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Abstract 
 
By their very nature, empirical models must be treated with care in order to avoid 
predictions which are not physically possible. One example is the calculation of the 
Charpy impact toughness of steel welds as a function of composition and 
processing, where the impact energy should not be negative. However, there is 
nothing to prevent a user from implementing inputs which lead to nonsensical 
results. We examine here whether a scheme used in kinetic theory can be 
generalised to create neural networks which are bounded. It is found that such 
procedures lead to bias. In the process of doing this work, some interesting trends 
have been discovered on the role of process parameters in determining the 
toughness of steel welds. 
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Introduction 
 
Empirical equations are mathematical functions which suffer from the disadvantage 
that they can be misused to produce unphysical values of outputs. The problem 
becomes acute when such models are made available to the general user, who may 
not appreciate the subtleties of the technique. In structural engineering, the Charpy 
toughness is an important quality control parameter which is used to gain 
confidence in the integrity of components. It represents the energy absorbed by a 
standard sample during fracture. The higher the energy, the safer the component is 
likely to be in the context of brittle fracture.  
 
The Charpy energy can never be negative since that implies that the sample 
contributes energy to the test machine. Problems like these can in principle be 
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circumvented by avoiding the direct modelling of the output, but instead using a 
logarithm or double logarithm of output during the training of an empirical model [1-
3].  It is the purpose of this paper to examine this issue and at the same time to 
discover trends in the Charpy energy of weld metals as a function of certain solutes 
and welding parameters. The neural network method itself is not discussed [4-8]; 
the details are available elsewhere along with numerous examples of applications [9-
17]. The way in which the Charpy model was designed using the network has also 
been explained thoroughly in an accessible thesis [18], so only relevant details are 
included here for the sake of brevity. 
 
The Data and Network 
 
The variables included in the dataset accumulated for analysis are listed in Table 1 
along with the means and standard deviations. The full set consisted of some 5973 
experiments collected from industrial collaborators and published data as explained 
elsewhere [18].  
 
The Bayesian network [5-7] itself always consisted of just three layers, the input, 
hidden and output layers. An individual such model may include up to 20 hidden 
nodes, and five different seeds were used in each case to ensure that the starting 
values of the weights does not lead to a loss of performance. In addition, we do not 
simply use a best-fit model but a committee of models in order to ensure better 
generalisation; the membership of the committee is ensured by ranking all the 
models in terms of their error and then testing various combinations to see whether 
the generalisation can be improved on unseen data. The specific details are in [18] 
and the actual models are fully documented and available freely on 
www.msm.cam.ac.uk/map. 
 
One mechanism by which overfitting was avoided was by dividing the dataset 
equally and at random into a training and a test set. The latter was not used in 
creating the model but instead to check how the model generalises with unseen 
data. The training and test errors should be about the same in order to avoid 
overfitting. The typical performance of an individual model on a test and training 
dataset is illustrated in Fig. 1. 
 
 
Bias in Models 
 
Since a neural network is a regression method, there is a risk of producing 
unphysical relationships. In modelling the volume fraction of retained austenite in 
cast irons, Yescas et al. [1,2] used a combination of logarithms to confine the 
fraction between 0 and 1. The double logarithm function used in that work is 
consistent with Avrami theory [19-21] for the kinetics of solid-state 
transformations, in which the fraction  varies as , where k and n 
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are constants and t is the time.  It follows according to this physical model that 
 should vary with . The volume faction is therefore naturally 

confined between 0 and 1 so it is justified to use this double logarithmic function to 
model the volume fraction. Indeed, Yescas et al. discovered that it is only when the 
output is this function, rather than the raw volume fraction, that the variation in the 
latter can be correctly captured by the neural network [1-2]. In another context, 
Sourmail et al. in their work on the elevated temperature properties of steels 
modelled the logarithm of creep rupture life rather than the life itself [3]. There is 
again, a physical basis for this because in a plot of stress versus life, the life extends 
dramatically as the stress is decreased towards zero.  The life should be infinite at 
zero stress, but it clearly cannot be negative and this is consistent with the use of a 
logarithm of the life. 
 
The question then arises as to whether it is acceptable to  use the logarithm or 
double logarithm functions purely in order to confine the output to be greater than 
zero, or between 0 and 1, respectively, even when there is no physical justification 
for the form of the function. 
 
To assess this scenario, the following equation was to represent the Charpy impact 
energy y as the output in a neural network model: 

 
    {1}  

 
where   and  are the minimum and maximum set values of the impact 
toughness. Compared with the original equation of Yescas [1,2], the term on 
the right was multiplied by -1 in order to retain a direct proportionality 
between  and . The value of  was set as zero, the least physical value 
of impact toughness. Because of a lack of physical basis for y’, there arises a 
difficulty in setting the value of ; although this must be larger than the 
maximum value in the dataset, it can take on any value beyond the maximum 
measured value.  
 
Thus two different models were created. In the first model,  was set to 
the maximum measured impact toughness of 357 J, and in the second model, 
it was arbitrarily set to ten times this value at 3570 J. Some calculations 
using randomly selected inputs from the database (Table 2, Data 1) are 
illustrated in Fig. 2. Since the purpose was to highlight the influence of  

the extrapolation was performed to impractically high test temperature 
regimes. Note that any error bars of prediction by neural networks in this 
work include ±1σ and fitting uncertainty as calculated by the Bayesian 
framework [4-8]. 
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The deliberate exaggeration of extrapolated results in Fig. 2 reveals 
dramatically different results for the two methods. With the first one ( = 

357 J), the limiting value at high temperatures converges artificially to . 
In contrast,  = 3570 J, the extrapolation leads to approximately zero 
toughness at high temperatures. This implies strongly that the selection of 

 plays a role in biasing during modelling or during the undoing of double 
logarithms in the final step to obtain toughness.   

 
The toughness should roughly follow a sigmoidal trend as a function of the 
test temperature, with low values typical of cleavage at low temperatures, 
and high values associated with ductile fracture at elevated temperatures. 
This is roughly the trend shown in Fig. 2a, but the upper limit becomes 357 
J, which cannot be exceeded due to the form of equation 1. This also cannot 
be physically justified. However, if the upper limit is set artbitrarily high, then 
the experimental data on which the model is trained fall into the low-
toughness regime in the output space. Only a tenth of the region defined for 
Fig. 2b would be occupied by the training data. The model perceives this to 
indicate that the toughness will always be much smaller than its capability to 
predict, and as a consequence, the extrapolation shown in Fig. 2b tends 
towards zero.  

 
The metallurgical problem considered here is such that this kind of bias 

cannot be justified, unlike the kinetic analysis by Yescas [1,2]. It is not 
acceptable to set bounds on the toughness. Thus, the use of equation 1 was 
abandoned. An alternative to use  was also excluded because it 
practically allows an infinite value of  which cannot be justified either. In 
conclusion it was decided to use just the raw toughness values as the output 
in all the modelling and to be careful in interpreting the outputs. 
 

2. Interpass temperature 
 

The input space was thoroughly explored in order to discover significant 
phenomena worthy of careful study. Interesting relationships associated with 
the interpass temperature were found, based on the input conditions listed in 
Table 2, Data 2 [23]. They approximately correspond to the compositions of 
the 0.5Mn alloy and the 2Mn alloy reported elsewhere [23-26].  
 
The interpass temperature is that at which a weld is allowed to cool to, 
before depositing another layer. The biggest physical effect of the interpass 
temperature during welding is to influence the cooling rate. This can be seen 
from the Rosenthal equation [27-28]: 
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    {2} 
 
where  is local temperature due to a point source of power input  moving 
at velocity .  is the far-field plate temperature which is equivalent to the 
interpass temperature in this case.  is the thermal conductivity and  is the 
thermal diffusivity.  is a polar co-ordinate measured from a reference frame 
attached to the moving heat source, related to the stationary frame by: 

 where  is a coordinate measuring the translation of the 
heat source,  and  simply being coordinate axes orthogonal to . Thus the 
cooling rate is expected to decrease as the interpass temperature increases. 
Empirical equations [29] for arc welding have been derived based on the 
form of equation 2, and were used to evaluate the time (t8/5) taken for an 
ISO2560 weld metal to cool over the temperature range 800-500°C as a 
function of the interpass temperature.  The calculation was performed using 
the welding current, voltage and speed of 180 A, 34 V and 0.004 m s-1 (heat 
input 1.53 kJ mm-1) respectively. for arc voltage, current and welding speed, 
respectively. The time t8/5 was found to be 11.7, 16.6, 26.3 and 53.1 s for 
interpass temperatures fo 100, 200, 300 and 400°C respectively. The 
interpass temperature therefore significantly influences the weld cooling rate, 
and through that, possibly the microstructure and mechanical properties. 
 
We shall use this information in interpreting the results presented below. 
 
 
 
3. Results and Discussion 
 

Using the variables listed in Table 2 (Dataset 2), the influence of interpass 
temperature was analysed, with a particular focus on manganese and nickel 
since these are the solutes of greatest interest in the design of low-
transformation temperature weld metals [23-26]. Many other trends have 
been reported elsewhere [18]. Fig. 3 shows the results for the 0.5Mn and 
the 2Mn compositions (with the other variables as listed in Table 2 (Dataset 
2). The contour plots for the two cases show a striking similarity. Each plot 
has regions which have been labelled “high” and “intermediate” respectively, 
to indicate the sensitivity of the toughness to the interpass temperature at a 
constant nickel concentration.  
 
We begin by summarising the observations that need explanation. At low 
manganese concentrations, an increase in the interpass temperature leads to 
a deterioration of toughness when the nickel concentration is less than 6 
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wt% (Fig. 3a). In the high manganese case, this deterioration occurs at 
concentrations less than 2 wt%, beyond which the alloy becomes more 
tolerant to interpass temperature and there is even an increase in toughness 
with interpass temperature at large nickel concentrations (Fig. 3b).  

 
The second observation is that the intermediate sensitivity region for the 
high Mn concentrations as shown in Fig. 3b is shifted to smaller nickel 
concentrations when compared with the low manganese concentrations as 
shown in Fig. 3a.  
 

These results can in principle be understood in terms of the cooling of a 
weld metal in the context of a continuous cooling transformation (CCT) 
diagram, as shown in Fig. 4. The microstructure of a weld, and hence its 
properties, will be sensitive to the interpass temperature if the alloy 
hardenability is such that the cooling curve intersects the CCT diagram at 
different temperatures when the cooling rate is changed. 
 
Therefore, with a high manganese and high nickel concentration, all cooling 
curves intersect the CCT diagram at the same temperature (martensite-
start), making the alloy insensitive to the interpass temperature, as is the 
case in Fig. 3b. A reduction in the nickel concentration at high manganese 
permits slower cooling curves to intersect the bainite part of the CCT 
diagram, thus increasing the sensitivity of the microstructure to the 
interpass temperature. When both manganese and nickel are in small 
concentrations, the alloy becomes very sensitive to the cooling rate.  
 
This analysis explains why the intermediate region (Fig. 3) is shifted to lower 
nickel concentrations when the manganese concentration is increased, since 
both nickel and manganese are austenite stabilisers. The predicted 
deterioration in toughness at low nickel concentrations when the interpass 
temperature is increased is because the transformation-start temperature 
increases as the interpass temperature is rasied. Coarser microstructures are 
associated with higher transformation temperatures re are coarser 
microstructures generated [15, 30, 31]. 

 
 
4. Conclusions 
 

The attempt to bound predictions of neural networks between upper and 
lower limits in order to avoid unphysical outputs using logarithmic 
representations of the output proved unworkable. The method introduced 
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bias in the models produced. A Charpy impact energy  model for steel weld 
metals  was therefore produced using the raw energy rather than a functional 
representation of that energy. This revealed rather interesting results with 
respect to the sensitivity of the impact toughness to the interpass 
temperature, nickel and manganese concentrations. The greatest sensitivity 
to the interpass temperature is associated with domains in which the 
microstructure is dependent on the cooling rate. This would not be the case, 
for example, where the microstructure is predominantly martensitic, because 
the martensite-start temperature does not for ordinary steels depend on the 
cooling rate. 
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Table 1: The dataset used in creating the neural network models. 

 
Variable Range Mean Standard deviation 

C / wt% 0.008-0.19 0.07 0.02 
Si / wt% 0-1.63 0.35 0.14 

Mn / wt% 0-2.31 1.20 0.40 
S / wt% 0.002-0.14 0.01 0.01 
P / wt% 0-0.25 0.01 0.01 
Ni / wt% 0-12.40 0.88 1.83 
Cr / wt% 0-19.50 0.35 1.19 
Mo / wt% 0-2.43 0.20 0.31 
V / wt% 0-0.53 0.01 0.03 
Cu / wt% 0-2.18 0.08 0.21 
Co / wt% 0-0.092 0.003 0.01 
W / wt% 0-3.86 0.004 0.11 
O / ppmw 25-1700 429 161 
Ti / ppmw 0-770 71 115 
N / ppmw 0-1000 95 67 
B / ppmw 0-200 8 27 

Nb / ppmw 0-1770 32 109 
HI / kJ mm-1 0.21-16.36 1.49 0.83 

IT / ℃ 20-350 182 39 
PWHTT / ℃ 20-940 198 287 
PWHTt / h 0-100 1.3 4.2 

DFe 0-3.68 × 1012 6.22 × 1010 4.47 × 1011 

TT / ℃ -196-136 -34.5342 36 
Charpy toughness / J 0.1-356 85 50 

ppmw: Part per million by weight 
HI: Heat input       IT: Interpass temperature 
PWHTT: Post-weld heat treatment temperature 
PWHTt: Post-weld heat treatment time 
DFe: A variable for iron diffusion during post-weld heat treatment    
TT: Test temperature   
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Table 2: Input sets used for the calculations presented in Fig. 1 and in the 
interpass temperature calculations. DFe is given by the product of the post-
weld heat treatment time and exp{-Q/RT}, where Q is the activation energy 
for the self-diffusion of iron at 260,000 J mol-1 [22];  it is a measure of the 
potency of the heat treatment. 
 
Input Data 1 Data 2 
C  0.034 0.025 
Si  0.27 0.37 
Mn  2.14 0.65 
S  0.008 0.006 
P  0.01 0.013 
Ni  7.3 6.6 
Cr  0.5 0.21 
Mo  0.62 0.4 
V  0.011 0.011 
Cu  0.03 0.03 
Co 0.009 0.009 
W 0.005 0.005 
O 0.033 0.038 
Ti 0.008 0.008 
N 0.012 0.0180 
B 0.0001 0.0001 
Nb 0.001 0.001 
Heat input / kJ mm-1 1 1 
Interpass temperature / °C 250 250 
Post-weld heat treatment temperature / °C 20 20 
Post-weld heat treatment time / °C 0 0 
DFe / s 0 0 
Test temperature / °C -60 -60 
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Fig. 1: The typical performance of the trained model on training and test (unseen) 
data.
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(a)  

 
(b) 

 
Fig. 2: Extrapolation results illustrating the influence of the choice of   on 
the behaviour of the neural network . (a) =0 and =357. (b) =0 and 

=3570, with  vertical scale limited  400 J because of the upper bounds 
can be as large as 3570. 
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(a) 

 

 
(b) 

 
Fig. 3: Influence of the interpass temperature and nickel on the impact 
toughness. The contours represent the impact energy in Joules, and the 
diagram on the right in each case gives the corresponding contours for the 
uncertainty (± 1σ) in that energy. (a) Low manganese (0.5Mn), (b) high 
manganese (2Mn).  
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Fig. 4: Schematic continuous cooling transformation diagram illustrating the 
effect of solutes and interpass temperature on transformation temperature. 
 


