product phase grows in the parent crystal in which it nucleates. In a
displacive transformation, the crystal structure of the parent is deformed into that of the product
without the need for any diffusion. Since the co-ordinated movements of atoms associated with this
transformation mechanism cannot in general be sustained across grain boundaries, it is reasonable to
assume that the product is confined to the parent grain with which it has an orientation relationship.
The purpose of this paper is to focus on displacive transformations with a view to assessing the
variety of methods used in estimating transformation textures in steels, although the issues of
importance are generic. Given the page limits set by the organisers of this special issue, we limit
ourselves to austenite which is not plastically deformed prior to its transformation.

Crucial to the calculation is the nature of the orientation relationship; we begin therefore with an
explanation of the origin of this relationship, in the context of martensitic transformations; the
general theory is applicable also to bainite and Widmanstätten ferrite.

2 Crystallographic Theory: Orientation Relationships

Consider the displacive transformation of austenite (γ, cubic–close packed crystal structure) to
martensite (α′, body–centred cubic or body–centred tetragonal). The change in crystal structure is
achieved by a homogeneous deformation known as the Bain strain B, which although proposed in
1924 [11], has stood the test of time as the pure deformation which achieves the desired change with
the smallest strains [12]. The diagonal terms of B are given by aα′/aγ ,

√
2aα′/aγ and

√
2aα′/aγ ,

whereas the remaining terms are zero when B is defined relative to the principal axes. aα′ and aγ

are the lattice parameters of martensite and austenite, respectively. The Bain correspondence is
illustrated in Fig. 1 and implies the orientation relationship:

[0 0 1]γ ‖ [0 0 1]α′ [1 1 0]γ ‖ [1 0 0]α′ [1 1 0]γ ‖ [0 1 0]α′

This orientation is not observed experimentally because the strain energy associated with B would
be too large, several kJ mol−1 [13], which is far in excess of the chemical driving force for transfor-
mation [14].

Furthermore, the Bain strain does not satisfy the minimum requirement of martensitic transforma-
tion, that the deformation must leave one line invariant in order to ensure sufficient coherency in
the γ/α′ interface to enable it to move without diffusion [15–19]. This can be seen in Figs. 2a, b;
the austenite is represented as a sphere which, as a result of the Bain strain B, is deformed into
an ellipsoid of revolution which represents the martensite. There are no lines which are left undis-
torted or unrotated by B. There are no lines in the (0 0 1)γ plane which are undistorted. The lines
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ab and cd are undistorted but are rotated to the new positions a′b′ and c′d′. Such rotated lines
are not invariant. However, the combined effect of the Bain strain B and the rigid body rotation
R is indeed an invariant–line strain (ILS) because it brings cd and c′d′ into coincidence (Fig. 2c).
This is the reason why the observed irrational orientation relationship differs from that implied by
the Bain strain. Indeed, the rotation required to convert B into an invariant line strain precisely
corrects the Bain orientation into that which is observed experimentally.

Figure 1: Two face–centred cubic unit cells of austenite, together with a body–centred tetragonal
cell of austenite. The Bain strain (not illustrated here) involves a compression of the body–centred
tetragonal cell of austenite along [001]γ and a uniform expansion on the (001)γ plane.

Figure 2: (a) and (b) show the effect of the Bain strain on austenite, which when undeformed is
represented as a sphere of diameter ab = cd in three-dimensions. The strain transforms it to an
ellipsoid of revolution. (c) shows the ILS obtained by combining the Bain strain with a rigid body
rotation through an angle θ.
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It is now possible to reach some conclusions regarding orientation relationships in relation to trans-
formation textures, whether these are for displacive or reconstructive phase change [20, 21].

• The Bain orientation relationship does not exist. It is not appropriate to use this in calculating
transformation texture. Any favourable conclusions reached based on the Bain orientation
[22, 23] must be regarded as fortuitous [20].

• The Bain deformation is an incomplete description of the transformation strain and hence
should not form the basis for variant selection (e.g. [24]).

As stated above, the combination BR predicts the exact orientation relationship which is irrational.
However, it is often assumed in texture analysis that the orientation relationship between the
austenite and martensite is that due to Kurdjumov–Sachs (KS) or Nishiyama–Wasserman (NW)
[22, 25–27], but it has been known for some time that the true relation must be irrational [15–
18]. Although the difference between this irrational and assumed orientation may seem less than
a few degrees, it is vital because the assumed orientations do not in general lead to an invariant–
line between the parent and product lattices. The existence of an invariant line is an essential
requirement for martensitic transformation to occur. It is not surprising therefore, that Nolze [28]
in his experimental study of several hundred thousand γ/α orientation relations, found detailed
deviations from assumed Kurdjumov–Sachs etc. orientations.

Much is often made of the fact that there are 24 variants of KS and only 12 of NW. However, if the
actual irrational orientation is used then there will always be 24 variants. As far as the authors are
aware, there are no reported examples of only twelve variants of martensite per austenite grain.

The kind of orientation which emerges from the application of BR is listed in Table 1 [18, 21, 29, 30]
where (γ J α′) represents the orientation relationship, and it is seen from the lower half of the table
that neither the closely–packed planes nor the close–packed directions are parallel, as would be
expected from a NW or KS orientation in which {111}γ ||{011}α′ and φ = 0 or 5.26◦, where φ is
the angle between < 101 >γ and < 111 >α′ .

Table 1: Typical crystallographic set for martensitic transformation for aγ/aα′ = 1.2557.

Habit plane pγ Shape change (γ P γ) Orientation (γ J α′)




−0.168640
−0.760394
−0.627185









0.992654 −0.033124 −0.027321
0.026378 1.118936 0.098100
−0.027321 −0.123190 0.898391









0.575191 0.542067 0.097283
−0.550660 0.568276 0.089338
−0.008610 −0.131800 0.785302





[1̄ 0 1]γ ||[−0.920611 − 1.062637 1.084959]α′

(1 1 1)γ ||(0.015921 0.978543 0.971923)α′

Suppose that it is assumed that {111}γ ||{011}α′ , then it is only possible to satisfy the minimum
condition for martensitic transformation at special values of the lattice parameter ratio aγ/aα′ [31],
Fig. 3.
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Figure 3: The angle φ must be such as to lie on the curve in order to ensure an invariant line [31].
KS occurs at aγ/aα′ = 1.2247.

3 The Crystallographic Set

The full theory of martensite [15–17] is beyond the scope of this paper; detailed descriptions and
reviews can be found elsewhere [18, 32]. However, the development of transformation texture
requires more than just the orientation relationship because not all possible variants may form
depending on the interaction of the martensite with the imposed stresses and strains.

Displacive transformations are best regarded as deformation mechanisms which at the same time
alter the crystal structure. The variant selection problem then reduces to issues similar to the
selection of slip systems out of all the possibilities available during single–crystal deformation [1].
A slip system consists of a slip plane and slip direction, for example, (111)[101] is one of 12
crystallographically equivalent systems in austenite. An applied stress is resolved on to each of the
slip systems, and that which has the highest resolved shear stress is said to be activated.

By analogy, the deformation due to martensitic transformation occurs on the habit plane (unit
normal p) in a displacement direction (unit vector d). Note however that the latter will not lie
precisely in the habit plane because the dilatational strain due to the volume change of transfor-
mation is directed normal to the habit plane. The dominating strain is the shear parallel to the
habit plane at about 0.26. The total deformation is expressed as a 3 × 3 matrix P:

(γ P γ) = I + m[γ;d](p; γ∗) (1)

where m is the magnitude of the shape deformation and γ and γ∗ represent the real and reciprocal
bases of the austenite. 2The matrix P thus completely defines the deformation system, and there
will in general be 24 different variants.

2Throughout this paper we use the vector and matrix notation due to Bowles and MacKenzie which is particularly
good at avoiding confusion between frames of reference [15, 18]
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It is most important to realise that the Bain strain, rigid body rotation, and the shape deformation
are all mathematically related through the phenomenological theory of martensite:

BR = PP′ (2)

where P′ is a shear whose macroscopic consequence is cancelled by the lattice–invariant deformation.
The shape deformation P is an invariant–plane strain and is the experimentally observed permanent
shape change caused when martensite forms (see Fig. 21.3 of [32]). Equation 2 emphasises that the
orientation relationship and shape deformation are mathematically related. It is not rigourous to
assign an orientation and then use independent data for the shape deformation, as is sometimes
done [20, 27, 33]. Similarly, the use of shears which are consistent with an assumed orientation
relationship but not with the habit plane [34] contradicts the need for a self–consistent mathematical
set.

When calculating the favoured system during slip deformation, it is the macroscopic shear on the
slip plane and slip direction which determines selection through interaction with the applied stress.
The detailed atomic motions (e.g. in surmounting Peierls barriers) or microscopic heterogeneities
(due to the discrete nature of atoms) are irrelevant in the selection of the system. In a similar
way, it is the interaction of the applied stress with P which determines variant selection. B and R

or other factorisations of the shape deformation are incomplete descriptions of the relevant strain.
The interaction energy which provides the mechanical driving force for transformation [35]:

U = σNζ + τs (3)

where σN is the stress component normal to the habit plane, τ is the shear stress resolved on
the habit plane in the direction of shear and ζ and s are the respective normal and shear strains
associated with transformation. The energy U can be used as a rigourous variant selection criterion
when the stresses applied are less than those required to cause plasticity in the austenite prior to
its transformation [30].

The conclusions that can be reached from the discussion in this section are:

• In calculating transformation texture is is necessary to use a a self–consistent crystallographic
set, rather than make independent assumptions about the orientation relationship and shape
deformation as is sometimes done. The set must be such that the lattice deformation BR is
an invariant–line strain; the analysis in [33] does not satisfy this criterion.

• The deformation due to martensitic transformation is an invariant–plane strain P. It is this
which should be used to calculate the interaction energy (variant selection) rather than, for
example, the Bain strain [36].

4 Transformation Plasticity

Consider an arbitrary vector u traversing a grain of austenite prior to transformation, as illustrated
in Fig. 4a. This vector makes an intercept ∆u with a domain of austenite that eventually ends up
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Figure 4: The deformation of an initial vector u by the formation of bainite. (a) An austenite grain
prior to transformation, with the ultimate location of a plate of bainite marked. (b) Following
displacive transformation. [30]

as a plate of bainite. As a consequence of the transformation, the vector u becomes a new vector
v given by:

v = P∆u + (u− ∆u) (4)

When considering the formation of large number of bainite plates in many austenite grains, u

traverses a polycrystalline sample of austenite so this equation must be generalised as follows:

v =

n
∑

k=1

24
∑

j=1

Pk
j ∆uk

j +

(

u −
n

∑

k=1

24
∑

j=1

∆uk
j

)

(5)

where j = 1 . . . 24 represents the 24 crystallographic variants possible in each austenite grain, and
k = 1 . . . n represents the n austenite grains traversed by the vector u. In this scenario of a large
number of bainite plates, the intercepts ∆uk

j can be approximated by fk
j u where fk

j is the fraction
of sample transformed by variant j in austenite grain k.

The deformation caused by a particular plate j in austenite grain k, i.e., (γk Pj γk ) ≡ Pk
j . The

remaining 23 such matrices for grain 1 of austenite can be deduced from this using symmetry
operations. They can then be expressed in the reference frame of the sample using a similarity
transformation as follows:

(S Pk
j S) = (S R γk )(γk Pj γk )(γk R S) (6)

where (S R γk ) is the rotation matrix relating the basis vectors of the kth austenite grain to the
sample axes, and (γk R S) is the inverse of that rotation matrix. In this way, the calculation
described in equation 4 can be conducted in the sample frame of reference.

Some calculations illustrating the anisotropy of strains as a function of the number of crystallo-
graphic variants of martensite allowed are illustrated in Fig 5 for uniaxial tension and compression.
That displacive transformations produce highly anisotropic strains when variant selection is signif-
icant has been demonstrated experimentally [37–39].
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(a) (b)

Figure 5: Strains developed due to transformation along the [1 0 0]S direction (labelled longitudinal,
along the stress axis), and the transverse directions [0 1 0]S and [0 0 1]S . (a) Tensile stress. (b)
Compressive stress.

• An important outcome of the fact that transformation strains can be calculated using the
crystallographic set of martensite is that such strains can be exploited as an alternative or
supplemental method of assessing texture.

5 An Unresolved Issue

The analysis of texture as described above and in the published literature, leaves open the question
of the degree of variant selection as a function of the magnitude of the applied stress.

The total free energy available for transformation is the sum of chemical and mechanical compo-
nents, the latter being zero in the absence of an applied stress during transformation [39]:

∆G = ∆GCHEM + ∆GMECH (7)

where ∆GMECH ≡ U . It would be reasonable to assume that there is strong variant selection when
the ratio of ∆GMECH/∆G is large [40]. This turns out to be the case as illustrated in Fig. 6. There
is a strong, albeit empirical, linear correlation between the ratio ∆GMECH/∆G and the number of
most favoured variants allowed to form in each of the austenite grains [30]. This is an important
observation in that it allows the extent of variant selection, and hence the transformation strains,
to be calculated as a function of stress for any steel as long as the thermodynamic quantities can
be estimated. Nevertheless, this clearly is an area where progress is needed from a fundamental
point of view. An additional point to emerge from this analysis is the way in which the energy
U is calculated. Most publications treat the problem using elasticity theory with U = 1

2
σijǫij but

the strain due to transformation is plastic so the factor of 1
2

should not be there. This only is
important when using equation 7 because it becomes necessary to compare the relative magnitudes
of the chemical and mechanical driving forces [41].
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Figure 6: ∆GMECH/∆G versus the number of most favoured variants per grain (n), for a variety
of steels. [30].

6 Summary

This paper is limited to a discussion of transformation texture in steels where the austenite is not
plastically deformed prior to its transformation.

It is clear that the calculation of the texture resulting from displacive transformation is best treated
using the crystallographic theory of martensitic transformation. Furthermore, the strain relevant
in calculating variant selection is the shape deformation due to martensite.

Whereas the current methods allow the orientations of crystals resulting from variant selection to
be predicted, they do not permit their volume fractions to be estimated.
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