Discussion

[200]

—>[020]

(117 [220] [111]

—>[002]
o)

[220] [351]

—>[111]

Fig. D.V.2  Electron-diffraction patterns of MiCs: (a) [001] zone,
(b) [110] zone, and (c) [112] zone. (Dyson and Andrews.)
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to [111] which divide the reciprocal lattice distance 220 into
three. In this case the weak maxima are not along this [220]
vector. A well-defined row of subsidiary spots is, however,
found along a line parallel to [351].

The replica was known to be composed primarily of
vanadium carbide which has a variable composition and
could contain nitrogen or oxygen atoms. The streaking
appears to be due to the existence of ordered domains or
stacking faults, and extra spots in the same directions would
also fit ordering or hexagonal-cell formation. The one-third
separations are believed to be due to a separate epitaxial
oxide phase analogous to the titanium phase as described
by Vere and Smallman.

Dr. H. Mcl. CrLark (University of Illinois, U.S.A.): I
notice that Professor Rao found a maximum drop in resis-
tivity at 409, Ag in the Ag-Pd alloy, but at 509, Ag there is
an increase. I wonder if there is an explanation for this
effect. I know that in Cu-Pd the ordered phase is situated
on the copper-rich side. The second point is why was such
a small deformation—99, reduction in area—used? Would
it not be possible to increase this a little ?

Professor K. KRISHNA Rao (University of Nebraska,
U.S.A.): In this system the maximum resistivity change
corresponds to ~ 15 or 16% reduction in area. Further
cold work causes the resistivity to increase.

Dr. CLARK: My point is that the maximum decrease in
resistivity was found; that corresponds to short-range order.

Dr. J. KirtL (Argentine Atomic Energy Commission,
Buenos Aires, Argentine): I would like to ask Professor
Rao how he separates the contribution of recovery from the
order contribution when changing the temperature.

Professor RAo: One of the ways to deal with this is to look
at an alloy that does not show a sharp recovery, and then
study both contributions.

Dr. D. H. WARRINGTON (University of Sheffield): I would
like to ask Dr. Southworth whether it is possible to dis-
tinguish between the end of short-range order and the start
of long-range order.

Dr. H. N. SoutHWORTH (University of Cambridge): 1 do
not think there is any distinction between these two cases;
long-range order is an extension of short-range order. All
one can say is that in the field-ion microscope the image
gets more and more regular. I would state, however, that
there is a change in symmetry. While the image is still showing
cubic symmetry, there may be either short-range or partial
long-range order. When it begins to exhibit tetragonal
symmetry I would say it is certainly a case of long-range
order.

Dr. B. RaLpH (University of Cambridge): One point I
should like to add here in answer to Dr. Warrington’s
question is that in a small volume you can, in fact, state the
absolute order parameter within that volume. In other words
you can work out how many atoms are in their correct
positions.

Dr. H. I. AAroNsoN (Ford Motor Co. Research Labora-
tories, Dearborn, U.S.A.): Newkirk et al.* indicated that both
coherent and incoherent growth can occur at the same
reaction temperature in the same part of the specimen. 1
wonder if the authors’ explanation of the transformation
sequence in the system can accommodate such an arrange-
ment.

*J. B. Newkirk, A. H. Geisler, D. L. Martin, and R. Smoluchowski,
Trans. Amer. Inst. Min. Met. Eng., 1950, 188, 1249.
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Dr. SoutnworTH: I believe that you are referring to the
occurrence of a different ordering process at the grain
boundaries. We have not actually observed any grain boun-
daries in this study. You will appreciate that in the field-ion
microscope such a tiny volume is studied that we have not
hit on one. I think this would be a separate nucleation
event.

Professor R. B. NicHoLsoN (University of Manchester):
Concerning the ordering that took place at the low tem-
perature, the whole interface looked extremely diffuse, which
at first sight is a rather surprising result.

Dr. SoutaworTH: This is really part of the basis of our
explanation of ordering up to 500° C. By having a diffuse
interface one avoids the interface-energy terms. The interface
can afford to be diffuse because the free energy of ordering
at these temperatures is high. Consequently, even with a

partial-long-range ordered diffuse interface a fairly high
free energy is still released when atoms cross this interface.

Professor NicHorsoN: If I understand the explanation
correctly, it is very similar to that for the formation of a
transition precipitate in an ordinary precipitation system
whereby you sacrifice the volume energy to get a structure
that is more similar to the matrix, but even in this situation
you still try to minimize what interfacial free energy there is
by minimizing the area of the interface. In this case it looks
as though the area is very large.

Dr. RarpH: 1 think the point is that it is diffuse in two
senses. It is diffuse in the sense that it does not have a regular
habit plane and it is also diffuse in the sense that it does
not represent a sharp change in order, i.e. there is a wide
region over which the order is changing. There is not just
a one-atom-diameter interface between order and disorder.
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The Role of Interfaces in

Some effects of interfaces on solid-state phase trans-
formations are examined using a simple model where
the interface is regarded as a thin film of boundary
‘“ phase >’ having its own molar free-energy function
for binary alloys. The free-energy losses during the
movement of such an interface are evaluated from free-
energy diagrams. Two mechanisms of free-energy
dissipation are found, caused by diffusion ahead of
the interface and inside the interface. The force neces-
sary for moving the grain boundaries in a single-phase
binary alloy at a given rate is estimated from this
model and the result agrees with the impurity-drag
effect treated by Cahn. In particular, the force de-
creases at high rates as a result of an increasing deviation
from local equilibrium at the interface. For dis-
continuous precipitation, the deviation from local
equilibrium at the interface results in a force pulling
the grain boundary along with the precipitating phase,
thus supplying a force necessary for this kind of reac-
tion. It is suggested that discontinuous precipitation
can occur only when there is a deviation from local
equilibrium. A detailed calculation of the diffusional
process during discontinuous precipitation is carried
out and compared with equivalent calculations for
a eutectoid transformation under volume or grain-
boundary diffusion. The dissipation of free energy
under ‘‘zero-growth-rate ’ conditions is examined
and Zener’s optimum-spacing hypothesis is discussed.
The conditions for diffusionless transformation are
examined in some detail. The effect of alloying elements
on the transformation of austenite is discussed consider-
ing the behaviour of an alloying element in and close
to the moving interface. The simple pile-up model
for the effect is accepted at high temperatures. At
lower temperatures two new effects occur; first an
increasing free-energy loss due to diffusion inside the
interface and, secondly, an increasing deviation from
local equilibrium at the interface. As an application,
the TTT diagram for the ferrite formation in a molyb-
denum steel is explained, making use of Hultgren’s
concept of paraequilibrium.

Grain boundaries and phase boundaries are often considered
as mathematically sharp boundaries, although they have
important physical properties. As an example of such a
property, the specific interfacial energy, o, may give rise to
a pressure difference if the surface is curved
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The mathematically sharp boundary model was used, e.g. by
Becker,! in deriving an expression for ¢ in a binary alloy. On
the other hand, it has been shown that important properties
of ¢ can be derived by applying a more realistic model of
the boundary where it is treated as a transition region of
some width.2—4

Another property of considerable importance for phase
transformations is the mobility M that relates the velocity
of a boundary v to the pulling force,

P =v/M .2

M is sometimes assumed to be a constant; in other cases it
varies with v. In particular, the theory of the mobility of
grain boundaries in alloys has been based on a model where
the boundary is treated as a thin film of some thickness.?:6
A third property of great importance for phase transfor-
mations is the enhanced diffusion along boundaries. In
the treatments of boundary diffusion the predominant
model is that the boundary can be regarded as a thin film
of grain-boundary material of thickness 8 and diffusivity
DB, The grain boundary is thus treated as a film of a separate
phase having its own properties. This crude model will be
applied in the present paper, and the grain-boundary material
will be assumed to have its own molar free-energy function.
Free-energy changes in and close to the boundary will be
considered and expressions will be derived for the forces
acting on the boundary due to such free-energy changes.
Such expressions are based on the fundamental relation

P = AGn/Vm :{(3)

where V, is the molar volume of the new phase. Depending
on the sign of AG, the force may act in either direction. For
the case of boundary migration in single-phase alloys, equa-
tion (3) will be used to derive the retarding force due to the
so-called impurity-drag effect. For the case of discontinuous
precipitation, it will be shown that equation (3) will yield
the force necessary for pulling the grain boundary along as
the new phase precipitates. Without this force, which has been
overlooked in previous theories of discontinuous precipitation,
this process may not be possible.

Free-Energy Diagram of Binary Alloys

The chemical equilibrium between two phases may be
displaced by a pressure difference caused by a curved inter-
face. The well-known Thomson-Freundlich equation des-
cribes this effect quantitatively for a simple case. Under
more complicated conditions, the mathematics of the thermo-
dynamic calculation may be very complex and quite difficult
to penetrate. However, the situation can be presented quite
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quantitatively by using a free-energy diagram and the deriva-
tion of mathematical expressions may thus be reduced to a
matter of arithmetic.

To simplify the discussion in this paper, we shall always
assume that the original matrix phase, vy, is under ordinary
pressure and any pressure difference according to equation (1)
will thus be situated in the growing phase, « or 8. Fig. 1
shows an example of the well-known free-energy diagram
for a binary system containing two phases. A vy phase with
the composition Xj is supersaturated with respect to the
B phase. There is a driving force AG® for the formation of
the $ phase and  may thus form even under a high pressure
P8, caused by a curved interface. The critical value of this
pressure is easily calculated using equation (3). P2 = AG#/Vm,
thus allowing us to evaluate the critical size of a nucleus
or the critical curvature of the interface during growth.

To carry out a numerical calculation, the shape of the
free-energy curves must be known. Such calculations may
be quite complex, in particular if the molar volume ¥y, of
the @ phase is not constant but must be represented by the
expression

V=0 —X).Va+ X.Vs ...(®

The broken curve in Fig. 1 shows that the free-energy curve
of the B phase is distorted when raised a distance P&V,.
However, it has been shown? that the composition of the 3
phase in such a case is simply obtained by the point of tan-
gency if a tangent to the @ curve is drawn in such a way
that the distances between the intercepts at the two sides
of the diagram are related as V4 to Vs.

Numerical calculations are greatly simplified if the free-
energy curve of the 3 phase is so narrow that the composition
X® can be treated as a constant. For instance, using the
equation

AGP = (1 — X®) () —p$) + XP(up —pp). .. (9

where p. represents the chemical potentials, i.e. the level of the
intercepts of a tangent on the sides of the diagram (see Fig. 2),
and e represents the equilibrium between the two phases,
and approximating the y phase as an ideal or dilute solution,
we get

AG? = RT — xB ]nl 1 + X8 n_l
(1 ) 1- Xel l Xel
. (6)

If X — X< X, we get approximately

AGs = RT | —27 _X* (XY — X7 )
B 1—Xxy x| e L B
It is often of interest to calculate the total driving force
for the complete reaction. This quantity is represented by
AGtotar in Fig. 2 and using the same approximation, equation

(6) (with X7 substituted for X®) will now give us

X7 —xne
AG =RT——— . (8
total ZXIY ( )
Free-Energy Sinks

All the free energy available for a transformation cannot
always be used to overcome the pressure difference according
to equation (1), if the transformation takes place with a
measurable speed. Some energy may be used to overcome
the friction according to equation (2) and, if diffusion occurs,
this process will also require free energy. Consider the for-
mation of 3 phase from a supersaturated y matrix with
composition X7 (Fig. 3). Let us assume that a concentration

difference of X7 — X; is needed in the matrix to make the
diffusion sufficiently rapid. X; will then be the matrix com-
position close to the growing 8 phase. Fig. 3 demonstrates
that the driving free energy for moving the boundary, AG8, is
lowered by the diffusion process. Of the total free energy
available for the complete transformation, the quantity
AGq is used up by the diffusion process. Its size is easily
estimated in the same way as equation (8), yielding
(XiY — XIY)Z

Ag=Rr=l 17 ...
¢ 2X7 ©)

Application of Boundary Model to Grain-Boundary Migration

We shall assume that a grain boundary in a single-phase
binary alloy can be regarded as a thin film of a special phase
with a free-energy curve such that equilibrium with a vy grain
is established when the concentrations are related by

X8 =K. X~ ... (10)

Fig. 4 demonstrates this case with a K value larger than
unity. Equilibrium is obtained from any pair of parallel
tangents and it is a true, stable equilibrium, since the amount
of the grain-boundary phase is constant as the width of the
film & is constant. The vertical position of the free-energy
curve for the grain-boundary film was chosen arbitrarily
in Fig. 4, this position not being of any importance for the
present discussion. On the other hand, it is important if one
wants to discuss the value of the interfacial free energy.

The concentration profile is shown at the bottom of Fig. 4.
In spite of the high concentration inside the boundary, it
should be realized that X; will be the average composition
of the material flowing down through the boundary, if the
boundary is slowly migrating upward with a constant velocity.
At the upper side of the boundary, the material entering the
boundary is transferred to a higher free-energy state, as
illustrated by the arrow AGu, and at the lower side of the
boundary the same amount of material is leaving the boundary
and thus being transferred to a lower state as illustrated by
the arrow AG;. However, no net force is acting on the boun-
dary since

P = (AGu — AGY)/Vm =0 e 5w (1)

The concentration profile will change somewhat if the
boundary is moving with a constant measurable velocity,
(Fig. 5). In each phase the profile must be of the exponential
form with the value X7 as the limiting value.

Xy =X+ (XS — X)) exp[— vy/D"] ...(12)

XB = X; + (X7 — X)) exp[— vy + 8)/D"]
... (13)

Assuming chemical equilibrium to be established locally
at each side of the boundary, equation (10) will yield
XP=KX] =K. X% .19
X8 = kxY ... (15
and the application of equation (13) at y = 0 yields
XB =X, 1 + (K —1)exp(— v3/DB)]...(16)
The quantity X,/ in equation (12) can now be substituted to
yield
K—1

XY =X [1 + (exp (— v3/DB) — 1)exp — vy/DY]

(17
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Fig. 7 Free-energy diagram without local equilibrium at the upper
side of the boundary.

It is interesting to note that all the compositions at the
two sides of the boundary are independent of the diffusivity
in the grain, D¥. The compositions at the upper side X, and
X,fx are dependent on the diffusivity inside the boundary D5,

The concentration profiles in Fig. 5 should give rise to
diffusion and one should thus expect a loss of free energy
in each phase, AG) and AGY, i.. a retarding force on the
boundary motion. This fact is also illustrated by the difference
in length of the two arrows AG, and AG; in Fig. 5 and, as
expected, one finds

P = (AGu — AG)|Vm = (AG) + AGE)/ Vi

... (18)
Using equation (9) we find
AGY p— _]g-’ (X X'Y)ZZ
d — 2X1 1 u
RT(K—1\* 5/DB)R . X 19
—2( —) 0~ e (- DBE. X (19)
RT i ,
AGY = R, (X — X2 — (X — X))
R
=7(1< — 1)2[l —exp (— 2v3/DB)]. X1 ...(20)

For low velocities, v, and K not much less than unity,
the exponential functions can be expanded in series and
inserting equations (19) and (20) in equation (18) we obtain
RT3 (K — 1)2 X,
P =¥ ... 2D
DBV,

We have thus derived an expression for the effect of an alloy
element on the mobility M of a boundary. Hypothesizing
an interaction force between the alloy atoms and the grain
boundary, Liicke and Detert® were able to derive a similar
expression for the same effect, the only difference being that
they obtained (K — 1) to the first power instead of squared.
Their expression thus seemed to predict a negative friction
force P for an alloy element with K < 1, an unreasonable
result as pointed out by Cahn.® Cahn carried out a very
ambitious treatment of the problem assuming a continuous
variation of the attraction energy and diffusitivity through the
boundary, and was able to resolve the difficulty. For low
velocities his result seems to be in agreement with our
equation (21).

’ &

ALLOY CONTENT

Fig. 8 Free-energy diagram with no local equilibrium at the sides
of the boundary.

For high velocities the concentration profiles will change
to the situation demonstrated in Fig. 6. The concentrations
at the upper side of the boundary have reached their limits,
X8 = X7 and X = X1/K and the friction force has reached
its maximum value

_RT(K — 1 X
B 2Vn

On the other hand, at high velocities we must consider a
new effect; the concentration profiles may become so narrow
that they only exist mathematically but not physically. This
will first occur in the vy phase because DY < D# (Fig. 7), and
finally in the boundary phase as well (Fig. 8). The difference
between the two arrows, AG, and AG;, will decrease and
go to zero.

Owing to the atomistic nature of the system, it may never
be realistic to treat the extreme value at the tip of a profile
as existing physically. Instead we shall choose to use the value
existing at a distance of 3/4 from the tip of the profile. This
is an arbitrary choice but should be fairly realistic considering
the fact that the width of the grain boundary, 3, is probably
a few atomic distances. Fig. 9 demonstrates this model and
yields the following result:

... (22
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Fig. 9 Realistic free-energy diagram for rapidly moving boundary.
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Fig. 10 Impurity-drag effect on the movement of a grain boundary
calculated with DB —= DY. The lower curve will be negligible
for DB > Dv.

XYy = 3/4)
K —1
= Xi [1 ——K— [1 —exp(— v3/DB)].exp (— v3/4D)
... (23)
XB(y = —38/4) = X; [l + (K — 1) exp (— v3/4DB)]
... (29
AG)
RT (K —1\?2 ,
= ? (T) [l —exp(— v3/DB)]%.exp(— v3/2D7) . X,
/ ... (25
RT
AGE = - (K - 1)2 [exp (— v3/2DB) — exp (— 2v3/DE)]. X;
... (26)

p RT K — 1) vd 2v3
_sz( — 1)% |exp ~5pE — exp _DB)

4 v8) 2 vd\ 1
- — exp ~pr .exp| — 2DY)K‘3 . X

' )

This expression holds for all values of the velocity, low and
high. Fig. 10 shows the result of a numerical calculation
carried out with DY = DB and K = 2. The very low curve
represents the effect due to diffusion in the y phase ahead
of the boundary. With values of DY < D5 this curve will
be even smaller and can be completely neglected for practical
purposes. The main effect causing the friction force is thus
due to the diffusion process inside the boundary.

In principle, Fig. 10 shows the same result as obtained by
Cahn® using a more ambitious model. An advantage of the
present model may be that it yields simpler mathematics
and a final expression in closed form for all values of velocity.

It is interesting to note that the decrease in the friction
force occurs as a result of a growing deviation from local
equilibrium at the sides of the boundary. In the next section
we shall find that such a deviation from local equilibrium
may even result in a force pulling the boundary.

Mechanism of Discontinuous Precipitation
Discontinuous precipitation resembles a eutectoid trans-
formation, although the phase diagram indicates that only
one new phase should form. However, this phase forms
as parallel lamellae growing together with a new grain of the
matrix phase

(a) (b) [
Y,
TT 17T mR
| B 1 ¥ g B8 1 Y, B !
| |

Fig. 11(a) and (b) Possible shapes of the interface of discontinuous
precipitation during growth.

Y1 >B+ 72

The new v, grain has a much lower alloy content than the
original, supersaturated v grain. The loss of supersaturation
thus occurs discontinuously as the yj/yz grain boundary
advances and it has been suggested that the reaction is
controlled by grain-boundary diffusion.8

The growth process has been treated theoretically by
Turnbull® and Cahn.® They calculated the rate of grain-
boundary diffusion necessary to lower the alloy content in
front of the new vy, grain but neglected to consider the force
actually pulling the grain boundary. As a consequence, their
treatments give no indication why discontinuous precipitation
occurs. Cahn simply assumed that the grain boundary will
move with a rate proportional to the available free energy,
without considering by what mechanism part of this energy
could be transformed into a force.

To resolve this difficulty, Kirkaldy!? suggested the existence
of a metastable miscibility gap in the y phase. The reaction
could then be treated as a eutectoid transformation where
there is a chemical driving force acting on the growth of
both the new phases. Shapiro!! has worked out this theory
in detail. On the other hand, it may be argued that dis-
continuous precipitation occurs in such regions of temperature
and composition that it is difficult to imagine that suitable
miscibility gaps would exist in all necessary cases.

Another mechanism has been proposed by Sulonen,'? who
suggested that the difference in atomic size would give rise
to strain energy in the concentration gradient ahead of the
growing v, grain. This effect would result in a force on the
boundary because the strains would be released as the new
grain advances. This model has not been worked out in
detail.

A further possiblity is that the interfacial energies at the
three-phase junctions balance each other in such a way that
the v1/y> grain boundary is actually pulled by the growing
8 phase, (Fig. 11(a)). This mechanism has besen observed
occasionally during precipitation of cementite from austenite
but may not be a mechanism characteristic of precipitation
controlled by grain-boundary diffusion. On the contrary,
evidence from electron microscopy!'!'? strongly indicates
that the v;/y> grain boundary is convex, as illustrated by
Fig. 11(b).

To derive an expression for the force acting on the yi/y2
grain boundary, we should examine the free-energy diagram.
The concentration profile at the bottom of Fig. 12 holds
along a line perpendicular to the grain boundary (e.g. the
line at the centre of the v, lamella in Fig. 11(b)). The con-
centration across the assumed grain-boundary film is almost
constant because of the high value of D? in relation to the
growth rate. On the other hand, there may be a very rapid
change in the matrix grain in front of the boundary because
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Fig. 12 Free-energy diagram for the grain boundary in discontinuous
precipitation assuming local equilibrium.
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Fig. 13  Free-energy diagram for the grain boundary in discontinuous
precipitation with deviation from local equilibrium.
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Fig. 14 Free-energy diagram for the grain boundary in discontinuous
precipitation with maximum force on the boundary.
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Fig. 15 Free-energy diagram for the v/[B interface in discontinuous
precipitation.

D~ is much smaller. When using the free-energy diagram
in this case, it must be realized that the average composition
of the material entering the grain boundary is not the same as
that of the material leaving the grain boundary to form the
new v grain. The two composition values are X7 and X>,
respectively. The difference is caused by the sidewise diffusion
along the grain boundary necessary for the growth of the
B phase. The arrows AG, and AG; at the top of Fig. 12
represent the free-energy changes accompanying the transfer
of material. They have the same length and will thus give no
net force on the grain boundary.

If the growth rate is high enough in relation to D, the
profile may be so sharp that it is not realistic to assume full
chemical equilibrium at the upper side of the grain boundary.
Fig. 13 shows such a situation using the same approach
as in the previous section. The two arrows will now have
different lengths, the difference being equal to the free
energy that is no longer used on diffusion in the y phase. In
this case we find a force pulling the grain boundary upwards

P = (AGy — AGW)/Vm = AGp/Vim ... (28)

This force will reach its maximum value when the trans-
formation is so rapid that no diffusion occurs in the matrix
ahead of the grain boundary (Fig. 14).

Pmax. = AGa/Vnm ... (29

From this model we may predict that discontinuous
precipitation would occur only when the grain-boundary
diffusion is so much higher than lattice diffusion that the
profile will be steep enough. Equation (17) shows that the
shape of the profile is determined by the ratio D¥/v. As an
example, Speich!® has evaluated DY = 7 x 1016 cm/sec at
500° C in the Fe-Zn system and the lowest growth rate
observed for discontinuous precipitation at that temperature
is 1-15 X 107 cm/sec. We thus find

D7y =7 x 10716/1-15 x 107 cm = 0-6 X 10~8 cm.

It may thus be safe to conclude that the force is very close
to its maximum value in all Speich’s experiments.

A detailed theory of the growth of discontinuous precipita-
tion will be worked out in a later section of this paper. It
will then be assumed that some fraction, f, of AG4 will not
be spent on diffusion but give rise to a force

P=f.AGa/Vn ... (30)
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Fig. 16 Diffusionless transformation 1 — [3 is not possible with
complete local equilibrium.

In applying this theory to a specific case, it is necessary to
estimate the value of f from the predicted value of v, using
the parameter D¥/v to estimate the steepness of the profile. As
in the previous section, this value of f may be estimated from
Fig. 13 using the composition on the mathematical shape
of the profile at the distance 8/4 from the boundary or the
concentration at some other distance, e.g. one atomic distance.

Fig. 15 illustrates the force acting on the movement of the
v1/B interface

P = (AG: — AGW)[Vm = (AG® + AGp)/Vm
= (AG® + fAGa)Vnm ... (3D

Diffusionless Transformation in Alloys

If the free-energy curve of the B phase in Fig. 15 was much
wider, a diffusionless transformation y — 3 might be possible.
A necessary condition is that the composition of the matrix v
phase lies to the right of the intersection of the two free-energy
curves, as illustrated in Fig. 16. However, this condition
is not sufficient as shown by the fact that AG, > AG;. These
arrows have been constructed assuming local equilibrium
at both sides of the boundary. For the reaction to proceed,
we must have AGy < AG;. This may occur if the rate of
reaction is high enough to result in a deviation from local
equilibrium at the upper side of the boundary. This situation
is illustrated by Fig. 17. We can conclude that a diffusionless
transformation may occur if there is some mechanism by
which its speed is initially raised to a high value. The critical
speed appears to depend upon the free-energy curve of the
boundary.

The same free-energy diagram can be used to show that
there is no critical speed if the original composition lies to
the right of the composition of # phase in stable equilibrium
with y phase. In such an alloy, the precipitation of 3 phase
should automatically develop into a diffusionless growth.

Balance of Forces in Lamellar Structures

We shall now consider the formation of lamellar structures
and assume that they are completely regular and contain
perfectly parallel lamellae. The radius of curvature at any
point on the advancing interface should be such that all the
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Fig. 17 Diffusionless transformation 1 —~ 3 is possible with
deviation from local equilibrium.

Fig. 18 Balance of forces at three-phase junctions.

forces will balance each other. Equations (1)-(3) give

5 S REY, so s (32)
The three-phase junctions deserve particular attention. The
three surface tensions should here balance each other and
thus control the size of the three angles. As demonstrated
by Fig. 18, the surface tension of the newly formed o/3
interface, o, is carried partly by the « lamella and partly
by the B lamella. The two parts of o may be denoted as
Lo and (1 — L)o, where L can easily be calculated from
information on the three angles or the three surface tensions.
Balancing the forces acting on the whole edge of the «
lamella, we find
S92
2Lc = f (AGm/Vm = V/M) dz
— 812
By the number (33«, ) we indicate that a similar equation
holds for the 2 lamella. To use this equation, it is necessary
to know how AG, varies along the edge of the lamella, i.e. to
know the variation in composition along the edge. This kind
of information can be obtained from a calculation of the
diffusion.

... (332, B)

Diffusion during Growth of Lamellar Structures
We shall neglect the possibility of diffusion occurring
in the growing phases, thus assuming that they retain the
composition obtained at the moment of formation. When
treating the diffusion ahead of a growing lamella, it is useful
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a

B

Fig. 19  Growth of lamellar structures by (a) volume diffusion and
(b) boundary diffusion.

to consider a thin, long volume element as shown in Fig. 19(a).
As the phase boundary moves upwards within this volume
element, its change in composition must be balanced by
sidewise diffusion

o

d?x
— | D—dy =v(X) — X%
dz?

... (34, B)
To solve this equation in the general case, we must know
the shape of the interface. As a consequence, equation
(342, 8) must be solved simultaneously with equation (33, 3).
However, in a previous paper? it was shown that the procedure
is greatly simplified if the edges of the lamellae can be ap-
proximated as flat. A representation of the composition in the
matrix by a series

Xr— X = z An exp (— Any) . cos 2nnz/S
0

... (35)

will then reduce to a simple Fourier series at the edge, y = 0.
To satisfy Fick’s law

v
An =55 (1 + A1+ 16m2n2D%/v%%) . .. (36)

The application of equation (34«, ) yields the values of the
Fourier coefficients
47\4;1’52

- D(2nn)?

An (X% — X%) sin nnS%/S forn > 0

... (37

At low temperatures, the volume diffusion may be very
slow and boundary diffusion may instead dominate. This
situation is described by Fig. 19(b), where the thickness of the
boundary has been greatly exaggerated in order to illustrate
the effect. Treating the boundary as a thin film of thickness 3
and diffusivity D5, we can easily integrate equation (34, B),
again approximating the interface as flat

0

d*x d*xB .
— | Do dy = DB = Y — X%
dz?

dz?

— ®

... (382, )
Integrating (38«, () for the case of constant X* we obtain
XB — X5 y(§%)2 2z\2
i )[14(—) L)
X{ — X+ 8DB3 S
Xg is the composition in the boundary at the three-phase

junction, ie., at z = $%/2 and X, is the original matrix
composition.

Assuming a constant distribution coefficient between the
boundary phase and the y phase according to equation (10),
we can represent the concentration in the boundary by an
equivalent composition that would hold in the y phase at
equilibrium. We shall denote such values by X?. Equation
(39) can thus be transformed,

Xb — X2 (S92 2z\2
= 1—-(= ... (40)
X" — X* 8KDB3 So
In discontinuous precipitation, the growing « phase is
actually a grain of the same phase as the y matrix. As long
as the « phase is formed in local equilibrium with the grain-
boundary material, we have X* = Xb. The composition

X« will then vary along the interface. Cahn? has shown
that equation (38) will then have the following solution

Xt — XY cosh z 1/ a/S*
X5 — XY cosh /a2

... 4D

where
a = v(S§*)?/KDB3 ... (42

Again, the properties of the boundary are expressed by a
single quantity (KD?B3).

Eutectoid Transformation at Zero Growth Rate

Some essential features of the eutectoid transformation
can be demonstrated by a very simple model where the two
growing phases are supposed to be in full equilibrium with
the adjacent matrix. Naturally, the growth rate must be
zero in this hypothetical case. There will be no sidewise
diffusion and the composition of the adjacent matrix can be
represented by a single value X¥. It may be tempting to
assume that X~ is identical to the original matrix composition
X[ but this point will require further discussion.

Gm

— —
ALLOY CONTENT

Fig. 20 Free-energy diagram for eutectoid reaction.

Fig. 20 shows a free-energy diagram and AGiota1 is the
available free energy. If all this energy would go into the
interfaces between the lamellae in the eutectoid structure, we
would have

Srev. =20 Vm/AGtutul o e (43)
where rev. stands for reversible, indicating that no free energy
is lost irreversibly on diffusion or on any other rate process.

We shall now apply equation (33, ) using the expression
of AG® given by equation (7). The integration can easily
be carried out since XY is constant
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Se/2 52/2
1 — X= X
LoVm = fAG“dz = RT [I_?X—Y/; — X—Y/—“:l f(XZ/“ — X")dz
0 ‘ ¢ 0
1 — X~ X«
1 — XY= xYe=

- RT[ ](X;f/“ — X782

... (44
X® 1 — Xx°*

X ;7/9] (X7 — XP)Se)2
... (45

The lever rule relates S*, S8 and S. Assuming a constant
molar volume for all the phases, we obtain
XY} — X98* = (X8 — X[)SB = (XB — X%)S=S8/S
... (46)

Equations (44) and (45) may thus be said to contain two
unknown quantities, X~ and S, and they can be solved easily.
We shall denote this particular S value by Sy because it is
characteristic of zero growth rate.

Dividing equations (44) and (45) will give

XY= — xv
XY_X;{/B

L Se[xs 1 — Xx¢ 1 — X« X«
Tl Lse|x®T1 — x|/ |1 = x= T X

... (47

It is shown that the composition X depends upon the relative
values of the three interfacial energies involved (through L)
and upon the asymmetry of the phase diagram (through
the values of the two brackets). Even for the completely
symmetric case, equation (47) predicts XY = X" only for
X{ =1/2. In spite of the fact that we set out to treat the
case where no sidewise diffusion occurs, we find that length-
wise diffusion cannot be prevented in the general case. We
should thus expect some loss of free energy, i.e. we should
expect to find Sy # Srev.
Adding equations (44) and (45) will give

26Vm
S0 = Rr(xT* — X7
LS/S* (1 — L)S/S® )
[ —x« X+]  Jxf 1-x8!
e e
CT))

The relation between Sy and the composition at the front X is
best demonstrated by the free-energy diagram.  Direct
integration of equation (44) for the case of AG* constant will
give

LoVm = AG*S%/2 ... (492)
and in the same way for the B phase

(1 — L)oVm = AGBSE/2 ... (49p)
Adding (49«) and (49B) and using the lever rule,

AG*S* + AGES® = AGLS ... (50)
we obtain

So = 26Vm/AG, ... (51D

Fig. 20 demonstrates that part of the total free energy available
will be spent on diffusion, AGy, and the rest will go into
interfacial energy, AG,. As a consequence, we find that

239

So > Srev. However, the difference is not very great, AGj
being only a minor part of AGiotal.

Eutectoid Transformation by Volume Diffusion

This case has been treated by Zener,'4 using a method
based on dimensional arguments, and by the present author?
and by Jackson and Hunt!5 in a more rigorous way, which
will now be followed.

We shall apply the same procedure as with zero growth
rate in the preceding section. If the friction term v/M in
equation (33«, B) is neglected, we again find the same expres-
sion as the first part of equation (44) but the integration will
be more complicated because XY now varies along the edge
of the lamella. For volume diffusion we can express XY by
means of the Fourier coefficients given by equation (37) and
after integration of equation (44) we obtain

1 — X« X«
LoVm = RT I——leaﬁm
S*  ySAXE — X9)
XYt _ XY _ 4p)— ——— - B
[( ¢ t A3 2Dr ]
..+ +(52)
Xe 1 — Xe
(1 — L)oVm = RT Zﬂg—-m .
S8 vSXE — X%
XY — xvi8 AYy— e —= S, P
[( { = X"+ Ao 2Dn? ]
... (53)
where
AnS .
B = — (sin nS*/S)? ... (59
2nnt

1

Again equation (46) relates S, S®, and S. Equations (52)
and (53) may thus be said to contain three unknown quantities,
Ay (defining the average composition at the front), S, and v.
Adding equations (52) and (53) will give

vS(X® — X*%)§2

X;f/“ . leﬁ = ‘Bl .S
Dr3§%S8
26Vm LS/S* (1 — L)S/s®
T rr |1 —x~ X+ X8 1 — X8
(s 7 L s I N 7

« 5 (99)

The right-hand side can be expressed in terms of Sy according
to equation (48) and we obtain

3QuSe( X Y/e — xY/&y 1 S
o DEEREEXC — X, )._(1—_‘_’..,(56)
BS?%(XB® — X%) S S

This relation is equivalent to the expression derived by Zener.
The numerical value of B can easily be calculated for any
S%/S and shows good agreement with Zener’s estimate.?

As pointed out by Zener, a relation such as equation (56)
can be satisfied by any value of S larger than S;. Conse-
quently, it does not directly predict that the lamellar structure
should form with a constant spacing S. However, Zener
suggested that there should be some self-regulating mechanism
by which the spacing would be adjusted close to the value
that maximizes the growth rate

Soptimum = 2S0.

Shrld G

s } §
&
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Fig. 21 Calculated shape and growth rate of pearlite with different

interlamellar spacings.

Equations (48) and (56) predict
Soptimum o< (XY/* — XY/f)-1
Ymaximum ¢ (XZ/“ _ X;(/B)z

For any value of S one can calculate v as well as 4y and
the concentration is then known in detail along the front. The
derivation of our basic equations (44) and (45) was based
on the assumption of local chemical equilibrium at all points
of the growth front. We can now calculate what shape
the front should have in order to be in local equilibrium,
using equation (32) but again neglecting the term v/M. The
radius of curvature p is related to the shape of a lamella by

1 dZ d 27 3/2
1. _BF [1 L (_y_
p dz? dz

A detailed calculation of the shape of the edges was carried
out by Hillert? and by Jackson and Hunt.!'5 Fig. 21 shows
the result for the case $%/S = 7/8 which holds for pearlite
in the Fe-C system. It is very interesting to note that the
interface is rather flat, thus justifying the assumption used
in deriving the concentration profile. It is also interesting
to note that the interface will bend back for large S values.
The critical S value for this phenomenon can be directly
calculated by putting Xv = X Z/“ at the middle of the edge
of the « lamella (z = 0; y = 0). Equation (35) yields

... (57

o0

s _ e »SGXe — X9
XJl* — X' = Ay + An=A0—|—T~C
1
... (58)
where
AnS
= — -sin nnS%/S ... (59)
2nnd
1

Inserting this in equation (52) and eliminating v by means of
equation (56), yields

5 = So
2LoVmS2/S%S?
+
1 — X« X e - i
RT |\ T ~ X7« (X7l* — X7 (rCS*/SB — 1)

o+ (600, B)
For the case of a symmetric phase diagram and symmetric
conditions at the three-phase junctions, L = 1/2, we obtain
approximately

S =38, ... (61)

For all other cases, the bending back of the edge will occur
even sooner either for the « lamellae or for the B lamellae.
The fact that this phenomenon is not usually observed
experimentally seems to indicate that .S < 3.5, and it seems
justified to conclude that the spacing is automatically ad-
justed to a value close to S = 25, as suggested by Zener’s
optimizing principle. On the other hand, experimental data
in many cases seem to indicate strongly that S is > than Srev..
As discussed in the previous section, the free-energy loss
due to lengthwise diffusion gives an effect in that direction
but it is rather small. It is conceivable that there are other,
more important free-energy losses that have not yet been
considered. It may, for instance, be pointed out that according
to the present approach the two new phases in general form
under different pressures at the three-phase junction, in spite
of the fact that they have a flat interface which cannot support
any pressure difference. This may lead to complications and
a free-energy loss of some kind.

Eutectoid Transformation by Boundary Diffusion

This case was treated by Cahn® assuming that the composi-
tion of the two growing phases would vary with the con-
centration in the boundary. Equation (41) was thus employed
to describe the diffusion. However, we are mainly interested
in the same kind of system as in the preceding section, where
X* and X® are regarded as constants and equation (40) will
thus be applied when the transformation is controlled by
boundary diffusion rather than volume diffusion. The similar
case of monotectoid reaction has been treated by Shapiro! in
an attempt to explain discontinuous precipitation.

Expressing the composition in front of the edge of a growing
lamella by equation (40) we can integrate equation (44),
obtaining

1 — X« X
LoVm = RT I:w — X—,—ZT;] .
e — g WSV — X9 8o
| © e 3 12KDP3 2
Xe 1 — X8
(1 —L)oVm = RT [m — ITXZW:' d
[ S8x® — XD | 58
xb — xye _MORA" T A0 97
i 3 g 12KDPS > e (63)

Again equation (46) relates S*, S®, and S and can be used
to replace (X — X*) and (X® — X)) by (X® — X%). We
shall now simplify the calculations by assuming that the two
kinds of boundary have the same value of (KD?53). Adding
equations (62) and (63) would then yield

(X8 — X%)S*Se
12KD53 ]
2Vmo LS/S~ (1 —L)S/s#
RT | 7T = X« X=\  7XxX% 1 — X¢
() (e -1=3)

. (64)

I:leoc _ XZ/B e

and inserting Sy from equation (48) we obtain
12KDBS Sx(XxY/* — x¥®) 1 (1 ~ So
VS T SeSA(XE — X4) 52 5
... (65
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Except for the factor S2, instead of S, this result is very
similar to that which was obtained with volume diffusion.
The maximum growth rate is now obtained at

Soptimum = i S()

and the dependence of supersaturation becomes
Soptimum oC (X;{/a — XZ/B)‘I
XY/ﬁ)a
e
As before, we can calculate the critical spacing where the

edge would start to bend back by putting XY = X Z/“ at
z =0, y = 0. Equation (40) then yields

V(S%)2
8KDB3

Vmaximum € (X:/a —

XM — X=Xy — x9 . (66)

and inserting this in equation (62) combined with equation
(65), we obtain

®)2
S = So + 4LoVm(S/S*)
RT :Y_T _,ﬁ_ (XY/u . XY;'B)
1 — X:(“ X;;//a ¢ ¢

. (67a, B)

The symmetric case again yields S = 35y, and the fact that
bending back is not normally observed experimentally seems
to support the view that Zener’s optimizing principle may be
fairly correct whether boundary or volume diffusion is the
rate-controlling process.

At low temperatures it may be reasonable to expect a eutec-
toid transformation to take place by means of boundary
diffusion with such a high rate that the volume diffusion in
the matrix ahead of the interface is too slow to allow local
equilibrium between the matrix and the interface. Equation
(44) should then be modified by adding /. AG; to AG* and
AG®. However, this will make only a slight change, as
demonstrated by the fact that AG; is a small fraction of
AGtotal.

NoOTE ADDED IN PROOF: Eutectoid transformation by
boundary diffusion has recently been treated by Shapiro and
Kirkaldy (Acta Met., 1968, 16, 579) and by Sundquist
(personal communication). Their approaches are somewhat
different but their results are essentially in agreement with
the present result.

Discontinuous Precipitation

This reaction will only be treated assuming rate control
by boundary diffusion, since we have not found any driving
force for the grain-boundary movement unless there is a
deviation from local equilibrium between the y matrix and
the boundary. The new vy grain that grows together with the
8 phase will be denoted «, to emphasize the similarity with
the eutectoid reaction. This case of growth of a lamellar
structure does not seem to have been treated adequately
before. As pointed out earlier, the treatments by Turnbull®
and Cahn? have a severe limitation.

The concentration in the boundary at the edge of the {8
lamellae is described by equation (40) as in the eutectoid
transformation, but equation (41) must be used for the
o lamellae because their composition will vary as Xt. We
now get the following result by applying equation (33x),
neglecting the term v/M, expressing AG4 by equation (9) and
integrating

S22 Se/2
fRT
LoVn = ff. AGadz = Z_XIY (XY — Xo)?

Se/2
_ JRT(XY — X)? f —
= I XTcoshn/ a2y \/;/2)2 (cosh zA/ ajS%)2dz
_RT(X] — X%z

(1 ++/alsinh /@) . Bh Va2 o,
8X 1 \/a/

. (68)

For the 3 lamellae there is also a force due to the deviation
from local equilibrium (equation (31)). However, the force
due to the chemical change, AG®, may be much larger. The
term f. AGq will therefore be neglected and we then obtain
exactly the same result as for the 8 lamellae in a eutectoid
transformation (equation (63)).

S8[2
[ = B = f (AGS + fAGa)dz
0
X5 1 — X°
~ RT XY/B 1 — leﬂ ’

. (69)

[X; _ e _MSPRQC —Xn] .58

12KDB3 2 *

Again we have two equations and three unknowns, now
X3”, S, and v. The calculation will be somewhat more com-
plicated than for the eutectoid transformation, mainly
because the relation between S%, S8, and .S depends upon the
growth rate, the composition of the « phase not being
constant.

The average composition of the « phase can be calculated
by means of equation (41) using X* = X?%, i.e. assuming
local equilibrium between the boundary and the growing «
grain in agreement with the earlier discussion.

Se/2
—_ 2
Xy — X+ = Ef (XY — Xb)dz =
Se/2
f coshz 4/ a/S*dz = (X) — X?) -

0

2(XY — X3)
S= coshy/qa/2
tanh \/ a2
Va2
. (70)

The composition of the B phase is constant and the lever rule
will thus yield
S8 X; — X«
S« X8 — XY

X\ —x3

_ . tanh*\/;/Z . (71)
T X8 — XY

Va2

A similar expression was derived by Cahn® using the equi-
librium value XY/® instead of X?. This was a serious and
unnecessary approximation.

Numerical calculations can now in principle be performed
using equations (68), (69), and (71), in combination with the
definitions S = S* + S®and a = v(5§%)2/KD53 from equation
(42). However, for low amounts of 8 phase, equation (69) can
be simplified by neglecting the third term in the bracket. By
dividing equation (68) with (69) and using equation (71), we
would then obtain
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Fig. 22 Growth rate as a function of lamellar thickness for
discontinuous precipitation.

1-L
L

X6 1 — X8
X3b _ XZ/B ZY/B 1 — xR

Xy —xb [XB ]

4
" AU+ A/ afsinhy/a)

oo 0 (72)

=
Xy

By introducing a new quantity H,

1—-L X Xé 1 — X8
e F R HF e

«s « (73)
Wwe can now write ‘
X - x® H — —
_— = -+ i
Y xF "4 (1+4/ajsinh\/a) . ..(74)
Xy — x? H — —
Wﬁ=l/[l+z(l —I—\/a/sinh\/a)
... (75

Inserting equation (75) in equation (68), we get a relation
between S« and v (through the parameter a).

Se =
[1 +%1(| + \/a—/sinh\/Z)]2
1 + 4/ asinh\/a

=3 +/(76)
For any value of a, we can directly calculate S* and, through
the definition of a, we can then obtain the corresponding
growth rate v. In expressing the value of S* it is convenient
to use the spacing of the hypothetical structure that would
form if all the free energy available went into interfacial
energy

4Lc V1nX.lY
JRT(X]

Va

— XY®)2 tanhy/ a2

26Vm 4oV X
AGtotar RT(XY — XYIFy2

It is justifiable to compare S* directly with this value because
the amount of 2 phase is assumed to be small. The thickness
of the 3 lamellae should be compared with their thickness
in the same hypothetical structure,

Srev. =

X))

58 Xy — xy® doVm XY
- T xe — XYB RT(XY — XY®)2
4oV XY

= - ... (78
RT(XY — XYP)(x® — XY®) U8

Using equation (71) we now obtain

H —. =2
s L 7 [1+ : (l+\/a/smh\/a)]

Srev.  f  tanh\/a/2 1 + 4/ a/sinh\/a
... (79)
1+ 2 4+ +/ahkinh /3
§® 2L 4
st T f 1 ++/a/sinh\/a
... (80)

In view of the definition of the quantity a (equation (42)), it
is convenient to express calculated values of v in terms of
KD3/(Srev.)2.

Whatever relation we shall find between S#*, S&, and v, we
can immediately see that for any set of values of the para-
meters L, f, and H the following dependency of the original
supersaturation could be expected

gptjmum o« (’YlY - ‘X\eﬁg)_2

SEptimum o (XlY - X:’{/B)_l

Vmaximum € (X,Y - X;(/B)4
Such a strong variation of the growth rate with supersaturation
seems to be cenfirmed by Speich’s experimental data.l3
Unfortunately, it is difficult to test the theory quantitatively
with those data because the solid solution in the Fe-Zn
system is far from ideal and the amount of 3 phase was as
high as 309 in Speich’s experiments.

Equations (79) and (80) show that the spacing expected
for zero growth rate will in general be different from Srev. and
SP .. At the limit v >0 we get @ 0 and equations (79)
and (80) are simplified to

5 _L(, Ly :
= 4 —

5= =7llt3 ... (81)

s¢ L H

—— =—(1+= ... (82

Sk f( *2) ®2

For eutectoid transformations we found that, in general,
So > Srev. owing to the occurrence of some diffusion in a
direction normal to the growth front. Some free energy
is then lost irreversibly. For discontinuous precipitation,
we have the same situation. The factor (1 — f) represents
the amount of AGq in Fig. 14 that is spent on diffusion in the
matrix ahead of the boundary and, as expected, equation (81)
predicts that S§ will grow larger with larger (1 —f), i.e.
smaller /. For this transformation it can be a very large
effect and in the limit all AG4 is spent on diffusion, and the
spacing will be infinite. For eutectoid reactions the cor-
responding effect had minor importance only.

In the other extreme, / = 1, no free energy is lost irreversibly
at v = 0 but, nevertheless, the spacing may become very large
depending on the L value. Contrary to the eutectoid trans-
formation, discontinuous precipitation seems to be very
sensitive to the interfacial energies that determine the angles
at the three-phase junctions and thus the value of L. For
L =0, equation (81) in combination with equation (73)
predicts an infinitely large spacing and equation (75) reveals
that Xf = X{'. No decomposition is taking place and all
the free energy available is saved in the * growing « phase *.
As expected, equation (80) predicts that the fraction of
B phase will be negligible in this extreme. Sg can increase
only as a result of small fvalues. Keeping f constant, equation
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Fig. 23 Shape of the interface of discontinuous precipitation as a
function of spacing and growth rate. Numbers give the local
concentration at the centre of the edge of each lamella.
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Fig.24 Growthrate as a function of spacing under various conditions.

(81) predicts that S§ will decrease towards a value of S%, /2
for L = 0 as a result of the decreasing degree of decomposi-
tion. In fact, this effect will also dominate when we consider
the case v > 0 and study the variation of spacing with growth
rate. Fig. 22 presents the result of a numerical calculation
based on equations (79) and (80) and using f =1, L = 1/2,
H =1, The curve of v versus S* is similar to the same curve
for a eutectoid transformation. The growth rate starts at
zero at a critical value S§, it increases rapidly towards a
maximum at ~ 2S§, and decreases slowly as the spacing is
further increased. In this transformation, however, the growth
rate does not decrease towards zero but towards a value only
slightly lower than the maximum value. This difference
from a eutectoid transformation is explained by the curve
of v versus S® Again the growth rate starts at zero at a
critical value S(?, but as the growth rate increases S® increases
only by a factor of 2. From the viewpoint of a 3 lamella, the
situation does not change much as the spacing S* increases
from the optimum value towards infinity. Fig. 23 illustrates
the shape of the growth front and should be compared to
Fig. 21 for the eutectoid transformation. In addition to the
differences already discussed, Fig. 23 also shows that the
edge of the « lamella is not predicted to bend back at large
spacings. This result is formally a consequence of the expres-
sion for the composition in the boundary (equation (41)),
which does not allow the composition to pass through the
value of X['. The composition at the middle of the edges
is also given in Fig. 23 as calculated from equations (75) and

TaBLE I
Growth Characteristics of Lamellar Structures

Eutectoid Discontinuous
Precipitation
Volume Boundary by Boundary
Diffusion Diffusion Diffusion
Vmax Prop. (AT)? (AT)? (AT)*
Soptimum Prop. (AT) 1 (AT)1! (AT)2
S#optimum Prop. (AT)'1 (AT)_l (AT)~1
optimum/So 2 1-5 ~ 2
o/Srev close to 1 close to 1 from 1 to «©
Shending back/So ~3 ~3 ©

(41) and demonstrates clearly that the situation for the
B lamellae does not change appreciably after the maximum
in growth rate.

In view of these results, one could expect almost any
spacing S* to form from the optimum at ~ 2§, to infinity.
For Zener’s optimizing principle to work, there must be a
very effective mechanism for the formation of new (3 lamellae
that is sensitive to a small deviation of the growth rate from
its maximum value. It appears difficult to visualize such a
mechanism. On the other hand, the experimental information
seems to indicate strongly that the spacing is fairly constant,
thus suggesting that the curve of v vs. S* should show a
more pronounced maximum. This would happen if the
growth rate decreases more at large spacings, e.g. by the
effect of the term v/M neglected in our calculation. Such
a term may also lead to a drastic change in shape of the
growth front at large spacings.

Fig. 24 shows the results calculated for a series of L values
and for a series of f values. With the approximations used
in the present calculations, the L value will mainly influence
the position of S§ relative to Srev., whereas the value of f will
also affect the growth rate at large spacings.

Some of the results obtained for the various lamellar
structures are summarized in Table I. To allow comparison,
the different supersaturations have here been represented
by the undercooling AT, assuming proportionality.

The Effect of Alloying Elements on the Transformation of
Austenite

When studying the transformations of austenite in alloyed
steels, Hultgren® noticed that the kinetic data on the ferrite
formation could often be represented by two C-curves in
the TTT diagram, instead of one. This indicates that there
are two different modes of formation. He also found that
the two transformation products sometimes show a dif-
ference in appearance under the microscope. Hultgren
concluded that the difference was due to the behaviour
of the alloying elements during the transformation. At
high temperature it is natural to expect that complete chemical
equilibrium exists at the phase interfaces and a partitioning
of the alloying elements between the matrix and the growing
phases could be expected. At low temperatures, the sluggish
alloying element may not have sufficient time for diffusion
since the growth rate depends on the rate of carbon diffusion.
The growing phases may then inherit the alloy content of the
matrix. Such transformation products were called paraferrite,
paracementite, and parapearlite by Hultgren, who also
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Fig. 25 Isothermal section of ternary phase diagram. Broken

lines represent true paraequilibrium.
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Fig. 26 Pile-up of M ahead of growing a. The original alloy content
is X,. The original composition must lie to the left of A if the
growing o is to inherit the alloy content X,.

discussed the equilibrium at the phase interfaces, introducing
the term paraequilibrium to designate the case of partial
equilibrium where the two adjoining phases are in equilibrium
with respect to carbon only, the iron and the alloying element
being too sluggish for redistribution. The case of complete
equilibrium at interfaces was called orthoequilibrium.
Hillert!” and Rudberg!® discussed in detail the position of the
paraequilibrium phase boundaries in ternary phase diagrams
and Aaronson et al.l? recently presented detailed calculations
of such phase boundaries under the name of no-partition
equilibrium curves. Fig. 25 presents a simple case of an
isothermal phase diagram for iron-rich alloys in a system
Fe-C-M where the alloying element M may stand for Mn
and the temperature could be 800° C. The solid lines repre-
sent the stable phase diagram and the dashed lines the
paraequilibrium. The tie-lines in the paraequilibrium phase
diagram are of course directed towards the C corner because
they hold under the condition of no partitioning of M
between the two phases.

The conditions at the moving interface during transfor-
mation of an alloy system were considered in further detail
by the present author,2® who pointed out that the new
phase might form with the same alloy composition as the
parent phase even if there was complete chemical equili-
brium at the interface. This may occur as a result of the for-
mation of a pile-up of the alloying element ahead of the inter-
face, as illustrated in Fig. 26. It was also pointed out that the
carbon activity at the interface was controlled by this situation
and a method was published by means of which quantitative
estimates of the carbon activity could be made.2! For low
alloy contents, it was possible to calculate the change in
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Fig. 27 Difference between the reaction y — o and the reverse
reaction o. - y. The difference in carbon activity represents
a hysteresis.

carbon activity at the two-phase boundary from the equi-
librium partition coefficient KY/* of the element between
the two phases

_ kv X%, — XY,
X&—X¢

a((’: and aé are the carbon activity values without and with the
alloy content X%, respectively. It was suggested that the main
part of the effect of alloying elements on the transformation
of austenite to ferrite, cementite, pearlite, and bainite was
due to this change in carbon activity which affects the carbon-
activity difference available to drive the diffusion of carbon.
The same pile-up model has independently been suggested by
Popov and Mikhalev,22 Kirkaldy,?? and Darken.24

The pile-up model predicts that the rate of the reaction
vy — o should be controlled by the rate of carbon diffusion
away from the moving interface into the interior of the
v grain. This can occur only if the carbon activity is higher
at the interface than in the interior of the y grain. The model
may thus work only if the parent phase has an original
carbon content to the left of the point A in Fig. 26. The
dashed line describes the position of this critical carbon
content for various alloy contents. If the original composition
lies to the right of this line but inside the equilibrium two-
phase field, the reaction can still take place but only by long-
range diffusion of the alloy element. The reaction will then
be very much slower and the new phase will not inherit
the original composition of the parent phase.

The triangle DGE in Fig. 27 may be regarded as the operat-
ing two-phase field during the reaction y — « as long as it
is rate-controlled by carbon diffusion. For the reverse reaction
o -y the operating two-phase field is the triangle DFE
under the same condition. It is important to note that
these are two different triangles. The difference may be
described as a kind of hysteresis, considering a repeated
process of decarburizing and carburizing, and it is due to
the free-energy loss connected with the diffusion of the
alloying element in the pile-up. At very low temperatures,
or high growth rates, the pile-up may become so thin that
it exists only mathematically. No free energy will then be
lost for diffusion of the alloying element and the hysteresis
has disappeared. The two triangles of Fig. 27 have now
moved together and have finally coincided to form the
broken-line triangle in Fig. 25, representing the true para-
equilibrium. The effect of a given alloy addition on the
transformation should thus be expected to decrease con-

In al/a = X% ... (83)
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Fig. 28 The force necessary for moving an u/y interface at a
rate v.

siderably when this situation is established at low tempera-
ture.

To use the pile-up model in a particular case, where long-
range diffusion of the alloying element can be excluded, one
simply has to calculate the carbon activity at the o/y interface,
e.g. from the approximate equation (83), and to use this
value in the proper kinetic equation. However, there is an
alternative method of treating this problem, which uses the
true paraequilibrium as a starting point. To introduce this
method, we shall consider a hypothetical experiment with a
small piece of an Fe-M alloy that is originally in a two-phase
state (« + y) with no partitioning of the alloy element and
a constant carbon activity. The temperature is assumed to
be low enough to prevent any long-range diffusion of M. The
specimen is then subjected to an atmosphere of another
carbon activity. The difference in carbon activity gives rise
to a force acting on the «/y phase boundary. A higher carbon
activity in the atmosphere would result in a force pulling
the boundary in the direction of the o« grain, thus causing
the reaction « —y. A lower carbon activity would have the
opposite effect. The value of the force supplied by a certain
atmosphere can easily be estimated using the basic equation

)

RT para/_ atm
P = — AGu/Vi = — AXc = In a@™/ag™ ... (84)

m

‘The quantity AXc is the number of moles of carbon absor-
bed by the specimen during the transformation of one mole
.of material. a@*™ is the carbon activity of the true para-
equilibrium according to Fig. 25. To use this type of equation,
it may in general be necessary first to calculate af™.

Fig. 28 illustrates the growth rate v as a function of P,
neglecting the limiting kinetic factors due to the necessity
of carbon transport. (In the following diagrams, P will be
.directly defined as the force caused by the local carbon
activity at the interface, in order to avoid the discussion
of such kinetic factors.) As the carbon activity of the atmos-
phere decreases below a critical level af~*, the growth of «
.can suddenly start and the growth rate will be limited only
by kinetic factors such as the rate of transfer of carbon from
the specimen or the rate of carbon diffusion inside the
specimen. If the carbon activity of the atmosphere is in-
creased, the reverse transformation does not start until the
carbon activity is above another critical value a&~~. The
two critical carbon-activity values are caused by the free-
-energy losses due to the diffusion in the pile-up and can easily
be calculated by estimating these losses. The relation between

0 /a | \
X‘ onfa Y

Fig. 29 The decrease of the force at high growth rates where a
deviation from local equilibrium begins to develop.

these AGq and ac is given by Fig. 28. For low contents of M
and C and for K¥/* close to unity, we obtain approximately
from equation (9)

X, 2
AGJ = RT (?1 = Xl) 2X1~ RT( — K)2X;/2
... (85
AGF = RT(X; — KX1)?2X; ﬁ,:RT(l — K)2X1/2
... (86)
where X; is the original alloy content. A more accurate
calculation based on an equation such as (6) must be carried
out if K is not close to unity.

The size of the hysteresis is obtained by adding equations
(85) and (86) and applying the relationships shown in Fig. 28.
(X — XH)RTIn a222/al — (XL — X&) RTIn a®®/al>Y

= AGj + AG) ... (87)
In a&/al™* = (K — 1)2X1/(XE — X&) ... (88)
The size of the hysteresis can also be estimated from the
phase diagram (Fig. 27) using equation (83)
K —1

In aé_’“/aoc = — A—,é_—Xé X ...(89)
In aY/a2 = g_ X1/K (90)
n ag"jac = Xz — X& 1

Subtracting equation (89) from (90) yields
Inag¥al™™

_K—_ll__l X1~ (K — D2X /(X — X
“xg-xg\ kU X %9

as « (91)

in agreement with equation (88). This is a demonstration of
the fact that the two methods of calculation are equivalent.
The following discussion of the effect of alloying elements
can thus be based on a consideration of the free-energy
loss, AGq, instead of the carbon activity.

If the kinetic factors connected with the transport of carbon
are rapid enough in comparison with the rate of diffusion of
the alloying element, the growth rate may be so high that the
thickness of the pile-up decreases below some measure of the
atomic dimensions, d. Exactly as in the case of the impurity-
drag effect on the motion of a grain boundary considered
earlier, we now find that the free-energy loss decreases and
goes to zero. We would then obtain the curve shown in
Fig. 29. The effect of the alloying element will now be quite
small once the threshold has been overcome.

As in the case of grain-boundary migration, we should
consider a further effect: as the growth rate increases a
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Fig. 30 Hypothetical diagram demonstrating the variation of the
force on the interface as function of the growth rate.
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Fig. 31 Concentration profile inside and ahead of oy interface.

concentration gradient inside the boundary film may form
and increase in importance and we then obtain a new loss
of free energy. An even higher carbon activity is then neces-
sary to further increase the growth rate. This effect may very
well build up considerably before the first effects starts
to decline. Fig. 30 shows a possible shape of the curve, taking
both the effects into account and also considering the fact
that the alloying element can diffuse over large distances if
the growth rate is low enough. A detailed calculation of the
two effects can be carried out in the same way as for grain-
boundary migration. The shape in Fig. 30 is obtained if the
alloy content at equilibrium is higher in the boundary than
in v, which in turn is higher than in «. Fig. 31 demonstrates
the concentration profiles at a series of growth rates in the
two directions. It is evident that the net effect will be rather
different for the two reactions ¥y — « and « — ¥.

Depending upon the choice of partition coefficients between
a, v, and the boundary, a great variety of behaviour will be
found. The effect due to diffusion inside the boundary may
be large or small as compared to the first effect and it may
also influence the first effect in such a way that there will be
a net decrease of the total effect.

A certain set of conditions will in general result in a definite
growth rate where the kinetic factors for the carbon transport
are in balance with the carbon activity required at the moving
interface. In particular, this is true as long as the curve in
Fig. 30 has a positive slope. Cases of instability are theoretic-
ally conceivable only if the slope of the curve has negative
values, large enough to dominate over the rate of increase
of the kinetic resistance with growth rate. This may not be
a common case.
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Fig. 32 Isothermal transformation diagrams for the formation of
ferrite (Ref. 25).

At high temperature and low supersaturations the trans-
formation of austenite occurs close to the origin in Fig. 30
where the rate is determined by long-range diffusion of M. At
higher supersaturations, the growth rate may be high enough
to prevent long-range diffusion of M. The effect of the alloy-
ing element may now be well accounted for by the simple
pile-up model, yielding the extrapolated value on the P axis,
using the local carbon-activity value at the interface for the
calculation of P.

At lower temperatures of transformation, (and at higher
growth rates), we move further to the right in Fig. 30 because
D~ and D? decrease relative to the growth rate. The increase
of the curve now becomes more and more important. At
even lower temperatures we may reach the descending parts
of the curve where the effect of the alloying element decreases
rapidly.

By the use of a diagram like Fig. 30 we might understand
the effect of molybdenum on the 77T diagram, which shows
two C-curves for the formation of «.16 Fig. 32 shows a direct
comparison made by Kinsman and Aaronson,2> who also
proved that the effect of molybdenum was not only on
the rate of nucleation but also on the growth rate. At
high temperature we should expect a higher growth rate
with molybdenum because it is a ferrite stabilizer. The
retarding effect that starts at ~ 800° C and reaches its
maximum at ~ 630° C can be explained as caused by the
growing importance of the free-energy loss inside the boun-
dary. To explain the large size of this effect, we must assume
that molybdenum has a strong tendency to segregate to the
oy interface (i.e. a large value of K). In fact, Kinsman and
Aaronson, after examining several possibilities without
finding the explanation for the existence of the bay in this
TTT diagram, also concluded that it may be due to an
“ impurity-drag ** effect.

At even lower temperatures, the concentration profiles
in front of the boundary and inside the boundary grow steep
enough to give an increasing deviation from local equi-
librium. The free-energy losses now decrease and the effect
of molybdenum grows weaker. If this description is correct,
the upper C-curve holds for the formation of ferrite under
complete local equilibrium between the moving boundary
and the growing « grain. The lower C-curve should hold
for ferrite formed under some deviation from local equi-
librium and, at a low enough temperature, for ferrite formed
under true paraequilibrium conditions. The original sugges-
tion by Hultgren may thus be essentially correct, although
he did not develop his hypothesis in sufficient detail.
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Phase Transformations in U-Cr Alloys

Rates of growth of pearlite, bainite, and martensite in
U-Cr alloys have been determined. Good agreement
between Turnbull’s theoretical formulae for growth
rate and the bainite experimental results indicated that
the growth of bainite is controlled by the interface atom
jumps, for both lateral and longitudinal directions.
Extrapolation of the growth-rate results from the bainite
into the pearlite range showed surprisingly close
agreement with growth-rate measurements of pearlite,
suggesting that an identical mechanism controls both.
The good agreement between Turnbull’s formulae for
rate of growth and the experimental results in marten-
site leads also to the proposal that the rate of growth
for martensite plates in U-Cr alloys is controlled by
interface movement, itself controlled by individual
atom jumps. It is suggested that growth of martensite
takes place in two steps: the rate-controlling step and an
intermittent second step in which a certain proportion
of atoms cross the interface by a co-operative process.

The existence of three modes of transformation in dilute
uranium-chromium alloys, namely pearlite transformation in
the high-temperature range, bainite in the medium range, and
martensite at the lower temperatures, was recognized in
White’s! classical work and later, even more clearly, in the
studies summarized by Burke.2 Both White and the investi-
gators after him who studied the U-Cr system examined
mainly the mechanism of the overall transformation. To
gain a deeper insight into the various individual transforma-
tions, it was decided to take growth-rate measurements with
the aid of which it was hoped to clarify the growth-control-
ling mechanisms.

Experimental
Measurements of the Growth Rate of Pearlite® *

It was evident that in the U-Cr system growth-rate measure-
ments could conveniently be carried out only very high in the
o range where nucleation does not interfere with the measure-
ments. In this temperature range it is interesting to note that
a rim of columnar pearlite grains grew from the specimen
surfaces (Fig. 1). By following the change in width of this
rim with time, the growth rate of pearlite was determined
accurately and with great ease. As finer grains were found

Manuscript received 20 March 1968. A. Bar-Or, Ph.D., and G. Kimmel,
B.Sc., are with the Israel Atomic Energy Commission, Nuclear Research
Center. Negev.
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Fig. 1 Growth of rim of columnar grains in U-1-35 at.-%,Cr,

isothermally treated at 620 °C. X ~ 2}.

on the surfaces of the specimens than in their interiors, it was
concluded that the higher rate of surface nucleation was
responsible for the rim formation.?

On the assumption that the transformation in the upper «
range is pearlitic, the structure was examined for charac-
teristic pearlite lamellae. However, the precipitate found in
the matrix did not resemble any known pearlitic structure
and it was discovered that distinct lamellae appear only in
alloys made from electrolytic-purity uranium (E.P.U.) melted
in ceramic crucibles (Figs. 2(a) and (b)). In alloys made from
nuclear-purity uranium (N.P.U.), which contains ~ 700 ppm
carbon, or in E.P.U. alloys to which 700 ppm carbon was
added, only a degenerate structure appeared.

Once the lamellar structure was revealed in E.P.U. alloys,
it was decided to re-examine the growth rate in these alloys
and to determine interlamellar spacings. Representative results
of growth-rate measurements are given in Fig. 3. It is evident
that, after an incubation period, growth rate is a linear
function of time until impingement occurs.

Various specimens were examined metallographically to
ascertain whether there is a correlation between change in
interlamellar spacing and growth rate. It was found that
in some grains the interlamellar spacings change appreciably,
yet growth rate is almost unaffected (Fig. 2(b)).
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Figs. 2(a) and (b) Chromium lamellae in electrolytic-purity
uranium alloy (E.P.U.) containing 0-67 at.-%, Cr. x 1500.

|~21

620°C

Growth; mm
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Fig.3 Growthrate of pearlite in E.P.U.-1-1 at.-%, Cr at various
temperatures.

(a)

Fig. 4 Bainite plates in U-0-61 at.- %, Cr alloy after different periods
of isothermal heat-treatment at 448 °C. (a) 10 min; (b) 20 min.
% 100.

Measurements of the Growth Rate of Bainite®

Growth rates of bainite plates were determined in both
transverse and longitudinal directions by following statistically
the change in width and length of the largest plates (Fig. 4)
in the U-0-61 at.-%, Cr and U-0-70 at.-%, Cr alloys.

The growth-rate results in U-0-619%, Cr are presented in
Fig. 5, from which linear growth in both lateral and longi-
tudinal directions is clearly evident. Also it is apparent that
the growth of bainite plates is a thermally activated process.
The activation energy for lateral growth is the same as that
for longitudinal growth to the degree of accuracy of the
measurements. On comparing the growth rates for the two
alloys, it can be seen that chromium retards the growth rate of
bainite plates.

Measurement of the Growth Rate of Martensite’

The isothermal growth rates in both the lateral and
longitudinal directions of individually identified plates (Fig. 6)
were determined in a series of U-Cr alloys at various tem-
peratures.

To eliminate the interference of B grain boundaries with the
growth of plates, all measurements were conducted on speci-
mens that were pretreated by slow cooling from ¥y to B, to
allow the growth of large B grains up to a few mm in dia.
It was also ascertained that there was no interference by
athermal growth with the rate measurements
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Length and Width of Largest Plate, mm x10™

(a)

(b)

Fig. 6  Growth of martensite plates in U-0-73 at.-%, Cr at 200 °C.
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Fig. 7 Growth-rate measurements of martensite plates
in U-0-73 at.-% Cr alloy.

Representative results for both lateral and longitudinal
growth for the U-0-73 at.- % Cr alloy are given in Fig. 7; the
linear growth rate is clearly evident. Similar results were
recorded for the U-0-45 and U-0-95 at.- % Cr alloys. Growth
in both directions is thermally activated, having the same
activation energy.

Discussion
Growth of Pearlite
With quantitative information on the growth rate in the

pearlite range and on the interlamellar spacing, it becomes
possible to use Cahn and Hagel’s® criteria to ascertain
whether or not the mechanism controlling growth is long-
distance diffusion of Cr. The results indicate that long-range
diffusion of Cr does not control pearlite growth. Two other
experimental results support this finding:

(a) Profound changes in lamellar structure occur when
carbon is added which have very little effect on the growth
rate.

(h) The marked change in the lamellar structure in indi-
vidual grains has no noticeable effect on growth rate.

It is therefore thought that growth is controlled by inter-
face migration, as suggested by Picklesimer et al.? for pearlite
in some iron—-carbon alloys. The lamellar structure is a sub-
sidiary effect that follows interface movement but does not
control it.

Growth of Bainite
By comparing the experimental diffusion coefficient for Cr

in U with that calculated by the aid of the Zener—Hillert
formula, it could be shown that this model does not apply in
the present case. There are two other observations to support
this deduction:

(a) The radius of the tip of the bainite plates varies appre-
ciably from one plate to another, while their sizes are com-
parable.

(b) The activation energy should be temperature-dependent,
in contradiction to our findings.

Interface Movement of Pearlite and Bainite
In view of the negative results of the Cahn criterion for

the growth-controlling step of pearlite and of the Zener—
Hillert criterion for bainite, it was considered whether the
alternative mechanism of interface mobility might control
pearlite as well as bainite.
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TABLE I
16" Comparison between Various Pre-Exponential Terms
for Different U-Cr Alloys
Lo, cm.sec™! °K—1!
Alloy, at.-% Longitudinal Lateral To', °K
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. ) o 0-73 100 5 673
Fig. 10 Comparison between lateral and longitudinal growth 0-95 70 3 643
rates of martensite in U-0-73 at.-%, Cr alloy.
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We have followed Turnbull'® and used absolute-rate theory
for describing the growth of the two transformations. Turn-
bull showed that G, the rate at which an interface moves, is

given by
o AF (AS* . (AAH
SAMAINSPA\TR ) XP\ T RT

where A is the displacement (i.e. distance moved) to adjust
the atomic positions on passing from B — o; AF = F* — Féis
the driving force for growth; F*, F¢ are the free energies of «
and B, respectively; AS* is the entropy of the activated state;
h is Planck’s constant; and N is Avogadro’s number. X is
estimated to be one interatomic distance, 3 x 10-83cm. AF
can be estimated from the relation

AHazS
AF = .
Ty

(To —T)

where Ty = 907° K, the eutectoid temperature, taken between
the values given by Daane and Wilson!! and by Aubert;!2
AH,z = 695 cal/mole, the heat of transformation taken from
Holden;'3 and AS* is estimated from the Zener!'? relation

A
AS*:b—H

mp

where b is a constant equal to 0-35; AH, the activaton energy,

is measured experimentally® from the growth rate of bainite

plates and equals 42 kcal . mole~1.

From these values AS* is found to be 10-5 cal . mole~! °K 1.
Inserting the various values into Turnbull’s equation

written in the following way

G =L0(T() ~T)exp (7‘ %{)

one obtains '
A AHas (AS*
X

hN T, R

Ly = ) =46 x 104cm.sec™! °K-1

On plotting the theoretical line G = 46 x 10* (T)—T) exp
(—42,000/RT) (Fig. 8) we find that it fits well with the experi-
mental results for the growth of pearlite and is inter-
mediate between the values for lateral and longitudinal
growth of bainite. It is therefore deduced that pearlite and the
two directions of bainite are controlled by the same inter-
face mobility, itself controlled by individual random atom
movements at the interface. The better agreement between
calculated and experimental results for alloys made from
E.P.U. material is attributed to the variable effect of impurities
in the N.P.U. material.

The fact that the pre-exponential term for pearlite is inter-
mediate between those for lateral and longitudinal growth
of bainite explains how the radial growth of pearlite as well as
plate-like growth of bainite are controlled by the same
mechanism.

Growth of Martensite

From the experimental measurements of growth rate of
martensite plates we note the following:

(a) The growth of the individual martensite plates is a
linear function of time at all temperatures, suggesting that
growth is controlled by some interface mechanism.

(b) Growth rate is a thermally activated process.

(¢) A clear maximum in the growth rate as a function of
temperature is found in the three alloys studied.

From the first two observations we assume that growth of
martensite plates is controlled by a process similar to that
described previously for growth of pearlite and bainite. To
test this assumption we again turn to Turnbull’s equation and
attempt to compare experimental results with theoretical
calculations. The activation energies for both lateral and
longitudinal directions for various alloys were found to be
14 4 1 kcal. mole! (Fig. 9).

The pre-exponential term L’ (all the parameters are given
primes in this case) was calculated with the aid of Turnbull’s
equation in which various parameters need to be estimated as
previously

_ AH&B
Ty

AF’ (Ty —T) for Ms< Ty < Tk

where T is the B/« equilibrium temperature, ~ T in pearlite;
M; is the martensite-start temperature taken from Burke;!?
AH&B

’

0

The value for 1" was taken to be 3 x 10-9 cm, since a mini-
mum of 10 %, homogenecous strain is needed for one B unit cell
to transform into several o’ cells, as shown by Lomer.1¢ The
activation energy of 14 kcal. mole~! suggests that the atom
movemerts occur only over part of an interatomic distance.
AS* is estimated as before using the Zener!'? relation and is
found to be ~ 3-5cal. mole~! °K 1. Hence L’ for martensite
= 180 cm.sec! °K-1. Experimental L’ values were deter-
mined by plotting G/(Ty — T) against 1/7 (Fig. 9) and are
given in Table I.

It can be seen that for longitudinal growth there is an
excellent agreement between the calculated and experimental
values in the case of the lower-chromium (0-45°) alloy.
However, on increasing the Cr content, we find a discrepancy
between theory and experiment which increases with Cr
content. To understand the reason for this, it is necessary to
examine the effect of Cr on the various parameters contained
in Ly’. It is clear that Cr cannot affect A and its effect on AF
has already been taken into account. A change in Cr content
can account for a change of only 0-1 cm.sec™! °K~1 in AS*,
while the experimental discrepancy is an order of magnitude
greater than this. (Previously we attempted to correlate
experimental results and calculations by changing AS*
arbitrarily.”) We are therefore inclined to attribute the dis-
crepancy caused by the addition of Cr to its effect on jump
frequency at the interface. This factor was considered to be
constant in our calculation, but should be taken as a function
of Cr content.

The lateral-growth rate is smaller than the longitudinal rate
(Fig. 10) by a ratio that is almost independent of Cr content
and temperature. It is therefore suggested that either lateral
growth is controlled by longitudinal growth or the same
mechanism controls both. To distinguish between these two
possibilities, longitudinal and lateral rates of growth of
identified plates were measured, before and after the plate
edge impinged upon a B grain boundary. From the results
presented in Fig. 11 it can be seen that the lateral growth is
independent of the longitudinal growth. We therefore believe
that lateral growth is controlled by the same process as longi-
tudinal growth, and that there is some factor responsible for
its being slower by a constant ratio. At the present stage of
knowledge it is difficult to identify this factor; we tend to
attribute it to differences in jump frequency at the two
orientations.

~ 1-0 cal. mole~! °K 1.

and
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Fig. 12 Gus. T for pearlite, bainite, and martensite.

It is evident that the plate growth in the present study
causes surface relief but the individual atom jump process
suggested to control growth cannot account for it. We assume
that growth proceeds in two stages: one of cooperative co-
herent growth, which explains the surface relief; the other of
individual random atom jumps of subatomic distance at the

interface. The latter is the step that controls the rate of growth
according to the results of the present study. If such a mech-
anism is operative, the value found for the pre-exponential
term would differ from the calculated one by a factor given by
the ratio of numbers of atoms crossing the interface in the two
stages. If this ratio is not more than an order of magnitude,
the agreement between experiment and theory would still be
good.

The results of the present study can best be summarized by
Fig. 12, where calculated growth rates for pearlite, bainite,
and martensite are compared with the respective experimental
values.
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Transformation Kinetics of the 8 —o¢ Phase
Change in a Uranium-Chromium-

The B >« transformation in a uranium-0-25 at.-9,
chromium-0-5 at.-% molybdenum alloy has been
studied at temperatures down to 300° C by dilatometry,
metallography, hardness, and X-ray diffraction. A
detailed analysis of the kinetics of transformation has
been made. The 77T diagram was derived by dilato-
metry and found to comsist of two C curves. The
upper C curve was predominantly associated with a
diffusion-controlled transformation but the associated
metallographic, hardness, and X-ray results would
suggest a subdivision of this upper C region at a tem-
perature in the range 480-510° C. The intermediate
mechanism of transformation is probably of a bainitic
type and extends down to ~ 425° C. The low-tempera-
ture C curve appears to involve a shear-type transforma-
tion.

The phase change B —-a in uranium is of considerable
technological interest since it is the basis of the heat-treatment
used to refine the grain size of uranium nuclear-fuel rods.
This refinement is required to eliminate surface wrinkling
under irradiation, a phenomenon ascribed to unrestrained
irradiation-growth of surface grains and potentially a source
of cladding failures. The B-quenching treatment of Spring-
fields uranium rods produces a small amount of preferred
orientation in the transformed o-uranium, leading to an
overall irradiation-induced anisotropic growth of the fuel
rods.t

Alloying with 0-5 at.-% chromium retards the B —«
transformation so that the B phase can be caused to trans-
form isothermally at 550° C, yielding a fine-grained « product.
Compared to quenching, the isothermal heat-treatment leads
to a reduction in the temperature gradient between rim and
core of the fuel rod during the transformation. A substantial
reduction in preferred orientation also occurs such that the
fuel rods are now reasonably random in texture.? The addi-
tion of molybdenum confers strength and irradiation stability
on uranium;3 hence the presence of small amounts of this
element in the dilute U-Cr alloy presents an attractive fuel
composition. Some aspects of the transformation character-

Manuscript received 23 Feburary 1968. M. M. Haberlin, B.Sc., and
G. F.Slattery, M.Sc., Ph.D., A.LM., A.Inst.P., are with the U.K.A.E.A.
Reactor Group, Springfields Works, Salwick, near Preston, Lancs.
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istics of such a ternary U-Cr-Mo alloy under continuous
cooling have already been reported.*

The aim of the present investigation was to study the effects
of adding Mo to the U-Cr alloy on the kinetics and mode
of the isothermal B — a transformation. It has been estab-
lished that the effect of the two alloying elements in combina-
tion are more than additive in terms of the incubation period
required for the B — a transformation.>-% Since it is important
to minimize reactivity losses due to alloying in a nuclear fuel,
the Cr content was reduced to 0-25 at.-9%; and the Mo addi-
tion fixed at 0-5 at.-9%,. This combination was adequate to
ensure the production of a fine-grained a product by iso-
thermal transformation at 550° C.

Previous Work

White? used a dilatometric technique to derive the TTT
diagrams for several U-Cr alloys. The TTT diagrams for
alloys containing 0-6, 0-45, and 0-3 at.- %, Cr consisted of two
C curves: the upper curve between 660 and 400° C was
associated with a diffusion-controlled transformation while
the lower curve represented a diffusionless shear-type trans-
formation. Jepson et al.,” also using dilatometry, found two
loops in the TTT diagram of the U-0-5 at.- %, Cr alloy. There
was a well-defined break between the loops and the upper loop
was very similar to that found by White.” Similar transforma-
tion characteristics were obtained for a wide range of dilute
uranium alloys. Metallographic examination showed that
the structure produced by transformation above 500° C com-
prised equiaxed, polygonal grains of «-U whose grain size
decreased with decreasing transformation temperature, as
expected from a diffusion-controlled transformation. Lower-
ing the temperature further inside the upper C loop produced
a fine acicular structure with irregular grain boundaries.
Beaudier et al.® also showed a distinct change in microstruc-
ture between these two regions.

Dixon and Burke? redetermined the 77T diagram for the
U-0-5 at.-% Cr alloy using an electrical-resistivity technique
and produced evidence to suggest that the upper C curve was
composed of two overlapping C curves intersecting at
~ 520° C. Analysis of the transformation kinetics!® indi-
cated that the B phase transformed to o« by three distinct
mechanisms depending on temperature. As the temperature
is lowered in the upper region, the diffusion-controlled
nucleation and growth C; transformation gives way to one,
termed the C, region, involving both shear and diffusion
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similar to a bainitic transformation. The third mechanism
from 420° C downwards became the C3 transformation, of a
martensitic type. Since their evidence was only indirect because
of a low sensitivity of the resistivity method in the critical
temperature range of interest of ~ 520°C, a further study
was made of the U-0-85 at.- % Cr alloy,!! and this established
direct evidence for the existence of a C; region in this alloy.
It was suggested that the mechanism in C, was more related
to the diffusional reaction of C; than the martensitic C3, and
that the phase change in C; involved diffusion as the dominant
process. Amity et al.'2 have investigated the structure formed
in the intermediate C; region in the binary U-Cr alloys and
found two types of acicular structure, namely a Widman-
statten structure and bainitic plates.

Kitchingman et al.!® investigated the U-1-0 at.- 9, Pt alloy
and found three mechanisms of transformation by using
electrical resistivity, but dilatometric measurements on the
same alloy indicated only two transformations since they did
not show any subdivision of the high-temperature B — a
phase transformation.

Experimental

The alloy used was in the form of 1-in.-dia. rods prepared
by vacuum induction-melting and casting into graphite
moulds. The composition (ppm by wt.) was: Mo 1951, Cr 542,
Si 27, C 569.

The apparatus consisted of three furnaces, a high-tempera-
ture radiation furnace for the B-phase treatment, an inter-
mediate-temperature lead bath, and a lower-temperature
lead—tin eutectic bath. The two baths covered transforma-
tion ranges from 600 to 200° C. The furnaces were situated
in a circular baseplate at equal intervals on a common circle.
The silica dilatometer assembly was supported on a central
shaft so that the specimen could be transferred from one
furnace to another within 3 sec. The system could be evacu-
ated to 10-2 mm Hg or used in an inert atmosphere such as
argon. A Chromel/Alumel thermocouple was inserted into
the dilatometric specimen to record the temperature. A
transducer with a linear response accurate to 19 was attached
to the specimen to measure the dilation as a function of time.

The specimens were cylindrical pencils 1 in. long x % in.
dia. They were held at the soaking temperature of 720° C
for 30 min, transferred rapidly to the transformation bath,
and a plot made of specimen contraction vs. logarithm of
time to give a rate curve. The start and finish of transforma-
tion could be determined from the curve. The cooling rates
from the B-phase temperature to the transformation tempera-
ture were maintained uniform at 20 4+ 5 degC/sec. The mean
value for the magnitude of the linear length change for the
B — o phase change was 0-329,. A dilatometric trace for
this alloy, obtained using a Chevenard-type dilatometer'4 and
slow heating and cooling rates of 90 and 170 degC/h, respec-
tively, showed the « = B transformation on heating at
670 + 5°C and on cooling at 570 + 5° C.

Each of the fully transformed specimens was sectioned and
examined metallographically using standard techniques of
preparation.’> The grain sizes were measured by the lineal-
intercept method, although sub-graining in the lower C shear
region made measurements difficult and the values obtained
for this region are approximate. The hardness of transformed
specimens was measured on a Reichert microhardness tester.
Five readings were taken on each specimen and the results
averaged. Back-reflection photographs of transformed speci-
mens were taken using CuK. radiation and a specimen-to-
film distance of 3 cm.
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Fig. 1 TTT curve of the U-Cr-Mo alloy.

Results

The isothermal transformation curves obtained from dilato-
metric measurements are shown'in the form of a T7TT dia-
gram in Fig. 1. All the rate curves were sigmoidal in form.
The TTT diagram comprised an upper and lower C loop.
The break between the two C loops, corresponding to
maximum P stability, occurred at ~ 425°C. A minimum
value of 60 sec was obtained for the incubation period at
540° C in the upper C loop, while the minimum value in the
lower C loop occurred at 350° C. There appeared to be a
possible discontinuity in the upper C loop at 525° C where
the times for both the start and the finish of the transforma-
tion were slightly larger than at neighbouring temperatures,
but this effect could be within the experimental scatter.
Generally there was scatter in either the start or the finish of
the transformation but it is interesting that this 525° C result
was the only one where deviations were obtained for both.

Comparing the diagram with the binary U-0-3 at.-9 Cr
alloy diagram obtained by White,” the effect of the Mo
addition was to depress and extend the range of the upper C
loop with an increase in incubation period. Similarly, the *
incubation period was considerably increased for the lower
C region.

Metallographic examination of the transformed product
showed it to be polygonal, equiaxed and twinned « down
to 525° C in the upper C region (Fig. 2(a)), the grain size
decreasing as the transformation temperature was reduced
(Fig. 2(b)). Below 525° C the equiaxed product changed to a
mixture of a feathery structure with some equiaxed-grain
regions, and this mixture of products existed over a temper-
ature range of ~ 30 degC. Below 480° C, the structure was
duplex acicular consisting of Widmanstitten needles and shear
platelets (Fig. 2(c¢)) and this persisted to the bottom of the
upper C loop. Transformation in the lower C loop produced a
large, irregular structure with extensive sub-graining (Fig. 2(d)).
An approximate estimate of grain size showed an increase with
decreasing transformation temperature from 90 pm at 405° C
to 160 um at 310° C (Fig. 3).

Precipitation was observed in the upper C region, but the
nature of this varied as the temperature was lowered. Above
525° C the product appeared as a fine lamellar eutectoid
decomposition product (Fig. 4(a)). The higher the transfor-
mation temperature in this region, the coarser and more
abundant were the lamellac. Below 525° C there was a
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Fig. 2 Polygonal « produced by transformation at (a) 605° C; (b) 540° C.
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447° C. x 160. (d) Shear o produced by transformation at 375" C. x 80.

change to a discrete globular precipitate, fairly randomly
dispersed (Fig. 4(b)). The precipitate was probably an Mo/
Cr/U complex from a supersaturated o solution formed by
shear of the B. No precipitate was visible in the specimens
transformed in the lower C martensitic region.

The hardness is plotted in Fig. 5 as a function of trans-
formation temperature for the upper C region. The hardness
increased with decreasing transformation temperature with
a discontinuity in the curve represented by a softening between
510 and 480° C. This region of softening coincided with the
region of mixed metallographic structures and suggests that
both transformation products coexist over a limited tempera-
ture range. In the lower C region there was a decrease in
hardness with decreasing transformation temperature, as
found for the U-Cr alloy.?

The X-ray diffraction patterns from specimens trans-
formed above the nose of the upper C loop were different in
appearance from those below the nose (Figs. 6(a)) and (b)).
Above the nose the diffraction rings were well resolved and
typical of a strain-free structure, whereas below the nose the
rings were diffuse and continuous, indicative of lattice
strain appropriate to a shear-type product.

Discussion

The dilatometric results indicate that the B — « transforma-
tion occurs by two mechanisms, viz. an upper C region down
to 425° C and a lower C martensitic-type region. The presence

600 UPPER C

o,

LOWER C
4

TRANSFORMATION TEMPERATURE,
§
/

GRAIN SIZE, - um

Fig. 3 Variation in grain size of the « transformation product as a
function of transformation temperature in the isothermally
transformed U-Cr—Mo alloy.

of a softening discontinuity in the hardness curve, coupled
with the changes in microstructure and diffraction behaviour,
all provide indirect but substantial evidence to suggest a
subdivision in the transformation mechanism to give a C;
and C; in the upper region. The slight discontinuity found in
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(b)

transformed
at (a) 605° C; (b) 465° C. x 800.

the dilatometric results at 525° C may also suggest a sub-
division in transformation, but the scatter in the data is of
the same order as the discontinuity and so it could not be
proved. The microstructures show that C; is a diffusion-
controlled nucleation and non-coherent growth process,
while C, is probably a bainitic-type transformation giving a
duplex acicular product. Such a subdivision has been con-
firmed for a U-Cr alloy!! using electrical resistivity. In the
U-Pt alloy study,!® dilatometric methods did not separate
the high-temperature transformation modes whereas electrical
resistivity did. This was ascribed to the larger mass of the
dilatometric specimens accelerating the formation of the
o phase owing to the quenching stresses produced. Further
work on a ternary U-Pt-Nb alloy confirmed the separation
of the high-temperature C curves in the binary 77T curves.16

To resolve this difference between the dilatometric results
and the associated metallographic, hardness, and X-ray
data, a detailed analysis of the reaction kinetics was under-
taken along similar lines to that made for the U-Cr alloy,'?
to ascertain whether one or two mechanisms of transforma-
tion were involved in the upper C region.

Temperature-Dependence of Transformation

Becker’s equation!?-18 for the initial nucleation rate of
one phase from another is given as

I = kexp — [(4o + Q)/RT]

|50|—
~ |
£
3z
°
Z
g
« |
=3
@
@
; l
&
« o\ _®
& |2sr—
z |
F
g
£
S
§ ’
g
Q
|
|
{
(A . .
oSt 450 500 550 600

TEMP, °C

Fig. 5 Variation of microhardness (arbitrary units) with temperature
of transformation for the upper C region.

Fig. 6 X-ray diffraction pattern of specimen transformed (a) above
the nose of the upper C region; (b) below 480° C in the upper
C region.

where k is a constant depending on the frequency of occur-
rence of the process, A4, is the activation energy for the
formation of a nucleus of critical size, Q is the activation
energy for diffusion, and 7 is the absolute temperature.
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Tf}is equation may be rewritten in terms of the time ¢
required for the formation of a segregate

t = Ky exp [(4do + Q)/RT]

and

Ao (¢
Int =_—2 —_ C
RT+ RT+

where C is a constant.

A plot of In 7 (to some particular stage of the decomposi-
tion) vs. 1/7 is termed a Reciprocal Rate Plot.1? It is itself
in the form of a C curve asymptotic to a maximum tempera-
ture, where 4y — © corresponds to vanishing driving force,
and consists of two separate parts, viz:

Q

(a) fn which is a straight line, since Q is a constant.

(b) fn ;—; where A varies with temperature.

At the lower temperatures, A is small in relation to Q and
In 7 tends to a straight line of slope Q/R. At higher tempera-
tures the curve tends to longer times because A4 increases
rapidly, and so a retardation takes place of amount repre-

sented by In Az Ay
RT

The reciprocal rate plots for 10%;, 509 and 909 of trans-
formation in the upper C loop are shown in Fig. 7. The
curves are continuous and do not display the discontinuity
found with U-Cr alloy using electrical-resistivity datal® and
attributed to the C; — C; transition. The present plots
support the previous evidence®7.13 that dilatometric data
do not show a subdivision of mechanisms in the upper C
region. This may reflect the fact that dilatometric results on
fairly massive specimens are not sufficiently sensitive com-
pared to resistivity measurements on wire specimens.

The activation energy Q for diffusion was calculated from
the slope of the straight-line portion of the reciprocal rate
curves:

Q for 109 transformation = 26,400 cal/mole.

Q for 509%; transformation = 26,200 cal/mole.

Q for 909%; transformation = 27,200 cal/mole.

The increase in activation energy with fraction transformed
during the later stages of transformation is attributed to the
greater contribution from the growth process as transforma-
tion proceeds. The activation energy for self-diffusion of
B-U is 42,000 cal/mole.2° It is known that the diffusion coef-
ficient for Cr in B-U is very much larger than for self-diffu-
sion, so that the lower activation energies found for this alloy
are to be expected.

The precise significance of Q cannot be decided until the
exact nature of the transformation modes in the upper C is
known. For example, if there are C; and C, regions, Q
needs to be redetermined for each region. There is therefore
a need for further electrical-resistivity studies to supplement
the dilatometry, although it may be that the temperature of
zero resistance change on B — o transformation!! is in the
critical range 520—480° C, in which case the sensitivity of
electrical resistivity will also be too low to provide direct
evidence one way or the other.

TEMPERATURE OF TRANSFORMATION, °C
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Fig. 9 Variation of exponent n with position
on TTT diagram.
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Time-Dependence of Transformation
The general empirical equation applied to isothermal rate

processes is given as
t n
y =l—exp— (_
K)

where y is the fraction transformed.

By putting n = 4 and 1/K = G3N/3, where G is the rate of
growth and N is the nucleation rate, one obtains the Johnson
and Mehl equation for the rate of growth of a precipitate in
the austenite — pearlite reaction.2!

Impingement can be allowed for by using the factor (1-y)
where y is the fraction transformed. Burke?? and Ham?23
applied the factor to the growth of a group of particles. The

; ; g N2
resulting general equation y = 1 —exp — B was shape-

independent, and found to hold for values of y from 0 to 0-5.

Hence, without nucleation, a value of » = 1-5 will be ob-
tained when the process is controlled by long-distance dif-
fusion through the parent interface. Any excess of n over 1-5
can be attributed to nucleation. However, where the reaction
rate is controlled not by long-distance diffusion but by the
rate of transfer at the interface between parent and product,
n will vary between 1-5 and 3 for the growth term alone,
while the nucleation contribution will be additive to this.

Thus, differentiating the general equation for a thermally
activated process,

d 1 n—1 t n
% (_) exp — (L)
dt K K,

dy

= K_": - 1 dt
—y =

Hence

Integrating and taking logs

log log 1_1 =nlogt — (n-1) log K
B

Hence a plot of log log ]1— vs. log 7 should give a straight
=¥

line of slope 7 in the region where the above equation holds.

Typical derived rate curves are given in Fig. 8. The straight-
line approximation from y = 0 to y = 0-5 suggested by
Burke?2 and Ham?23 appears to hold. The exponent n values
are shown in relation to their position on the 777 diagram of
the U-Cr-Mo alloy in Fig. 9.

The value n = 1-8 at the top of the upper C region indi-
cates that the transformation in this region is diffusion-
controlled with the small amount in excess of 1-5 due to
nucleation. This nucleation contribution is small since there
is only a slight degree of undercooling. As the transforma-
tion temperature is lowered towards the nose of the T7TT
curve, n increases to 2-4. This can be explained either by an
increasing nucleation rate or by a slower reaction at the
parent/product interface becoming the rate-controlling
factor, rather than the long-range diffusion at the higher
temperatures in the upper C region.

The decrease in n to 1-9 at 510° C could be attributed to a
change in the transformation mechanism from that of a dif-
fusion-controlled type to a bainitic type, as in U-Cr.!!
In the lower regions of the upper C curve (ie. possibly in a
C, region), where the transformation could now be bainitic
in character, the n index remains reasonably constant since
with a bainitic transformation a constant rate of growth can
be expected. Ideally, with no diffusion, » would equal 3 with
a constant three-dimensional growth; hence the lower value
of n obtained probably means the persistence of long-range
diffusion as the predominant process.

Conclusions

The TTT curve for the U-Cr-Mo alloy, as derived dilato-
metrically, consisted of two C curves. The upper C curve
represents a diffusion-controlled transformation, while the
lower C curve apparently represents a martensitic-type trans-
formation. The dilatometric results did not separate the
B — a transformation in the upper C region.

Associated metallographic, hardness, and X-ray results,
together with kinetic analysis of the data, suggest indirectly a
subdivision of the upper C region into a nucleation- and
growth-Cj region and a bainitic-type C, region where diffusion
still plays a dominant role. A mixture of products existed over
a temperature range of ~ 30 degC during transition from C;
to C,.

The effect of Mo was to depress and extend the range of
the upper C loop compared with the binary U-Cr alloy.
There was also an increase in incubation period for the B — «
transformation in both the upper and lower C loops.
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The B— ¢ Transformation

The B’ +{° phase transformation in the AgZn system
has been studied by means of electrical-resistivity
measurements and hot-stage metallographic observa-
tions. Activation energies for the displacement of the
transformation interface were determined in the hot
stage by comparing velocities of the same interface at
two temperatures in a single experiment. The results
showed a small anisotropy in Q values as a function of
orientation of the interface. Itis proposed that the rate-
controlling mechanism in this transformation is the
diffusion necessary to attain the required changes in the
degree of order at the transformation interface. Surface
marks and deformations twins produced throughout the
transformation are also discussed.

In recent years *“ massive ”’ transformations have been studied
in several non-ferrous! —3 and ferrous systems.*:> Following a
study of the T (h.c.p.) = B’ (b.c.c. ordered) transformation in
the AgCd system,? it was of interest to study another trans-
formation where both the phases involved were ordered. On
these grounds the AgZn B’ — Z° transformation was selected
for the present work.

In the equatomic region of the AgZn system, the B phase
(b.c.c. disordered) is present at temperatures above 274° C
and the £° phase (hexagonal complex ordered) at temperatures
below 274° C.6 The B phase becomes an ordered phase (B’)
by quenching from the B-phase field. Annealing of this B’

»O

phase in the range of existence of Z° results in the B* — T
phase transformation. There is some previous work on the
B — ° transformation that takes place on slow cooling from
the B-phase field”.8 and a model for the B — £° and the
B’ — C° transformations has been proposed by Kitchingman?
which will be discussed in another section. In the present
work the B’ — ° transformation has been studied by means
of electrical-resistivity measurements and hot-stage metallo-

graphy.

Manuscript received 6 March 1968. J. E. Kittl, Chem.Ing., and A. Cabo,
Lic. Physics, are in the Departamento de Metalurgia, Comisién Nacional
de Energia Atomica, Buenos Aires, Argentina.
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in the AgZn System

J. E. Kittl and A. Cabo

TABLE 1
at.-% Zn Q, kcal/mole
45 21 £ 2
47 25 +2
48 28 +2
49 34 £2
50 34 +2

Experimental Results
Resistometric Measurements
The isothermal transformation Kinetics were represented in
the usual way as In In (1/1 — x) vs. In ¢, where x is the fraction
transformed and ¢ is the time. The slope of the lines obtained
corresponds to the exponent n of the Johnson-Mehl-Avrami

equation
, n
x=1—exp|-

(1)

where = and » are constants. The isothermal results gave n
values between 2 and 3, which according to Cahn'? correspond
to a distribution of nuclei in grain boundaries and in the matrix.
The metallographic observations described in the following
section, made on specimens transformed isothermally, con-
firmed Cahn’s predictions.

From the isothermal kinetics an activation energy (Q) was
calculated by the usual methods.2:11 (dx/df),, and (1/f)x,
were represented as a function of 1/7 for the fraction trans-
formed x; = 0-30, 0-50, and 0-80, and Q was calculated from
these plots using the Arrhenius equation

d—x—Aex (——9)
v=g = 4P\ Fr

The activation energy was found to be dependent on the
composition (Table I) and diminished with increasing depar-
ture of the alloy composition from stoichiometry. To confirm
that Q does not depend on x, the change-of-rate method?11
was also used to determine the activation energy. The measure-
ments were made only with the 509 alloy and we assume that
all other alloys behave similarly. Ten to fifteen changes in

.2
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Fig. 1 Stoichiometric alloy annealed at 128 and 113° C. B’ partially
transformed to C° showing (b) grain-boundary allotriomorph and
(a) star-shaped grain.

temperature were performed in each experiment. At each
change of temperature, Q was calculated from the slopes of
the resistivity/time curves at the two transformation tempera-
tures, 77 and 7. The temperature difference between 7 and
T> was ~ 15 degC. The value obtained for Q was the same
for all the experiments and equal to that calculated from the
isothermal work (Table I). This confirmed that Q does not
depend on the fraction transformed.

From all the resistivity measurements we conclude that:
(a) Q does not change with 7" (in the range 130-180° C);
(b) Q does not depend on x; (¢) Q is strongly dependent on
composition.

Hot-Stage Observations

Several isothermal experiments were conducted in the hot
stage. A strong dependence of the {° grain size on composi-
tion was observed in the samples transformed, though the
distribution and shape of the Z° grain, did not change with
composition. Isothermal experiments were carried out in the
range 90-180° C for all these alloys and they did not show a
significant dependence of the ¢° grain size on transformation
temperature. The 509 alloy was selected for more detailed
work in the hot stage since it was the one that showed the
largest Z° grain size. These results will be presented in more
detail.

The shapes of the transformed {° grains were in some in-
stances not comparable with systems studied before.l:2 We
will describe the morphology of these grains making partial
use of the morphological classification of Dubé.'? Some of
the principal shapes observed are shown in Fig. 1. Most of
the shapes have both curved and straight edges but the total
length of the curved edges was greater. Ledges in the
straight edges were rarely observed. The straight edges appear
to grow normally with velocities of the same order of magni-
tude as for curved edges, though in some cases ledges
were observed to contribute to the growth mechanism.

Many grains of an intergranular star shape were observed
during the growth process. They began to grow with random
shapes but soon developed definite points. In most cases these
stars are formed by a set of differently oriented grains growing
together (Fig. 1). New orientations occasionally appear after
the initial particle has achieved a certain size. In several
cases an arrow shape formed by two {° grains growing
together was associated with a star.

AA 4Q=35

12856 °C /
TF113 o /

(b

()

o

Fig. 2 Stoichiometric alloy transformed in the hot stage.
(a) Transformation interface positions corresponding to a typical
transformation sequence. The numbers at the interface positions
indicate corresponding times in minutes. (b) Same region seen
with polarized light after the transformation sequence. (c)
Interferogram of the same region. »—=0-6pm. . A

Some £° grains were observed to nucleate as grain-boundary
allotriomorphs at B’ matrix grain boundaries. In some cases
the nucleation proceeded as a continuous ribbon of £° grains
at a B’ grain boundary. In other cases C° grains were inde-
pendently nucleated at different points of the B’ grain boun-
dary and, in subsequent growth, they merged into a continuous
ribbon with secondary sideplates or sawteeth (Fig. 2(a)).
Differences in the morphologies observed in later stages of
growth of the £° grain-boundary allotriomorphs resulted from
these differences in nucleation.
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Observed Relief Effect and Deformation Twinning

Special care was taken to detect signs of surface relief on
the specimens. In the samples made out of thin sheets some
relief was noticed but it was more pronounced in the thicker
samples. Fig. 2(c) corresponds to a typical partially trans-
formed area as seen by polarization interferometry. A general
rumpling of the transformed area is apparent as well as some
grooves or surface marks. These marks correspond to former
positions of the transformation interface, Fig. 3, or to places
where two grains of similar orientation impinge and continue
growing together (Fig. 2). In the first case the groove is
fairly straight and in the second it follows the contact interface
between the two grains. The general roughness or rumpling of
the transformed surfaces was observed to be different in areas
of different orientation and also different for a single £° grain
growing from a B’ grain boundary into both B’ grains.

There was no microscopic evidence of plastic deformation
in the thin-sheet samples, but for samples of 3-4 mm thickness
the results were different. Deformation twins were observed
to grow in transformed £° grains (Fig. 4), which indicates that
a high stress level is reached when the transformation is well
advanced. Deformation traces in B° were not observed in the
optical microscope.

In most cases the velocity of two interfaces did not change
when they approached each other. However, when a portion
of B’ was enclosed or surrounded by ° the last part of the B’
transformed at a much slower rate (Fig. 4). A similar pheno-
menon has been observed in previous work! where it was
attributed to transformation stresses acting upon the untrans-
formed material. The existence of a deformation twin in the
area of {° supports this hypothesis in the present case.

Activation Energies

The velocity of an interface in a particular direction was
obtained by plotting the positions of the interface as a func-
tion of time at constant temperature. Linear relationships
were obtained, indicating that the velocity is a constant at
constant temperature. For measurements of activation energy
a change-of-rate method was used. After a certain degree of
transformation, the temperature was changed to another
preselected value, and held for a period of time until the
desired amount of transformation was reached. Fig. 5 shows
a typical plot of velocities obtained by this method. Q was
evaluated from

Q= 1 /1 1

R (Tl ' Tz)
where vy and v, are the measured interface velocities in a given
direction at temperatures 77 and T, respectively. This calcu-
lation is valid if 4 (from equation (2)) is constant. A4 was
found to be approximately a constant in the range 90-150° C
by means of electrical-resistivity measurements. Furthermore,
short temperature intervals were chosen between 77 and 7
(~ 15 degC) and this decreases the possibility of a change in
A. This method was also used to make two successive changes
of temperature within a single sequence; Q values obtained
from both temperature changes were within the estimated

experimental error. When a specific transformation shape
was analysed in different directions it was considered that:

.3

égg,

Fig. 3 Stoichiometric alloy partially transformed at T1 = 126" C
and T2 = 110° C. The arrows indicate surface marks.

(a)

(b)

(©)

(d)

Fig. 4 Stoichiometric alloy partially transformed at 128-6° C for
(a) 54 min, (b) 76 min, and at 112° C for (c) 121 min, (d) 158 min.
t indicates a deformation twin, u indicates a region of delayed
transformation.
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(a) If the shape does not change after the temperature
change, Q is the same when measured in all directions.

(b) If a shape change does take place in a growing grain, the
plots of length vs. time would indicate whether this change of
shape was due to a change of velocity along the different
directions of the grain (giving a linear plot like Fig. 5) or
whether it had another origin (giving a non-linear plot). Two
possibilities in the latter case could be protrusion to the
surface from the interior of the sample or sudden changes in
the angle between the interface and the surface of observation.

Some results are presented in Figs. 2 and 6. In these figures
the values of Q are indicated along the different directions.
An average of 12 sets of Q values (each set corresponding to a
separate area like Fig. 2 or Fig. 6) gave Q = 35 kcal/mole.
Sequences were found where Q did not change with direction
but in other sequences Q did change by amounts between
3 and 10 kcal/mole. From these experiments we conclude that
the activation energy for growth is slightly anisotropic.
Values of Q were found to change from one Z° grain to
another £° grain of different orientation (Fig. 6) or even for a
single Z° grain nucleated at a grain boundary and growing into
two adjacent B’ grains (Fig. 2).

Discussion

Surface-Relief Effects

Surface marks have already been observed in previous work
on the CuGa and AgCd!-2 systems. These marks differed in
appearance in the optical microscope: in the CuGa B — Cur
transformation they looked like slip markings and in the AgCd
{ — B’ transformation like smooth grooves. Slip was pre-
sumed to be the origin of the marks in the CuGa transforma-
tion, while in the AgCd transformation the marks were
thought to be due to an anisotropic annihilation of vacancies.
Neither of these arguments can be used to explain the marks
in the AgZn B’ — {° transformation, since their appearance
makes it very unlikely that they have any link with slip and no
extra vacancies are produced by the transformation that occurs
with a volume expansion (AV/V = + 0:6%). All the marks
found in the present work appear to correspond to a boundary
between grains or subgrains of small misorientation. Their
origin could be sliding along these grains or subgrains
produced by the anisotropy of the volume change occurring
during transformation. This anisotropy has recently been
confirmed by Clark.!3

The observed rumpling can be explained if the volume
expansion on transformation is readily transmitted to the free
surface.13

Transformation Stresses

It is well known that changes in volume during transforma-
tion can result in plastic deformation in both the matrix and
the product phase. No slip was observed in the untransformed
B’ phase or in the £° phase using optical microscopy ; however,
slip could have existed since, as pointed out by Christian,4 if
this effect is produced on a sufficiently fine scale it might not
be detected. Moreover, the surface rumpling indicates that
plastic deformation did take place and the presence of
deformation twins in ° grains indicates that high stress
concentrations are produced during the transformation.

The presence of transformation stresses did not affect the
movement of the transformation interface except when the
interfaces were very close to each other (Fig. 4). This seems to
indicate that these stresses have an influence on the movement
of the transformation interface only at short-range distances
where they probably reach high stress levels. The presence of
differently oriented groups of Z° grains during nucleation and
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Fig. 5 Plots of length as a function of time used for the calculation of
Q in the two directions indicated in Fig. 2(a).
QAA = 38 kcallmole; QBB = 44 kcal[mole.

Fig. 6 Interface positions corresponding to another transformation
sequence. Lines LL indicate grain boundaries C°|Z°.

5

Fig. 7 B’ structure in which 1/3 of a hexagonal unit cell
equivalent to the unit cell of C° is shown.
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TaBLE 11
System A’ exp (AS*/R) Q, kcal/mole
AgCd 0-4 16
CuZn 10 16
AgZn 103 28
10° 37

growth could originate in a minimization of the stresses
produced by the volume change resulting from a suitable
oriented set of {° grains.

It can therefore be concluded that stresses are important in
both nucleation and growth only during the final stages of the
transformation when only a small part of the matrix remains
untransformed.

Activation Energy and Pre-Exponential Factor for Interface Movement

Important changes in nucleation behaviour and in the
measured values of activation energy were observed with
change of composition. Departure from stoichiometry con-
siderably decreases the order in B" and since Q also decreases,
it seems that Q depends on order in this transformation.
Small but consistent differences in Q were also measured for
different growth directions in a single experiment. The origin
of this anisotropy could be the anisotropy of diffusion at the
transformation interface, since it is quite possible that interface
diffusion is the controlling factor during this kind of trans-
formation.2:3  Speich!> also noticed differences in Q in
edgeways and sideways growth rates of bainite plates.

The pre-exponential factor of equation (2) can be analysed

2]

using absolute reaction rate theory.2 This gives

A exp (A_S*)_ i
- pree
B )

RT RT

where A’ is the fraction of atoms at reactive sites on the
interface, £k and / are Boltzmann’s and Planck’s constants,
D is the average jump distance, Q and AS* are the enthalpy
of the reaction.

The value of AGF'S" was taken as 35 kcal/mole in the range
of reaction temperatures from 110 to 140° C!6 and D was
taken as the interatomic distance. Table II shows the present
data compared with previous values calculated for the
C° — B’ transformation in the AgCd system? and the B — aas
transformation in the CuZn system.? It is clear that A" exp
(AS*/R) for the B* —> L° transformation in AgZn is several
orders of magnitude greater than for the AgCd or CuZn
transformations. In addition the value of 4" exp (AS*/R) is
larger for directions where Q is larger. This explains the small
difference in growth velocity observed for various directions
despite differences in measured Q values.

The high values of 4’ exp (AS*/R) give AS* = 40 cal/mole/
degC when 4’ = 1, which is of the order of 20 times the
entropy of melting in metals. Early data on recrystallization
of metals gave similarly high values and it was later demon-
strated that this was due to impurities.1? In the present case
the alloy was of similar purity to the alloys used for previous
work in other systems,2:3 which did not give such high
A’ exp (AS*/R) values. Hence impurities are probably not the

origin of the high pre-exponential factor and a detailed analy-
sis of this phenomenon remains to be done.

The Q and A’ exp (AS*/R) values can be compared with
some data on diffusion in intermetallic phases. The only data
available for AgZn are the values of Q for the B phase of
stoichiometric composition. (Q» = 27 kcal/mole for Zn and
Qv = 16°6 kcal/mole for Ag.'8) If we take Q¢ ~ 2Q% and
QOsb ~ 1/2 Qv, where Qsb is the activation energy for grain-
boundary diffusion and Qv is the activation energy for lattice
diffusion, then the measured value of Q (34 kcal/mole) for
the transformation lies between that for grain-boundary
diffusion (27 kcal/mole for Zn and 166 kcal/mole for Ag)
and that for lattice diffusion (54 kcal/mole for Zn and 33
kcal/mole for Ag). It is often considered that Qv =Q7 - Qm,
where Q7 is the energy for vacancy formation and Qm is the
activation energy for atomic migration, and that Qsb is equal
to Qm since vacancies are thought to be available at grain
boundaries. However, in the present case any excess vacancies
created at the interface will be annihilated close to the inter-
face since the transformation is associated with a volume
expansion. Hence Q¢? for this transformation could be higher
than the normal Qzb,

Concerning the pre-exponential factor, it should also be
mentioned that in ordered and disordered B phase in the
CuZn system there is a difference of several orders of magni-
tude between the measured pre-exponential factors for the B
disordered phase (Dy = 1072-1073) and the B’ ordered phase
(Dy = 102-10%).18 1t is interesting that this difference in D
is of the same kind as the difference in 4" exp (AS*/R) in
Table II between disordered and ordered phases. The origin
of these effects is probably similar since the transformations
are diffusion-controlled.  Further discussion is precluded
since there is no satisfactory model for Dy in ordered alloys.

Atomistic Model

The model for the B — C° transformation discussed by
Kitchingman and Buckley® was extended by Kitchingman? to
the B* — ¢° transformation with the necessary allowances for
the ordering in B’. This model used the orientation relation-
ship between B’ and Z° determined by Bergman and Jaross,?
namely that each B’ crystal gave rise to a set of Z° grains
oriented with their respective [001] - axes parallel to the four
possible [111] ¢ axes. The model indicated that volumetric
changes take place on transformation which require some
shuffling of atoms over distances less than the interatomic
distances, and that some atom exchange is also needed to
fulfil order requirements.

Fig. 7 shows a view of the B’ ordered structure. The thick
lines correspond to 1/3 of a hexagonal unit cell based on B’
which can be compared with the corresponding 1/3 of the Z°
unit cell oriented with [111] g I [0001] r-. It is clear that
alternate layers of Ag and Zn parallel to [111] ;- make up the
unit cell. Thus each layer of atoms in the B’ structure contains
only one kind of atom (in a perfectly ordered lattice) and the
corresponding (0001) layers in the Z° phase contain different
proportions of atoms. The transformation therefore requires
atom exchange between the (111) layers and it can be shown
that one half of the atoms of a £° unit cell need to exchange
places on passing from B’ to £°. This exchange should take
place at the transformation interface. Most of the active
transformation interfaces are somewhat incoherent, hence we
must not only consider what happens in a perfect lattice
(which was the view taken by Kitchingman® when considering
his model for the transformation) but also what happens at an
incoherent transformation interface. At such an interface the
following events should take place:
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(i) A volumetric expansion of + 0-6 %.

(ii) Exchange of places of one-half of the atoms involved in

the transformation to fulfil order requirements.

(iii) Shuffling of two atoms per unit cell along the [111] g |l

[0001] - direction.

Present observations on the effect of (i) on a macroscopic
scale and the small movement required by (iii) indicate that
neither factor is probably rate-controlling. However, (ii)
requires extensive diffusion and it is probably the rate-
controlling factor. If a transformation interface is parallel to
the (111) g, (0001) z» planes then it is possible that a small
contribution to the required atom exchange will be made via
interface diffusion involving exchange between atoms lying on
the interface and their neighbours away from the interface or
else exchange of atoms across the interface. On the other
hand, an interface that intersects the (111) g, (0001) z- planes
will have atoms of Ag and Zn present at the interface in more
favourable positions for diffusion along the interface to con-
tribute to the atom exchange needed for the fulfilment of the
order requirements. If this is correct, it can be deduced that
transformation interfaces parallel to the (111) g, (0001) zo
planes, if they exist, will move at a slower rate than interfaces
lying at an angle to this plane.

The anisotropy of the activation-energy data could result
from a different contribution to the atomic exchange made by
diffusion along or perpendicular to the interface. These are
the limiting cases and, depending upon the interface orienta-
tion, a variety of intermediate Q values would be possible.

The effect described will depend on the structure of the
transformation interface. The model of a grain boundary
due to Mott!? has recently been discussed by Gifkins.2® This
model predicts grain boundaries made out of islands of good
fit, crystallographically oriented, surrounded by channels of
material saturated with defects. If this model applies to the
present transformation interface, then the islands will trans-
form via “ submicroscopic ledge growth * since, for these
islands, the atom exchange could be more difficult for the
(111) g, (0001) - planes as described above. The number of
islands of good fit will change with orientation; hence this will
contribute to the measured anisotropy of Q as a function of
interface orientation.

We conclude that the grain-boundary model of Mott!8 is
compatible with the idea that anisotropy in Q results from
different contributions to atom exchange made by pure
“interface > or pure * volume ** diffusion. This effect could
be enhanced by the volume expansion taking place during
transformation, which would tend to diminish the vacancy
concentration at and near the transformation interface.
Measurements of the self-diffusion parameters in the phases
involved and determinations of the crystallographic orienta-
tion and nature of the transformation interfaces are necessary
to complement the present results and provide further under-
standing of some of the problems considered.

Conclusions

(1) The change-of-rate method was used for the determina-
tion of the activation energy of a phase transformation. The
results were consistent withelectrical-resistivity determinations
in the same alloy.

(2) From the pre-exponential factor and Q values it appears
that the reaction is controlled by diffusion at the transforma-
tion interface. The model of Kitchingman? satisfactorily
explains the transformation behaviour if the transformation
interface is considered. The atom exchange needed to fulfil
order requirements is probably the rate-controlling step.

(3) Anisotropy in interface diffusion at the transformation
interface is thought to play a role in determining the small
anisotropy detected in the activation-energy values of the
transformation along different growth directions.
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The Effect of Small Additions of Copper on the
Transformation Characteristics of 8-Phase

It has been reported that when Ag replaces Au in B’-
phase AuCd alloys, the B’ phase is stabilized to lower
temperatures (F. Rothwarf and L. Muldawer, J. Appl.
Physics, 1962, 33, 2531). However, as the Ag content of
AgAuCd3® alloys is increased beyond 5 at.-9;,, the
transformation product is no longer trigonal but ortho-
rhombic. When Cuis added to B’-phase AuCd alloys the
transformation patternis reversed. As the Cu content of
CuAuCd*7-5 is increased, M; falls rapidly. Beyond 0-5
at.-9, Cu the product of the transformation is the
trigonal phase and M. is lower than 77° K at the 2-5
at.-%, Cu concentration. Additions of Cu to AuCd?*®
similarly reduce M; but the transformation product is
invariably trigonal. These results are discussed and it is
concluded that the marked difference in transformation
characteristics observed on the substitution of Cu for
Au in B’-phase AuCd alloys, compared with the effect
of Ag, is due to the increased ordering forces arising in
the case of the Cu addition.

The binary systems resulting from the alloying of a noble
metal with one of higher valency are characterized by the
appearance of a so-called ** electron compound ** around an
electron/atom ratio (e/a) of 3/2. The several structures in
which this phase is seen have been studied by Hume-Rothery,
Reynolds, and Raynor.! The most common of the possible
structures are the body-centred cubic (ordered B, or disordered
B) the hexagonal close-packed (Z” or ) and the B’-manganese
type (n). It would appear that the fundamental structure for
the 3/2 electron compound is the hexagonal close-packed
structure.?

Such phases are formed only when size-factors are reason-
ably favourable. Increasing the valency of the solute favours
the p or Z phases at the expense of the B or B’ structures,
while increasing the temperature favours the B form at the
expense of the others. An increase in size-factor displaces
the B phases in the direction of lower e/a and narrows the
range of composition in terms of e/a and temperature. The
tendency to form B’ structures on alloying a solute with a
noble-metal solvent follows the series Cu < Ag < Au, i.e.
in order of increasing electrochemical factor. A high electro-
chemical factor leads to ordering right up to the melting
point as in the systems AuMg, AuCd, and AuZn. Thus,

AuCd Alloys
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ordered b.c.c. phases are favoured by a high electrochemical
factor and the larger this factor, the more the electron com-
pound will assume the character of a normal valency com-
pound. However, as pointed out by Warlimont?, a large
size-factor may also promote stable superlattice formation
even in the absence of a marked electrochemical factor.

The b.c.c. phases tend to instability at low temperatures.
This tendency has been analysed by Zener,* who has noted
that a shear in the [T10] direction in the (110) plane of a
b.c.c. lattice leaves nearest-neighbour atoms unchanged to a
first approximation and should, therefore, occur unimpeded
in a b.c.c. packing of hard spheres. Now the equilibrium
state of an alloy is characterized by a minimum value of the
free energy, AG, which is given by

AG = AH — TAS

where AH is the enthalpy, 7T the absolute temperature, and
AS the entropy.

The amplitude of the thermal vibration resulting from such
a low value of the shear modulus is large, and an entropy
which is large compared with other structures is associated
with the b.c.c. structures at high temperatures. Any increase
in temperature produces a rapid decrease in AG because of
the comparatively large TAS term. Thus the b.c.c. structure
is stabilized at high temperatures, but may have a high energy
relative to other close-packed structures at low temperatures.
At low temperatures, therefore, mechanical instability would
be expected involving a (110) [T10] shear mechanism.

As predicted by Zener,* metals and alloys with the b.c.c.
structure are often observed to transform at low temperatures
in a diffusionless manner to a more closely packed structure.
This phenomenon has evoked considerable interest and
many investigations have been made to uncover the factors
promoting this instability. The earlier work has been reviewed
by King and Massalski.> In particular it has been observed
that M, the temperature at which transformation spon-
taneously begins, decreases as e/a increases.® As mentioned
earlier, a large size factor tends to displace the B-phase field
to lower e/a concentrations; a large size factor has also been
reported to favour the B phase over other structures.! In
this connection the present authors” have recently shown that
as small ternary additions of various metals are made in
replacement of cadmium in Au’°Cd alloys,* M; decreases if
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* Alloy compositions given in this paper as A”B mean x at.-% A in
B. In ternary alloys of varying compositions the figure is given for the
component which is kept constant.
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Ms temperatures with composition for binary AuCd B’-phase
alloys. After Nakanishi and Wayman.*®
® Ahmed A Mullendore M Nakanishi and Wayman
the atomic size of the ternary solute addition is smaller than
that of the binary divalent constituent. However, it was also
observed that electrochemical effects appeared to predomi-
nate and so, at times, M was actually reduced when the electro-
negativity between the ternary addition and gold was larger
than that between cadmium and gold, although the atomic
size of the ternary atom was larger. In view of this, the
experiments to be described involving the replacement of the
noble metal in AuCd alloys were undertaken, so as to further
examine electrochemical influences on B-phase stability.
Long-range order persists to the melting point in the
€ 3/2 electron compound ™ of AuCd.® On simple cooling
this ordered b.c.c. phase (B’) transforms martensitically at all
compositions.? Alloys having compositions near AuCd47->
transform at ~ 60° C on slow cooling to an orthorhombic
phase.l® However, transformation of the AuCd4%® alloy
occurs at ~ 30° C to give a phase which was earlier classified
as tetragonal'l’ but has more recently been identified as
trigonal.'? Fig. 1 shows the variation with composition of
the cubic — orthorhombic and cubic — trigonal M tempera-
tures for binary AuCd B’-phase alloys.!3
Investigation of the B’ phase occurring in the ternary
AgAuCd system has recently been carried out by Rothwarf
and Muldawer.'* A general depression of the cubic —
orthorhombic and cubic — trigonal transformation tempera-
tures was observed on replacing Au by Ag in AuCd47-> and
AuCd>°; this was interpreted in terms of ion-core overlap
effects.
Experimental
The influence of Cu on the transformation characteristics
of AuCd*"> and AuCd>° was carried out by measuring the
electrical resistivity of polycrystalline samples over the range
78-400° K.
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Fig. 3 The depression of Ms in AuCd*° on replacing Au by Cu.

To prepare the resistivity specimens, 2-3-g charges of
accurately weighed constituent metals were sealed under
argon in 5-mm-dia. silica tubes, melted, well shaken, and
finally water-quenched. These small ingots were resealed in
argon-filled silica tubes of similar dimension to which a
2-mm silica capillary was attached. On remelting, the molten
alloy could be forced into the capillary by the differential
pressure attained by cooling the far end of the capillary.
Homogenization was carried out by annealing at 50 degC
below the melting point of the alloy for 10 days, after which
the alloys were furnace-cooled. Even with recasting, the loss
in weight was < 1 part in 2000.

The cryostat used was of simple design and has been
described elsewhere.l> The standard four-probe technique
was used in conjunction with a constant-current sourcel®
to determine resistivity. This arrangement, in conjunction
with an X-Y recorder, permitted transformation curves to be
plotted directly. The general depression of the M; in AuCd
alloys by the addition of Cu is shown in Figs. 2 and 3.
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TABLE |

The Effect on the Transformation Hysteresis in AuCd47->
of Substitution of Cu for Au

At.-% Temp., °C Hysteresis,
Cu deg C
M, ’ M |4 Ay
0-25 45 34 38 56 7-5
0-75 — 8 — 28 — 30 — 10 2-0
1-25 — 32 — 55 — 53 — 31 1-5
1-75 - 75 — 97 — 97 — 175 0

The nature of the transformation product forming in
the CuAuCd alloys was established in two ways. In the
binary AuCd alloy, transformation when < 48:59% Cd
was present (to give an orthorhombic phase) was accompanied
by a marked reduction in electrical resistivity; an opposite
effect was observed for alloys containing > 48-59, Cd.
Thus, the structure of the transformation product could
easily be concluded from the shape of the resistivity vs.
temperature plots. These conclusions were verified by
X-ray diffraction.

It was also observed that the transformation hysteresis,
s[(As — My) + (Ar — Ms)], decreased as M, fell (Table I).

Discussion

During any martensitic transformation ‘“ accommodation
stresses * arise which promote reversibility. However, apart
from ** stabilization * effects, annealing can take place to
reduce these stresses and so increase the transformation
hysteresis. Because thermally activated redistribution of
stresses would be negligible at low temperatures but would
increase appreciably with temperature, transformation
hysteresis would be expected to decrease as M decreases.
This was observed in the present work, as also reported earlier
for single-crystal studies.!3

The change from orthorhombic to trigonal transformation
product with increasing Cu content in alloys containing
47-59, Cd appears to be discontinuous. This is shown
clearly in Fig. 2. The resistivity vs. temperature plots ob-
tained for alloys with compositions near the transition region
were always one or other of the characteristic forms, never
in any case suggesting that transformation had taken place
to a mixed product. However, Nakanishi and Wayman!3
have examined the transformation characteristics of single
crystals of AuCd475, containing up to 1:5% Cu, using the
resistivity technique. They observed mixed transformation
characteristics for the 1:09%, Cu alloy. The present authors
consider that this result is attributable to macrosegregation
during the growth of the crystals. Since virtually the whole
of the as-grown crystal was used, significant macro-
segregation would be expected and would be little affected
by prolonged annealing. It may be seen from Fig. 2 that the
transition from an orthorhombic product to the trigonal
form took place over a composition range of < 0-025% Cu.
Such a variation could result quite easily from the simple
crystal-growing technique employed.

On thermodynamic grounds, the coexistence of both
transformation products might be expected over a small
temperature range since local changes in free energy would
occur due to variations in the local state of strain. Swann
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Fig. 4 The transformation fields of AgAuCd and CuAuCd alloys.

and Warlimont,17 using transmission electron microscopy,
observed that two transformation products could coexist in a
single martensitic plate of CuAl. This occurred over a
composition range of 1 at.-% However, in comparing these
results with those of the CuAuCd alloys it is important to
remember that the critical temperature for long-range order
is only ~250 degC above the M, whereas in the CuAuCd
alloys ordering persists to the melting point and, as will be
discussed later, the ordering forces are considered to change
markedly with Cu content. Thus the role of non-chemical
factors is expected to be smaller in CuAuCd alloys.

It is convenient to represent the earlier results for AgAuCd
alloys!4 and the present results for CuAuCd alloys as the
transformation fields shown in Fig. 4. The cubic — ortho-
rhombic transition temperature in AuCd*7-> is depressed at
the rate of 80 degC/at.-%, Cu (region AB), while M; for the
cubic — trigonal change is reduced by ~ 60 degC/at.-%, Cu
(region BC) for both the AuCd*7-> and AuCd*. In compari-
son, the M; of AuCd47-3 is depressed by only 10 degC/at.- % Ag.
Thus copper is considerably more potent than silver in
increasing the structural stability of B’-AuCd.

It is seen from Fig. 4 that the transformation characteristics
of the AgAuCd alloys are very different from those observed
in the CuAuCd alloys. The clue to the different behaviour
is presumed to lie with the different ordering forces present
in the various alloys, particularly with respect to the occurrence
of ordering at the noble-metal atom lattice sites. The electro-
negativity difference between Cu and Au promotes long-range
order in binary CuAu, whereas no long-range order is found
in AgAu alloys. This suggests that the ordering forces will
be greater in CuAuCd alloys than in AgAuCd alloys. Un-
fortunately little ordering information is available for CuAuCd
alloys, although AgAuCd alloys have been examined in this
respect.!4 However, the analogous situation involving the
addition of Ag and Cu to AuZn alloys has been examined
by Muldawer,18 who showed that long-range order persists to
a relatively higher temperature when Cu is the ternary
addition. He also noted that quenching partially suppresses
AgAu ordering in AgAuZn, but not CuAu ordering in
CuAuZn,, and that cold work completely destroys noble-
metal order in AgAuZn, but only partially affects CuAu
ordering in CuAuZn,. All this would support the contention
that greater ordering forces exist in CuAuCd alloys than in
AgAuCd alloys.



