

Master Thesis

Topology of the Deformation of a

Non-Uniform Grain Structure

Chae, Jae yong (蔡 在 鎔)

Department of Ferrous Technology

(Computational Metallurgy)

Graduate Institute of Ferrous Technology

Pohang University of Science and Technology

2008

불균일 결정 구조의

가공에 관한 위상 기하학

Topology of the deformation

of a Non-uniform Grain structure

Topology of the deformation

of a Non-Uniform Grain Structure

by

Chae, Jae Yong

Department of Ferrous Technology

(Computational Metallurgy)

Graduate Institute of Ferrous Technology

Pohang University of Science and Technology

A thesis submitted to the faculty of Pohang University of

Science and Technology in partial fulfillments of the requirements

for the degree of Master of Science in the Graduate Institute of

Ferrous Technology (Computational Metallurgy)

Pohang, Korea

June 23th, 2008

Approved by

Topology of the deformation

of a Non-Uniform Grain Structure

Chae, Jae Yong

This dissertation is submitted for the degree of Master of Science

at the Graduate Institute of Ferrous Technology of Pohang

University of Science and Technology. The research reported

herein was approved by the committee of Thesis Appraisal

June 23th, 2008

I

Abstract

The purpose of this work was to investigate a method for treating non-uniform

grains which had a distribution of sizes and shapes. It was the extension of a

previous work for the idealized tetrakaidecahedron-shaped grains.

First step of the work was generating the vertex coordinates of non-uniform grains

from tetrakaidecahedra array, randomized vertex method (RVM) and rescale

randomized vertex method (RRVM) were considered for that. Then several

deformations, such as plane strain compression, axisymmetric compression,

axisymmetric tension and simple shear, were applied to the grains, and the changes

in the grain parameters (surface area and edge length per unit volume) were

calculated. It is also possible to calculate the parameters for any other homogeneous

deformations or for combinations of several deformations in the same way. It is

shown that the results for non-uniform grains have little differences as compared

with the results for idealized grains.

MFT Chae, Jae Yong

20062871 Topology of the Deformation of a Non-Uniform Grain

Structure, Department of Ferrous Technology (Computational

Metallurgy) 2008

Advisor: Prof. Lee, Hae Geon; Prof. Bhadeshia, H.K.D.H.

Text in English

II

Contents

Abstract ... Ⅰ

Contents .. Ⅱ

Nomenclature ... Ⅴ

Ⅰ. Introduction – Literature Review ... 1

1.1 Aim of the work ..1

1.2 Basic crystallography ...2

 1.2.1 Lattice, Unit Cell, Basis .. 2

 1.2.2 Point and direction .. 3

 1.2.3 Planes .. 4

1.3 Vector ...6

 1.3.1 Representation of a vector .. 6

 1.3.2 Addition and scalar multiplication.. 8

 1.3.3 Dot product ... 9

 1.3.4 Cross product .. 10

1.4 Deformation ..11

 1.4.1 Strain and stress .. 12

 1.4.2 Type of deformation ... 14

III

1.5 The effect of plastic deformation on uniform grains15

1.5.1 Tetrakaidecahedron... 15

1.5.2 The application of the deformation .. 17

1.5.3 The calculation ... 20

1.5.4 Equivalent strain ... 22

1.5.5 The result of calculation ... 23

1.5.6 Improvement of model ... 25

Ⅱ. Method ... 27

2.1 Definition of uniform grain structure ...28

2.2 The number of the defined grain, odd & even grain35

2.3 Conversion of uniform grain structure into non-uniform array36

2.4 Extracting vertex coordinates ...38

2.5 Deformation ..40

Ⅲ. Result .. 42

3.1 Non-uniform grain generation ..42

3.2 Applying various deformations ..47

3.3 Analysis of the results...53

Ⅳ. Summary and future work ... 54

IV

References .. 56

Appendix A ... 60

Appendix B .. 67

V

Nomenclature

𝐴0 Original cross-sectional area of tensile test specimen

𝐴 Instantaneous cross-sectional area of tensile test specimen

𝐸 Young‟s modulus

F Force

𝐿 Size of tetrakaidecahedron grain

𝐿𝑞 Quarter of the grain size 𝐿

L0 Initial grain edge length

LV Grain edge length per unit volume

LV0 Initial grain edge length per unit volume

𝐿𝑉0
𝑃 Primary edge length per unit volume

𝐿𝑉0
𝑆 Secondary edge length per unit volume

S0 Initial grain boundary area

SV Grain boundary area per unit volume

SV0 Initial grain boundary area per unit volume

R Rotation matrix

S Deformation matrix

Sij The elements of deformation matrix

𝐚 Vector 𝐚

VI

𝐛 Vector 𝐛

u Edge vector before deformation

v Resultant edge vector after deformation

𝐞𝟏 Basis vector 1, 0, 0

𝐞𝟐 Basis vector 0,1, 0

𝐞𝟑 Basis vector 0, 0, 1

𝑙 Instantaneous length of tensile test specimen

𝑙0 Original length of tensile test specimen

𝜖 Engineering strain

𝜖𝑇 True strain

𝑓 Equivalent stress

𝑟 Transformed vertex position

𝑟0 Initial vertex position

𝑟𝑟𝑒𝑓 Reference position inside the grain

𝜎 Engineering stress

𝜎𝑇 True stress

𝜎 Tensile yield stress in a tensile test

ς Weight factor in RRVM

𝜉 Random number, of 0 < 𝜉 < 1

𝜔 Weight of fluctuation

VII

εij Normal components of strain

γij Shear components of strain

RRVM Rescaled randomized vertex method

RVM Randomized vertex method

1

Ⅰ. Introduction – Literature Review

1.1 Aim of the work

Polycrystalline materials such as steel and aluminum are produced in very large

quantities using plastic deformation, which changes their microstructure, properties

and shape into the required form. One of the important factors influenced by the

deformation at high temperatures is the grain structure. For that reason, calculation

about the consequential change in the amount of grain boundary area per unit

volume (SV) and grain edge length per unit volume (LV) after plastic deformation

may be significant in determining the course of phase transformations and

recrystallisation processes in general.

Underwood expressed these parameters as a function of the extent of deformation

using stereological methods [Underwood, 1970], which have the advantage of

avoiding assumptions about grain shape as long as space is filled. The method

cannot however be adapted to complex combinations of deformations. Other

approaches involve analytical equations numerical computations based on a variety

of approximations of the three-dimensional shape of grains, for example, spheres,

cubes and tetrakaidecahedra [Umemoto et al., 1983; Bate and Hutchinson, 2005;

Gil-Sevillano et al., 1980; Knustad et al., 1985; Vatne et al., 1996; Singh and

2

Bhadeshia, 1998; Zhu et al., 2007]. These methods can be adapted to combinations

of deformations but they assume that all the grains are exactly identical in shape and

size. The purpose of the present work is to develop a corresponding model for a

non-uniform grain structure.

1.2 Basic crystallography

Polycrystalline materials have properties which depend on the nature of the each

crystal, the size and shape distribution of the crystals and the crystallographic

orientation of individual crystals in it. Knowledge of the relationship between

crystals in a polycrystalline material is a major part of crystallography, in contract to

the knowledge of atomic arrangements in single crystals. The former concept is of

particular importance in the present work.

1.2.1 Lattice, Unit cell, Basis

Materials may be classified according to the regularity of array of atomic

arrangements in crystals. Crystals are identified by a regular array of points, which

form a lattice with translational symmetry. This three-dimensional array of points

3

may or may not coincide with the positions of atoms. The entire repeating pattern of

the lattice can be described in terms of a small repeat entity is called a unit cell. The

unit cell may is a space-filling parallelepiped with vertices at lattice points, and with

its edges defined by three non-coplanar basis vectors, each of which represents

translation between two lattice points. The magnitudes of the basis vectors are the

lattice parameters of unit cell. There can be many number of lattice vectors which

can be used in defining the unit cell. Choosing smaller basis vectors to represent the

shape of lattice is convenient with respect to the symmetry of the lattice.

1.2.2 Point and direction

The position of any point located within a unit cell may be specified in terms of its

coordinates as fractional multiples of the unit cell edge lengths.

A direction is defined as a line between two points, or a vector in crystallography.

Consider the determination of the three directional indices of a vector which passes

through the origin of the coordinate system. The projection of the vector on each of

the three axes is determined, and expressed as a fraction of each of the basis vectors.

These three numbers are multiplied or divided by a common factor to reduce them

to the smallest integer values. Any parallel vectors can be translated into same

results and three indices are enclosed in square brackets. In addition, any negative

index is represented by positive number with a bar over it. It follows that any vector

4

can be represented as:

 𝓾 = 𝓊1𝓪𝟏 + 𝓊2𝓪𝟐 + 𝓊3𝓪𝟑 (1-1)

Where 𝓊1 , 𝓊2, and 𝓊3 are the components of the vector and 𝓪𝟏, 𝓪𝟐 and 𝓪𝟑 are

the basis vectors of the unit cell. The vector 𝓾 is thus represented in terms of its

components as 𝓊1 𝓊2 𝓊3 .

For example, direction [111] means the vector:

 𝓾 = 1𝓪𝟑 + 1𝓪𝟐 + 1𝓪𝟑 (1-2)

and, direction [1 1 1] means the vector:

 𝓾 = −1𝓪𝟑 + −1𝓪𝟐 + 1𝓪𝟑 (1-3)

In some crystal structures, the spacing of atoms along each direction is the same.

Thus, several nonparallel directions are actually equivalent and they can be grouped

together into a family. Such equivalent directions are identified by enclosing them in

angle brackets. In a cubic lattice, all the directions represented by the following

indices are equivalent: 100 , 1 00 , 010 , 01 0 , 001 and 001 . This

group can be represented as <100>.

1.2.3 Planes

Crystallographic planes are specified by three Miller indices as 𝒽𝓀ℓ . Any two

5

planes parallel to each other are equivalent and have identical indices. The

determination of the indices is as follows:

1. If the plane passes through the origin of unit cell, either another parallel

plane should be considered by an appropriate translation, or a new origin

should be established at the corner of another unit cell.

2. The plane would then intersect or be parallel to each of the three axes; the

length of each intercept for each axis is determined in terms of the lattice

parameters a, b, and c.

3. The reciprocals of the intercepts, expressed as multiples (whole or

fractional) of the lattice parameters, form the indices of the plane into

indices. If a plane is parallel to an axis, intercept is regarded as infinity, and

its reciprocal is 0, which forms one of the three indices of that plane.

4. If necessary, the index numbers can be multiplied or divided by a common

factor, and then the final results give the Miller indices; 𝒽, 𝓀, ℓ.

The following is the brief example, where a, b, and c are the lattice parameters of

unit cell :

6

 x y z

Intercepts parallel -b c/2

Intercepts (relative to lattice

parameter)
∞ -1 1/2

Reciprocals 0 -1 2

Miller indices 0 1 2

Table 1.1 Illustration of the determination of Miller indices.

1.3 Vector

A vector is the quantity which is characterized by magnitude and direction, whereas

a scalar just has magnitude. Velocity, force, and displacement are vectors and speed,

power, and time are scalars.

1.3.1 Representation of a vector

A vector is graphically represented by an arrow pointing in a particular direction, as

illustrated below:

7

Figure 1.1 : Graphical representation of vector AB

Here, the point A is called the initial point, and B is called endpoint of vector AB .

This vector can be identified by the symbol with arrow (e.g. 𝐚) or underlining the

lower-case symbol (e.g. 𝐚). The length of the arrow represents the magnitude of the

vector, denoted as 𝐚 . A vector is equal with another vector if they both point same

direction, and have identical magnitude.

It is inconvenient to use the graphical representation for complicated problems.

Thus, vector in an n-dimensional Euclidean space can be represented in a Cartesian

coordinate system; it is identified by the coordinate of the endpoint, which is a list

of n real numbers, with the origin as the initial point. As an example, in three-

dimensional Euclidean space, the vector from the origin O = (0, 0, 0) to the point

A = (1, 2, 3) is simply written as OA = (1, 2, 3). These coordinate numbers are

often arranged into a column vector or row vector, particularly when dealing with

matrices, as follows:

B

A

𝐚

8

 OA =
1
2
3
 or OA = (1 2 3) (1-4)

Another way to express a vector in three dimensions is to introduce basic coordinate

vectors referred to as basis vectors:

 𝐞𝟏 = 1, 0, 0 , 𝐞𝟐 = 0, 1, 0 , 𝐞𝟑 = 0, 0, 1 (1-5)

In terms of these, any vector (a, b, c) in three dimensions can be expressed in the

form:

 a, b, c = a 1, 0, 0 + b 0, 1, 0 + a 0, 0, 1

 = a𝐞𝟏 + b𝐞𝟐 + c𝐞𝟑

(1-6)

The basis vectors can be any set of vectors which are linearly independent, i.e. not

parallel but can express all the vectors in three dimensions.

1.3.2 Addition and scalar multiplication

Let 𝐚 = a1𝐞𝟏 + a2𝐞𝟐 + a3𝐞𝟑 and 𝐛 = b1𝐞𝟏 + b2𝐞𝟐 + b3𝐞𝟑. The sum of a and

b is:

 𝐚 + 𝐛 = a1 + b1 𝐞𝟏 + a2 + b2 𝐞𝟐 + (a3 + b3)𝐞𝟑 (1-7)

The addition of a and b may be also performed by graphical method.

9

Figure 1.2 : The addition of vector a and b

The initial point of vector b is placed by parallel translation at the endpoint of a; the

initial point of result, a + b, is then the initial point of a and its endpoint

corresponds to the endpoint of b.

A vector can be multiplied by a real number r which is scalar object. The operation

of multiplying a vector by a scalar is called scalar multiplication. The resulting

vector of ra is:

 𝑟𝐚 = 𝑟a1 𝐞𝟏 + 𝑟a2 𝐞𝟐 + (𝑟a3)𝐞𝟑 (1-8)

Graphically, this can be represented by stretching a vector a out by a factor of r. If r

is negative, then the resulting vector changes direction into an opposite direction.

1.3.3 Dot product

The dot product of two vectors a and b is also known as the inner or scalar product

𝐚

𝐛

𝐚 + 𝐛

10

and is defined as:

 𝐚 ∙ 𝐛 = 𝐚 𝐛 cos θ (1-9)

Where, 𝐚 and 𝐛 denote the magnitude of a and b, and θ is the angle between

a and b.

It can also be defined as the sum of the products of components of each vector:

𝐚 ∙ 𝐛 = a1 , a2 , … , an ∙ b1 , b2 , … , bn

= a1b1 + a2b2 + ⋯ + anbn

(1-10)

Where, an and bn are components of vectors a and b in n dimensions.

Since 𝐚 cos θ is the scalar projection of a onto b, the dot product geometrically

means the product of the length of projection and the length of b.

The dot product of two orthogonal vectors is 0, because the cosine of 90˚ is 0. In

this way, dot product can be used to test the orthogonality of two vectors. Moreover

the angle between them can also be found by rearranging the formula:

 θ = cos−1
𝐚 ∙ 𝐛

 𝐚 𝐛
 (1-11)

1.3.4 Cross product

The cross product, also known as outer product or vector product, is a binary

operation on two vectors in a three-dimensional space that results in another vector

which is perpendicular to the two input vectors, while the result of dot product is a

11

scalar quantity. The cross product 𝐚 × 𝐛 is given by the formula:

 𝐚 × 𝐛 = 𝐚 𝐛 sin θ n (1-12)

where, n is a unit vector which is perpendicular to a and b. The direction of the

vector n is given by the right-hand rule. The magnitude of the result of cross

product is equal to the area of the parallelogram that the two input vectors span.

It can also be defined using the coordinates of two vectors:

 𝐚 × 𝐛 = a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1 (1-13)

1.4 Deformation

Deformation leads to a change in the shape of material due to an applied stress such

as tensile, compressive, shear, torsion, etc. There are of course special deformations,

such as equichannel angular processing, which do not lead to a change in shape.

This change may be temporary or permanent; a recoverable change is called elastic

deformation and whereas a permanent change is called plastic deformation. To

describe the deformations numerically, the concept of stress and strain will be

handled at first. This will be followed by a description of the various kinds of stress

and resulting deformations.

12

1.4.1 strain and stress

Strain is the numerical expression of deformation. It is calculated by measuring a

change in dimension between the initial and the final states of the material, when

stress is applied. Engineering stress σ and engineering strain 𝜖 can be defined by

the following formula:

 𝜎 =
𝐹

𝐴0
 , 𝜖 =

𝑙 − 𝑙0

𝑙0
=

∆𝑙

𝑙0
 (1-14)

in which F is the instantaneous force applied to material normal to the original area

𝐴0, 𝑙0 is the original length prior to deformation, and 𝑙 is the length after the

application of the force.

Strain is a dimensionless quantity. If strain is equal everywhere within the material,

it is said to be homogeneous; otherwise, it is heterogeneous.

Sometimes, it is more meaningful to use a true stress and true strain scheme. The

stress and strain represented in equation (1-14) have the adjective “engineering” in

order to distinguish them from true stress and strain. True stress 𝜎𝑇 is defined as

the load F divided by the instantaneous cross-sectional area A over which

deformation is occurring:

 𝜎𝑇 =
𝐹

𝐴
 (1-15)

and similarly true strain 𝜖𝑇 is defined by

 𝜖𝑇 = ln
𝑙

𝑙0
 (1-16)

13

The conversion of engineering stress and strain to true stress and strain is as follows:

 𝜎𝑇 = 𝜎(1 + 𝜖), 𝜖𝑇 = ln 1 + 𝜖 (1-17)

The engineering stress and strain are on the basis of the original cross-sectional area

before any deformation, where true stress and strain are defined with respect to the

instantaneous dimensions.

Stress is a measure of an applied mechanical load or force, normalized to take into

account the cross-sectional area. There are at least three principal ways in which a

load may be applied; tension, compression, and shear. In addition, stress is torsion

rather than simple shear in many engineering practices. Those four kinds of stress is

illustrated in Figure 1.3.

Figure 1.3 : Schematic illustration of (a) tensile stress, (b) compressive stress, (c)

shear stress, and (d) torsional stress

(a) (b) (c) (d)

14

1.4.2 Type of deformation

Elastic deformation is reversible. During such deformation the stress and strain are

proportional to each other as follows:

The formula is known as Hooke‟s law, and the constant E is the modulus of

elasticity, or Young’s modulus, which can be experimentally determined from the

slope of a stress-strain curve in the elastic region.

For most metallic materials, elastic deformation persists only to strains of about

0.005. As the material is deformed beyond this point, the stress and strain is no

longer proportional and plastic deformation starts to occur. The transition from

elastic to plastic is gradual for most metal material. The shape change of plastic

deformation is not reversible and plastic deformation ends with the fracture of the

material.

 𝜎 = 𝐸𝜖 (1-18)

15

1.5 The effect of plastic deformation on uniform

grains

The effect of deformation on grain surface area per unit volume and edge length per

unit volume is interesting from many points of view. These values can be used to

determine the course of phase transformations or recrystallisation processes in steel.

The calculation first started using stereological methods, in which it was assumed

that the grains are space-filling and equiaxed, but do not have specific shape

[Underwood, 1970]. A spherical grain model was also considered for the calculation

in many succeeding investigations [Umemoto et al., 1983; Bate and Hutchinson,

2005]. Cubes [Gil-Sevillano et al., 1980; Knustad et al., 1985; Vatne et al., 1996] or

tetrakaidecahedra [Underwood, 1970; Singh and Bhadeshia, 1998] have used to

represent the undeformed grain shapes in more recent work. In these works, the

deformations such as plane strain, axisymmetric tension, axisymmetric compression,

and simple shear are applied to the grain vectors, and all of the deformations are

regarded to be homogeneous.

1.5.1 Tetrakaidecahedron

A tetrakaidecahedron is polyhedron which has 36 edges of the same length and 14

faces consisting of eight hexagons and six squares. All the edges of length a can be

described in terms of just six vectors, where the directions of two rectangular edges

16

of the base square and the perpendicular line of them are regarded as the basic

orientation axes of the grain. Each vector includes 6 parallel vectors which have

same orientation and magnitude, i.e. all the parallel edges are defined as one vector.

The shape of a tetrakaidecahedron and those six vectors are described in the Figure

1.4.

This shape has been recently used to represent the undeformed grain because of the

weak points of the earlier work; for example, a sphere is not space filling and has no

edges, and a cube oversimplifies the real grain. A tetrakaidecahedron has a shape

similar to real grains as observed metallographically, and also has proper angles

which only require small changes to satisfy equilibrium of interfacial tensions

between different grain faces. Furthermore, the array of tetrakaidecahedra of same

size can fill the space and their 6 edge vectors are defined with proper orientations

for easy derivation of the deformation equation. However this aspect is also a

limitation because real grain structures may not have uniform grains.

17

Vector components

 𝑎, 0, 0

 0, 𝑎, 0

 −
𝑎

2
, −

𝑎

2
, −

𝑎

 2

𝑎

2
, −

𝑎

2
,
𝑎

 2

𝑎

2
,
𝑎

2
,
𝑎

 2

 −
𝑎

2
,
𝑎

2
,
𝑎

 2

(a) (b)

Figure 1.4 : (a) The shape of tetrakaidecahedron and (b) six basic vectors of

tetrakaidecahedron of edge length a [Underwood, 1970; Singh et al., 1998].

1.5.2 The application of the deformation

To give a deformation effect on the edges of an undeformed grain, the edge vectors

u are multiplied by the deformation matrices S of 3 by 3 to generate the result

vectors v (Czinege, 1977; Singh, 1998; Bhadeshia, 2001) as follows:

The orientation of the grain may be changed in some scenarios. Suppose that we

𝑣1

𝑣2

𝑣3

 =
𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33

𝑢1

𝑢2

𝑢3

 (1-19)

18

need to deform the grains in various orientations relative to an external frame, then

the rotation matrix R can be used to rotate the objects relative to the axes defining S.

The elements Sij of deformation matrix S are determined by the type of deformation.

In the case of plane strain deformation, as an example, all of the elements are 0

except the diagonal elements S11, S22, and S33. For volume preserving deformations,

the multiplication of diagonal elements S11, S22, and S33 should be 1. Since S22 = 1,

S11 × S33 = 1. The terms S11, S22, and S33 represent the principal distortions. The

elements of four types of deformations are presented in table 1.2 (Zhu et al. 2007).

𝑣1

𝑣2

𝑣3

 =

𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

𝑢1

𝑢2

𝑢3

 (1-20)

19

Type S11 S12 S13 S21 S22 S23 S31 S32 S33

Plane strain

compression

≥1 0 0 0 1 0 0 0 1/ S11

Axisymmetric

compression

1/(S33)
1/2

 0 0 0 1/(S33)
1/2

 0 0 0 ≤1

Axisymmetric

tension

≥1 0 0 0 1/(S11)
1/2

 0 0 0 1/(S11)
1/2

Simple shear 1 0 +ve 0 1 0 0 0 1

Table 1.2 : volume preserving deformations (the convention used is that S11 > S22 >

S33)

From the set of vectors of tetrakaidecahedron in Figure 1.4 (b), the new vector set of

deformed grain can be derived with those deformation vectors. The following is the

result vectors of tetrakaidecahedron after plane strain or axisymmetric deformation

without changing orientation.

20

Vector

 a𝑆11 , 0, 0

 0, a𝑆22 , 0

 −
a𝑆11

2
, −

a𝑆22

2
, −

a𝑆33

 2

a𝑆11

2
, −

a𝑆22

2
,
a𝑆33

 2

a𝑆11

2
,
a𝑆22

2
,
a𝑆33

 2

 −
a𝑆11

2
,
a𝑆22

2
,
a𝑆33

 2

Table 1.3 : Vectors of tetrakaidecahedron after plane strain or axisymmetric

deformation

1.5.3 The calculation of edge length and surface area of

tetrakaidecahedron

The change of tetrakaidecahedron grain after deformation is observed with the finial

to initial edge length (L/L0) and surface area (S/S0) ratio. Those values can be

calculated mathematically using the vectors defined in Table 1.3 (Zhu et al., 2007).

Consider plane strain deformation. The total edge length of undeformed

tetrakaidecahedron of edge length a is 36a obviously, since all the 36 edges of that

21

polyhedron are of identical length. To calculate the total edge length of the grain

after deformation, the magnitudes of the six deformed vectors in Table 1.3 are

added up and multiplied by 6 which imply six parallel edges. So, the final to initial

edge length (L/L0) of tetrakaidecahedron about plane strain deformation is derived

by the following equation:

The surface area can be calculated using vector cross products. As mentioned in

1.3.4, the magnitude of the cross product is equal to the area of the parallelogram

that the two input vectors span. The surface area of an undeformed

tetrakaidecahedron is the sum of 6 squares and 8 hexagons area; each hexagon

consists of three squares which are made by combination of 3 kinds of edge vectors

(6 vectors indeed. The area of each square is 𝑎2 and of each hexagon 3 3/2 𝑎2

before the deformation. Then the final to initial surface areas of the

tetrakaidecahedron are given:

 𝐿0 = 36𝑎 (1-21)

𝐿 = 6𝑎 1 + 𝑆11 + 2(1 + 𝑆11

2 + 2𝑆33
2)1/2

(1-22)

𝐿

𝐿0
=

1 + 𝑆11 + 2(1 + 𝑆11
2 + 2𝑆33

2)1/2

6
 (1-23)

22

The calculations about other deformations can also be done by the same process,

with the deformation matrices appropriately changed.

1.5.4 Equivalent strain

A concept of the equivalent strain is necessary for the comparison of deformed

materials using various imposed stresses. The yield condition of a material may

generally be considered to be a function of stress and strain. When the yield

condition is assumed to be a function of only stress and to be designated by 𝑓 =

 𝜎 , this function 𝑓 is called the equivalent stress, where 𝜎 is taken to be equal to

the tensile yield stress in a tensile test. Corresponding to this, it is possible to define

a function of plastic strain called the equivalent strain [Saito et al., 1972]. It is

generally considered that the results from the different tests are consistent when

they are compared at the same equivalent strain. Equivalent strain can be defined by

𝑆0 = 6𝑎2 + 8 3 3/2 𝑎2 = 6𝑎2(1 + 2 3)

(1-24)

𝑆 = 2𝑎2 𝑆11 + 3 𝑆11(1 + 2𝑆33
2)1/2 + (𝑆11

2 + 2𝑆33
2)1/2

+ 𝑆33 2(1 + 2𝑆11
2) 1/2

(1-25)

𝑆

𝑆0

=
𝑆11 + 3 𝑆11 (1 + 2𝑆33

2)1/2 + (𝑆11
2 + 2𝑆33

2)1/2 + 𝑆33 2(1 + 2𝑆11
2) 1/2

3(1 + 2 3)
 (1-26)

23

the following equation:

where ε11, ε22 and ε33 are normal components and γ
13

, γ
12

 and γ
23

 are shear

components of strain (the tangents of the shear angles) [Zhu et al., 2007].

For plane strain deformation, the diagonal matrix components S11, S22, and S33

represent the principal distortions; the ratios of the final to initial lengths of unit

vectors along the principal axes. And true strains are given by ε11 = ln S11 ,

ε22 = ln S22 and ε33 = ln S33 . Thus equivalent strain of homogeneous plane

strain compression can be derived as ε = (2/ 3)ε11.

However, for simple shear, there is some controversy about how shear strains

should be converted to equivalent strains. So, the shear strain (γ = S13) is used for

comparison.

1.5.5 The result of calculation

The calculations about the finial to the initial edge length ratio (L/L0) and surface

area ratio (S/S0) are repeated to see the effects of change in deformation degree and

in orientation of a tetrakaidecahedron grain. Equivalent strains and shear strains (in

case of simple shear) can be regarded as characteristics of distortion caused by each

deformation, where rotation matrix R is generated to orient the grain randomly. The

results of the final to initial edge length (L/L0) ratio are illustrated in Figure 1.5.

 ε =
2

3
 ε11

2 + ε22
2 + ε33

2 +
1

2
γ13

2 +
1

2
γ12

2 +
1

2
γ23

2
1/2

 1-27

24

Figure 1.5 : Calculation about changes in length for (a) plane strain deformation, (b)

axisymmetric tension, (c) axisymmetric compression and (d) simple shear

deformation (Zhu et al., 2007).

In Figure 1.5, the results are plotted against the equivalent strain, but it should be

noted that the shear strain is a simple shear deformation. The dashed lines represent

the result for the basic orientation of the tetrakaidecahedron defined relative to the

coordinate system listed in. And the points are for the 99 other results of randomly

oriented grains.

The results for surface area (S/S0) are also illustrated in Figure 1.6.

25

Figure 1.6 : Calculation about changes in surface area for (a) plane strain

deformation, (b) axisymmetric tension, (c) axisymmetric compression and (d)

simple shear deformation (Zhu et al., 2007).

1.5.6 Improvement of model

In the calculations using the deformation matrices, the grains have been assumed to

be uniform shape and size. This kind of assumption can make the calculations

simple and easily fill the three dimensional space; cube or tetrakaidecahedron

shaped grains are used for those reasons. However, in a real material, there will be a

26

distribution in the grain size and various shapes of grains (Figure 1.7).

To make a more accurate grain model, new approaches should be considered and

they will be treated in this thesis.

Figure 1.7 : Optical microscopy images of the steel (0.21 wt % C, 0.51 wt % Mn

and 0.20 wt % Si) at room temperature. There is a distribution in the grain size and

various shapes of the grains. The light regions correspond to ferrite and the dark

regions to pearlite (Offerman et al., 2002).

27

Ⅱ. Method

In previous work [Zhu et al., 2007], the shape of a grain was represented as a

tetrakaidecahedron which can be defined by just six vectors parallel to the edges of

the polyhedron. The deformation is then implemented by operating the deformation

matrices on those vectors, allowing the resultant vectors of the deformed grain to be

deduced. The deformation effect is numerically calculated by observing changes in

the surface area (Sv) and edge length (Lv) of the grain using the initial vectors and

resultant vectors. Only one tetrakaidecahedron needs to be treated in this way,

because all grains are of same shape and size. However this simplification may not

work when the grain structure is not uniform like a real grain structure. The edges in

the grain cannot be represented by six vectors any longer; each edge needs to be

treated separately, a process which is computationally tedious. A different approach

is therefore adopted to calculate SV and LV in non-uniform grain structure.

In the new method, a uniform array of identical tetrakaidecahedra, Figure 2.1, is

perturbed at all the vertices using a stochastic process to generate a non-uniform

grain structure; vertices in the uniform grain are transformed to random direction by

random degree. This process can simply alter the uniform shaped grains into non-

uniform shaped grains. However, to keep our space full-filled with grains, the

transformation of vertices should be performed in concurrency with that of

28

neighboring grains. Each surface is shared with by two grains, each edge by three

and each vertex by four grains; that is, the right side vertex in a grain is the left side

vertex of the grain which is in the right. So, to handle vertices of one grain, the

changes in neighboring grains should be also considered.

Figure 2.1 : Array of eight identical tetrakaidecahedra which are uniform shape and

size.

2.1 Definition of uniform grain structure

Each grain is represented as a set of vertices not a set of edges in this method,

because demanded number of components is small; just 24 vertices are needed to

define a single tetrakaidecahedron, where 36 edges are needed. Thus first step of the

29

new calculation is the determination of vertex coordinates of the grain array, which

is still a uniform structure.

Figure 2.2 : A single tetrakaidecahedron. All 24 vertices are included in the six

squares.

Starting from a single tetrakaidecahedron grain, six square faces of the polyhedron

do not share any vertex, but they include all vertices (Figure 2.2). The vertices

which consist of eight hexagonal faces are already included in them. Briefly a

tetrakaidecahedron can be represented by defining its six square faces. But things

are different when considering arrays; just three faces need to be defined, because

the remaining three belong to neighboring grains and hence are defined later. This

situation can be explained more easily in a simplified example. In Figure 2.3,

squares are arranged in an array. To define a single square, it is necessary to define

30

four edges should be defined. However to define repeated squares, just two edges

are needed. In the case of square 1 in Figure 2.3, edges c and d define square 3 and

square 2 later, because edges c and d of square 1 are exactly edges a and b of square

3 and 2 respectively. In the same way, a tetrakaidecahedron in an array can be

defined by just three squares which represent half of the entire polyhedron.

1 2

3

Figure 2.3 : Simplified example of grain array in 2D. Each square in the Figure can

correspond to a tetrakaidecahedron grain in 3D.

Now the work to define a uniform grain structure is simplified to define repetitively

three squares for grains in an array. Consider a single tetrakaidecahedron grain of

edge length a; the distance between opposing square faces is designated as a size of

grain, 𝐿 = 2 2𝑎 in Figure 2.4(a). The orthogonal coordinates x, y and z axes are

defined normal to the square faces. The grain is then represented by three square

faces placed at the bottom, back and left of the polyhedron. Figure 2.4(b) is the

a

b d

c

31

sectional diagram of tetrakaidecahedron observed in an orthogonal position of each

square, in which the shape is an octagon with a regular square in the center. The

edge length of each dotted square in Figure 2.4(b) is the quarter of grain size,

𝐿𝑞 = 𝐿/4, and it is standard to determine the coordinates of square vertices. The

coordinates of 12 vertices of 3 squares are described in table 2.1. They represent just

relative positions in each tetrakaidecahedron grain, not absolute coordinates in the

whole space.

Square position Coordinate

Bottom (Lq , 2Lq , 0)

(x-y plane) (2Lq , Lq , 0)

 (2Lq , 3Lq , 0)

 (3Lq , 2Lq , 0)

Left (Lq , 0 , 2Lq)

(x-z plane) (2Lq , 0 , Lq)

 (2Lq , 0 , 3Lq)

 (3Lq , 0 , 2Lq)

Back (0 , Lq , 2Lq)

(y-z plane) (0 , 2Lq , Lq)

 (0 , 2Lq , 3Lq)

 (0 , 3Lq , 2Lq)

Table 2.1 : The relative positions of square vertices in a grain, where 𝐿q = 𝐿/4.

32

Figure 2.4 : (a) A single tetrakaidecahedron of edge length a. (b) The sectional

diagram of tetrakaidecahedron observed in orthogonal position of each square.

To obtain the absolute coordinates of the vertices, those of the starting positions in

each grain should be calculated in advance. The coordinates of the vertices are then

calculated simply by adding the relative positions of each vertex, as illustrated in

table 2.1, to the resultant starting coordinates. The starting coordinate of the

(𝑖, 𝑗, 𝑘)th grain represented as:

where, L is the size of the grain and i, j and k are the sequences of the grain in each

axis.

 (𝑖 ∗ 𝐿, 𝑗 ∗ 𝐿, 𝑘 ∗ 𝐿) (2-1)

33

The vertex coordinates of three squares can be acquired directly using the equations

in table 2.2. The remaining work to define uniform shapes of the grains is the

determination of the numbers of grains through the axes, and to calculate the

coordinates of the vertices for each grain repetitively. Since just three squares are

defined for one tetrakaidecahedron grain, the final grains in each axis will not be

defined completely. They do not have the next neighboring grains which can

generate their top, front and right square faces. For that reason, an extra row of

grains has to be considered for each axis.

Square position Coordinate

Bottom (i*L+Lq , j*L+2Lq , k*L)

(x-y plane) (i*L+2Lq , j*L+Lq , k*L)

 (i*L+2Lq , j*L+3Lq , k*L)

 (i*L+3Lq , j*L+2Lq , k*L)

Left (i*L+Lq , j*L , k*L+2Lq)

(x-z plane) (i*L+2Lq , j*L , k*L+Lq)

 (i*L+2Lq , j*L , k*L+3Lq)

 (i*L+3Lq , j*L , k*L+2Lq)

Back (i*L , j*L+Lq , k*L+2Lq)

(y-z plane) (i*L , j*L+2Lq , k*L+Lq)

 (i*L , j*L+2Lq , k*L+3Lq)

 (i*L , jL+3Lq , kL+2Lq)

Table 2.2 : The coordinates of square vertices of (𝑖, 𝑗, 𝑘)th grain, where 𝐿𝑞 = 𝐿/4

and i, j, and k is the sequence of the grain in array.

34

Notice that just half of vertices are known for each grain. The remainder must be

extracted from other grains at a later stage in the calculation. It is even possible to

calculate all the 24 vertices of six squares not just half of them. However that would

cause the duplication of definition, and all the defined vertices should be affected

simultaneously by deformation. That is the reason why we do not define all the

vertices for each grain.

Figure 2.5 : Section through a regular stack of uniform tetrakaidecahedra, where

grain a is one of the odd grains and grain b of the even grains.

35

2.2 The number of the defined grain, odd & even

grain

The number of grains which are defined is not equal to the number of grains which

exist in that structure. Additional grains exist at the crevice position of every eight

tetrakaidecahedra, which are located at the eight summit positions of cube. Figure

2.5 is a section through a regular stack of uniform tetrakaidecahedra. a grains are

defined ones and can be observed in the surface of total structure, while b grains are

not defined but obviously exist among a grains. a grains are referred to as odd

grains, b grains are even grains in this study. Those two kinds of grains will not be

in the same layer.

Approximately, double the number of grains will be generated than intended. If we

define vertices for 𝐼 × 𝐽 × 𝐾 grains, which are odd grains, 𝐼 − 1 × 𝐽 − 1 ×

(𝐾 − 1) additional even grains will be generated. The volume considered in this

study has the dimensions 20𝐿 × 20𝐿 × 15𝐿 with 𝐿 = 5𝜇𝑚, enclosing a total of

12,000 grains. For this uniform array of grains, the edges are henceforth referred to

as the primary grain edges.

36

2.3 Conversion of uniform grain structure into non-

uniform array

A non-uniform but space-filling grain structure is then generated by a topological

transformation in which the vertices are randomly perturbed to new positions. The

resulting non-uniform grain still has 24 vertices, a maximum of 44 triangular

surfaces and a maximum 66 edges of various lengths; 66 vectors are therefore

needed to describe each grain. The additional edges are henceforth referred to as the

secondary grain edges and connect just two grains; they occur in real grain structure,

appearing as protrusions in two dimensional sections (Figure 2.6). Note that the

geometry of each planar surface can be any polygon, not simply triangular.

There are two topological transformations to achieve the non-uniform grain

structure. The first is designated the randomized vertex method (RVM), in which the

vertex position 𝑟0 is transformed into the new location 𝑟 according to

where 𝜔 ≤ 1 is a weight which defines the extent of the fluctuation, and

0 < 𝜉 < 1 is a random number.

Figure 2.6 shows a grain generated using the random perturbations and the

corresponding set of eight grains similarly generated. A comparison them with

Figures 2.1 and 2.2 may help understand the process.

 𝑟 = 𝑟0 +
𝜔

4
 𝜉 − 0.5 𝐿 (2-2)

37

Figure 2.6 : (a) A non-uniform grain generated using RVM. Note that additional

secondary edges on the faces of grain, some of which are identified by the arrows.

(b) A space-filling of eight non-uniform grains similarly generated. Notice that each

grain is different.

The second topological transformation is the rescale randomized vertex method

(RRVM) in which the vertex is modified as follows:

where 𝑟𝑟𝑒𝑓 is a reference point inside the grain, 0 ≤ ς ≤ 1 is a weight factor

which can be defined in a number of ways. For the present purpose, four cases are

considered:

 𝑟 − 𝑟𝑟𝑒𝑓 = 𝜍 𝑟0 − 𝑟𝑟𝑒𝑓 (2-3)

 𝐶𝑎𝑠𝑒 1 ∶ 𝜍 = 𝜉

𝐶𝑎𝑠𝑒 2 ∶ 𝜍 = 𝜉

𝐶𝑎𝑠𝑒 3 ∶ 𝜍 = 𝜉2.5

𝐶𝑎𝑠𝑒 4 ∶ 𝜍 = exp{−2(𝜉 − 1)2}

(2-4)

38

In this, ς is a fixed number which is taken from ξ where the latter is equivalent to

white noise which is evenly distributed between 0 and 1.

2.4 Extracting vertex coordinates

All the vertices in uniform grain structures were defined and then perturbed into the

positions of non-uniform grain structures in previous step. Then the vertices

coordinates are required to calculate the surface area and edge length of a grain.

Every grain was regarded as a tetrakaidecahedron shape and then changed into non-

uniform shapes, so all the grains (even random-shaped grains) have 24 vertices as a

tetrakaidecahedron. Therefore the work to do in this step is to find out those 24

vertices for each grain. Odd grains and even grains will be handled separately, e.g.,

(0, 0, 0)th odd grain and (0, 0, 0)th even grain are distinguished. Notice that all the

vertices have already been defined in a previous step, and they will be just extracted

in this step.

It is relatively easy to obtain the coordinates of odd grains, because the 12 vertices

for each odd grain were already known. Those 12 vertices represent the 3 squares

which are in the bottom, left and back of a tetrakaidecahedron shape. The remaining

12 vertices for the top, right and front squares can be obtained from neighboring

grains (Table 2.3).

39

Square position Neighboring Grain

Top

(x-y plane)

Bottom square of

(i , j , k+1)th grain

Right

(x-z plane)

Left square of

(i, j+1, k)th grain

Front

(y-z plane)

Rear square of

(i+1, j, k)th grain

Table 2.3 : The relationship between not defined square faces and faces of

neighboring grains.

Every even grain is surrounded by eight neighboring odd grains, so all the vertices

of an even grain are also the vertices of those eight odd grains. Therefore, to obtain

the vertices coordinates of an even grain, the 8 odd grains and their vertices should

be considered. Actually just 7 of 8 neighboring odd grains are related in this

extracting process, because not all vertices were defined for each grain. The number

of vertices which are shared with neighboring odd grains is listed in table 2.4. As

mentioned above, (i, j, k)th odd grain is different with (i, j, k)th even grain.

40

Odd grain position Number of vertices affected

(i, j, k)th 0

(i+1, j, k)th 2

(i, j+1, k)th 2

(i+1, j+1, k)th 4

(i, j, k+1)th 2

(i+1, j, k+1)th 4

(i, j+1, k)th 4

(i+1, j+1, k+1)th 6

Table 2.4 : The vertices of (i, j, k)th even grain, all of them are from the

neighboring odd grains.

2.5 Deformation

Once the grain structure is defined and its vertex coordinates of it are extracted, it is

possible to homogeneously deform it by applying an appropriate mathematical

deformation matrix S to each vertex u to generate the result deformed vertex v:

It is the same method which is described in the previous study [Zhu et al., 2007],

𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33

𝑢1

𝑢2

𝑢3

 =

𝑣1

𝑣2

𝑣3

 (2-2)

41

but rotation matrix R is not necessary because the grain shape is not uniform any

more. The matrix representations of a variety of common deformations are listed in

table 2.5, and it is emphasized that this method can be used for arbitrary

homogeneous deformations. The details are not repeated here.

Type S11 S12 S13 S21 S22 S23 S31 S32 S33

Plain strain

compression
≥1 0 0 0 1 0 0 0 1/ S11

Axisymmetric

compression
1/(S33)

1/2
 0 0 0 1/(S33)

1/2
 0 0 0 ≤1

Axisymmetric

tension
≥1 0 0 0 1/(S11)

1/2
 0 0 0 1/(S11)

1/2

Simple shear 1 0 +ve 0 1 0 0 0 1

Table 2.5 : volume preserving deformations (the convention used is that S11 > S22 >

S33)

42

Ⅲ. Results

A total of 12,000 grains within a block 20𝐿 × 20𝐿 × 15𝐿 with 𝐿 = 5 𝜇m were

defined for the calculations presented here. Initially the shapes of those grains are

all identical and space-filling, and then converted into a non-uniform structure by

randomly perturbing the vertices. The resulting non-uniform but space-filling grains

are homogeneously deformed by applying a deformation matrix to their vertices.

Then the changes in the edge length and surface area are calculated mathematically

to derive 𝐿𝑉 and 𝑆𝑉 . To compare them with the result of previous study [Zhu et al.,

2007] is the main purpose of this study. All of these processes have been progressed

by compiling a computer program and the results will be described in this step.

3.1 Non-uniform grain generation

In the randomized vertex method (RVM, equation 2-2), the vertices of

tetrakaidecahedroa grains are transformed into random positions to generate non-

uniform grain. So the grain size distribution is affected by the transformation.

Figure 3.1 shows how the distribution of grains changes from a uniform grain

43

volume of 62.5 𝜇m3 as a function of the weight 𝜔 . The method clearly is

successful in producing a three-dimensional distribution of grain sizes.

Figure 3.1 : Grain volume distribution using the RVM and a variety of weights. The

total number of grains is 12,000. The number plotted on the vertical axis represents

the value for 𝑥 ± 0.5 𝜇m3.

0

1000

2000

3000

4000

5000

6000

50 55 60 65 70 75

N
u

m
b

e
r

o
f
G

ra
in

s

Grain volume / 𝜇m3

0.1

0.3

0.5

44

The grain volume distribution after the rescale randomized vertex method (RRVM,

equation 2-3) transformation of the four cases in equation 2-4 is also presented in

Figure 3.2. It can be seen that some values are more probable than others. Eight

kinds of non-uniform grains are defined, which are of cases 1~4 in RRVM with 𝜔

at 0 and 0.5 in RVM.

Figure 3.2 : Grain volume distribution using RRVM topological transformation for

the four cases corresponding to equation 2-4 with 0 ≤ ξ ≤ 1. The total number of

grains is 12,000. The number plotted on the vertical axis represents the value for

𝑥 ± 3 𝜇m3.

0

200

400

600

800

1000

1200

1400

0 30 60 90 120

N
u

m
b

e
r

o
f

g
ra

in
s

Grain volume / 𝜇m3

case 1

case 2

case 3

case 4

45

Figure 3.3 illustrates two-dimensional sections which cut by x = 57 𝜇m plane

through the defined 12,000 grains. Figure 3.3(a) is the section cutting through

uniform tetrakaidecahedron grains. Two different size squares form the grain

boundary, and they are designated as even and odd grains in this study. Figure 3.3(b)

illustrates the same section after RVM (equation 2-2) with the 𝜔 = 0.5. It can be

seen that the grain boundaries are distorted away from squares in Figure 3.3(a) and

much differences of grain size occur. Figure 3.3(c) gives the section after RRVM

deformation by case 2. The geometry of grain boundary as well as grain size is

completely different from those in Figure 3.3(a). Both of Figure 3.3(b) and Figure

3.3(c) show that non-uniform but space-filling grains have successfully been

generated.

46

Figure 3.3 : (a) Section through a regular stack of uniform tetrakaidecahedra with

𝐿 = 5 𝜇m. (b) Same sectional after RVM with 𝜔 = 0.5, (c) after RRVM Case 2

transformation added.

(c)

(b)

(a)

47

3.2 Applying various deformations

Once non-uniform grain structures are successfully defined, various deformation

effects are applied to them. Then the changes in grain surface area and edge length

are compared with the results for uniform grain [Zhu et al., 2007]. Deformations are

applied in four cases, which are plane strain compression, axisymmetric

compression, axisymmetric tension and simple shear.

Figure 3.4 shows the effects of plane strain compression. 𝑆𝑉/𝑆𝑉0 represents the

ratio of surface area per unit volume normalized by the quantity of undeformed

grain, where 𝐿𝑉/𝐿𝑉0 is the corresponding ratio for edge length including both

primary and secondary edges. The curve in each figure represents the analytical

outcome for a uniform grain structure, while the other small points are the outcomes

for eight non-uniform grain structures. The individual cases are not distinguished,

because they produced similar results. It is evident that the different brought about

by introducing a non-uniform grain structure on the grain surface and edge length

ratio is not significant.

Figures 3.5 and 3.6 show the effects of axisymmetric compression and

axisymmetric tension respectively. They also do not make much difference between

the analytical solution for a uniform grain structure and the results for eight non-

uniform grains. Only in the 𝐿𝑉/𝐿𝑉0 of axisymmetric compression deformation, the

outcomes of non-uniform grains are less than expected from uniform grains. This is

48

because the non-uniform grains are less isotropic. Edges can contract as well as

expand during compression depending on their orientation relative to the principal

axes of the deformation. The effect of orientation is smaller for a regular

tetrakaidecahedron than for an object with large anisotropy. Figure 3.7 is the result

for simple shear deformation, with the horizontal axes both plotted in terms of shear

strain instead of equivalent strain.

49

Figure 3.4 : Calculation results for plane strain compression deformation, 𝑆𝑉/𝑆𝑉0

and 𝐿𝑉/𝐿𝑉0 respectively. The curve in each graph is the analytical solution for a

uniform set of tetrakaidecahedra, where the other points are from the calculations

from the non-uniform grain structures.

50

Figure 3.5 : Results from axisymmetric compression deformation. It can be seen

that the ratio 𝐿𝑉/𝐿𝑉0 is smaller than the analytical solution from uniform grain.

51

Figure 3.6 : Results from axisymmetric tension deformation. Not much difference

with the result from uniform grains.

52

Figure 3.7 : Calculations for simple shear deformation. The results are illustrated

with the x-axis in terms of shear stress, while other deformations are equivalent

strain.

53

3.3 Analysis of the results

The reason why the results do not change much when the grain structure becomes

non-uniform is that the surface area per unit volume (𝑆𝑉0) and primary edge length

per unit volume (𝐿𝑉0
𝑃) do not change dramatically when there is a distribution of

grain sizes and shapes within the reasonable limits considered in this study.

It is worth discussing the physical significance of the secondary edge length per unit

volume (𝐿𝑉0
𝑆). In this model, the faces of grain are geometrically constrained to be

flat, for both uniform and non-uniform grain structures. In order to accommodate

non-uniformity whilst at the same time fill space, it is necessary during the

topological transformations to introduce these secondary edges. As pointed out

earlier, these can be real, but many of them could be regarded simply as introducing

curvature in the grain faces of non-uniform structures. This would drive grain

growth.

54

Ⅳ. Summary and future work

The effects of various plastic deformations on the grain structure are important

factors in the mathematical modeling of phase transformations and recrystallisation

processes for the design of a particular metallic material. The effects can be

quantitatively expressed as the change in the amount of grain boundary area per unit

volume (𝑆𝑉) and grain edge length per unit volume (𝐿𝑉). To calculate those

parameters for non-uniform grains was the purpose of this study, which is the

extension of a previous study for uniform grains [Zhu et al., 2007].

The method for generating non-uniform grain structure and how to handle the

generated grains has been demonstrated here. All the vertices of uniform

tetrakaidecahedra are perturbed in random directions and degrees to be converted

into the non-uniform structure; some mathematical equations are considered for this

process. Then several deformations, such as plane strain compression, axisymmetric

compression, axisymmetric tension and simple shear, are applied to the converted

non-uniform grains. 𝑆𝑉 and 𝐿𝑉 for each deformation are calculated by the same

method with the previous study [Zhu et al., 2007] but the results do not show big

differences with those for uniform grains. That means that the non-uniformity in the

grain structure does not sufficiently affect the change in grain size as a function of

55

deformation. Although no significant difference was obtained in present work, the

procedures to define and to handle the non-uniform objects can be used practically

in related works.

Non-uniform grain structure has been generated successfully from uniform grain

structure. However, the distributions of grain size and shape are totally randomized

and difficult to control using the method developed. In future work, the size and

shape of grain will be determined intentionally instead of a randomized procedure.

Any grain structure will be able to be defined and applied by deformations for

particular purpose. For example, plate grain structure in martensite can be defined

and its changes would be observed as deformations are applied. Advances in this

kind of model might reduce the resources needed to design particular materials.

56

References

Annelie, E. : Application of mathematical modeling to hot-rolling and controlled

cooling of wire rod and bars, ISIJ International, Vol. 32, pp. 440-449, 1992

Bate, P. and Hutchinson, W. B. : Grain boundary area and deformation, Scripta

Materialia, Vol. 52, pp. 199-203, 2005

Bhadeshia, H. K. D. H. : „Worked Examples in the Geometry of Crystals‟, The

Institute of Materials, London, Second edition, 2001

Bhadeshia, H. K. D. H. and Honeycombe R. W. K. : Steels - Microstructure and

Properties, Butterworth-Heinemann, Third edition, 2006

Bhadeshia, H. K. D. H. and Chae, J. Y. : MAP_STEEL_TOPOLOGY,

http://www.msm.cam.ac.uk/map/steel/programs/topology.html.

Black, M. P., Higginson, R. L. and Sellars, C. M. : Effect of strain path on

recrystallisation kinetics during hot rolling of Al-Mn, Materials Science and

Technology, Vol. 17, pp. 1055-1060, 1970

Callister, W. D. : Materials science and engineering - An introduction, John Wiley &

Sons, Seventh edition, 2006

Cahn, J. W. : The kinetics of grain boundary nucleated reactions. Acta Metallurgica,

Vol. 4, pp. 449-459, 1956

Czinege, I. and Reti, T. : Determination of local deformation in cold formed

products by a measurement of the geometric characteristics of the crystallites, 18
th

57

International Machine Tool Design and Research Conference, Vol. 1, pp 159-163,

1977

Denis, S., Farias, D. and Simon, A. : Mathematical model coupling phase

transformations and temperature evolutions in steels, ISIJ International, Vol. 32, pp.

316-325, 1992

Gil-Sevillano, J., van Houtte, P. and Aernoudt, E. : Progress in Material Science,

Vol. 27, pp. 69-314, 1980

Jones, S. and Bhadeshia, H. K. D. H. : Kinetics of the simultaneous decomposition

of austenite into several transformation products, Acta Materialia, Vol. 45, pp.

2911-2920, 1997

Knustad, O., McQueen, H. J., Ryum, N. and Solberg, J. K. : Polarized light

observation of grain extension and subgrain formation in aluminium deformed at

400 ℃ to very high strains, Practical Metallography, Vol. 22, pp. 215, 1985

Kumar, A., McCulloch, C., Hawbolt, T. B. and Samarasekera, I. V. : Modelling

thermal and microstructural evolution on runout table of hot strip mill, Materials

Science and Technology, Vol. 7, pp. 360-368, 1991

Lee, K. J., Lee, J. K., Kang, K. B., and Kwon, O. : Mathematical modeling of

transformation in Nb microalloyed steels, ISIJ International, Vol. 32, pp. 326-334,

1992

Leeuwen, Y., Vooijs, S., Sietsma, J. and Van der Zwaag, S. : Effect of geometrical

assumptions in modeling solid state kinetics, Metallurgical & Materials

Transactions. A, 29A, pp. 2925-2931, 1998

58

Martin, G. and Tsang, S : Jour. Engng. Indust., Vol. 88, pp. 273, 1966

Matsuura, K. and Itoh, Y. : Estimation of three-dimensional grain size distribution in

polycrystalline material, Materials Transactions JIM, Vol. 32, pp. 1042-1047, 1991

Offerman, S. E., van Dijk, N. H., Sietsma, J., Grigull, S., Lauridsen, E. M.,

Margulies, L., Poulsen, H. F., Rekveldt, M. Th. and van der Zwaag, S. : Grain

nucleation and growth during phase transformations, SCIENCE, Vol. 298, 2002

Orsetti, P. L. and Sellars, C. M. : Acta Metallurgica, Vol. 45, pp. 137-148, 1997

Proksa, F. : Stahlbau, Vol. 28, pp. 29, 1959

Reed, R. C. and Bhadeshia, H. K. D. H. : Kinetics of reconstructive austenite to

ferrite transformation in low-alloy steels. Materials Science and Technology, Vol. 8,

pp. 421-435, 1992

Saito, K., Igaki, H. and Sugimoto, M. : A study on the equivalent stress and the

equivalent plastic strain rate, The Japan Society of Mechanical Engineers, Vol. 15,

pp. 33-39, 1972

Sellars, C. M. : Modelling microstructural development during hot-rolling.

Materials Science and Technology, Vol. 6, pp. 1072-1081, 1990

Sellars, C. M. : Modelling distribution of micro structure during hot-rolling of

stainless steel, Materials Science and Technology, Vol. 8, pp. 1090-1094, 1992

Sellars, C. M. : Basics of modeling for control of microstructure in

59

thermomechanical control processing, Ironmaking and Steelmaking, Vol. 22, pp.

459-464, 1995

Singh, S. B. , Bhadeshia, H. K. D. H. :Topology of grain deformation, Materials

Science and Technol., Vol. 15, pp. 832-834, 1998

Soto, Juan Ignacio : A general deformation matrix for three-dimensions,

Mathematical Geology, Vol. 29, pp. 93-130, 1997

Takayama, Y., Furushiro, N., Tozawa, T., Kato, H. and Hori, S. : A significant

method for estimation of the grain size of polycrystalline materials, Materials

Transactions JIM, Vol. 32, pp. 214-221, 1991

Umemoto, M., Ohtsuka, H. and Tamura, I. :Transformation to pearlite from work

hardened austenite, Trans. ISIJ, Vol. 23, pp. 775-784, 1983

Umemoto, M., Guo, Z. H. and Tamura, I. : Effect of cooling rate on grain size of

ferrite in a carbon steel, Materials Science and Technology, Vol. 3, pp. 249-255,

1987

Underwood, E.E.: „Quantitative stereology‟, Addison-Wesley Publication Company,

1970

Vatne, H. E., Furu, T., Orsund. R. and Nes, E. : Modelling recrystallization after hot

deformation of aluminium, Acta Metallurgica., Vol. 44, pp. 4473-4473, 1980

Zhu, Q. , Sellars, C. M. and Bhadeshia, H. K. D. H. : Quantitave metallography of

deformed grains, Material Science and Technology, Vol. 23, pp. 757-766, 2007

60

Appendix A

This is the documentation for the program in this work.

Program

MAP_TOPOLOGY_NONUNIFORMGRAIN_DEFORMATION

1. Provenance

2. Purpose

3. Specification

4. Description

5. References

6. Parameter

7. Error indicators

8. Accuracy estimate

9. Further comments

10. Example

11. Auxiliary routines

12. Keywords

61

1. Provenance of Source code

Jae Yong Chae, Rongshan Qin and H. K. D. H. Bhadeshia

Graduate Institute of Ferrous Technology (GIFT)

Pohang University of Science and Technology

Pohang, Kyungbuk, Republic of Korea

exfeel@postech.ac.kr

2. Purpose

To generate the non-uniform grain structure and to calculate the change in grain

surface area per unit volume and grain edge length per unit volume as a function of

various deformations.

3. Specification

Language: C++

Product form: Executables and complete source codes

4. Description

Non-uniform grain structures are generated in the form of vertex coordinates. The

degree of distribution in grain sizes can be regulated at eight different levels. The

generated grains are then deformed using one of the five deformation methods. The

mailto:exfeel@postech.ac.kr

62

five deformation types that this program can support are as follows:

 Plane strain deformation

 Axisymmetric tension

 Axisymmetric compression

 Simple shear

 Any user-inputted deformation which is homogeneous

The degree of distribution and the deformation type are selected in compile level,

and then the program runs a corresponding routine. The final to initial values of

grain surface area per unit volume and grain edge length per unit volume are

calculated and printed out for each case.

The program runs best on Microsoft Visual C++ compiler.

All the files are compressed into a file called

Visual_metal.tar

The .tar file contains the following files:

Random.h

Tetrakaidecahedra.h

Header files for variables

Main.cpp

Main module. Degree of the distribution in grain sizes,

deformation type, and other values needed are selected

63

here.

Random.cpp Module to generate a random value.

Tetrakaidecahedra.cpp Generate, deform and print out all data.

*.dat

Output files which contain the calculation results. File

names are determined by the deformation type and grain

generating degree.

Tetra100.dat

Output file which contains the vertex coordinates of non-

uniform grains

Visualmetal.exe Executive file

5. Reference

Zhu, Q., Sellars, C. M. and Bhadeshia, H. K. D. H. : Quantitative metallography of

deformed grains, Material Science and Technology, Vol. 23 (2007) pp. 757-766

Jae-Yong, C., Rongshan, Q. and Bhadeshia, H. K. D. H. : Topology of the

deformation of a non-uniform grain structure, submitted to Material Science and

Technology.

64

6. Parameters

Input parameters

The input variables are determined before compile.

caseNumber : weight in RRVM

deformCase : deformation mode

Output parameters

Vertex coordinates are listed in Tetra100.dat. Array of three numbers which

represent x, y and z respectively are repeated.

The calculation results are printed in other *.dat files. The format of each file is:

strain theoryEdge edgeRatio 2ndaryEdge primaryEdge

theorySurface areaRatio

7. Error Indicators

None.

8. Accuracy

65

No information.

9. Further Comments

User interface will be improved later.

10. Example

10.1 Set caseNumber and deformCase in main.cpp. Case 1 in RRVM and plane

strain deformation are selected here.

 int caseNumber= 1;

 int deformCase = 1;

 /* DeformCase:

 1. Plane deformation

 2. Axisymmetric tension

 3. Axisymmetric Compression

 4. Simple shear

 5. Complex deformation

 */

10.2 Compile

10.3 Run “VisualMetal.exe”

10.4 “tetra100.dat” and “plainDeformCase1.dat” are generated.

Tetra100.dat
12.5 4 4 3 1200 5 2.5 3.75 0 1.25 2.5 0 2.5 1.25 0 3.75 2.5 0 2.5 0 1.25 1.25 0 2.5 2.5
0 3.75 3.75 0 2.5 0 3.75 2.5 0 2.5 3.75 0 1.25 2.5 0 2.5 1.25 2.5 3.75 5 1.25 2.5 5 2.5
1.25 5 3.75 2.5 5 2.5 0 6.25 1.25 0 7.5 2.5 0 8.75 3.75 0 7.5 0 3.75 7.5 0 2.5 8.75 0
1.25 7.5 0 2.5 6.25 2.5 3.75 10 1.25 2.5 10 2.5 1.25 10 3.75 2.5 10 2.5 0 11.25 1.25 0
12.5 2.5 0 13.75 3.75 0 12.5 0 3.75 12.5 0 2.5 13.75 0 1.25 12.5 0 2.5 11.25 2.5 3.75
15 1.25 2.5 15 2.5 1.25 15 3.75 2.5 …

PlainDeformCase1.dat

66

strain theoryEdge edgeRatio 2ndaryEdge primaryEdge theorySurface areaRatio
0 1 1 582866 264741 1 1
0.800377 1.28174 1.24217 727004 325869 1.29131 1.25315
1.26857 1.73241 1.65835 974892 430739 1.75855 1.68068
1.60075 2.21275 2.11114 1.24504e+006 544380 2.25745 2.14383
1.85842 2.70229 2.57736 1.52339e+006 661202 2.76686 2.61987
2.06895 3.19578 3.0501 1.80571e+006 779569 3.28105 3.10206
2.24694 3.69132 3.52656 2.09032e+006 898826 3.79782 3.58769
2.40113 4.18807 4.0054 2.37636e+006 1.01865e+006 4.31615 4.07546
2.53714 4.68558 4.48586 2.66338e+006 1.13887e+006 4.83549 4.56464
2.6588 5.18362 4.96749 2.9511e+006 1.25938e+006 5.35552 5.05483
2.76885 5.68204 5.44999 3.23934e+006 1.38011e+006 5.87605 5.54576
2.86932 6.18072 5.93316 3.52798e+006 1.50101e+006 6.39696 6.03724
fluct=0 Lvo= 847607 Svo= 508057 V= 701889
0 1 1 585359 264900 1 1
0.800377 1.28174 1.24093 729040 326076 1.29131 1.25307
1.26857 1.73241 1.6561 977031 431081 1.75855 1.68045
1.60075 2.21275 2.108 1.24743e+006 544910 2.25745 2.14352
1.85842 2.70229 2.57339 1.5261e+006 661953 2.76686 2.61953
2.06895 3.19578 3.04535 1.80877e+006 780566 3.28105 3.10171
2.24694 3.69132 3.52107 2.09374e+006 900086 3.79782 3.58736
2.40113 4.18807 3.99919 2.38016e+006 1.02019e+006 4.31615 4.07515
2.53714 4.68558 4.47895 2.66756e+006 1.1407e+006 4.83549 4.56438
2.6588 5.18362 4.95988 2.95568e+006 1.26151e+006 5.35552 5.05462
2.76885 5.68204 5.4417 3.24431e+006 1.38255e+006 5.87605 5.54561
2.86932 6.18072 5.92421 3.53335e+006 1.50376e+006 6.39696 6.03715
fluct=0.5 Lvo= 850260 Svo= 508406 V= 701862

11. Auxiliary Routines

None.

12. Keywords

topology, metallography, deformation, non-uniform grain

67

Appendix B

Several source codes are presented.

68

[Main.cpp]

#include "Tetrakaidecahedra.h"
#include <fstream>
#include <math.h>
#include <iostream>
using namespace std;

int main()
{
 int caseNumber=1;
 int deformCase = 1;
 /* DeformCase:
 1. Plain deformation
 2. Axisymmetric tension
 3. Axisymmetric Compression
 4. Simple shear
 5. Complex deformation
 */
 ofstream file;

 file.open("plainDeformCase1.dat");
 //file.open("axisymmetricTensionDeformCase1.d
at");
 //file.open("axisymmetricCompressionDeformCa
se1.dat");
 //file.open("simpleShearCase4.dat");
 //file.open("omplexDeformation-ps13-16.dat");
 double s13=16.0;
 int ix=2, iy=2,iz=2;
 double aL, aL0, aSv, aSv0, aLP, aLS, aV0;
 double epsplain, edgtheory, surftheory, dbi;
 Tetrakaidecahedra tetra(4, 4, 3, 5);
 //printf("para Sv/Sv0 L/L0
aSv/aSv0 aL/aL0");
 //printf("para aSv/aSv0 aL/aL0");
 file<<"strain"<<" "<<"theoryEdge"<<"
"<<"edgeRatio"
 <<" "<<"2ndaryEdge"<<"
"<<"primaryEdge"
 <<" "<<"theorySurface"<<"
"<<"areaRatio"<<"\n";

 for(double fl=0.; fl<0.51; fl+=0.5)
 {
 printf("\n\nflunctuation = %f\n", fl);
 //for(int i=1; i<2; i++){
 for(int i=0; i<16; i++){
 tetra.calcVtxCoord();
 tetra.ramdomizeVtx(fl);
 tetra.zoomAllRandomTetra(caseNumber);
 //tetra.outputVertex("tetra100.dat");
 //exit(1);
 dbi = i*1.0;

 if(deformCase == 1)
 tetra.setPlainDeformMatrix(dbi);

 if(deformCase == 2)

 tetra.setAxisymmetricTensionDeformMatrix(dbi);
 if(deformCase == 3)

 tetra.setAxisymmetricCompressionDeformMatrix
(dbi);
 if(deformCase == 4)
 tetra.setSimpleShearDeformMatrix(dbi);

 if(deformCase == 5)

 tetra.setDeformationMatrix(dbi,0,s13/dbi,0,1,0,0,
0,dbi);
 tetra.deformVtx();

 if((i == 1 && deformCase !=4) || (i == 0 &&
deformCase == 4)){
 aL0 = tetra.getEdgeOfAllRandomTetra();
 aSv0 =
tetra.getSurfaceAreaOfAllRandomTetra();
 aV0 = tetra.getVolumeOfAllRandomTetra();
 }

 if(deformCase == 1){ // plain strain
 epsplain = 2.0*log(dbi)/sqrt(3.0);

 edgtheory=(1+dbi+2*sqrt(1.0+dbi*dbi+2/dbi/
dbi))/6.0;

 surftheory=(dbi+3*(dbi*sqrt(1.0+2.0/dbi/dbi)
+sqrt(dbi*dbi

 +2.0/dbi/dbi))+sqrt(2.0*(1+dbi*dbi))/dbi)/(3*
(2.0*sqrt(3.0)+1.0));
 }
 if(deformCase == 2){// axisymetric tension
 epsplain = log(dbi);

 edgtheory=(dbi+1.0/dbi+2.0*sqrt(dbi*dbi+3.0/
dbi))/6.0;

 surftheory=(sqrt(3*dbi)+sqrt(dbi+2.0/dbi/dbi)
+1.0/3.0+sqrt(2*dbi
 +2/dbi/dbi)/3.0)/(2*sqrt(3.0)+1.0);
 }
 if(deformCase == 3){// axisymetric
compression
 epsplain = sqrt(1.5)*log(dbi);

 edgtheory=(sqrt(dbi)+sqrt(2*dbi*dbi+2/dbi))/
3.0;

 surftheory=(sqrt(8.0*dbi+4.0/dbi/dbi)+(2*sqrt
(dbi)+1.0/dbi)/3.0)/(2*sqrt(3.0)+1.0);
 }
 if(deformCase == 4){// simple shear

69

 epsplain = dbi;
 edgtheory=(1+sqrt(1+dbi*dbi/2.0-
dbi/sqrt(2.0))+sqrt(1+dbi*dbi/2.0+dbi/sqrt(2.0)
))/3.0;

 surftheory=(2+4*sqrt(1+dbi*dbi/4)+12*sqrt(3.
0/4.0)
 +6*sqrt(3.0/4.0+dbi*dbi/2+dbi/sqrt(2.))
 +2*(sqrt(3+2*dbi*dbi-
4*dbi/sqrt(2.0))+sqrt(3.0/4.0+dbi*dbi/2
 -dbi/sqrt(2.0))))/(2*sqrt(3.0)+1.0)/6.0;
 }
 if(deformCase == 5)
 epsplain = 2.0*log(dbi)/sqrt(3.0);
 aL = tetra.getEdgeOfAllRandomTetra();
 aLP =
tetra.getPrimaryEdgeOfAllRandomTetra();
 aLS =
tetra.getSecondaryEdgeOfAllRandomTetra();
 aSv =
tetra.getSurfaceAreaOfAllRandomTetra();
 //tetra.sortVolumeCategary();

 file<<(float)epsplain<<"
"<<(float)edgtheory<<" "<<(float)aL/aL0
 <<" "<<(float)aLS<<" "<<(float)aLP
 <<" "<<(float)surftheory<<"
"<<(float)aSv/aSv0<<"\n";
 //file<<(float)epsplain<<"
"<<(float)aL/aL0<<" "<<(float)aSv/aSv0<<"\n";
 //file<<i<<"\n";
 }
 file<<"fluct="<<fl<<" "<<"Lvo="<<"
"<<(float)aL0<<" "<<"Svo="<<"
"<<(float)aSv0
 <<" "<<"V="<<" "<<(float)aV0
 <<"\n";
 }
 file.close();
 return 1;
}

[Random.cpp]

#include "Random.h"

void Random::setSeed(int seed)
{
 int i, ii, j, jj, k, l, m, me;
 double s, t;
 me = seed;
 i=(me + 12)%178 + 1;
 j=(me + 34)%178 + 1;
 k=(me + 56)%178 + 1;

 l=(me + 78)%168 + 1;
 ir=97;
 jr=33;
 for(ii=1; ii<=97; ii++){
 s=0.0;
 t=0.5;
 for(jj=1; jj<=24; jj++){
 m=(((i*j)%179)*k)%179;
 i=j;
 j=k;
 k=m;
 l=(53*l+1)%169;
 if((l*m)%64 >= 32)
 s=s+t;
 t=0.5*t;
 }
 uni[ii-1]=s;
 }
 c = 362436./16777216.;
 cd= 7654321./16777216.;
 cm=16777213./16777216.;
 uni[97]=cd;
 uni[98]=cm;
 uni[99]=c;
 uni[100]=double(ir);
 uni[101]=double(jr);
};
double Random::getValue()
{
 cd=uni[97];
 cm=uni[98];
 c=uni[99];
 ir=int(uni[100]);
 jr=int(uni[101]);
 duni=uni[ir]-uni[jr];
 if(duni < 0.)
 duni=duni+1.;
 uni[ir]=duni;
 ir=ir-1;
 if(ir == -1)
 ir=96;
 jr=jr-1;
 if(jr == -1)
 jr=96;
 c=c-cd;
 if(c < 0.)
 c=c+cm;
 duni=duni-c;
 if(duni < 0.)
 duni=duni+1.;
 uni[97]=cd;
 uni[98]=cm;
 uni[99]=c;
 uni[100]=double(ir);
 uni[101]=double(jr);
 return duni;
};
#endif //RANDOM_CPP

70

[Tetrakaidecahedra.cpp]

#ifndef TETRAKAIDECAHEDRA_CPP
#define TETRAKAIDECAHEDRA_CPP

#include "Tetrakaidecahedra.h"

Tetrakaidecahedra::Tetrakaidecahedra(int
numberOfGrainX, int numberOfGrainY, int
numberOfGrainZ, double grainSize)
:ngx(numberOfGrainX), ngy(numberOfGrainY),
ngz(numberOfGrainZ), gs(grainSize)
{
 if(gs < 1.0E-10){
 printf("grain size is too small, mission
aborted\n");
 exit(1);
 }
 hgs = gs/2.0;
 qgs = gs/4.0;
 ngt = 2*ngx*ngy*ngz;
 //ngt =
(((ngx+1)/2)*((ngy+1)/2)*((ngz+1)/2)+(ngx/2
)*(ngy/2)*(ngz/2));
 dbacurate = 1.0E-9;
 if(ngt == 0){
 printf("Not available for ordering zero
number of tetrakaidecahedra, mission aborted\n");
 exit(1);
 }
 xtg = ngx+1; ytg = ngy+1; ztg = ngz+1;
 //xtg = (ngx+1)/2+1; ytg = (ngy+1)/2+1; ztg =
(ngz+1)/2+1;
 nvt = xtg * ytg * ztg *12;

 vcx = new double[nvt];
 vcy = new double[nvt];
 vcz = new double[nvt];
 vtx = new double[72];
 sij = new double[9];
 if(vcx == NULL || vcy == NULL || vcz == NULL){
 printf("low memory, aborted\n");
 exit(1);
 }
 rdm.setSeed(4407);
 volfile.open("thisVolumeDistri0505.dat");
}

Tetrakaidecahedra::~Tetrakaidecahedra()
{
 if(vcx != NULL)
 delete [] vcx;
 if(vcy != NULL)
 delete [] vcy;
 if(vcz != NULL)
 delete [] vcz;
 delete [] vtx;

 delete [] sij;
}

void Tetrakaidecahedra::outputVertex(char*
filename){
 file.open(filename);
 double xm, ym, zm, tm;
 xm = hgs*(1 + ngx);
 ym = hgs*(1 + ngy);
 zm = hgs*(1 + ngz);
 if(xm>ym)
 tm=xm;
 else
 tm=ym;
 if(tm<zm)
 tm=zm;
 maxdim = (float)tm;
 //file<<maxdim<<" "<<ngx<<" "<<ngy<<"
"<<ngz<<" "<<nvt<<" "<<gs<<" ";
 for(int i=0; i<nvt; i++)
 file<<float(vcx[i])<<", "<<float(vcy[i])<<",
"<<float(vcz[i])<<"\n";
 file.close();
}

void
Tetrakaidecahedra::setDeformationMatrix(double
s11, double s12, double s13,
 double s21, double s22, double s23,
 double s31, double s32, double s33)
{
 sij[0]=s11; sij[1]=s12, sij[2]=s13;
 sij[3]=s21; sij[4]=s22, sij[5]=s23;
 sij[6]=s31; sij[7]=s32, sij[8]=s33;
}

void
Tetrakaidecahedra::setPlainDeformMatrix(double
s11)
{
 if((float)s11 == 0.0){
 printf("s11=0 is not allowed\n"); exit(0);
 }
 setDeformationMatrix(s11, 0, 0, 0, 1, 0, 0, 0,
1.0/s11);
}

void
Tetrakaidecahedra::setAxisymmetricTensionDefor
mMatrix(double s11)
{
 if((float)s11 == 0.0){
 printf("s11=0 is not allowed\n"); exit(0);
 }
 setDeformationMatrix(s11, 0, 0, 0, 1.0/sqrt(s11),
0, 0, 0, 1.0/sqrt(s11));
}

void

71

Tetrakaidecahedra::setAxisymmetricCompression
DeformMatrix(double s33)
{
 if((float)s33 == 0.0){
 printf("s33=0 is not allowed\n"); exit(0);
 }
 setDeformationMatrix(1.0/sqrt(s33), 0, 0, 0,
1.0/sqrt(s33), 0, 0, 0, s33);
}

void
Tetrakaidecahedra::setSimpleShearDeformMatrix(
double s13)
{
 setDeformationMatrix(1, 0, s13, 0, 1, 0, 0, 0, 1);
}

void Tetrakaidecahedra::deformVtx()
{
 double temx, temy, temz;
 for(int i=0; i<nvt; i++){
 temx = sij[0] * vcx[i] + sij[1] * vcy[i] + sij[2] *
vcz[i];
 temy = sij[3] * vcx[i] + sij[4] * vcy[i] + sij[5] *
vcz[i];
 temz = sij[6] * vcx[i] + sij[7] * vcy[i] + sij[8] *
vcz[i];
 vcx[i] = temx;
 vcy[i] = temy;
 vcz[i] = temz;
 }
}

void Tetrakaidecahedra::calcVtxCoord()
{
 int vertt = 0; // just a parameter
 double x0, x1, x2, x3, y0, y1,y2,y3, z0, z1, z2, z3; //
just parameters

 for(int i=0; i<xtg; i++){
 x0 = i*gs; x1=x0+qgs; x2=x1+qgs; x3=x2+qgs;
 for(int j=0; j<ytg; j++){
 y0 = j*gs; y1=y0+qgs; y2=y1+qgs;
y3=y2+qgs;
 for(int k=0; k<ztg; k++){
 z0 = k*gs; z1=z0+qgs; z2=z1+qgs; z3
=z2+qgs;
 // z plane back
 // 0
 vcx[vertt] = x2; vcy[vertt] = y3; vcz[vertt] =
z0; vertt++;
 // 1
 vcx[vertt] = x1; vcy[vertt] = y2; vcz[vertt] =
z0; vertt++;
 // 2
 vcx[vertt] = x2; vcy[vertt] = y1; vcz[vertt] =
z0; vertt++;
 // 3
 vcx[vertt] = x3; vcy[vertt] = y2; vcz[vertt] =

z0; vertt++;

 // y plane bottom
 // 4
 vcx[vertt] = x2; vcy[vertt] = y0; vcz[vertt] =
z1; vertt++;
 // 5
 vcx[vertt] = x1; vcy[vertt] = y0; vcz[vertt] =
z2; vertt++;
 // 6
 vcx[vertt] = x2; vcy[vertt] = y0; vcz[vertt] =
z3; vertt++;
 // 7
 vcx[vertt] = x3; vcy[vertt] = y0; vcz[vertt] =
z2; vertt++;

 // x plane left
 // 8
 vcx[vertt] = x0; vcy[vertt] = y3; vcz[vertt] =
z2; vertt++;
 // 9
 vcx[vertt] = x0; vcy[vertt] = y2; vcz[vertt] =
z3; vertt++;
 // 10
 vcx[vertt] = x0; vcy[vertt] = y1; vcz[vertt] =
z2; vertt++;
 // 11
 vcx[vertt] = x0; vcy[vertt] = y2; vcz[vertt] =
z1; vertt++;
 }
 }
 }
}

// put it back here
void Tetrakaidecahedra::setOneTetrakaideVtx(int
& xpos, int & ypos, int & zpos)
{
 int vertt;
 int xp, yp, zp;
 if(xpos%2==1 && ypos%2==1 &&
zpos%2==1){
 xp = (xpos-1)/2; yp = (ypos-1)/2; zp = (zpos-
1)/2;
 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+5] = vtx[0];
 vcy[vertt+5] = vtx[1];
 vcz[vertt+5] = vtx[2];

 vcx[vertt+10] = vtx[3];
 vcy[vertt+10] = vtx[4];
 vcz[vertt+10] = vtx[5];

 vertt = ((xp*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+7] = vtx[6];
 vcy[vertt+7] = vtx[7];
 vcz[vertt+7] = vtx[8];

 vertt = (((xp+1)*ytg+yp)*ztg+zp+1)*12;

72

 vcx[vertt+8] = vtx[9];
 vcy[vertt+8] = vtx[10];
 vcz[vertt+8] = vtx[11];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp)*12;
 vcx[vertt+5] = vtx[12];
 vcy[vertt+5] = vtx[13];
 vcz[vertt+5] = vtx[14];

 vertt = (((xp+1)*ytg+yp)*ztg+zp)*12;
 vcx[vertt+8] = vtx[15];
 vcy[vertt+8] = vtx[16];
 vcz[vertt+8] = vtx[17];

 vertt = ((xp*ytg+yp+1)*ztg+zp)*12;
 vcx[vertt+7] = vtx[18];
 vcy[vertt+7] = vtx[19];
 vcz[vertt+7] = vtx[20];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp)*12;
 vcx[vertt+10] = vtx[21];
 vcy[vertt+10] = vtx[22];
 vcz[vertt+10] = vtx[23];

 vertt = ((xp*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+4] = vtx[24];
 vcy[vertt+4] = vtx[25];
 vcz[vertt+4] = vtx[26];

 vertt = ((xp*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+2] = vtx[27];
 vcy[vertt+2] = vtx[28];
 vcz[vertt+2] = vtx[29];

 vertt = ((xp*ytg+yp+1)*ztg+zp)*12;
 vcx[vertt+6] = vtx[30];
 vcy[vertt+6] = vtx[31];
 vcz[vertt+6] = vtx[32];

 vertt = ((xp*ytg+yp)*ztg+zp+1)*12;
 vcx[vertt] = vtx[33];
 vcy[vertt] = vtx[34];
 vcz[vertt] = vtx[35];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp)*12;
 vcx[vertt+6] = vtx[36];
 vcy[vertt+6] = vtx[37];
 vcz[vertt+6] = vtx[38];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+2] = vtx[39];
 vcy[vertt+2] = vtx[40];
 vcz[vertt+2] = vtx[41];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+4] = vtx[42];
 vcy[vertt+4] = vtx[43];
 vcz[vertt+4] = vtx[44];

 vertt = (((xp+1)*ytg+yp)*ztg+zp+1)*12;
 vcx[vertt] = vtx[45];
 vcy[vertt] = vtx[46];
 vcz[vertt] = vtx[47];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+1] = vtx[48];
 vcy[vertt+1] = vtx[49];
 vcz[vertt+1] = vtx[50];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp)*12;
 vcx[vertt+9] = vtx[51];
 vcy[vertt+9] = vtx[52];
 vcz[vertt+9] = vtx[53];

 vertt = ((xp*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+3] = vtx[54];
 vcy[vertt+3] = vtx[55];
 vcz[vertt+3] = vtx[56];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vcx[vertt+11] = vtx[57];
 vcy[vertt+11] = vtx[58];
 vcz[vertt+11] = vtx[59];

 vertt = (((xp+1)*ytg+yp)*ztg+zp+1)*12;
 vcx[vertt+1] = vtx[60];
 vcy[vertt+1] = vtx[61];
 vcz[vertt+1] = vtx[62];

 vertt = (((xp+1)*ytg+yp)*ztg+zp+1)*12;
 vcx[vertt+11] = vtx[63];
 vcy[vertt+11] = vtx[64];
 vcz[vertt+11] = vtx[65];

 vertt = ((xp*ytg+yp)*ztg+zp+1)*12;
 vcx[vertt+3] = vtx[66];
 vcy[vertt+3] = vtx[67];
 vcz[vertt+3] = vtx[68];

 vertt = (((xp+1)*ytg+yp)*ztg+zp)*12;
 vcx[vertt+9] = vtx[69];
 vcy[vertt+9] = vtx[70];
 vcz[vertt+9] = vtx[71];
 }else if(xpos%2==0 && ypos%2==0 &&
zpos%2==0){
 xp = xpos/2; yp = ypos/2; zp = zpos/2;
 vertt = ((xp*ytg+yp)*ztg+zp+1)*12;

 vcx[vertt+3] = vtx[0];
 vcy[vertt+3] = vtx[1];
 vcz[vertt+3] = vtx[2];

 vcx[vertt] = vtx[3];
 vcy[vertt] = vtx[4];
 vcz[vertt] = vtx[5];

 vcx[vertt+1] = vtx[6];
 vcy[vertt+1] = vtx[7];

73

 vcz[vertt+1] = vtx[8];

 vcx[vertt+2] = vtx[9];
 vcy[vertt+2] = vtx[10];
 vcz[vertt+2] = vtx[11];

 vertt = ((xp*ytg+yp)*ztg+zp)*12;
 vcx[vertt+3] = vtx[12];
 vcy[vertt+3] = vtx[13];
 vcz[vertt+3] = vtx[14];

 vcx[vertt+2] = vtx[15];
 vcy[vertt+2] = vtx[16];
 vcz[vertt+2] = vtx[17];

 vcx[vertt+1] = vtx[18];
 vcy[vertt+1] = vtx[19];
 vcz[vertt+1] = vtx[20];

 vcx[vertt+0] = vtx[21];
 vcy[vertt+0] = vtx[22];
 vcz[vertt+0] = vtx[23];

 vcx[vertt+9] = vtx[24];
 vcy[vertt+9] = vtx[25];
 vcz[vertt+9] = vtx[26];

 vcx[vertt+8] = vtx[27];
 vcy[vertt+8] = vtx[28];
 vcz[vertt+8] = vtx[29];

 vcx[vertt+11] = vtx[30];
 vcy[vertt+11] = vtx[31];
 vcz[vertt+11] = vtx[32];

 vcx[vertt+10] = vtx[33];
 vcy[vertt+10] = vtx[34];
 vcz[vertt+10] = vtx[35];

 vertt = (((xp+1)*ytg+yp)*ztg+zp)*12;
 vcx[vertt+11] = vtx[36];
 vcy[vertt+11] = vtx[37];
 vcz[vertt+11] = vtx[38];

 vcx[vertt+8] = vtx[39];
 vcy[vertt+8] = vtx[40];
 vcz[vertt+8] = vtx[41];

 vcx[vertt+9] = vtx[42];
 vcy[vertt+9] = vtx[43];
 vcz[vertt+9] = vtx[44];

 vcx[vertt+10] = vtx[45];
 vcy[vertt+10] = vtx[46];
 vcz[vertt+10] = vtx[47];

 vertt = ((xp*ytg+yp+1)*ztg+zp)*12;
 vcx[vertt+7] = vtx[48];
 vcy[vertt+7] = vtx[49];

 vcz[vertt+7] = vtx[50];

 vcx[vertt+4] = vtx[51];
 vcy[vertt+4] = vtx[52];
 vcz[vertt+4] = vtx[53];

 vcx[vertt+5] = vtx[54];
 vcy[vertt+5] = vtx[55];
 vcz[vertt+5] = vtx[56];

 vcx[vertt+6] = vtx[57];
 vcy[vertt+6] = vtx[58];
 vcz[vertt+6] = vtx[59];

 vertt = ((xp*ytg+yp)*ztg+zp)*12;
 vcx[vertt+7] = vtx[60];
 vcy[vertt+7] = vtx[61];
 vcz[vertt+7] = vtx[62];

 vcx[vertt+6] = vtx[63];
 vcy[vertt+6] = vtx[64];
 vcz[vertt+6] = vtx[65];

 vcx[vertt+5] = vtx[66];
 vcy[vertt+5] = vtx[67];
 vcz[vertt+5] = vtx[68];

 vcx[vertt+4] = vtx[69];
 vcy[vertt+4] = vtx[70];
 vcz[vertt+4] = vtx[71];
 }else{
 printf("the Tetra that you requested is neither
odd nor even, aborted\n");
 exit(1);
 }
}

void Tetrakaidecahedra::getOneTetrakaideVtx(int
& xpos, int & ypos, int & zpos){
 int vertt;
 int xp, yp, zp;
 if(xpos >= ngx || xpos < 0 || ypos >= ngy || ypos
< 0 || zpos >= ngz || zpos < 0){
 printf("the Tetra that you requested is out of
board, aborted\n"); exit(1);}
 else if(xpos%2==1 && ypos%2==1 &&
zpos%2==1){
 xp = (xpos-1)/2; yp = (ypos-1)/2; zp = (zpos-
1)/2;
 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vtx[0] = vcx[vertt+5];
 vtx[1] = vcy[vertt+5];
 vtx[2] = vcz[vertt+5];

 vtx[3] = vcx[vertt+10];
 vtx[4] = vcy[vertt+10];
 vtx[5] = vcz[vertt+10];

74

 vertt = ((xp*ytg+yp+1)*ztg+zp+1)*12;
 vtx[6] = vcx[vertt+7];
 vtx[7] = vcy[vertt+7];
 vtx[8] = vcz[vertt+7];

 vertt = (((xp+1)*ytg+yp)*ztg+zp+1)*12;
 vtx[9] = vcx[vertt+8];
 vtx[10] = vcy[vertt+8];
 vtx[11] = vcz[vertt+8];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp)*12;
 vtx[12] = vcx[vertt+5];
 vtx[13] = vcy[vertt+5];
 vtx[14] = vcz[vertt+5];

 vertt = (((xp+1)*ytg+yp)*ztg+zp)*12;
 vtx[15] = vcx[vertt+8];
 vtx[16] = vcy[vertt+8];
 vtx[17] = vcz[vertt+8];

 vertt = ((xp*ytg+yp+1)*ztg+zp)*12;
 vtx[18] = vcx[vertt+7];
 vtx[19] = vcy[vertt+7];
 vtx[20] = vcz[vertt+7];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp)*12;
 vtx[21] = vcx[vertt+10];
 vtx[22] = vcy[vertt+10];
 vtx[23] = vcz[vertt+10];

 vertt = ((xp*ytg+yp+1)*ztg+zp+1)*12;
 vtx[24] = vcx[vertt+4];
 vtx[25] = vcy[vertt+4];
 vtx[26] = vcz[vertt+4];

 vertt = ((xp*ytg+yp+1)*ztg+zp+1)*12;
 vtx[27] = vcx[vertt+2];
 vtx[28] = vcy[vertt+2];
 vtx[29] = vcz[vertt+2];

 vertt = ((xp*ytg+yp+1)*ztg+zp)*12;
 vtx[30] = vcx[vertt+6];
 vtx[31] = vcy[vertt+6];
 vtx[32] = vcz[vertt+6];

 vertt = ((xp*ytg+yp)*ztg+zp+1)*12;
 vtx[33] = vcx[vertt];
 vtx[34] = vcy[vertt];
 vtx[35] = vcz[vertt];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp)*12;
 vtx[36] = vcx[vertt+6];
 vtx[37] = vcy[vertt+6];
 vtx[38] = vcz[vertt+6];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vtx[39] = vcx[vertt+2];
 vtx[40] = vcy[vertt+2];

 vtx[41] = vcz[vertt+2];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vtx[42] = vcx[vertt+4];
 vtx[43] = vcy[vertt+4];
 vtx[44] = vcz[vertt+4];

 vertt = (((xp+1)*ytg+yp)*ztg+zp+1)*12;
 vtx[45] = vcx[vertt];
 vtx[46] = vcy[vertt];
 vtx[47] = vcz[vertt];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vtx[48] = vcx[vertt+1];
 vtx[49] = vcy[vertt+1];
 vtx[50] = vcz[vertt+1];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp)*12;
 vtx[51] = vcx[vertt+9];
 vtx[52] = vcy[vertt+9];
 vtx[53] = vcz[vertt+9];

 vertt = ((xp*ytg+yp+1)*ztg+zp+1)*12;
 vtx[54] = vcx[vertt+3];
 vtx[55] = vcy[vertt+3];
 vtx[56] = vcz[vertt+3];

 vertt = (((xp+1)*ytg+yp+1)*ztg+zp+1)*12;
 vtx[57] = vcx[vertt+11];
 vtx[58] = vcy[vertt+11];
 vtx[59] = vcz[vertt+11];

 vertt = (((xp+1)*ytg+yp)*ztg+zp+1)*12;
 vtx[60] = vcx[vertt+1];
 vtx[61] = vcy[vertt+1];
 vtx[62] = vcz[vertt+1];

 vertt = (((xp+1)*ytg+yp)*ztg+zp+1)*12;
 vtx[63] = vcx[vertt+11];
 vtx[64] = vcy[vertt+11];
 vtx[65] = vcz[vertt+11];

 vertt = ((xp*ytg+yp)*ztg+zp+1)*12;
 vtx[66] = vcx[vertt+3];
 vtx[67] = vcy[vertt+3];
 vtx[68] = vcz[vertt+3];

 vertt = (((xp+1)*ytg+yp)*ztg+zp)*12;
 vtx[69] = vcx[vertt+9];
 vtx[70] = vcy[vertt+9];
 vtx[71] = vcz[vertt+9];
 }else if(xpos%2==0 && ypos%2==0 &&
zpos%2==0){
 xp = xpos/2; yp = ypos/2; zp = zpos/2;
 vertt = ((xp*ytg+yp)*ztg+zp+1)*12;
 vtx[0] = vcx[vertt+3];
 vtx[1] = vcy[vertt+3];
 vtx[2] = vcz[vertt+3];

75

 vtx[3] = vcx[vertt];
 vtx[4] = vcy[vertt];
 vtx[5] = vcz[vertt];

 vtx[6] = vcx[vertt+1];
 vtx[7] = vcy[vertt+1];
 vtx[8] = vcz[vertt+1];

 vtx[9] = vcx[vertt+2];
 vtx[10] = vcy[vertt+2];
 vtx[11] = vcz[vertt+2];

 vertt = ((xp*ytg+yp)*ztg+zp)*12;
 vtx[12] = vcx[vertt+3];
 vtx[13] = vcy[vertt+3];
 vtx[14] = vcz[vertt+3];

 vtx[15] = vcx[vertt+2];
 vtx[16] = vcy[vertt+2];
 vtx[17] = vcz[vertt+2];

 vtx[18] = vcx[vertt+1];
 vtx[19] = vcy[vertt+1];
 vtx[20] = vcz[vertt+1];

 vtx[21] = vcx[vertt+0];
 vtx[22] = vcy[vertt+0];
 vtx[23] = vcz[vertt+0];

 vtx[24] = vcx[vertt+9];
 vtx[25] = vcy[vertt+9];
 vtx[26] = vcz[vertt+9];

 vtx[27] = vcx[vertt+8];
 vtx[28] = vcy[vertt+8];
 vtx[29] = vcz[vertt+8];

 vtx[30] = vcx[vertt+11];
 vtx[31] = vcy[vertt+11];
 vtx[32] = vcz[vertt+11];

 vtx[33] = vcx[vertt+10];
 vtx[34] = vcy[vertt+10];
 vtx[35] = vcz[vertt+10];

 vertt = (((xp+1)*ytg+yp)*ztg+zp)*12;
 vtx[36] = vcx[vertt+11];
 vtx[37] = vcy[vertt+11];
 vtx[38] = vcz[vertt+11];

 vtx[39] = vcx[vertt+8];
 vtx[40] = vcy[vertt+8];
 vtx[41] = vcz[vertt+8];

 vtx[42] = vcx[vertt+9];
 vtx[43] = vcy[vertt+9];
 vtx[44] = vcz[vertt+9];

 vtx[45] = vcx[vertt+10];

 vtx[46] = vcy[vertt+10];
 vtx[47] = vcz[vertt+10];

 vertt = ((xp*ytg+yp+1)*ztg+zp)*12;
 vtx[48] = vcx[vertt+7];
 vtx[49] = vcy[vertt+7];
 vtx[50] = vcz[vertt+7];

 vtx[51] = vcx[vertt+4];
 vtx[52] = vcy[vertt+4];
 vtx[53] = vcz[vertt+4];

 vtx[54] = vcx[vertt+5];
 vtx[55] = vcy[vertt+5];
 vtx[56] = vcz[vertt+5];

 vtx[57] = vcx[vertt+6];
 vtx[58] = vcy[vertt+6];
 vtx[59] = vcz[vertt+6];

 vertt = ((xp*ytg+yp)*ztg+zp)*12;
 vtx[60] = vcx[vertt+7];
 vtx[61] = vcy[vertt+7];
 vtx[62] = vcz[vertt+7];

 vtx[63] = vcx[vertt+6];
 vtx[64] = vcy[vertt+6];
 vtx[65] = vcz[vertt+6];

 vtx[66] = vcx[vertt+5];
 vtx[67] = vcy[vertt+5];
 vtx[68] = vcz[vertt+5];

 vtx[69] = vcx[vertt+4];
 vtx[70] = vcy[vertt+4];
 vtx[71] = vcz[vertt+4];
 }else{
 printf("the Tetra that you requested is neither
odd nor even, aborted\n");
 exit(1);
 }
}

double Tetrakaidecahedra::distance(int point1, int
point2)
{
 double *pt1=vtx+3*point1;
 double *pt2=vtx+3*point2;
 double dist;
 dist = sqrt((*pt1-*pt2)*(*pt1-*pt2)+(*(pt1+1)-
(pt2+1))(*(pt1+1)-*(pt2+1))
 +(*(pt1+2)-*(pt2+2))*(*(pt1+2)-*(pt2+2)));

 pt1=NULL;
 pt2=NULL;
 return dist;
}

76

double Tetrakaidecahedra::trangleArea(int point1,
int point2, int point3)
{
 double a, b, c,s;
 a=distance(point1, point2);
 b=distance(point1, point3);
 c=distance(point2, point3);
 s=0.5*(a+b+c);
 return sqrt(s*(s-a)*(s-b)*(s-c));
}

double Tetrakaidecahedra::quadArea(int point1,
int point2, int point3, int point4)
{
 double area = trangleArea(point1, point2,
point3);
 area += trangleArea(point1, point3, point4);
 return area;
}

double Tetrakaidecahedra::hexagonArea(int
point1, int point2, int point3, int point4, int point5,
int point6)
{
 double area = trangleArea(point1, point2,
point3);
 area += trangleArea(point1, point3, point4);
 area += trangleArea(point1, point4, point5);
 area += trangleArea(point1, point5, point6);
 return area;
}

double
Tetrakaidecahedra::getEdgeOfOneUniformTetra()
{
 // For one uniform tetrakaidecahedra only
 return 36.0*distance(0, 1);
}

double
Tetrakaidecahedra::getSurfaceAreaOfOneUniform
Tetra()
{
 // For one uniform tetrakaidecahedra only
 return
6.0*quadArea(0,1,2,3)+8.0*hexagonArea(0,14,13,
16,19,1);
}

bool Tetrakaidecahedra::atSamePlane(int point1,
int point2, int point3, int point4)
{
 double *pt1=vtx+3*point1;
 double *pt2=vtx+3*point2;
 double *pt3=vtx+3*point3;
 double *pt4=vtx+3*point4;
 double nx, ny, nz, nk, dif;
 nx = (*(pt2+1)-*(pt1+1))*(*(pt3+2)-
(pt1+2))-((pt2+2)-*(pt1+2))*(*(pt3+1)-

*(pt1+1));
 ny = (*(pt2+2)-*(pt1+2))*(*pt3-*pt1)-(*pt2-
pt1)(*(pt3+2)-*(pt1+2));
 nz = (*pt2-*pt1)*(*(pt3+1)-*(pt1+1))-
(*(pt2+1)-*(pt1+1))*(*pt3-*pt1);
 nk = nx*(*pt1)+ny*(*(pt1+1))+nz*(*(pt1+2));
 dif = nx*(*pt4)+ny*(*(pt4+1))+nz*(*(pt4+2))-
nk;
 pt1=NULL;
 pt2=NULL;
 pt3=NULL;
 pt4=NULL;
 if(dif>dbacurate || dif<-dbacurate)
 return false;
 else
 return true;
}

double
Tetrakaidecahedra::getSurfaceAreaOfOneRandom
Tetra()
{
 // For one uniform tetrakaidecahedra only
 double surfarea=0;
 surfarea += quadArea(3,0,1,2);
 surfarea += quadArea(7,4,5,6);
 surfarea += quadArea(8,9,10,11);
 surfarea += quadArea(12,13,14,15);
 surfarea += quadArea(19,16,17,18);
 surfarea += quadArea(23,20,21,22);
 surfarea += hexagonArea(1,0,14,13,16,19);
 surfarea += hexagonArea(7,17,16,13,12,4);
 surfarea += hexagonArea(10,9,18,17,7,6);
 surfarea += hexagonArea(8,2,1,19,18,9);
 surfarea += hexagonArea(21,20,15,14,0,3);
 surfarea += hexagonArea(23,5,4,12,15,20);
 surfarea += hexagonArea(11,10,6,5,23,22);
 surfarea += hexagonArea(11,22,21,3,2,8);
 return surfarea;
}

double
Tetrakaidecahedra::getSurfaceAreaOfAllRandomTe
tra()
{
 double surfarea=0;
 for(int i=0; i<ngx; i++)
 for(int j=0; j<ngy; j++)
 for(int k=0; k<ngz; k++){
 if((i%2==0 && j%2==0 &&
k%2==0)||(i%2==1 && j%2==1 && k%2==1)){
 getOneTetrakaideVtx(i,j,k);
 surfarea +=
getSurfaceAreaOfOneRandomTetra();
 }
 }
 return 0.5*surfarea;
}

77

double
Tetrakaidecahedra::getPrimaryEdgeOfAllRandomT
etra()
{
 double edgelength = 0.0;
 for(int i=0; i<ngx; i++)
 for(int j=0; j<ngy; j++)
 for(int k=0; k<ngz; k++){
 if((i%2==0 && j%2==0 &&
k%2==0)||(i%2==1 && j%2==1 && k%2==1)){
 getOneTetrakaideVtx(i,j,k);
 edgelength +=
getNaturalEdgeLengthOfOneTetra()/3.0;
 }
 }
 return edgelength;
}

double
Tetrakaidecahedra::getSecondaryEdgeOfAllRando
mTetra()
{
 double edgelength = 0.0;
 for(int i=0; i<ngx; i++)
 for(int j=0; j<ngy; j++)
 for(int k=0; k<ngz; k++){
 if((i%2==0 && j%2==0 &&
k%2==0)||(i%2==1 && j%2==1 && k%2==1)){
 getOneTetrakaideVtx(i,j,k);
 edgelength +=
getAnomalousEdgeLengthOfOneTetra()/2.0;
 }
 }
 return edgelength;
}

double
Tetrakaidecahedra::getEdgeOfAllRandomTetra()
{
 double edgelength = 0.0;
 for(int i=0; i<ngx; i++)
 for(int j=0; j<ngy; j++)
 for(int k=0; k<ngz; k++){
 if((i%2==0 && j%2==0 &&
k%2==0)||(i%2==1 && j%2==1 && k%2==1)){
 getOneTetrakaideVtx(i,j,k);
 edgelength +=
getNaturalEdgeLengthOfOneTetra()/3.0;
 edgelength +=
getAnomalousEdgeLengthOfOneTetra()/2.0;
 }
 }
 return edgelength;
}

void Tetrakaidecahedra::getGrainCentrePos(int &
xpos, int & ypos, int & zpos)
{
 if(xpos%2==1 && ypos%2==1 &&

zpos%2==1){
 xgc = (xpos/2+1)*gs;
 ygc = (ypos/2+1)*gs;
 zgc = (zpos/2+1)*gs;
 }else if(xpos%2==0 && ypos%2==0 &&
zpos%2==0){
 xgc = (xpos/2+0.5)*gs;
 ygc = (ypos/2+0.5)*gs;
 zgc = (zpos/2+0.5)*gs;
 }
}

void Tetrakaidecahedra::zoomAllRandomTetra(int
caseNumber)
{
 double volume=0;
 double manip;
 for(int i=0; i<ngx; i++)
 for(int j=0; j<ngy; j++)
 for(int k=0; k<ngz; k++)
 if((i%2==0 && j%2==0 &&
k%2==0)||(i%2==1 && j%2==1 && k%2==1)){
 getOneTetrakaideVtx(i,j,k);
 if(caseNumber == 1)
 manip = rdm.getValue();
 else if(caseNumber == 2)
 manip = sqrt(rdm.getValue());
 else if(caseNumber == 3)
 manip = sqrt(sqrt(rdm.getValue()));
 else if(caseNumber == 4){
 manip = rdm.getValue();
 manip = 1.0/exp(2.0*(manip-1)*(manip-
1));}
 else{
 cout<<"the case has not beed defined,
aborted\n";
 exit(1);
 }

 zoomOneGrainVtxTowardCenter(i,j,k,manip);
 }
}

void
Tetrakaidecahedra::zoomOneGrainVtxTowardCent
er(int & xpos,
 int & ypos, int & zpos, double zoom)
{
 double volume=0.0;
 getGrainCentrePos(xpos, ypos, zpos);
 for(int i=0; i<24; i++){
 vtx[i*3]= zoom * vtx[i*3] + (1-zoom)*xgc;
 vtx[i*3+1] = zoom * vtx[i*3+1] + (1-
zoom)*ygc;
 vtx[i*3+2] = zoom * vtx[i*3+2] + (1-zoom)*zgc;
 }
 setOneTetrakaideVtx(xpos, ypos, zpos);
}

78

double
Tetrakaidecahedra::getEdgeOfOneRandomTetra()
{
 // For one uniform tetrakaidecahedra only
 double edgelength = 0.0;
 edgelength +=
getNaturalEdgeLengthOfOneTetra();
 edgelength +=
getAnomalousEdgeLengthOfOneTetra();
 return edgelength;
}

double
Tetrakaidecahedra::getPrimaryEdgeOfOneRandom
Tetra()
{
 return getNaturalEdgeLengthOfOneTetra();
}

double
Tetrakaidecahedra::getSecondaryEdgeOfOneRand
omTetra()
{
 return getAnomalousEdgeLengthOfOneTetra();
}

void Tetrakaidecahedra::sortVolumeCategary()
{
 double *thisvo = new
double[totalGrainNumber()];
 int kkk = 0;
 for(int i=0; i<ngx; i++)
 for(int j=0; j<ngy; j++)
 for(int k=0; k<ngz; k++)
 if((i%2==0 && j%2==0 &&
k%2==0)||(i%2==1 && j%2==1 && k%2==1)){
 getOneTetrakaideVtx(i,j,k);
 getGrainCentrePos(i,j,k);
 thisvo[kkk] =
getVolumeOfOneRandomTetra();
 kkk++;
 }
 double minv = thisvo[0];
 double maxv = thisvo[0];

 for(int i=1; i<kkk; i++){
 if(thisvo[i]>maxv)
 maxv = thisvo[i];
 if(thisvo[i]<minv)
 minv = thisvo[i];
 }
 minv = 0;
 maxv = 120;
 cout<<totalGrainNumber()<<" "<<kkk<<"
"<<maxv<<" "<<minv<<endl;
 double spanv = (maxv-minv)/20.0;
 int numg[20];
 for(int i=0; i<20; i++)
 numg[i] = 0;

 for(int i=0; i<kkk; i++){
 for(int j=0; j<20; j++)
 if(thisvo[i]>minv+j*spanv &&
(thisvo[i]<minv+(j+1)*spanv))
 numg[j]++;
 }
 for(int i=0; i<20; i++)
 volfile<<minv+0.5*(2*i+1)*spanv<<"
"<<numg[i]<<endl;
}

double
Tetrakaidecahedra::getVolumeOfAllRandomTetra()
{
 double volume=0;
 for(int i=0; i<ngx; i++)
 for(int j=0; j<ngy; j++)
 for(int k=0; k<ngz; k++)
 if((i%2==0 && j%2==0 &&
k%2==0)||(i%2==1 && j%2==1 && k%2==1)){
 getOneTetrakaideVtx(i,j,k);
 getGrainCentrePos(i,j,k);
 volume +=
getVolumeOfOneRandomTetra();
 }
 return volume;
}

void Tetrakaidecahedra::deformGrainCenter()
{
 double temx, temy, temz;
 temx = sij[0] * xgc + sij[1] * ygc + sij[2] * zgc;
 temy = sij[3] * xgc + sij[4] * ygc + sij[5] * zgc;
 temz = sij[6] * xgc + sij[7] * ygc + sij[8] * zgc;
 xgc = temx;
 ygc = temy;
 zgc = temz;
}

double
Tetrakaidecahedra::getVolumeOfOneRandomTetra
()
{
 double volume=0.0;
 deformGrainCenter();

 volume += getVolumeTriangularPyramid(1,0,3);
 volume += getVolumeTriangularPyramid(1,3,2);

 volume += getVolumeTriangularPyramid(5,4,7);
 volume += getVolumeTriangularPyramid(5,7,6);

 volume +=
getVolumeTriangularPyramid(8,10,9);
 volume +=
getVolumeTriangularPyramid(8,11,10);

 volume +=

79

getVolumeTriangularPyramid(12,14,13);
 volume +=
getVolumeTriangularPyramid(12,15,14);

 volume +=
getVolumeTriangularPyramid(19,17,16);
 volume +=
getVolumeTriangularPyramid(19,18,17);

 volume +=
getVolumeTriangularPyramid(21,20,23);
 volume +=
getVolumeTriangularPyramid(21,23,22);

 volume +=
getVolumeTriangularPyramid(1,19,16);
 volume +=
getVolumeTriangularPyramid(1,16,13);
 volume +=
getVolumeTriangularPyramid(1,13,14);
 volume +=
getVolumeTriangularPyramid(1,14,0);

 volume +=
getVolumeTriangularPyramid(7,4,12);
 volume +=
getVolumeTriangularPyramid(7,12,13);
 volume +=
getVolumeTriangularPyramid(7,13,16);
 volume +=
getVolumeTriangularPyramid(7,16,17);

 volume +=
getVolumeTriangularPyramid(10,6,7);
 volume +=
getVolumeTriangularPyramid(10,7,17);
 volume +=
getVolumeTriangularPyramid(10,17,18);
 volume +=
getVolumeTriangularPyramid(10,18,9);

 volume +=
getVolumeTriangularPyramid(8,9,18);
 volume +=
getVolumeTriangularPyramid(8,18,19);
 volume +=
getVolumeTriangularPyramid(8,19,1);
 volume += getVolumeTriangularPyramid(8,1,2);

 volume +=
getVolumeTriangularPyramid(21,3,0);
 volume +=
getVolumeTriangularPyramid(21,0,14);
 volume +=
getVolumeTriangularPyramid(21,14,15);
 volume +=
getVolumeTriangularPyramid(21,15,20);

 volume +=

getVolumeTriangularPyramid(23,20,15);
 volume +=
getVolumeTriangularPyramid(23,15,12);
 volume +=
getVolumeTriangularPyramid(23,12,4);
 volume +=
getVolumeTriangularPyramid(23,4,5);

 volume +=
getVolumeTriangularPyramid(11,22,23);
 volume +=
getVolumeTriangularPyramid(11,23,5);
 volume +=
getVolumeTriangularPyramid(11,5,6);
 volume +=
getVolumeTriangularPyramid(11,6,10);

 volume +=
getVolumeTriangularPyramid(11,8,2);
 volume +=
getVolumeTriangularPyramid(11,2,3);
 volume +=
getVolumeTriangularPyramid(11,3,21);
 volume +=
getVolumeTriangularPyramid(11,21,22);
 return volume;
}

double
Tetrakaidecahedra::getVolumeTriangularPyramid(
int point1, int point2, int point3)
{
 double a,b,c,d,s,height, area, volume;
 double *pta=vtx+3*point1;
 double *ptb=vtx+3*point2;
 double *ptc=vtx+3*point3;
 a = (*(ptb+1)-*(pta+1))*(*(ptc+2)-*(pta+2))
 -(*(ptb+2)-*(pta+2))*(*(ptc+1)-*(pta+1));
 b = (*(ptb+2)-*(pta+2))*(*(ptc)-*(pta))
 -(*(ptb)-*(pta))*(*(ptc+2)-*(pta+2));
 c = (*(ptb)-*(pta))*(*(ptc+1)-*(pta+1))
 -(*(ptb+1)-*(pta+1))*(*(ptc)-*(pta));
 d = - a*(*pta)-b*(*(pta+1))-c*(*(pta+2));
 s = sqrt(a*a+b*b+c*c);
 pta=NULL;
 ptb=NULL;
 ptc=NULL;
 height = (a*xgc+b*ygc+c*zgc+d)/s;
 if(height<0){
 printf("found negative volume\n"); exit(0);
 }
 area = trangleArea(point1, point2, point3);
 volume = height * area / 3.0;
 return volume;
}

void Tetrakaidecahedra::ramdomizeVtx(double
randomIntensity)
{

80

 if(randomIntensity<-1 || randomIntensity>1){
 printf("randomIntensity too large, should be
within -1 and 1, aborted\n");
 exit(1);
 }
 rdm.setSeed(5000);
 for(int i=0; i<nvt; i++){
 vcx[i] += qgs*(rdm.getValue()-
0.5)*randomIntensity;
 vcy[i] += qgs*(rdm.getValue()-
0.5)*randomIntensity;
 vcz[i] += qgs*(rdm.getValue()-
0.5)*randomIntensity;
 }
}

double
Tetrakaidecahedra::getNaturalEdgeLengthOfOneT
etra()
{
 double edgelength = 0.0;
 if(!atSamePlane(14,1,3,0)) // 1
 edgelength += distance(0, 1);
 if(!atSamePlane(3,1,8,2)) // 2
 edgelength += distance(1, 2);
 if(!atSamePlane(3,1,2,11)) // 3
 edgelength += distance(2,3);
 if(!atSamePlane(21,0,1,3)) // 4
 edgelength += distance(3,0);
 if(!atSamePlane(23,5,7,4)) // 5
 edgelength += distance(5,4);
 if(!atSamePlane(7,5,11,6)) // 6
 edgelength += distance(5,6);
 if(!atSamePlane(7,5,6,10)) // 7
 edgelength += distance(6,7);
 if(!atSamePlane(7,12,4,5)) // 8
 edgelength += distance(4,7);
 if(!atSamePlane(8,18,9,10)) // 9
 edgelength += distance(8,9);
 if(!atSamePlane(8,18,9,10)) // 10
 edgelength += distance(9,10);
 if(!atSamePlane(8,10,6,11)) // 11
 edgelength += distance(10,11);
 if(!atSamePlane(8,10,11,2)) // 12
 edgelength += distance(8,11);
 if(!atSamePlane(12,7,13,14)) // 13
 edgelength += distance(12,13);
 if(!atSamePlane(12,13,1,14)) // 14
 edgelength += distance(13,14);
 if(!atSamePlane(12,14,21,15)) // 15
 edgelength += distance(14,15);
 if(!atSamePlane(12,14,15,23)) // 16
 edgelength += distance(12,15);
 if(!atSamePlane(16,7,17,19)) // 17
 edgelength += distance(16,17);
 if(!atSamePlane(19,17,10,18)) // 18
 edgelength += distance(17,18);
 if(!atSamePlane(19,17,18,8)) // 19

 edgelength += distance(18,19);
 if(!atSamePlane(1,16,17,19)) // 20
 edgelength += distance(16,19);
 if(!atSamePlane(15,21,23,20)) // 21
 edgelength += distance(20,21);
 if(!atSamePlane(23,21,11,22)) // 22
 edgelength += distance(21,22);
 if(!atSamePlane(23,21,22,11)) // 23
 edgelength += distance(22,23);
 if(!atSamePlane(15,20,21,23)) // 24
 edgelength += distance(20,23);
 if(!atSamePlane(21,14,1,0)) // 25
 edgelength += distance(0,14);
 if(!atSamePlane(13,7,16,1)) // 26
 edgelength += distance(13,16);
 if(!atSamePlane(1,16,19,8)) // 27
 edgelength += distance(1,19);
 if(!atSamePlane(12,23,4,7)) // 28
 edgelength += distance(4,12);
 if(!atSamePlane(7,10,17,16)) // 29
 edgelength += distance(7,17);
 if(!atSamePlane(6,11,10,7)) // 30
 edgelength += distance(6,10);
 if(!atSamePlane(9,8,18,10)) // 31
 edgelength += distance(9,18);
 if(!atSamePlane(8,11,2,1)) // 32
 edgelength += distance(8,2);
 if(!atSamePlane(21,20,23,15)) // 33
 edgelength += distance(20,15);
 if(!atSamePlane(23,11,5,4)) // 34
 edgelength += distance(23,5);
 if(!atSamePlane(21,11,23,22)) // 35
 edgelength += distance(11,22);
 if(!atSamePlane(21,0,3,11)) // 36
 edgelength += distance(3,21);
 return edgelength;
}

double
Tetrakaidecahedra::getAnomalousEdgeLengthOfO
neTetra()
{
 double edgelength = 0.0;
 if(!atSamePlane(0,1,2,3)) // 37
 edgelength += distance(1,3);
 if(!atSamePlane(16,17,18,19)) // 37 -- from
wrong notice
 edgelength += distance(17,19);
 if(!atSamePlane(4,5,6,7)) // 38
 edgelength += distance(5,7);
 if(!atSamePlane(20,21,22,23)) // 39
 edgelength += distance(21,23);
 if(!atSamePlane(8,9,10,11)) // 40
 edgelength += distance(8,10);
 if(!atSamePlane(12,13,14,15)) // 41
 edgelength += distance(12,14);
 if(!atSamePlane(1,0,14,13)) // 42
 edgelength += distance(1,14);
 if(!atSamePlane(1,14,13,16)) // 43

81

 edgelength += distance(1,13);
 if(!atSamePlane(1,13,16,19)) // 44
 edgelength += distance(1,16);
 if(!atSamePlane(23,22,11,5)) // 45
 edgelength += distance(23,11);
 if(!atSamePlane(23,11,6,5)) // 46
 edgelength += distance(11,5);
 if(!atSamePlane(5,11,10,6)) // 47
 edgelength += distance(11,6);
 if(!atSamePlane(8,2,1,19)) // 48
 edgelength += distance(8,1);
 if(!atSamePlane(8,1,19,18)) // 49
 edgelength += distance(8,19);
 if(!atSamePlane(8,19,18,9)) // 50
 edgelength += distance(8,18);
 if(!atSamePlane(23,5,4,12)) // 51
 edgelength += distance(23,4);
 if(!atSamePlane(23,4,12,15)) // 52
 edgelength += distance(23,12);
 if(!atSamePlane(23,12,15,20)) // 53
 edgelength += distance(23,15);
 if(!atSamePlane(21,20,15,14)) // 54
 edgelength += distance(21,15);
 if(!atSamePlane(21,15,14,0)) // 55
 edgelength += distance(21,14);
 if(!atSamePlane(21,14,0,3)) // 56
 edgelength += distance(21,0);
 if(!atSamePlane(10,6,7,17)) // 57
 edgelength += distance(19,7);
 if(!atSamePlane(10,7,17,18)) // 58
 edgelength += distance(10,17);
 if(!atSamePlane(10,17,18,9)) // 59
 edgelength += distance(10,18);
 if(!atSamePlane(7,17,16,13)) // 60
 edgelength += distance(7,16);
 if(!atSamePlane(7,16,13,12)) // 61
 edgelength += distance(7,13);
 if(!atSamePlane(7,13,12,4)) // 62
 edgelength += distance(7,12);
 if(!atSamePlane(11,3,2,8)) // 63
 edgelength += distance(11,2);
 if(!atSamePlane(11,21,3,2)) // 64
 edgelength += distance(11,3);
 if(!atSamePlane(11,22,21,3)) // 65
 edgelength += distance(11,21);
 return edgelength;
}

#endif // TETRAKAIDECAHEDRA_CPP

82

ACKNOWLEDGEMENTS

I would like to express my deep thanks to my supervisor, Professor Bhadeshia, H. K.

D. H. for his help and encouragement. I would also like to thank to Professor

Rongshan Qin for the great support. And thanks to Professor In Gee Kim and

Professor Bruno C. de Cooman for their advise, support and friendship.

I am grateful to all members in Computational Metallurgy Laboratory, for all their

help and for all the memories we have. And also to all the people including office

staff in the Graduate Institute of Ferrous Technology in POSTECH.

I am also grateful to Professor Hae Geon Lee for introducing and giving me a

chance to study GIFT.

Finally, I am extremely grateful to all my family, especially my parents, for their

devotional support, big encouragement, confidence and everlasting love.

사랑하는 우리 가족들에게 감사의 마음을 전합니다. 특히 항상 저

를 바른길로 이끌어주시고 아껴주신 부모님께 보잘것없지만 이 논

문을 바칩니다.

83

CURRICULUM VITAE

Name: Chae, Jae yong (蔡在鎔)

Date of birth: 12
th
 July, 1981

Place of birth: Pohang, Kyungbuk, Republic of Korea

Address: Graduate Institute of Ferrous Technology, Pohang University of Science

and Technology San 31, Hyoja-Dong, Nam-gu, Pohang, Kyungbuk,

790-784, Republic of Korea

Education:

M. S. 2008, POSTECH (Pohang, Korea), Graduate Institute of Ferrous Technology,

 Computational Metallurgy.

B. S. 2006, POSTECH (Pohang, Korea), Computer Science and Engineering.

Parts of this work have been submitted to appear in the following publication.

Jae-Yong, C., Rongshan, Q. and Bhadeshia, H. K. D. H. : Topology of the

deformation of a non-uniform grain structure, submitted to Material Science and

Technology.

