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Abstract

The basic science behind bake–hardening steels is well–understood in terms of the interactions
between interstitial solutes and dislocations. However, the manufacture of such alloys involves a
variety of other variables, the interactions between which are influential in controlling the extent of
hardening. In this work, a model which includes the chemical composition of the steel, the strain
prior to ageing, and the annealing and ageing conditions, is developed and used to explore certain
anomalies in the published literature. It is found that whereas the roles of deformation and ageing
can be rationalised, the generic effect of niobium is associated with large uncertainties and warrants
further experimental work.

1 Introduction

Bake hardening steels consist mainly of ferrite containing a minute concentration of carbon (< 25
p.p.m.) in solid solution. They are used in the manufacture of automobile bodies which after
forming into shape, are painted. When the paint is baked in the range 150–200◦C, the dissolved
carbon migrates to pin any free dislocations introduced during the forming operation (Fig. 1). The
resultant bake-hardening response ∆σ is a useful design feature of the steel. There has been an
excellent recent review on the subject [1].

The metallurgical principles of bake hardening are simple to understand, but its quantitative expres-
sion depends on the detailed chemical composition, deformation and heat-treatment parameters.
As a consequence, mathematical models of bake hardening steels tend not to deal with the most
general cases but rather, subsets of the overall problem [3, 4].

There are a number of inconsistent issues reported in the literature. It has been reported for
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Figure 1: The definition of bake hardening (∆σ) which
is conducted on samples deformed to a plastic strain ε,
often referred to as the “prestrain” [2].

example that ∆σ decreases monotonically with ε [2, 5] although other investigations suggest that
the bake–hardening response is insensitive to the prestrain [6, 7].

The purpose here was to create a model using neural networks, which is inclusive of all the variables
described above.

2 Method

A general method for treating complex data is the neural network in a Bayesian framework. This
has been documented thoroughly [8–13] and applied extensively in the study and design of steels
[14–24]. For this reason only specific points of relevance are introduced here.

The network is essentially a non–linear regression method which, because of its flexibility, is able
to capture intricate patterns within the data. As such, the network is described by an equation
combined with coefficients, analogous to the coefficients and equation describing linear regression.
There are techniques implemented which avoid overfitting, and which minimise the danger of mod-
elling noise rather than the underlying trends. There are a number of interesting outputs other than
the coefficients which help in understanding the nature of the network and the data used to create
the model. First, there is the noise in the output, associated with the fact a different result may be
obtained from identical experiments, because some unknown variable which influences the output
is not controlled. Secondly, there is the uncertainty of modelling: many mathematical functions
may adequately represent known data and yet behave differently when extrapolated. A knowledge
of this uncertainty is particularly helpful in interpreting the trends when models are extrapolated,
and in indicating the extent to which extrapolation may be exploited in practice.
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3 Data

The data (Table 1) were compiled mostly from the published literature [1, 2, 6, 7, 25–28] together
with some unpublished research [29]. Some publications did not state the concentrations of Ti,
Nb, Al and Si, in which case they were assumed to be zero since these usually are all deliberate
additions. Similarly, the temperature of deformation prior to baking was assumed to be 25◦C
when not stated. The cooling rate from the annealing temperature, grain size and the strain rate
should influence bake hardening, but were omitted as variables given the lack of data – this should
contribute to noise in the output.

It is worth emphasising that the ranges of each of the variables stated in Table 1 do not define
the limits beyond which extrapolation is considered to occur. This is because the data are not
necessarily uniformly distributed in the variable space. The modelling uncertainty, on the other
hand, is an excellent indicator of positions in the input space where knowledge is sparse.

The extent of agreement between calculated and measured values of bake hardening, bearing in
mind that procedures have been implemented to avoid overfitting [8, 9, 11], is illustrated in Fig. 2.
The plot represents the entire available dataset of some 621 experiments, with the calculations done
using the optimised committee of models as described elsewhere [8, 9, 11]. The error bars represent
±1σ modelling uncertainty.

Table 1: Properties of data used in creating the model.

Variables Minimum Maximum Average Standard deviation

C / wt% 0.002 0.03 0.0093 0.0122
Mn / wt% 0.09 0.53 0.1665 0.1192
S / wt% 0.003 0.023 0.0061 0.0056
Si / wt% 0 0.022 0.0044 0.0072
P / wt% 0.007 0.045 0.0312 0.0173
N / wt% 0.0016 0.0034 0.0021 0.0007
Nb / wt% 0 0.018 0.001 0.0027
Ti / wt% 0 0.06 0.0095 0.015
Al / wt% 0 0.05 0.0448 0.014
Annealing temperature / ◦C 720 900 857.7 20.2
Annealing time / s 1 250 98 75.9
Prestrain / % 1 10 4 2.5
Prestrain temperature / ◦C 25 250 33 35.5
Baking temperature / ◦C 25 250 112.5 50
Baking time / min 0.1 49803 1346 5046.7
Bake hardening / MPa 0.1 72 27.92 14.14
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Figure 2: The performance of the
model. The modelling uncertainty
illustrated corresponds to ±1 stan-
dard deviation.

4 Application of the Model

Three different steels were selected in order to explore the behaviour of the model, both with respect
to known and understood trends and in order to resolve some inconsistencies across published data.
The parameters representing these steels are listed in Table 2. Steel 3 is interesting because its
deformation temperature is greater than that at which it was bake–hardened. The three alloys also
cover a significant range of prestrain (ε). Steel 1 has a particularly high manganese concentration
and there are detailed differences in the microalloying additions.

The data listed in Table 2 form the basis for studying trends. It may henceforth be assumed that
when a plot of ∆σ is presented against a particular variable (such as Mn), then the values of all
the other variables correspond to those listed in Table 2.

4.1 Deformation and Ageing

The prestrain refers to the plastic deformation prior to the ageing treatment; in laboratory experi-
ments such as those considered here, it is applied homogeneously, although in practice the state of
deformation will depend on the application and shape of the component.

It was pointed out earlier that ∆σ decreases monotonically with ε [2, 5], although others suggest
the ∆σ should be insensitive to the prestrain [6, 7].
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Table 2: Examples of steels studied using the model. The concentrations are all in wt%.

Variable Steel 1 Steel 2 Steel 3

C 0.0021 0.002 0.0023
Mn 0.53 0.09 0.16
S 0.012 0.003 0.023
Si 0.001 0.000 0.000
P 0.029 0.045 0.011
N 0.002 0.0016 0.0032
Nb 0.006 0.000 0.005
Ti 0.008 0.007 0.06
Al 0.047 0.049 0
Anneal temp / ◦C 820 850 900
Anneal time / s 80 60 60
Prestrain / % 1 2 4
Prestrain temp. / ◦C 25 25 200
Ageing temp. / ◦C 100 50 170
Ageing time / min 98.9 283.7 20

For the conditions listed in Table 2, steels 1–3 have ε = 1, 2, 4% respectively, and all show a
reduction in ∆σ as a function of ε, as illustrated in Fig. 3a. Such a reduction might be expected
if not all of the dislocations introduced by deformation become pinned during the ageing period.
A larger ε would leave more free dislocations and hence a diminished bake–hardening response.
However, this hypothesis would only be valid if the ageing conditions are insufficient to ensure the
pinning of all available dislocations.

In their analysis, De et al. [7] showed that the maximum increase in yield strength corresponding
to the completion of carbon atmosphere formation on dislocations, was independent of the level of
prestrain. This has been simulated here for Steel 1 by increasing the ageing time to 8000 min; the
results are illustrated in Fig. 3a and confirm that the strength increment becomes insensitive to
the prestrain when the ageing time is long.

It follows therefore that ∆σ will only decrease as a function of ε when the ageing conditions do not
allow sufficient time for the dislocation–pinning process to be completed. This is entirely consistent
with the classical work on strain ageing by Cottrell and Bilby, also involving steels with dissolved
carbon concentrations less than 0.003 wt% [30].

An interesting observation in Fig. 3a is that Steel 3 has a very high strain hardening response at
low ε, and hence ∆σ exhibits a larger decline as the prestrain increases. This is because the alloy
was deformed at 200◦C which is greater than the ageing temperature of 170◦C (Table 2). Dynamic
strain ageing is therefore likely at the deformation temperature [31]. This is also proven by the
calculations presented in Fig. 3b, where it is seen that a reduction in the deformation temperature
to values less than the annealing temperature leads to a dramatic decline in ∆σ.

The effect of temperature and time on strain ageing has long been understood [30]. Fig. 4a shows
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Figure 3: (a) Influence of prior
deformation on the tendency for
bake hardening. The values of the
other parameters used in the cal-
culations are given in Table 2, with
the exception of the filled points of
Steel 1, where the ageing time is
set at 8000 minutes. (b) Calcula-
tions for Steel 3, ε = 4% as a func-
tion of the deformation tempera-
ture.

the calculated dependence of ∆σ on the ageing temperature. Also plotted is the normalised measure
of strain ageing, H = Ht−H0

HM−H0
versus Dt where for a given steel, Ht, H0, HM are the instantaneous,

minimum and maximum values respectively of ∆σ. D = 5.2 × 10−4 exp{−9000/T} cm2 s−1 is the
diffusion coefficient for carbon in ferrite [30] and t the ageing time. The calculated data from the
three different steels are rationalised in this way Fig. 4b. It is interesting that the major part of
the strain ageing is completed at low values of Dt < 2 × 10−9cm2. This is consistent with the
substantial bake hardening apparent even from room temperature ageing, Fig. 4.
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4.2 Other parameters

Calculations indicated that for all steels, ∆σ increased with the annealing temperature. However,
the trends were all associated with large modelling uncertainties and are not therefore reproduced
here. The trends may nevertheless be correct given that the solubility of carbon in ferrite increases
with the annealing temperature, as verified using MTDATA [32]. The influence of niobium additions
on the bake–hardening tendency was too uncertain to be reliably perceived on the basis of the data
used to create the model (Fig. 5a). From a metallurgical point of view, both niobium and titanium
are expected to reduce the bake–hardening response because they are strong carbide formers. A
meaningful trend is indeed observed in the case of titanium for calculations done on Steel 2 (Fig. 5b).

Manganese in solution is known to associate with carbon atoms also in solution, thereby limiting
the ability of the latter to participate in bake–hardening [33, 34]. This effect is captured by the
neural network model as illustrated in Fig. 5c.

In future experimental work, it would be useful to report the cooling rate from the annealing
temperature. Although the equilibrium concentration of carbon in solution can be estimated as a
function of temperature using phase diagram calculations, the concentration may deviate from equi-
librium if the rate is sufficiently large. Our attempts at correlating the amount of dissolved carbon
calculated for the annealing temperature, against the bake–hardening response proved unsuccessful,
presumably because of the absence of information on cooling rates.

5 Comparison with Alternate Model

Dehghani and Shafiei [35] have just published a neural network model of bake hardening; it is
appropriate therefore to compare the present outcomes with their work. Judging from their Fig. 5,
the analysis is based on a total of 18 experimental data from three different steels, and includes the
total carbon concentration, prestrain, initial yield strength and ageing temperature as variables.
The data were generated from tensile tests for prestrains of 2, 4, 6, and 8% at room temperature,
and ageing temperatures of 100, 150, 200 and 250◦C for 20 minutes.

The analysis is obviously based on limited data and a conservative set of inputs compared with the
work reported here (621 experiments, 15 inputs). But more significantly, Dehgahani and Shafiei do
not report any quantitative assessment of errors and modelling uncertainties. This is a shortcoming
which makes it impossible to assess the significance of their results.

In their Fig. 3, Dehghani and Shafei show measurements which indicate that bake hardening in-
creases with prestrain. This contradicts the opposite trends illustrated in Fig. 3. It is believed that
their experimental trends (illustrated as curves rather than points) are presented in a misleading
manner – given the limited number of experiments they conducted, it is inevitable that other vari-
ables such as the annealing temperature are not kept constant in generating these plots. The paper
unfortunately does not contain the necessary information or detail to comment further on their
observations, or to reproduce their work or indeed to simulate their results using our model.
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6 Summary

It is evident from this analysis that although there is a great deal understood about bake–hardening
steels, there are significant gaps in knowledge when the whole set of variables is considered together.
With the neural network model it has been possible to rationalise the effects of the ‘prestrain’ and
ageing temperature on the extent of bake–hardening. A number of other trends, such as the
influence of the solutes Mn and Ti are well–defined. However, it has not been possible to extract a
comprehensive understanding of the effects of all the variables, for example niobium, because the
range of data available have been shown to be inadequate for analysis purposes.

The software developed is available freely from

www.msm.cam.ac.uk/map/mapmain.html

Figure 4: (a) Influence of ageing
temperature on the tendency for
bake hardening. The values of the
other parameters used in the calcu-
lations are given in Table 2. (b) In-
terpretation of the data; the units
of time are seconds.

Acknowledgements

S. Das is grateful to the Commonwealth Scholarships Commission (U.K.) for financial support
towards his studies in Cambridge University during 2006–2007.

8



(a)

(a) (b)

Figure 5: Steel 2: (a) Calculated effect of Nb – the uncertainties are too large to perceive a
significant trend. (b) Calculated effect of Ti. (c) Calculated effect of Mn.
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