

Master Thesis

Combined Neural Networks and

Genetic Algorithms as a method for

reducing redundancy in steel design

Joo, Min Sung (朱 敏 成)

Department of Ferrous Technology

(Computational Metallurgy)

Graduate Institute of Ferrous Technology

Pohang University of Science and Technology

2008

C
o
m

b
in

e
d
 N

e
u
ra

l N
C

o
m

b
in

e
d
 N

e
u
ra

l N
C

o
m

b
in

e
d
 N

e
u
ra

l N
C

o
m

b
in

e
d
 N

e
u
ra

l N
e
tw

o
rk

s
 a

n
d
 G

e
n

tw
o
rk

s
 a

n
d
 G

e
n

tw
o
rk

s
 a

n
d
 G

e
n

tw
o
rk

s
 a

n
d
 G

e
n
e
tic

 A
lg

o
rith

m
s

e
tic

 A
lg

o
rith

m
s

e
tic

 A
lg

o
rith

m
s

e
tic

 A
lg

o
rith

m
s

a
s
 a

a
s
 a

a
s
 a

a
s
 a

 m
e
th

o
d
 fo

r
m

e
th

o
d
 fo

r
m

e
th

o
d
 fo

r
m

e
th

o
d
 fo

r re
d
u
c
in

g
 re

d
u
n
d
a
n
c
y
 in

 s
te

e
l d

e
s
ig

n
re

d
u
c
in

g
 re

d
u
n
d
a
n
c
y
 in

 s
te

e
l d

e
s
ig

n
re

d
u
c
in

g
 re

d
u
n
d
a
n
c
y
 in

 s
te

e
l d

e
s
ig

n
re

d
u
c
in

g
 re

d
u
n
d
a
n
c
y
 in

 s
te

e
l d

e
s
ig

n

2
0
0
8
 M

in
 S

u
n
g
 Jo

o
2
0
0
8
 M

in
 S

u
n
g
 Jo

o
2
0
0
8
 M

in
 S

u
n
g
 Jo

o
2
0
0
8
 M

in
 S

u
n
g
 Jo

o

신경회로망과 유전알고리즘의 결합을

통한 철강 디자인의 중복성 감소

Combined Neural Networks and Genetic

Algorithms as a method for reducing

redundancy in steel design

Combined Neural Networks and Genetic

Algorithms as a method for reducing

redundancy in steel design

by

Joo, Min Sung

Department of Ferrous Technology

(Computational Metallurgy)

Graduate Institute of Ferrous Technology

Pohang University of Science and Technology

A thesis submitted to the faculty of Pohang University of

Science and Technology in partial fulfillments of the requirements

for the degree of Master of Science in the Graduate Institute of

Ferrous Technology (Computational Metallurgy)

Pohang, Korea

June 23
th
, 2008

Approved by

Combined Neural Networks and Genetic

Algorithms as a method for reducing

redundancy in steel design

Joo, Min Sung

This dissertation is submitted for the degree of Master of Science

at the Graduate Institute of Ferrous Technology of Pohang

University of Science and Technology. The research reported

herein was approved by the committee of Thesis Appraisal

June 23
th
, 2008

i

Preface

This dissertion is submitted for the degree of Master of Engineering in

Computational Metallurgy at Pohang University of Science and Technology. The

research described herein was conducted under the supervision of Professor H. K. D.

H. Bhadeshia, Adjunct Professor of Computational Metallurgy in the Graduate

Institute of Ferrous Technology, Pohang University of Science and Technology and

Professor of Physical Metallurgy, University of Cambridge, between September

2006 and June 2008.

Except where acknowledgement and reference is made to previous work, this work

is, to the best of my knowledge, original. Neither this, nor any substantially similar

dissertation has been, or is being, submitted for any other degree, diploma or other

qualification at any other university.

Part of this work has been submitted to appear in the following publication:

Minsung Joo, Joohyun Ryu and H. K. D. H. Bhadeshia: Domains of Steels with

Identical Properties, submitted to Materials and Manufacturing Processes.

Min Sung Joo

June 2008

ii

Acknowledgement

I am extremely greateful to my supervisor, Professor Bhadeshia, H. K. D. H. for his

constant guidance, support, great friendship and for his insight. Also thanks to

Professor Hae-Geon Lee, Professor B. C. De Cooman, Professor Weijie Liu,

Professor In Gee Kim and Professor Rongshan Qin for their advice, support and

friendship.

I would like to express my thanks to all the people in the Graduate Institute of

Ferrous Technology (GIFT) in Pohang University of Science and Technology,

especially those members in Computational Metallurgy Laboratory (CML), for all

their help and for all the memories we have. The life with CML members was quite

pleasant and enjoyable. Especially, I gratefully acknowledge Joo Hyun Ryu for his

helps on the neural network analysis.

I grateful acknowledge Drs Jae Kon Lee, Young Roc Im and Jung Hyeung Lee from

Sheet Products and Process Research group of the steel company, POSCO, for their

helps with the neural network analysis

I would like to thank Yong Ki Kim, Jae Yong Chae and You Young Song for help

and friendship during being my stay in Cambridge.

Finally, I would like to take this opportunity to express my gratitude to my family

members for their love, unfailing encouragement and support.

iii

MFT

20062870

Joo, Min Sung

Combined Neural Networks and Genetic Algorithms

as a method for reducing redundancy in steel design,

Department of Ferrous Technology (Computational

Metallugy) 2008

Advisor: Prof. Lee, Hae Geon; Prof. Bhadeshia, H. K. D. H.

Text in English

Abstract

The mechanical properties of ferrite-pearlite steels can be affected by many factors.

Material scientists have conducted many trials to find new steel compositions, in an

attempt to optimize and achieve properties. The data are generally analyzed using

linear regression methods. However, they do not reveal the full complexity of the

mechanical properties of steels.

This work begins by reviewing neural networks, the genetic algorithm method and

the essential factors and hardening mechanisms that affect the mechanical properties

of steels. The objective of this work was to find identical domains of input

parameters which lead to a particular strength or ductility for the hot-rolled steels,

all with a final microstructure which is a mixture of ferrite and pearlite. This can in

principle be done by combining the neural network with a genetic algorithm method.

The neural network is one of the most general ways of developing quantitative

relationships when dealing with complex problems. It can find the relationship

between the large number of variables, which determine the properties of the steel

and the properties themselves. However, the neural network requires the user to

iv

reach the desired solution by a trial and error choice of inputs, like many other

modeling techniques. This difficulty can be resolved by combining the model with a

genetic algorithm which can search the input space simply and efficiently. The

combination can allow the user to set the objectives and let the genetic algorithm

discover the domain of inputs which can automatically satisfy the desired outputs.

During this work, two neural network models were selected from Ryu’s work which

can predict the ultimate tensile strength and the elongation to failure respectively

[Ryu, 2008], and combined with a genetic algorithm. The combined models with

single objective were tested to find the domains of inputs which satisfy particular

strength or ductility targets and the results were interpreted in a metallurgical

context. The combined models with a single objective were then gathered to make

another combined model with two objectives, the ultimate tensile strength and the

elongation to failure. This model was tested to find the domains of inputs which

simultaneously satisfy the two targets and analyzed to find new grades of steels

which have high tensile strength and high ductility.

v

Contents

PREFACE I

ACKNOWLEDGEMENT II

ABSTRACT III

CONTENTS V

NOMENCLATURE VII

I. INTRODUCTION – LITERATURE REVIEW 1

1.1. Mechanical properties 2
1.1.1. Fundamentals 4
1.1.2. Mechanisms for strain hardening 10

1.2. Neural network 15
1.2.1. Fundamentals 16
1.2.2. Error estimation 18
1.2.3. Overfitting 21
1.2.4. Committee 23
1.2.5. Significance 24

1.3. Genetic algorithm 24
1.3.1. Process and operators 25
1.3.2. Potential pitfalls 33
1.3.3. Genetic algorithms for Bayesian neural networks 35
1.3.4. Multi-objective optimization 37

II. MODELING AND COMPUTER EXPERIMENTS 41

2.1. Neural network modeling 41

2.2. Genetic algorithm 46
2.2.1. Single objective 46
2.2.2. Multiple objective 50

vi

2.3. Simulations for each combined model 51

2.4. Summary 53

III. RESULT AND DISCUSSION 54

3.1. Single objective model 56
3.1.1. The ultimate tensile strength model 56
3.1.2. The elongation model 69

3.2. Multiple objective model 75
3.2.1. 400 MPa strength in combination with elongation 75
3.2.2. 600 MPa strength in combination with elongation 76
3.2.3. 800 MPa strength in combination with elongation 78

3.3. Summary 80

IV. SUMMARY AND FUTURE WORK 81

4.1. Summary 81

4.2. Future work 83

REFERENCES 85

APPENDIX A 92

APPENDIX B 111

APPENDIX C 130

CURRICULUM VITAE 151

vii

Nomenclature

ANN Artificial neural network

EL The elongation

GA Genetic algorithm

HS The hardness from Brinell hardness test

IHPE Inverse of Hall-Petch effect

SPO Strong Pareto optimal

TS The tensile strength

TC Coiling temperature

TFR Finish-rolling temperature

UTS The ultimate tensile strength

WPO Weak Pareto optimal

A0 The original cross-sectional area

Ci I-th criteria in multi-objective genetic algorithm

E The modulus of elasticity, Young’s modulus

ED The overall error in neural networks

F The instantaneous force or load

G The shear modulus

Pi The probability of being selected for individual i in

genetic algorithm

Ur The modulus of resilience

WMn The contents of manganese in weight percent

viii

WNf The contents of free nitrogen in weight percent

WSi The contents of silicon in weight percent

b The burgers vector

dα The ferrite grain size in millimeters

fi The fitness of i-th chromosome in genetic algorithm

fmax The maximum fitness in genetic algorithm

f The average fitness in genetic algorithm

hi Hyperbolic tangents in neural networks

l0 The original length

li The instantaneous length

p The dislocation density

tj The measured value

xj Input variables in neural networks

wi Weights in neural networks

wij Weights in neural networks

y Output in neural networks

zi The arguments of hyperbolic tangents in neural networks

γ The shear strain

ε The tensile elongation to failure

θ
(1)
 Biases in neural networks

θ
(2)
 Final bias in neural networks

σ The engineering stress

ix

σU Ultimate tensile strength

σY Yield strength

τ The shear stress

τ0 The intrinsic strength of the material

1

I. Introduction – Literature review

Steels used in industry are designed to particular mechanical properties, which in

turn are influenced by the thermo-mechanical processing and the chemical

composition. Hot-rolled steels with a microstructure consisting of a mixture of

ferrite and pearlite form the backbone of the steel construction industry because of

the unique combination of strength, toughness and cost that they offer. They are also

easy to fabricate using processes such as welding. It is possible that a reduction in

the variety of steels available could result in greater economies in the production

process.

There have been many attempts in the past to find connections between the

mechanical properties and its controlling variables. Normally, this involves a well-

designed series of experiments, but this is in principle unnecessary because a vast

quantity of data already exists in the form of research, production and quality-

control experiments. Neural networks and associated tools are useful in exploring

such relationships without introducing bias by using the data.

Once a phenomenon has been modeled, the user has to reach the desired solution by

a trial and error choice of inputs. This involves making educated guesses on what

inputs to use in order to reach the target value of the output parameter. The non-

linear nature of the model means that a very large number of trials is needed. This

problem is better handled by combining the model with a genetic algorithm which

can efficiently search the input space [Chakraborti, 2004; Delorme, 2003]. The

2

power of doing this has recently been demonstrated in reaching novel solutions out

of the field of established knowledge, leading to the discovery of the so-called δ-

TRIP steel [Chatterjee, 2006; Chatterjee et al., 2007].

1.1. Mechanical properties

When in service, steels are variously loaded. Deformation may then occur and this

can result in fracture. Thus it is necessary know the characteristics of the steels and

fitness for purpose. An understanding of the mechanical properties is therefore the

basis for the understanding of the steels. Important mechanical properties include

strength, hardness, ductility and stiffness. Thus, in the experiments, factors which

can affect the results have to be carefully controlled. The basic mechanical behavior

can be derived with simple stress-strain tests, in tension, compression, torsion or

shear.

In tension or compression tests, a specimen is tested to an increasing uniaxial force

at uniform speed with the simultaneous observation of elongation or contraction of

the specimen. In this case, engineering stress σ defined by the relationship [Dieter,

1988]:

0A

F
=σ (1-1)

where F is the instantaneous load applied perpendicular to the specimen cross

section and A0 is the original cross-sectional area before any load is applied.

Engineering strain ε is defined by the relationship:

3

00

0

l

l

l

lli ∆
=

−
=ε (1-2)

where l0 is the original length before any load is applied and li is the instantaneous

length.

In shear tests, the shear stress τ is defined by the relationship:

0A

F
=τ (1-3)

where F is the load or force imposed parallel to the upper and lower faces, each of

which has an area of A0. The shear strain γ is defined as the tangent of the strain

angle θ.

If the deformation is immediately recovered after the force is removed, the strain is

elastic. In this manner, the engineering stress and engineering strain are proportional

to each other through the relationship:

 εσ E= (1-4)

This is known as Hooke’s law, and the constant of proportionality E is the modulus

of elasticity or Young’s modulus [Dieter, 1988]. In the case of shear deformation,

shear stress and shear strain are also proportional to each other through the

relationship:

 γτ G= (1-5)

where G is the shear modulus.

In contrast with elastic deformation, if the specimen does not recover to its original

dimension when applied forces are terminated, the deformation is said to be plastic.

Figure 1.1a shows schematically the tensile stress-strain behavior into the plastic

4

region. A straight line is constructed parallel to the elastic portion at some specified

strain offset, usually 0.002 (0.2%).

1.1.1. Fundamentals

Yield strength

The onset of plastic deformation defines the yield strength. Before yield, the

material undergoes elastic deformation within the limits of experimental error. Once

the yield point is exceeded, some fraction of the deformation will be permanent and

non-reversible. Some steels reach an upper yield point before the stress drops

rapidly to a lower yield point. The material response is linear up until the upper

yield point, but the lower yield point is used in structural engineering as a

conservative value. The yield point phenomenon is illustrated in Figure 1.1b.

Yield strength depends on both the strain rate and the temperature at which the

Elastic Plastic

Strain

S
tr

e
s
s
 σy

P

0.002

Upper yield

point

S
tr

e
s
s

σy

Strain

Lower

yield point

(a) (b)

Figure 1.1 (a) Typical stress-strain behavior for a metal showing elastic

and plastic deformations, the proportional limit P, and the yield strength σy,

as determined using the 0.002 string offset method. (b) Yield point

phenomenon.

5

deformation occurs. Early work [Alder et al., 1954] found that the relationship

between yield stress and strain rate at constant temperature to be:

m

y C)(εσ &= (1-6)

where C is a constant and m is the strain rate sensitivity.

Later, better equations were proposed which could deal with both temperature and

strain rate [McQueen et al., 1994]:

)/1(

1sinh
1

n

y
A

Z





= −

α
σ (1-7)

where α, n and A are constants and Z is the temperature-compensated strain-rate, the

Zener-Hollomon parameter [Zener et al., 1944]:

 







=

RT

Q
Z HWexp)(ε& (1-8)

where έ is the strain rate, R is the universal gas constant, T is the absolute

temperature, QHW is the activation energy for the deformation.

Tensile strength

The tensile strength is the engineering stress at the maximum in the engineering

stress-strain curve. All deformation up to this point is uniform. Figure 1.2 shows a

typical engineering stress-strain curve. The tensile strength (TS) is indicated at point

M.

Ductility

Ductility is a measure which describes how much plastic deformation a material can

6

sustain before fracture occurs. Ductility can be expressed quantitatively in two ways.

The one is percent elongation, the other is percent reduction in area. %EL is the

percentage of plastic strain at fracture (Figure 1.3):

 100%
0

0 ×






 −
=

l

ll
EL

f
 (1-9)

where lf is the fracture length and l0 is the original gauge length.

Figure 1.2 Typical engineering stress-strain behavior to fracture, point F

[Callister, 2007].

Figure 1.3 Strain-stress curve with %EL [Callister, 2007].

Engineering

tensile

stress, σ

Engineering tensile strain, ε

Small %EL, brittle

Large %EL, ductile

7

Percent reduction in area %RA is defined as:

 100%
0

0 ×






 −
=

A

AA
RA

f
 (1-10)

where A0 is the original cross-sectional area and Af is the cross-sectional area at the

point of fracture.

Resilience

Resilience is the property of a material to absorb energy when it is deformed

elastically and then, upon unloading to have this energy recovered. In other words,

it is the maximum energy per volume that can be elastically stored. It is represented

by the area under the curve in the elastic region in the stress-strain curve. The

related property is the modulus of resilience, Ur can be expressed:

 ∫=
ε

εσ
0

dU r (1-11)

Toughness

Toughness is a measure of the energy absorbed by a material during fracture. It can

be measured approximately by the area under the stress-strain curve. The explicit

mathematical description is:

 ∫=
f

d
volume

energy ε
εσ

0
 (1-12)

where ε is strain, εf is the strain upon failure and σ is stress.

Toughness tests can be done by using a pendulum and some basic physics to

measure how much energy it will hold when released from a particular height. By

8

having a sample at the bottom of its swing a measure of toughness can be found, as

the Charpy toughness tests.

The Charpy impact test is a standardized high strain-rate test which determines the

amount of energy absorbed by a material during fracture. The apparatus consists of

a pendulum hammer swinging at a notched sample of material. The energy

transferred to the material can be inferred by comparing the difference in the height

of the hammer before and after impact. The energy needed to fracture a material,

can be used to measure the toughness of the material and the yield strength. Also,

the strain rate may be studied and analyzed for its effect on fracture. The Charpy

test is empirical, thus the data from the test cannot be used directly in enginerring

design. It is, nevertheless, an essential quality control measure which is specified

widely in international standards, and in the ranking of samples in research and

development exercises [Bhadeshia, 2001].

The toughness as a material property can be measured by this equation:

 aYK cIc πσ= (1-13)

where a is the length of the surface flaw or one half the length of an internal crack,

Y is a dimensionless constant which depends on crack, specimen sizes, etc and σc is

the critical stress for crack propagation as:

2

1

2








=

a

E s
c π

γ
σ (1-14)

where E is the moulus of elasticity and γ s is specific surface energy.

KIc is called the fracture toughness which is a quantitative way of expressing a

9

material's resistance to brittle fracture when a crack is present. If a material has a

large value of fracture toughness it will probably undergo ductile fracture. Brittle

fracture is very characteristic of materials with a low fracture toughness value.

True stress and strain

In most engineering applications, the definitions of the engineering stress and strain

are accurate enough because the cross-sectional area and length of the specimen do

not change substantially when loads are applied. However if the cross-sectional area

and the length of the specimen change substantially, the engineering stress and

strain cannot be accurate any more. To overcome this problem, the true stress and

strain are introduced.

True stress σt is defined as the load F divided by the instantaneous cross-sectional

area Ai over which deformation is occurring:

i

t
A

F
=σ (1-15)

True strain εT is defined by:

0

ln
l

li
T =ε (1-16)

If no volume change occurs during deformation:

 00lAlA ii = (1-17)

The true and engineering stress and strain are related:

)1(εσσ +=T ,)1ln(εε +=T (1-18)

10

Hardness

Hardness is a measure of material’s resistance to permanent deformation. Large

hardness means large amounts of the resistance to localized plastic deformation or

cracking. Hardness tests are conducted more frequently than any other mechanical

test because it is simple, inexpensive and nondestructive.

There are many kinds of tests to evaluate hardness for the materials. The most

common of which are Brinell hardness test, Janka Wood Hardness Rating, Knoop

hardness test, Meyer hardness test, Rockwell hardness test, Vickers hardness test

and Barcol hardness test.

Some other mechanical properties can be obtained from hardness data such as

tensile strength. Tensile strength in units of MPa is:

 TS (MPa) = 3.45×HB (1-19)

where HB is the Brinell hardness [Callister, 2007].

1.1.2. Mechanisms for strain hardening

Work hardening

For some metals and alloys, Hollomon suggested that the true stress-strain curve

can be approximated as [Hollomon, 1945]:

 n

TT Kεσ = (1-20)

where n is work hardening exponent (See Equation 1-21) and K is a strength

coefficient which is structure dependent and is influenced by processing. The value

of the work hardening exponent lies between 0 and 1. A value of 0 means that a

11

material is a perfectly plastic, while a value of 1 indicates 100% elasticity. Most

metals have an n value between 0.10 and 0.50.

T

T

T

T

T

T

d

d

d

d
n

ε
σ

σ
ε

ε
σ

==
)(ln

)(ln
 (1-21)

Work hardening is the strengthening of a material by increasing the material’s

dislocation density. It is a result of a plastic deformation. Plastic deformation moves

existing dislocations and simultaneously produces a great number of new

dislocations. The shear stress τ can be expressed as [Taylor, 1934]:

21

0 ραττ bG+= (1-22)

where τ0 is the intrinsic shear strength of the material with low a dislocation density,

G is the shear modulus, α is a correction factor specific to the material, b is the

lattice constant which called burgers vector also, and ρ is the dislocation density.

The latter part,
21ραbG , is associated with the increase in strength due to the

interaction of dislocations.

Solid solution strengthening

Solid solution strengthening occurs because when solute atoms are introduced, local

stress fields are formed that interact with those of the dislocations, impeding their

motion and causing an increase in the yield stress of the material. The strengthening

is caused by the interaction between dislocations and solute atoms, which may

originate from relative size difference, electrical interaction, chemical interaction

and configurational interaction.

There are two categories of solute atoms which are interstitial and substitutional. In

12

both cases, the overall crystal structure is essentially unchanged. In the

substitutional case, if the sizes of the solute and solvent atoms differ by less than

15%, the strength is found to be proportional to c
1/2
, where c is concentration of

substituional solutes [Honeycombe, 1968]:

 2/1c∝σ (1-23)

If the size of the solute atom is less than half that of the solvent, interstitial solid

solution occurs [Felbeck et al., 1984]. The smaller solute atoms accumulate in the

dilatation field of an edge dislocation, where they form a so-called ‘Cloud’. By the

interaction force between the solute atoms of this cloud and the dislocation, local

stress fields occur and then the material is strengthened.

In order to achieve noticeable solid solution strengthening, alloying with solutes of

higher shear modulus is needed. In addition, alloying with elements of different

equilibrium lattice constants is needed. The greater the different in lattice parameter,

the higher the local stress fields introduced by alloying. Alloying with elements of

higher shear modulus or of different lattice parameters will increase the stiffness

and introduce local stress fields respectively. In either case, dislocation propagation

will be hindered at these sites, impeding plasticity and increasing yield strength

proportionally with solute concentration [Cottrell, 1953].

Precipitation hardening

Precipitation hardening, also called age hardening or dispersion hardening, relies on

changes in solid solubility with temperature to produce fine particles of a phase,

which impede the movement of dislocations. The particles act as pinning points in a

13

manner similar to solutes.

Precipitation hardening is accomplished by two different heat treatments. First,

solution heat treating involves the formation of a single-phase solid solution via

quenching and leaves the material in a soft state. Secondly, an ageing heat treatment

creates the dispersion of second phase particles which lead to an increase in the

material's strength.

In precipitation hardening, moving dislocations eventually encounter particles on

the slip plane and result in so called short-range interactions in two distinct ways. If

the precipitate particles are small, the dislocations will cut through them. As a result,

new surfaces are created leading to hardening [Kelly et al., 1963].

bL

rγπ
τ = (1-24)

where τ is material strength, r is the second phase particle radius, γ is the surface

energy per unit area, b is the magnitude of the Burgers vector, and L is the spacing

between pinning points that inhibit the motion of dislocations, such as alloying

elements.

For larger precipitate particles, looping or bowing of the dislocations occurs which

results in dislocations getting longer [Orowan, 1947; Ashby, 1968].

rL

Gb

2−
=τ (1-25)

where G is the shear modulus.

The increase in strength is much higher in the Orowan mechanism than in cutting

because new dislocation density is introduced around the particles causing

14

additional hardening of the glide planes.

Grain boundary strengthening

Normally, dislocations pile up on grain boundaries which impedes further

dislocation propagation. A change in the average grain size can influence the

amount of grain boundary per unit volume, dislocation movement and yield strength.

The Hall-Petch relationship deals with the connection between the grain size d and

the yield strength of a material σy. The relation can be written as:

2/1−+= kdiy σσ (1-26)

where σi is a friction stress contributed by other strengthening mechanisms, k is a

constant [Hall, 1951; Petch, 1953]. The validity of the Hall-Petch relationship has

been confirmed for grain sizes in the range 1.5 to 150 µm for ferritic steels

[Morrison, 1966].

There have been many experiments on nanocrystalline materials and they

demonstrated that if the grains reached a small enough size which is typically less

than 100 nm, the yield strength would either remain constant or decrease with

decreasing grains size [Conrad and Narayan, 2000]. This phenomenon is called the

inverse Hall-Petch effect (IHPE). A number of different mechanisms have been

proposed for explaining the IHPE. They are classified to four categories such as

dislocation-based models, diffusion-based models, grain-boundary-shearing models

and two-phase-based models [Carlton and Ferreira, 2007]. However, there is no

perfect theory explaining the IHPE.

15

1.2. Neural network

Many researchers have tried to clarify the relationships between the mechanical

properties of steels and its controlling variables by using linear regression methods

[Jaiswal and Mclvor, 1989]. This is useful but such methods are inconsistent with

the complexity of the problem. For example, the following linear equations are from

Pickering’s work [Pickering, 1978].

5050 4172354283332953 .

α

.

NfSiMnY d.W.W.W..σ −++++= (1-27)

50778532837271294 .

αSiMnU d.)(%pearlite.W.W..σ −++++= (1-28)

Where σY is predicted yield strength in MPa and σU is predicted ultimate tensile

strength in MPa, WMn, WSi and WNf are the contents of manganese, silicon and free

nitrogen in weight percent respectively, and dα is the ferrite grain size in

millimeters.

These empirical and linear equations have problems because there frequently is no

consideration about the uncertainty of predictions, and the variables are

independently considered even though it is known that they may interact. They

require the prior assumption of a relationship as linear and are not sufficiently

flexible to capture the complexity in the data.

A neural network is the most general way of developing quantitative relationships

when dealing with the complexity [MacKay, 1992a, 1992b, 1992c, 1995a, 1995b,

2003; Bhadeshia 1999; Bishop, 1995]. It is a parameterized nonlinear model and its

flexibility makes it possible to discover more complex relationships in data than

16

traditional modeling methods. Bayesian probability theory provides a unifying

framework for data modeling which offers several benefits. First, the overfitting

problem can be solved by using Bayesian method to control model complexity.

Second, probabilistic modeling handles uncertainty in a natural manner.

1.2.1. Fundamentals

A neural network is composed of input nodes, hidden units and an output node. The

inputs xj such as the chemical composition, define the input nodes and the output

(for example, the tensile strength) defines the output node. Each input is multiplied

by a random weight wij and the products are aggregated together with the biases θ
(1)

which are similar to the constants of linear function:

 ∑ +=
j

)

jiji xwz 1(θ (1-29)

And z then forms the arguments of hyperbolic tangents:

)tanh(ii zh = (1-30)

Each hi is itself multiplied by a further weight wi. The sum of these hyperbolic

tangents with a second bias θ
(2)
 gives the output y as a non-linear function of xj:

 ∑ +=
i iihwy)2(θ (1-31)

Figure 1.4 illustrates neural network model for n inputs, m hidden units and 1 output.

Because the weights and the constants are chosen randomly, the value of the output

is not adapted to experimental data at first. They are systematically changed until

the output can describe the data well. Thus, the neural network describes the

phenomenon finally.

17

Consequently, a neural network has the ability to be flexible by varying the weights

(Figure 1.5a), combining several hyperbolic tangents, i.e., changing the number of

hidden units (Figure 1.5b) and controlling the number of inputs (Figure 1.5c)

[Bhadeshia, 2006; MacKay, 1995]. These make it possible the neural network to

capture arbitrary, non-periodic relationships.

x1 x2

xn

h1 h2 hm

…

Output

y

Input

Hidden Units

Output

w2m
wnm

w1

wm

w22
w11

w1m

w21

wn1
wn2 w12

w2

Figure 1.4 Schematic of neural network for n inputs (x1, …, xn) and m

hidden units (h1, …, hm).

18

Figure 1.5 (a) Three different hyperbolic tangent functions obtained by

varying the weights of one variable. (b) A combination of two hyperbolic

tangents of one variable to produce a more complex model. (c) A typical

function produced by two inputs network [Bhadeshia, 2006; MacKay, 1995].

1.2.2. Error estimation

The overall error in the neural network model, ED is calculated by comparing the

predicted values yj of the output against those measured value tj:

 ∑ −∝
j

jjD ytE 2)((1-32)

ED is anticipated to increase if essential input variables have been excluded from the

19

analysis. ED gives an overall perceived level of noise in the output [Bhadeshia,

1999]. ‘Noise’ is different from ‘modeling uncertainty.’ The former corresponds to

the case where a different result is obtained when an experiment is repeated. This is

because there are uncontrolled variables not included in the analysis. The noise in

the output is a constant number and hence is not very useful in understanding the

behavior of the model when extrapolating. A modeling uncertainty comes from an

idea that many suitable mathematical relationships can adequately represent the

same empirical data, but the individual relationships can behave differently during

extrapolation. Unlike noise, the magnitude of the modeling uncertainty depends on

the position in the input space where a calculation is done.

Figure 1.6 (a) Noise (b) Uncertainty [Bhadeshia, 2006]

Figure 1.6a shows the noise where data have been fitted to a straight line with a

standard error of ±2 in the estimation of the output y. By contrast, Figure 1.6b

shows the uncertainty of modeling where specific data (2, 4, 6) are fitted, exactly to

20

two different functions, one linear and the other non-linear. Both of the functions

correctly reflect the known data but behave dramatically differently when

extrapolated. The difference in the predictions of the two functions in domains

where data are missing, is a measure of the uncertainty of modeling.

MacKay has developed a useful idea of neural networks in a Bayesian framework

which allows the calculation of error bars representing the uncertainty in the fitting

parameters [MacKay, 1992b]. Instead of calculating a unique set of weights, a

probability distribution of sets of weights is used to define the fitting uncertainty.

The error bars become large when data are sparse or noisy. However, large

uncertainty always identifies a need for a research and leaves open possibilities for

further investigations [Bhadeshia, 2006]. MacKay’s method is useful that not only

can it indicate noise, but also the modeling uncertainty. The latter gives an

immediate indication of regions in the input space where data are sparse. Secondly,

a large modeling uncertainty gives a clear indication of the input parameters for

which new experiments are desirable. Thus, instead of using just a best-fit set of

weights, a distribution of weights is calculated.

21

1.2.3. Overfitting

Figure 1.7 Variations in the test and training errors as a function of model

complexity, for noisy data in a case where y should vary with x3. The filled

points were used to create the models (i.e., they represent training data), and

the circles constitute the test data. (a) A linear function (b) A cubic polynomial

function. (c) A fifth order polynomial function. (d) Schematic illustration of the

variation in the test and training errors as a function of the model complexity

[Bhadeshia, 2006].

A potential difficulty with the use of neural network modeling is the possibility of

overfitting when the function is over complex because of too many hidden units. To

prevent this, the available data are divided into two groups, a training and a test

dataset. The model is produced using only the training data. The test data are then

used to check that the model generalizes well.

22

Once a model has been trained, many models with varying complexity are produced.

To calculate the error associated with each model, a regularization function (Mw) is

used:

 wDw EEM αβ += (1-33)

where α and β are parameters control model complexity, ED is the test error; the

difference between predicted and target values (Equation 1-32), and Ew is the

parameter which is used to limit overfitting to penalize heavily weighted models:

 ∑=
i

iw wE 2

2

1
 (1-34)

where wi are weights.

The α and β parameters define the assumed weight variances and Gaussian noise

respectively:

α
σ

12 =w

β
σ

12 =v

(1-35)

(1-36)

where σw is a weight variance and σv is a perceived level of noise.

The α encourages the weights to decay, so that impler models are preferred to

explain output variation. A low α value results in a large σw value, and is therefore a

good measure of the significance of each input which will be discussed later.

Figure 1.7 shows modeling noisy data for several cases where y should vary with x
3
.

A linear function is too simple to represent the data (Figure 1.7a), a cubic

polynomial is optimum representation of both the training and test data (Figure

23

1.7b) and a fifth order polynomial generalizes poorly (Figure 1.7c).

Even though a model with high complexity in associated a small training error, it

may generalize badly if the model is overfitted (Figure 1.7d) [Bhadeshia, 2006]. In

practice, the number of hidden units can be one of the model control parameters

[Bhadeshia, 1999].

1.2.4. Committee

Several reasonable models can be created given a set of data. Among them, the

model which has the minimum test error is a best individual. However, several

different models which behave well can be combined together to produce a

committee of models. This approach can reduce the overall test error and allow

more reliable extrapolation. Thus, a committee of models is used for a final

prediction. The mean prediction of the committee model consisting of N equally

weighted members:

 ∑ =
=

N

i

iy
N

y
1

)(1
 (1-37)

and the associated error in the mean prediction is

2

1

)(
2

1

)(2)(
11
∑∑ ==

−+=
N

i

iN

i

i

y yy
NN

σσ (1-38)

where y
(i)
 and σy

(i)
 are the prediction value and error of an individual model.

Equation 1-37 and 1-38 gives the error bars for prediction of a committee [MacKay,

1995a].

An alternative measure of fitting error is the log predictive error (LPE) by MacKay

24

in a Bayesian framework which allows the calculation of error bars representing the

uncertainty in the fitting parameters [MacKay, 1992b]. This error penalizes large

test errors, but compensates if the prediction has large error bars.

 ∑











+

−
=

i

i

yi

y

ii yt
LPE)2log(

)(

2

1)(

)(

2)()(

2
σπ

σ
 (1-39)

where t
(i)
 is the measured value.

1.2.5. Significance

A neural network based on a Bayesian framework can estimate the significance of

individual input parameters [MacKay, 1995a]. The significance describes the level

of contribution to the output, rather like a partial correlation coefficient in linear

regression analysis. A high significance indicates that a particular input is able to

explain a large amount of the variation obtained in the output, but it is not a just

indication of the sensitivity of the output to that particular input [Fijii et al., 1996].

1.3. Genetic algorithm

A genetic algorithm is a search technique used in computing to find true or

approximate solutions to optimization and search problems. It is based on the

mechanics of natural selection and genetics as observed in the biological world

[Goldberg, 1989]. It is a particular class of evolutionary algorithms that use

techniques inspired by biology, such as inheritance, mutation, selection, and

crossover [Chakraborti, 2004; Delorme, 2003; Goldberg, 1989; Michalewicz, 1996;

Grefenstette, 1986]. It can readily be implemented as a computer simulation.

25

The genetic algorithm does not require any knowledge of how to get a solution for

the problem to be solved. It only needs a way to evaluate possible solutions. This

approach requires a lot of computing power, but has the immense practical

advantage to provide near-optimal solutions to problems that do not have an

algorithmical solution. The genetic algorithm is also easy to put to use. The

implementation can be shared and there is little problem-specific code to write.

1.3.1. Process and operators

Table 1.1 shows description of the basic terminology for the genetic algorithm and

Figure 1.8 shows the general process of the genetic algorithm.

Terminology Description

Gene Bit (0, 1), represent specific information

Genome,

Chromosome

String of gene, i.e., 0110001…, represent of solution for the

problem

Population Group of chromosomes

Population size The number of population in a generation

Reproduction Process which makes new population by selection,

crossover and mutation

Generation Population at specific reproduction point of time

Table 1.1 Description of the basic terminology for the genetic algorithm

26

Modeling (Coding)

The first step is the representation of the solution in the form of binary bit strings. A

range and a degree of precision of the solution determine the length of bit strings. A

range indicates the difference between the largest and smallest value of solution,

and a degree of precision describes the number of digits that are used to express a

value of solution.

Start

Initial Population

Fitness evaluation

Selection

Crossover

Reproduction

Fitness evaluation

Is this the final

generation or has

the finishing

condition been

reached?

End

Yes

No

Mutation

Modeling (Coding)

Figure 1.8 General process of the genetic algorithm

27

Initial Population

The initial population is the possible solution group for the given problem. Each

possible solution is called an individual. The problem is encoded in a series of bit

strings that are manipulated by the algorithm. These bit strings are coded

representations of input variables such as the chemical composition. The choice of

the initial sets is very important because it can have an influence on efficiency of

the optimization process.

Fitness evaluation

A fitness function forms the basis for the evaluation of the suitability of each

individual set relative to the derived value of the output. It determines how each

individual is suited to the objective and hence its ability to survive to the next

generation in the algorithm. Normally, the objective function governing given

problem can be the fitness function. However, there are some disadvantages, like

premature convergence and postmature convergence, as will be discussed later.

Fitness scaling offers a way to alleviate these problems. There are three general

scaling methods such as linear scaling, sigma truncation and power scaling.

Linear scaling determines the fitness score as following:

 baff ii +=' (1-40)

Where fi’ is scaled fitness value of fi which is i-th chromosome’s fitness, a and b are

coefficients which can normally be fixed for the population life, not problem

dependent. One problem with linear scaling is that the scaled fitness function may

take on negative values if there are a few bad individuals. One solution is to

28

arbitrarily assign the value 0 to all negative fitness values. The other is to use sigma

truncation. With sigma truncation, fi is replaced as:

)(' σcfff ii −−= (1-41)

where f is the average fitness value of the population, i.e., if there are M

chromosomes, ∑ =
=

M

i if
M

f
1

1
, σ is the standard deviation of the population and

c is a reasonable multiple of sigma (usually 1 ≤ c ≤ 3). Negative results are

arbitrarily set to 0. Sigma truncation removes the problem of scaling to negative

values and truncated fitness values may also be scaled if desired.

Power law scaling is:

k

ii ff =' (1-42)

where k is some suitable value. This method is not used very often. In general, k is

problem dependent and may require dynamic change to stretch or shrink the range

as needed.

Selection and reproduction

The selection is inspired by the role of natural selection in evolution. An

evolutionary algorithm performs a selection process in which the most-fit

individuals of the population survive, and the least fit individuals are eliminated.

The reproduction is a process in which individual chromosomes are copied

according to their fitness. Intuitively, the fitness function is some measure of profit

that is to be maximized. Copying chromosomes according to their fitness means that

the chromosomes with a higher value have a higher probability of contributing one

29

or more offspring in the next generation, which will be positioned at the place

where the eliminated individuals were in the previous selection process.

There are many ways to select the survivors such as the fitness proportionate

selection method which is also known as roulette-wheel selection, tournament

selection and elitism selection. In fitness proportionate selection, a fitness is

assigned to possible solutions or chromosomes. This fitness level is used to

associate a probability of selection with each individual chromosome. If fi is the

fitness of individual i in the population, its probability of being selected is:

 ∑ =

=
M

j j

i
i

f

f
P

1

 (1-43)

where M is the number of chromosomes in the population. Thus, the best solutions

or chromosomes will be selected more frequently. As this method prevents rapid

lowering of diversity, it is helpful to avoid premature convergence of solutions.

In tournament selection, n individuals are selected at random and the fittest is

selected. The most common type of tournament selection is binary tournament

selection, where just two individuals are selected. It does not require global

reordering and it is more naturally-inspired.

In elitism selection, the best chromosome (or a few best chromosomes) is copied to

the population in the next generation. Elitism ensures that at least one copy of the

best individual in the population is always passed onto the next generation. Elitism

can very rapidly increase performance of GA, because it prevents losing the best

found solution to date. Thus, the main advantage is that convergence is guaranteed,

i.e., if the global maximum is discovered, the genetic algorithm converges to that

30

maximum. However, there is a risk of being trapped in a local maximum.

Crossover

The crossover is used as a further mechanism to vary the nature of individuals

among generations. That is to say, it is a process of taking genes from two parents,

mixing them and producing an offspring.

There are many ways to do crossover, such as single point crossover, two point

crossover, uniform crossover and arithmetic crossover.

In one point crossover, a crossover point on the parent organism string is selected.

All data beyond that point in the organism string is swapped between the two parent

organisms. The resulting organisms are the children. Figure 1.9 shows the example

where crossover point is 3.

Chromosome 1 A B C

C
ro
ss
o
v
er
 p
o
in
t

D E F G H I J

Chromosome 2 0 1 2 3 4 5 6 7 8 9

Offspring 1 A B C 3 4 5 6 7 8 9

Offspring 2 0 1 2 D E F G H I J

Figure 1.9 The single point crossover

In two point crossover, it calls for two points to be selected on the parent organism

strings. Everything between the two points is swapped between the parent

organisms, rendering two child organisms. Figure 1.10 shows the example where

31

crossover point are 2 and 9.

Chromosome 1 A B

C
ro
ss
o
v
er
 p
o
in
t

C D E F G H I

C
ro
ss
o
v
er
 P
o
in
t

J

Chromosome 2 0 1 2 3 4 5 6 7 8 9

Offspring 1 A B C 3 4 5 6 7 8 J

Offspring 2 0 1 2 D E F G H I 9

Figure 1.10 The two point crossover

In uniform crossover, genes are selected at random from either parent. Figure 1.11

shows the example.

Chromosome 1 A B C D E F G H I J

Chromosome 2 0 1 2 3 4 5 6 7 8 9

Offspring 1 0 B C D E 5 G H I 9

Offspring 2 A 1 2 3 4 F 6 7 8 J

Figure 1.11 The uniform crossover

In arithmetic crossover, some arithmetic operation is performed on the two strings

to create a new string. Figure 1.12 shows the example with the operation is AND.

32

Chromosome 1 1 0 1 1 1 0 1 1 1 0

Chromosome 2 1 1 0 0 1 0 0 0 1 1

Offspring 1 1 0 0 0 1 0 0 0 1 0

Figure 1.12 The arithmetic crossover

Mutation

Mutation is used to maintain genetic diversity from one generation to the next. The

evolutionary algorithm periodically makes random changes or mutations in one or

more members of the current population, yielding a new candidate solution. It is

needed to avoid local minima and to offer the possibility of better solutions. For

example, 1010101010 may become 1011101010 if the 4th bit is mutated.

End Condition

The following conditions can stop the algorithm:

- A solution is found that satisfies minimum criteria.

- A fixed number of generations is reached.

- The allocated budget (computation time/money) is exhausted.

- The highest ranking solution's fitness is reaching or has reached a plateau

such that successive iterations no longer produce better results.

- Manual inspection.

- Combinations of the above.

33

1.3.2. Potential pitfalls

GA-deceptive functions

‘GA-deceptive functions’ are functions which select for one gene when a

combination would be better. In some cases, this can eliminate better genes. This

can be avoided by elitism which means the best chromosome must be preserved, the

use of multiple populations or a high mutation rate which reintroduces genes.

Premature convergence

Premature convergence means that if a chromosome is far fitter than any other

chromosome, it will dominate a population and lead to the loss of genes which have

potential of better solutions. Assume that there is an individual i and fitness fi is

much larger than average fitness f , but fi is much smaller than the maximum

fitness value fmax in an early generation. As generations are passed, the genes of

individual i quickly spread all over the population. At that point, crossover cannot

generate any new solutions (only mutation can) and f will be much smaller than

fmax forever. This can be averted by a high mutation rate or fitness scaling which is a

process that re-scales the too high fitness score with respect to the average score of

the population.

Postmature convergence

In the problem of postmature convergence, which means the lack of convergence

towards the end of an optimization procedure, a population of similarly high-

performing chromosomes will not compete strongly with one another. When all of a

34

population performs well, selection pressures wane. Assume that at the end of a run

(i.e. in one of the consecutive generations), all individuals have a relatively high and

similar fitness, i.e. fi is almost fmax for all i. There is then virtually no selective

pressure. This problem can be solved by fitness scaling. It helps the algorithm kept

efficient and the competition between chromosomes is vigorous.

Excessive mutation

Too much mutation makes the process inefficient. It makes the algorithm begins to

resemble a random walk rather than a directed process. However, too low a

mutation rate may also make the algorithm lose the genes. The correct rate of

mutation can be obtained by a research from previous works related the given

problem.

Application to constrained problems

Genetic algorithms are by nature unconstrained, and can take any value even if they

are unphysical. However, there are constrained problems to optimize. In this case,

the penalty method replaces a constraint optimization problem by a series of

unconstrained problems whose solutions must converge to the solution of the

original constrained problem [Chen, 2002]. This procedure removes hard

constraints on the parameter values. However, some constraints can be slightly

violated, e.g., by a good solution close to the border of the space of valid solutions,

which the method does not prevent. This might be allowable for some problems.

On the other hand, in many optimisation problems, the constraints actually enforce

35

the syntactic correctness of the solutions rather than simply restrict the space of

valid solutions, i.e., solutions that violate the constraints are non-solutions. In this

case, the penalty method is inadequate. One must resort to using special

representations and genetic operators, e.g., use of a crossover method that prevents

non-solution offsprings from being generated.

The meaning of fitness

Genetic algorithms maximise fitness, which therefore must be carefully defined.

When applying genetic algorithm, defining an appropriate fitness function can make

all the difference between success and an unexpectedly random result. For example,

appropriate fitness function helps finding a set of optimal values that will give a

specific output from a given problem.

1.3.3. Genetic algorithms for Bayesian neural networks

A genetic algorithm can help to find an optimised input set for a particular defined

output (Figure 1.13). The black box is a function created by a neural network, ‘X’ is

a specific output and ‘?’ is a set of optimal input values which will give ‘X’.

36

Figure 1.13 The purpose of genetic algorithm with neural networks.

For Bayesian artificial neural networks (ANNs), we have a set of input parameters

and two output values - the prediction from the network and its associated

uncertainty. Each model i created by the governing function of the model gives a

result y
(i)
 and the associated uncertainty σy

(i)
. The average prediction of a committee

of L models is:

 ∑=
i

iy
L

p)(1
 (1-44)

The standard deviation error (σ) of p is as follows [Delorme, 2003]:

 ∑ ∑ −+=
i i

i

y pt
LL

2
2)(2)(

11
σσ (1-45)

where t is the target output. The score of an individual could be σ. In this case, we

invert the error to get a better score and the fitness f is:

σ
1

=f (1-46)

The basic chromosome can consist of the set of inputs to the network but derived

37

inputs must be removed. For example, if there are both t and ln(t), only one can be

included to the set of inputs.

In genetic algorithms, there are a number of basic parameters such as computing

parameters and genetic algorithm parameters. Computing parameters include

number of populations and number of generations. Genetic algorithm parameters

include the crossover rate, the mutation rate, the rate of population mixing and the

population size.

The computing parameters are simple. More populations and generations can seek

more areas of the network to be explored at once but it is then a greater requirement

for computing power and time. The effects of these parameters have been explored

in [Delorme, 2003]. Three populations of 20 chromosomes running for 3000

generations is a good start for many Bayesian neural network optimizations, with a

crossover rate of 90% and a mutation rate of ±0.2%.

1.3.4. Multi-objective optimization

So far, it is assumed that solutions can be rated by a single function, which could be

transformed into a fitness function and optimised via genetic algorithm. However,

there are problems where several criteria must be considered simultaneously and it

is not possible to combine these into a single objective. Such problems are known as

multi-criteria or multi-objective optimization problems. Whereas optimality is well-

defined in single-criterion optimisation as the highest/lowest value of the fitness

function, it requires a different definition in the multi-criteria case since the integrity

of the separate criteria must be respected.

38

Generally, definition of the standard multi-objective problem is:

 Minimize)](),...,(),([21 xfxfxff n= (1-47)

where each fi is an objective function subject to x∈Ω, Ω means the constraints on

the space of design variables. There are some different techniques to achieve multi-

objective optimization such as a weighting of objectives method and a slight twist

method.

A weighting of objectives method, is also called Archimedean, is:

 Minimize)(...)()(2211 xfwxfwxfwf nn+++= (1-48)

where wi > 0 and Σwi = 1 subject to x∈Ω.

A slight twist method is that picking one objective as primary, transforming

remaining objectives into constraints (limitations):

Minimize)(1 xf

Subject to mn cxfcxfcxf <<<)(,...,)(,)(3322

(1-49)

where ci is a limit and x∈Ω.

All of the methods mentioned above (weights or limits methods) are chosen by

engineering judgment such as a trial and error, experience, etc. In order to resolve

this problem, generally, the concept of Pareto optimality is used.

Pareto optimality

‘Pareto efficiency’, or ‘Pareto optimality’, is an important concept in economics

with broad applications in game theory, engineering and the social sciences. Given a

set of alternative allocations of goods or income for a set of individuals, a

39

movement from one allocation to another that can make at least one individual

better off without making any other individual worse off is called a ‘Pareto

improvement’. An allocation is ‘Pareto efficient’ or ‘Pareto optimal’ when no

further Pareto improvements can be made. This is called a ‘strong Pareto optimal’

(SPO) which is defined formally as follows.

A vector x
*∈Ω is Pareto optimal means that:

let < and ≤ be defined as ‘strictly better’ and ‘at least as good’ respectively,

)()(*xfxf ii ≤ for all i

and)()(*xfxf ii < for at least one i (one objective)

(1-50)

where i stands for i-th objective.

If only the 2nd condition above holds, x
*
 is weak Pareto optimal (WPO). If above

condition (1-50) holds, then x
*
 is said to dominate x. If a vector is not dominated by

any other, then it is said to be non-dominated.

The ‘Pareto frontier’ or ‘Pareto set’ or ‘Pareto curve’ is the set of choices that are

Pareto efficient. That is, the Pareto frontier is the set of x* where there are no other

solutions for which simultaneous improvement in all objectives can occur; non-

dominated. The Pareto frontier is particularly useful in engineering by restricting

attention to the set of choices which are Pareto-efficient, a designer can make

tradeoffs within this set, rather than considering the full range of every parameter.

In multi-objective optimization, it is necessary to find compromises rather than a

single solution. There are many solutions, with all solutions on the Pareto frontier

being optimal. The particular solution that might be chosen depends on the nature of

40

the compromise. Consider the following example, where the cost of a component is

plotted as a function of the number ordered.

There clearly are many solutions and other factors determine which compromise

solution is acceptable to a particular purchaser.

In general, the Pareto frontier contains more than one element and there is no

"automatic" way of selecting a single alternative. In practice, the decision maker

must select one of the available answers from the Pareto optimal set as the solution.

In a genetic algorithm, non-dominated (Pareto) points are needed to be identified

and mated to find new ones [Osborne and Rubenstein, 1994].

Number

C
o
s
t

Pareto frontier

Non-optimal

Impossible solution

Figure 1.14 The example of Pareto frontier

41

II. Modeling and Computer experiments

The purpose of this work was to develop a combined model of a neural network and

a genetic algorithm. At first, neural network models which on the mechanical

properties of hot-rolled steels were selected, and then a genetic algorithm was

combined to find an optimised input set for a particular defined output. Finally,

computer experiments of the combined models were performed to get input

domains for each target.

2.1. Neural network modeling

All of the data used in this work are from the Sheet Products and Process Research

group, POSCO. The database has inputs consisting of the chemical composition and

processing variables and the outputs which are mechanical properties of the steels.

The database has been previously used to create neural network models within a

Bayesian framework [Ryu, 2008]. Among Ryu’s models, two were selected, one for

strength and the other for elongation. They both have 17 input variables consisting

of the chemical composition (carbon, manganese, silicon, phosphorus, sulphur,

chronium, nickel, molybdenum, titanium, niobium, vanadium, aluminum, nitrogen,

boron, copper) and the processing variables (the finish-rolling temperature (TFR),

the coiling temperature (TC)); the output was either the ultimate tensile strength or

the tensile elongation to failure.

Table 2.1 describes the characteristics of the database used to create the models.

42

The range from minimum to maximum, means and standard deviation of all the

inputs are listed. The values do not define the range of applicability of the neural

network model, as in linear regression analyses. Instead, the Bayesian framework is

used to define the trained network applicability through the calculation of error bars.

This is because each input may interact with others.

All the variables used within the model were normalized to allow an easy

comparison of variables:

 5.0
minmax

min −








−

−
=

xx

xx
xn (2-1)

where xn is the normalized value, x is the real value, and xmin and xmax are the

minimum and maximum values of the dataset respectively. Through this operation,

the input and output values are normalized between ±0.5. Nevertheless, any

predictions made from the model can easily have values outside this region.

The models are strictly committees of models related to optimize the ability to make

predictions. The ultimate tensile strength committee is combination of 11 different

of best performing individual models whereas the elongation committee has an

optimum membership of just 3 different models.

Figures 2.1 and 2.2 indicate the significances of the input variables, as perceived by

the first five models in ultimate tensile strength committee and by the first three

models in elongation committee respectively. C, Mn and Si are more significant

than other solutes in influencing the ultimate tensile strength. In the case of the

elongation model, C and Mn are the most significant determinants of the elongation.

These are expected trends, which indicate that the models are reasonable. First, an

43

increase in the C concentration should lead to a greater fraction of pearlite, Fe3C,

which is harder than ferrite. Second, Mn not only has a strong effect on the stability

of the austenite, but also provides solid solution strengthening. As Mn can depress

the transformation temperature, it can also refine the microstructure. Finally, the

addition of Si can lead to the solid solution hardening. Silicon addition over 1.0

wt% results in a significant increase in the volume fraction of retained austenite and

the increment of elongation is attributed to the transformation of retained austenite

into martensite during plastic straining and the resultant increase in work-hardening

[Bhadeshia and Edmonds, 1980; Tsukatani et al, 1991]. As a result, σU increases and

ε decreases. These trends are consistent with experimental observations (Equation

1-2) [Pickring, 1978].

Other inputs, except C, Mn and Si for the tensile strength and C and Mn for the

elongation, were seen to offer at least a moderate contribution to the outputs. This

therefore confirmed the good choice of inputs.

44

 Minimum Maximum Mean Standard

Deviation

C / wt% 0.0204 0.8684 0.1009 0.0833

Mn / wt% 0.167 1.41 0.471 0.2177

Si / wt% 0 0.217 0.0146 0.0262

P / wt% 0.004 0.022 0.0129 0.0027

S / wt% 0.002 0.015 0.007 0.0023

Cr / wt% 0 0.16 0.0189 0.0137

Ni / wt% 0 0.06 0.0132 0.006

Mo / wt% 0 0.02 0.0008 0.0028

Ti / wt% 0 0.004 0.0006 0.0009

Nb / wt% 0 0.004 0.0002 0.0004

V / wt% 0 0.003 0.0011 0.001

Al / wt% 0 0.064 0.0323 0.0105

N / ppm 0 87 33.8483 13.4774

B / ppm 0 2 0.2888 0.473

Cu / wt% 0 0.03 0.0075 0.0061

TFR / ℃ 808 925 868.88 14.089

TC / ℃ 478 714 618.80 29.5304

σU / MPa 317 1039 411.4461 69.6126

ε / % 14 50 38.4658 6.3109

Table 2.1 The dataset consisting of 3508 experiments and was used to make

the models in the present work.

45

Figure 2.1 Significance of input variables in ultimate tensile strength model

Figure 2.2 Significance of input variables in elongation model

46

2.2. Genetic algorithm

Using a genetic algorithm, two kinds of combinations with neural network models

were made in this work. The first is a single objective combined model which had a

target of either the ultimate tensile strength or the elongation. The other is multi-

objective combined model with two targets to simultaneously aim for.

2.2.1. Single objective

Figure 2.3 shows the process of a genetic algorithm combined with a neural

network. The initial populations are given random input values chosen by a random

number generator. The range of each variable in the database which was used for

creating the neural network was normalized between ± 0.5, as described previously.

However, for the purpose of a genetic algorithm, the values are allowed to exist

beyond this range and in order to search a wider range of input domains. The error

bars associated with these predictions may well be large, but the uncertainty is the

most critical issue. Indeed, the level of uncertainty can be used as a constraint in

setting the environment of a genetic algorithm. However, because there is a distinct

possibility that negative values which cannot be less than zero are studied as inputs,

the search was confined to the following regions for each variable:

 







+









−
≥ 5.0

minmax

min

xx

x
xn (2-2)

where xn is input variable, xmin and xmax are minimum and maximum value for xn

47

respectively on the database which was used to create the neural network committee

model. This is helpful for input variables to be physically meaningful.

48

Start

Inputs go into neural network committee model

Fitness evaluation

1. Result and error associated with each chromosome

2. The fitness of each chromosome is calculated

Selection

Crossover

Elite preserved

Is this the final

generation or has the

finishing condition been

reached?

End

Initial population is created randomly

Neural network committee model

Mutation

Yes

No

Figure 2.3 The process of a genetic algorithm combined with a neural

network

49

The neural network committee model has two outputs; the result and the uncertainty.

The fitness function should therefore consider both of these parameters. Therefore,

if each model i created by the neural network gives a result y
(i)
 and the associated

uncertainty σy
(i)
, the average prediction of a committee of L models is:

 ∑=
i

iy
L

y)(1
 (2-3)

The standard deviation error, σ of y is [Delorme, 2003]:

 ∑ ∑ −+=
i i

i

y yt
LL

2
2)(2)(

11
σσ (2-4)

where t is the target output. Then the fitness f is:

σ
1

=f (2-5)

To get better solutions, it is necessary to select the input sets which will survive a

great number of generations in the selection operation (Chapter 1.2.1). In this work,

the fitness proportionate selection is used (Equation 1-17). Thus, the best solutions

are selected with the greatest probability. As this method can prevent the rapid

lowering of diversity, it helps avoid a premature convergence and a postmature

convergence (Chapter 1.2.2). In addition, in order to avoid ‘GA-deceptive functions’

(Chapter 1.2.2), it is necessary to keep the best chromosome. ‘Elite preserved’ in

Figure 2.3 performs this role.

Further procedures are required to complete the genetic algorithm process. The

crossover is used to vary the nature of individuals among generations. In this work,

50

the uniform-crossover method is used in which individual bits in the string are

compared between two parents (Figure 1.8). It means that each gene of the offspring

is selected randomly from the corresponding genes of the parents. The bits are

swapped with a fixed probability, typically 0.5. And finally, mutation is used to

maintain genetic diversity from one generation of a population to the next. This

particularly helps in a wider exploration of the input space, thus avoiding local

minima.

2.2.2. Multiple objective

It would be advantageous if several properties of the steels could be simultaneously

modeled. It is possible to achieve an optimization among several objectives

systematically using a genetic algorithm. In chapter 2.2.1, the simple genetic

algorithm combined with only one neural network output is described. It is possible

to make a multi-objective genetic algorithm combined with a pair of neural

networks. There are two differences between simple genetic algorithm and multi-

objective genetic algorithm. The first is in the definition of the fitness function. If

each neural network model has a fitness fn(x), then the total fitness is:

)()()(2211 xfwxfwxf += (2-5)

where 0 ≤ w1 ≤ 1 and w2 = 1 – w1.

In Equation 2-5, the random weights w1 and w2 are needed to widen the domains of

the solutions. Figure 2.4 represents the search directions in a multi-objective genetic

algorithm. If wn are fixed at constant values, the total fitness has a constant search

direction (Figure 2.4a). However, If wn are not fixed and randomly generated, the

51

total fitness has a variety of search directions and it is possible to discover domains

of solutions (Figure 2.4b).

Lastly, with the single objective genetic algorithm, the solution which has the best

fitness score is preserved. However, in the multi-objective genetic algorithm, the

elite preserve strategy needs to be altered. In multi-objective optimization problems,

a solution with the highest fitness value of each objective can be regarded as an elite

individual. Therefore, there are n elites for an n-objective problem. In this work,

two objectives are handled. So, there are 2 elite individuals on each generation.

During the operation of the optimization, for each population, 3 elite individually

will survive at every generation; two elite individuals with respect to two objectives

and the individual which has highest f(x) in Equation 2-4. This scheme can be

effective in preserving the variety within the population.

2.3. Simulations for each combined model

The genetic algorithm is developed using the computing language C. The original

f2(x)

Objective Objective

f 1
(x

)

(a) (b)

f 1
(x

)

f2(x)

Figure 2.4 The meaning of random weights (a) constant direction (b) various

directions [Murata et al., 1996].

52

genetic algorithm program source was obtained from [Delome, 2003]. It was then

modified to adjust to the present work. There are two kinds of the program source;

one for a single objective which means that it is combined with one neural network

model, and the other for two objectives.

The performance of the genetic algorithm depends on several parameters. In this

work, for the single objective combined models, it was found necessary to

implement at most 10,000 generations to reach reasonable answers [Grefenstette,

1986] and 3 populations of 20 chromosomes were used [Delorme, 2003]. The

crossover rate is typically 80-95 % [Obitko et al., 1999] but a lower value of 60 %

was used in order to keep well-fitting solutions for as many generations as possible.

The mutation rate was typically between 0 and 0.2 %. For each single objective

combined model, three simulations were done. First, for the ultimate tensile strength

model, the target values were 400, 600 and 800 MPa of tensile strength. For the

elongation model, the objective values were 35, 45 and 55 % of elongation to

failure.

For the multiple objective combined model, 5000 generations to reach answers were

implemented to minimize computing time and 3 populations of 20 chromosomes

were used. The crossover rate was 85 % and it was typical. The mutation rate was

also typical value, 0 - 0.2 %. 9 simulations were done; 400 MPa tensile strength

with 35, 45 and 55 % elongation, 600 MPa with 35, 45 and 55 %, and 800 MPa

with 35, 45 55%.

53

2.4. Summary

Computer experiments were performed to predict optimized input domains for

several particular defined outputs. These were done by combining a neural network

and a genetic algorithm. The neural network models were selected from previous

research [Ryu, 2008], and then a genetic algorithm method was combined to the

selected models. There were two kinds of a combined model; one for single

objective, the other for multiple objectives. In single objective combined model, the

output was either the ultimate tensile strength or the percent elongation to failure

whereas the targets were both of them in multi-objective experiments. In general,

combined models cannot directly indicate theoretical compositions of given targets

into reality. However, the aim of this is to narrow the focus of research into new and

existing area which have not previously explored.

54

III. Result and Discussion

In ferrite-pearlite steels, as the percentage of pearlite increases, the strength

increases and ductility decreases. It means that the strength is in this class of steels

approximately in inverse proportion to the total elongation [Callister, 2007]. So, it is

hard to achieve a high strength and a high elongation at once in ferrite-pearlite

steels.

Computer simulations were performed in the content of this relationship between

strength and ductility, to assess the ability of the neural network method. This can

be covered by doing computer experiments using a single objective model which

has a target of achieving 400 MPa of tensile strength or 35 % elongation. These

targets are typical for ferrite-pearlite steels [Bhadeshia, 1998; Callister, 2007], so

are easy to achieve in practice. A second computer experiment was to achieve 600

MPa of tensile strength or 45% elongation because this is possibly amongst the

upper limits of common ferrite-pearlite steels (Figures 3.2 and 3.3). Finally, the

simulations to achieve 800 MPa of tensile strength or 55 % elongation were

performed to test for the highest values of mechanical properties which cannot

easily be reached.

55

Figure 3.1 Variation in the tensile strength of structural steels as a function of

the temperature at which the rate of transformation is greatest during

continuous cooling heat treatment [Irvine et al., 1957].

Figure 3.2 Elongation versus carbon concentration for plain carbon steels

having microstructures consisting of fine pearlite and ferrite. [Data taken from

Metals Handbook: Heat Treating, Vol. 4, 9th edition]

Different mechanical properties can often correlate [Callister, 2007], in which case

it is necessary to consider several properties simultaneously during analysis. Multi-

objective models can be helpful to recognize such inter-relationships between the

56

ultimate tensile strength and the percent elongation to failure. Of course, the desired

targets may not be achievable in a ferrite-pearlite system. But that kind of

information can be beneficial in assessing the potential of steels.

3.1. Single objective model

There were no constraints on the input parameters when the simulations were

conducted in order to widen the domains of inputs as much as is possible. However,

to make metallurgical sense, two constraints were set on the outputs; the target

value and the modeling uncertainty. Sets of inputs which led to the output lying

within the range ± 10 % of the target value were permitted as long as the

computational uncertainty was within ± 15 % of the magnitude of the target.

3.1.1. The ultimate tensile strength model

Table 3.1 shows the characteristics of the simulations in which the objective was a

tensile strength of 400 MPa. Some 94 combinations of input variables were

discovered for which the target value had less than ± 15 % uncertainty.

These results were analyzed by considering C, Mn and Si, which are influential in

determining strength, as described before (Chapter 2.1).

Figure 3.3 indicates the results from the first simulation in which the target was 400

MPa. The inputs have a few combinations which maintain the 400 MPa of the

ultimate tensile strength criterion. Because remained inputs other than C, Mn and Si

have relatively little influence, they are not plotted here.

57

 Minimum Maximum Mean Standard

Deviation

C / wt% 0.1091 0.2041 0.1727 0.0449

Mn / wt% 0.7050 0.8625 0.7433 0.0520

Si / wt% 0.0173 0.1085 0.0528 0.0444

P / wt% 0.0130 0.0310 0.0135 0.0026

S / wt% 0.0085 0.0215 0.0100 0.0036

Cr / wt% 0.0245 0.0800 0.0375 0.0204

Ni / wt% 0.0043 0.0900 0.0355 0.0108

Mo / wt% 0.0028 0.0100 0.0056 0.0033

Ti / wt% 0.0020 0.0060 0.0022 0.0009

Nb / wt% 0.0016 0.0060 0.0025 0.0013

V / wt% 0.0015 0.0045 0.0035 0.0014

Al / wt% 0.0320 0.0960 0.0397 0.0207

N / ppm 28.78 43.50 43.34 1.52

B / ppm 0.03 3.00 0.94 0.77

Cu / wt% 0.0094 0.0450 0.0361 0.0130

TFR / ℃ 828.40 983.50 876.04 40.97

TC / ℃ 596.00 709.17 653.35 46.37

σU / MPa 384.85 449.96 423.88 17.23

Uncertainty / MPa 25.63 59.98 44.81 9.74

Table 3.1 Characteristics of results of simulation for 400 MPa.

58

(a) (b)

(c) (d)
Figure 3.3 Combinations of the input variables which lead to the tensile

strength of 400 MPa (a) C and Mn (b) C and Si (c) Mn and Si (d) C, Mn and Si

59

Selected cases from these results are plotted in Figure 3.4, illustrating particularly

the carbon, manganese, silicon, finish rolling temperature, TFR and coiling

temperature, TC, together with the target strength. Notice that high carbon

concentrations in cases 5 - 12 are automatically related to high TC in order to

maintain a value of strength close to 400 MPa. The coiling temperature can be

controlled in industry by varying TFR and the cooling rate at the runout table, which

is a path between the finishing mill and the coiler in the hot rolling process. A low

TC lies in the range of 550-650 ℃ and is associated with a high cooling rate. A high

coiling temperature is above Ar1 which is the temperature that corresponds to the

onset of cementite during the cooling. High TC is associated with low cooling rates.

So, this result is expected since an increase in strength due to carbon is compensated

for by a reduction in the cooling rate due to the use of a high TC. Similarly, large

manganese concentrations are compensated for by low carbon concentrations in

cases 1, 2 and 3 [Kirkaldy et al., 1984; Reed et al., 1992].

60

(a)

(b)
Figure 3.4 Combinations of variables, all of which lead to an ultimate tensile

strength of approximately 400 MPa. (a) C, Mn and Si (b) TFR, TC and UTS for

12 cases

61

The range of the key inputs which lead to the required strength are as follows:

 C / wt% Si / wt% Mn / wt% TC / °C TFR / °C

Minimum 0.11 0.02 0.70 596 828

Maximum 0.20 0.11 0.79 709 983

Table 3.1 The range of the inputs especially C, Si, Mn, TC and TFR for 400

MPa

As stated previously, there are of course many more variables involved in the

analysis but they have a relatively minor effect and hence are not listed here. The

important point is that a significant range of inputs can lead to the required strength

of 400 MPa, with the analysis coming up with a total of 94 solutions.

The number of solutions decreased to 75 and 18 when the required strength was

increased to 600 and 800 MPa respectively. Tables 3.5 and 3.6 describe the

characteristics of the simulations. These simulations are analogous to the previous

results for the simulation for 400 MPa. Figures 3.5 and 3.6 show the tendencies of

input variables of the results of simulations for 600 and 800 MPa, with C, Mn and

Si having significant effects. The varieties are reduced as the target strength is

increased, because it is difficult to reach the high values of the ultimate tensile

strength in this alloy system.

62

(a) (b)

(c) (d)
Figure 3.5 Combinations of the input variables which lead to the tensile

strength of 600 MPa (a) C and Mn (b) C and Si (c) Mn and Si (d) C, Mn and Si

63

(a) (b)

(c) (d)
Figure 3.6 Combinations of the input variables which lead to the tensile

strength of 800 MPa (a) C and Mn (b) C and Si (c) Mn and Si (d) C, Mn and Si

64

It is clear from the data listed below Tables 3.3 and 3.4 and from Figures 3.7 and

3.8, that not only has the number of available solutions decreased, but the permitted

range of the inputs has decreased significantly.

 C / wt% Si / wt% Mn /

wt%

TC / °C TFR / °C

Minimum 0.18 0.10 0.71 534 866

Maximum 0.28 0.12 0.95 600 984

Table 3.3 The range of the inputs especially C, Si, Mn, TC and TFR for 600

MPa

 C / wt% Si / wt% Mn /

wt%

TC / °C TFR / °C

Minimum 0.44 0.11 0.70 596 867

Maximum 0.47 0.11 0.79 622 867

Table 3.4 The range of the inputs especially C, Si, Mn, TC and TFR for 800

MPa

For the 800 MPa target, the permitted ranges of input variables is exceptionally

small, indicating that it should be difficult in this alloy system to design steels as

strength as this based on a mixture of ferrite and pearlite.

Another interpretation is that the alloy system considered in creating the model is

too simple to allow flexibility in the choice of inputs when the target strength is

high. In contrast, the 400 MPa is typical of ferrite-pearlite steels [Bhadeshia, 1998,

Callister, 2007].

65

(a)

(b)
Figure 3.7 Combinations of variables, all of which lead to an ultimate tensile

strength of approximately 600 MPa. (a) C, Mn and Si (b) TFR, TC and UTS for

10 cases

66

(a)

(b)
Figure 3.1 Combinations of variables, all of which lead to an ultimate tensile

strength of approximately 800 MPa. (a) C, Mn and Si (b) TFR, TC and UTS for 4

cases.

67

 Minimum Maximum Mean Standard

Deviation

C / wt% 0.1814 0.2768 0.2603 0.0364

Mn / wt% 0.7108 0.9592 0.7431 0.0702

Si / wt% 0.1002 0.1192 0.1071 0.0035

P / wt% 0.0130 0.0310 0.0216 0.0068

S / wt% 0.0079 0.0215 0.0107 0.0048

Cr / wt% 0.0542 0.0800 0.0745 0.0106

Ni / wt% 0.0143 0.0900 0.0322 0.0123

Mo / wt% 0.0030 0.0300 0.0097 0.0030

Ti / wt% 0.0002 0.0060 0.0023 0.0015

Nb / wt% 0.0005 0.0060 0.0026 0.0013

V / wt% 0.0012 0.0045 0.0038 0.0013

Al / wt% 0.0059 0.0960 0.0310 0.0106

N / ppm 18.71 52.58 41.49 7.98

B / ppm 0.33 3.00 1.91 1.05

Cu / wt% 0.0150 0.0450 0.0360 0.0137

TFR / ℃ 866.50 983.50 895.49 42.56

TC / ℃ 534.28 600.44 596.24 7.50

σU / MPa 550.70 647.37 581.93 23.18

Uncertainty / MPa 42.19 89.89 66.28 14.16

Table 3.5 Characteristics of results of simulation for 600 MPa.

68

 Minimum Maximum Mean Standard

Deviation

C / wt% 0.4444 0.4656 0.4491 0.0091

Mn / wt% 0.6964 0.7885 0.7578 0.0447

Si / wt% 0.1085 0.1085 0.1085 0

P / wt% 0.0130 0.0310 0.0160 0.0069

S / wt% 0.0085 0.0085 0.0085 0

Cr / wt% 0.0800 0.0800 0.0800 0

Ni / wt% 0.0300 0.0326 0.0301 0.0006

Mo / wt% 0.0099 0.0100 0.0099 0

Ti / wt% 0.0015 0.0020 0.0016 0.0002

Nb / wt% 0.0013 0.0020 0.0015 0.0003

V / wt% 0.0015 0.0045 0.0042 0.0010

Al / wt% 0.0180 0.0320 0.0265 0.0070

N / ppm 43.50 43.50 43.50 0

B / ppm 0.47 3.00 1.02 0.77

Cu / wt% 0.0150 0.0150 0.0150 0

TFR / ℃ 866.50 866.5 866.5 0

TC / ℃ 596.00 622.37 603.32 12.15

σU / MPa 760.77 810.10 773.41 12.01

Uncertainty / MPa 77.28 118.92 92.52 12.46

Table 3.6 Characteristics of results of simulation for 800 MPa.

69

3.1.2. The elongation model

Table 3.7 shows the characteristics of simulations in which the objective was an

elongation of 35 %. Some 129 combinations of input variables were discovered for

which the target value had less than ± 15 percent uncertainty.

 Minimum Maximum Mean Standard

Deviation.

C / wt% 0.0168 0.0291 0.0269 0.0040

Mn / wt% 0.5026 0.7885 0.5354 0.0851

Si / wt% 0.0541 0.1085 0.0946 0.0238

P / wt% 0.0100 0.0310 0.0134 0.0047

S / wt% 0.0081 0.0215 0.0095 00029

Cr / wt% 0.0325 0.0800 0.0675 0.0210

Ni / wt% 0.0064 0.0300 0.0298 0.0021

Mo / wt% 0.0100 0.0300 0.0135 0.0076

Ti / wt% 0.0016 0.0060 0.0023 0.0011

Nb / wt% 0.0012 0.0020 0.0017 0.0004

V / wt% 0.0011 0.0045 0.0030 0.0015

Al / wt% 0.0320 0.0960 0.0496 0.0285

N / ppm 12.43 43.50 43.23 2.75

B / ppm 0.90 2.22 1.00 0.16

Cu / wt% 0.0031 0.0450 0.0325 0.0142

TFR / ℃ 817.95 983.5 900.11 62.22

TC / ℃ 440.72 629.51 521.48 56.39

ε / % 32.55 39.98 36.66 1.74

Uncertainty / % 2.00 5.24 3.95 0.87

Table 3.7 Characteristics of results of simulation for 35 %.

70

This simulation was used to check the behavior of the combining of neural network

and genetic algorithm. This target is expected to be achieved easily since it is about

average value of dataset used to create neural network model (Table 2.1).

Tables 3.8 and 3.9 show the characteristics of results from simulations for 45 % and

55 % respectively. Target of 45% was to check the effect of combining of neural

network and genetic algorithm. This value is higher than the average elongation of

typical ferrite-pearlite steels [Bhadeshia, 1998; Callister, 2007]. Target of 55% was

used to test the high values of elongation which we can’t reach easily (Figure 3.2).

It is expected that domains of input parameters for higher elongation is smaller than

for lower elongation simulation, because the higher the elongation, the harder the

steels be obtained. However, In 35% case, 129 varieties were obtained. In 45% case,

171 varieties of inputs were discovered and in 55% case, 175 varieties of inputs

were found. It means that it is possible to get even high elongation steels in this

alloy system. Figure 3.9 shows the combinations of C and Mn in these simulations.

71

(a) (b)

(c)
Figure 3.9 Combinations of the input variables which lead to the elongation to

failure. (a) 35 % (b) 45 % (c) 55 %

72

(a)

(b)

Figure 3.10 Combinations of variables which lead to an elongation of (a) 35%,

(b) 55%

Figure 3.10 shows both cases of 35% and 55%. The range of compositions capable

of producing the required elongation is very limited. This implies that the domain of

compositions becomes much smaller if an attempt is made to simultaneously satisfy

both strength and elongation targets. A high elongation corresponds to a high carbon

and low manganese concentration and vice versa. A high concentration of carbon

would lead to a greater fraction of pearlite and hence a larger degree of work

hardening; the latter in turn would delay plastic instability and hence enhance

73

elongation.

 Minimum Maximum Mean Standard

Deviation

C / wt% 0.0150 0.1610 0.1487 0.0208

Mn / wt% 0.4205 0.4413 0.4354 0.0095

Si / wt% 0.0677 0.1255 0.0718 0.0077

P / wt% 0.0015 0.0310 0.0146 0.0050

S / wt% 0.0013 0.0215 0.0088 0.0023

Cr / wt% 0.0128 0.2400 0.0794 0.0175

Ni / wt% 0.0160 0.0300 0.0281 0.0039

Mo / wt% 0.0100 0.0300 0.0207 0.0096

Ti / wt% 0.0002 0.0060 0.0025 0.0013

Nb / wt% 0 0.0060 0.0021 0.0010

V / wt% 0.0003 0.0045 0.0036 0.0015

Al / wt% 0.0026 0.0960 0.0315 0.0229

N / ppm 31.37 73.27 41.02 7.58

B / ppm 0.36 1 0.81 0.28

Cu / wt% 0.0005 0.0450 0.0293 0.0151

TFR / ℃ 829.67 983.50 910.55 57.20

TC / ℃ 596.00 832.00 658.67 61.57

ε / % 40.06 49.98 43.92 2.47

Uncertainty / % 2.13 6.74 4.57 1.23

Table 3.8 Characteristics of results of simulation for 45 %.

74

 Minimum Maximum Mean Standard

Deviation

C / wt% 0.0060 0.2117 0.1212 0.0762

Mn / wt% 0.1941 0.2050 0.1963 0.0040

Si / wt% 0.0044 0.1665 0.0595 0.0526

P / wt% 0.0121 0.0310 0.0154 0.0032

S / wt% 0.0053 0.0215 0.0079 0.0012

Cr / wt% 0.0178 0.0800 0.0542 0.0258

Ni / wt% 0.0054 0.0300 0.0225 0.0077

Mo / wt% 0.0100 0.0300 0.0208 0.0095

Ti / wt% 0.0013 0.0060 0.0028 0.0017

Nb / wt% 0.0014 0.0023 0.0019 0.0002

V / wt% 0.0015 0.0045 0.0043 0.0008

Al / wt% 0.0159 0.0960 0.0489 0.0290

N / ppm 9.49 43.50 37.59 9.51

B / ppm 0.08 1 0.72 0.35

Cu / wt% 0.0005 0.0450 0.0240 0.0182

TFR / ℃ 857.13 983.50 923.53 58.21

TC / ℃ 578.92 832.00 773.79 87.19

ε / % 50.08 59.97 53.59 2.30

Uncertainty / % 1.84 8.21 5.59 2.05

Table 3.9 Characteristics of results of simulation for 55 %.

75

3.2. Multiple objective model

There is only one difference between single the objective and multi-objective

models in interpreting the results, i.e., the permitted ranges of uncertainties. There

are two uncertainties to be considered, one for the ultimate tensile strength, the

other for elongation to failure. A larger uncertainty of ± 30 percent was allowed for

each target in the multi-objective model, in order to give a larger probability of

getting the desired values than was the case with the single objective models.

3.2.1. 400 MPa strength in combination with elongation

Table 3.10 shows the number of results for each simulation in which the target set at

400 MPa strength and the specified values of elongation. The number of solutions

decrease as the target elongation is increased.

Simulation 400 MPa,

35 %

400 MPa,

45 %

400 MPa,

55 %

A number of

solutions

156 71 1

Table 3.10 A number of solutions of 400 MPa strength in combination with

elongation.

These results are reliable because as expected, it is hard to achieve 400 MPa with

very high elongation. Figure 3.11 shows the ultimate tensile strength versus

elongation from the results. Table 3.11 shows the single outcome of the 400 MPa

with 55 % elongation simulation.

76

UTS

(MPa)

Uncertainty of

UTS (MPa)

Elongation

(%)

Uncertainty of

Elongation (%)

427.17 89.09 52.11 9.93

Table 3.11 The result of 400 MPa strength with 55 % elongation.

Figure 3.11 UTS vs. EL from 400 MPa strength in combination with elongation.

3.2.2. 600 MPa strength in combination with elongation

Table 3.12 shows the number of results for each simulation in which target set at

600 MPa strength and the specified values of elongations and Figure 3.12a shows

the UTS and elongation diagram for these simulations. In contrast with the results

of Chapter 3.2.1, the number of solutions does not decrease as target elongation is

increased.

77

Simulation 600 MPa,

35 %

600 MPa,

45 %

600 MPa,

55 %

A number of

solutions

26 33 1

Table 3.12 A number of solutions of 600 MPa strength in combination with

elongation

This can be evidence of the possibility to make new steels which have about 600

MPa strength with 45 % elongation. Table 3.13 shows the characteristics of that

simulation and Figure 3.13b shows the results of that with each uncertainty. There

can be some risks to reach the targets because uncertainties are high. However,

though it shows high uncertainties, the work suggests the design of new steels.

(a) (b)
Figure 3.12 UTS vs. Elongation (a) 600 MPa strength in combination with

elongation. (b) 600 MPa vs. 45 % with each uncertainty.

78

 Minimum Maximum Mean Standard

Deviation

C / wt% 0.2558 0.2768 0.2660 0.0107

Mn / wt% 0.4671 0.8931 0.7994 0.1069

Si / wt% 0.0086 0.1170 0.0904 0.0295

P / wt% 0.0202 0.0310 0.0283 0.0044

S / wt% 0.0007 0.0160 0.0069 0.0027

Cr / wt% 0.0279 0.1506 0.0450 0.0323

Ni / wt% 0.0111 0.0549 0.0326 0.0079

Mo / wt% 0.0068 0.0300 0.0127 0.0076

Ti / wt% 0 0.0018 0.0006 0.0005

Nb / wt% 0.00001 0.0041 0.0015 0.0008

V / wt% 0.0017 0.0046 0.0041 0.0010

Al / wt% 00.0285 0.0960 0.0535 0.0308

N / ppm 1.97 130.50 30.05 21.72

B / ppm 0.06 1.60 0.47 0.50

Cu / wt% 0.0081 0.0450 0.0364 0.0123

TFR / ℃ 764.23 983.50 896.26 64.16

TC / ℃ 541.45 656.60 594.59 15.08

σU / MPa 541.28 645.48 575.23 27.82

Uncertainty of σU / MPa 33.27 153.93 69.25 31.73

ε / % 40.59 49.23 44.43 2.66

Uncertainty ε / % 5.32 13.06 10.07 2.09

Table 3.13 Characteristics of results of simulation for 400 MPa with 45 %

3.2.3. 800 MPa strength in combination with elongation

Table 3.14 shows the number of results for each simulation in which target set at

800 MPa strength and the specified values of elongations. It seems that it is

79

impossible to obtain high UTS with high elongation. The combinations of 800 MPa

with 45 % and 800 MPa with 55 % is indeed possible but the number of cases is

very limited.

Simulation 800 MPa,

35 %

800 MPa,

45 %

800 MPa,

55 %

A number of solutions 0 1 1

Table 3.14 A number of solutions of 800 MPa strength in combination with

elongation

80

3.3. Summary

Simulations based on neural networks combined with genetic algorithms have been

conducted in two ways. Single objective simulations using a combination of neural

network and genetic algorithms have been used to explore particular strength or

ductility values. The results make metallurgical sense. However, it is not wise to

focus an individual property. In the elongation simulations, there were some

unphysical solutions. This can be improved by considering several properties at

once. Thus, it is necessary to focus on multi-objective combined models. In multi-

objective simulation, both the ultimate tensile strength and ductility are considered

simultaneously. With this, not only is it possible to avoid the side effects of the

single objective simulation, but new steels are indicated (Chapter 3.2.2). It is

necessary to conduct real experiments to confirm the calculations.

81

IV. Summary and Future Work

4.1. Summary

The aim of the work presented in this thesis was to examine the possibility of

defining the domains of steels which have essentially identical properties but

different compositions and processing parameters, by making a combination of

neural networks and genetic algorithms. The neural network models had been

developed in previous work [Ryu, 2008], covering the ultimate tensile strength and

the tensile elongation to failure of the steels with mixed microstructures of ferrite

and pearlite. These models were combined with genetic algorithms to identify

systematically the population of independent parameters which lead to a particular

strength or ductility.

The initial work using the combined models focused on individual targets, i.e.,

either the ultimate tensile strength or the ductility. The outcomes of the search have

been found to be physically meaningful in terms of the metallurgy expected of hot-

rolled steels with a ferrite-pearlite microstructure. Naturally, solutions either did not

arise or were few and far between when the target values were too ambitious. It is

important to realize that constraints were placed during the computer search first by

designing the permitted deviation from the set target, and second by rejecting

solutions whose uncertainty is unacceptable. This latter constraint is particularly

important in dealing with non-linear models became ordinary neural networks

82

without the facility of the modeling uncertainty suffer from the danger of

unreasonable extrapolation. The Bayesian method adopted here greatly limits this

danger by demonstrating with calculated uncertainty, the cases where calculations

are being done in regions of input space where knowledge is sparse or non-existant.

Engineering design rarely involves the definition of just one target. For example, it

is bad practice to maximize strength without considering the consequences on

ductility. This poor practice in typical of ‘new materials’ such as those working on

ultrafine grained structure or amorphous metals [Fukuda et. al., 2002; Schuh et al.,

2007]. Therefore, an effort was made to construct a multi-objective algorithm. Two

objectives, the ultimate tensile strength and the ductility, were therefore considered

simultaneously by combining the two neural network models with a genetic

algorithm. This revealed more interesting predictions than the single objective

approach. Not only normally unreachable domains discovered, but also it was

possible to find the new domains of input parameters for the target steels, although

it remains to be proven whether this is a consequence of the larger level of

permitted uncertainty. The results might be resolved by performing real experiments.

To summarize, the combination of the neural network and genetic algorithm is a

good methodology for finding domains of input parameters which lead to particular

mechanical properties of steels. The computational cost of doing so is large but not

impossibly large, and a trial and error search of the input space probably should

incur a greater expense and may not reach optimum solutions. The work has also

highlighted the need for researching new grades of steels. It would be helpful to

produce such steels discovered by the method and to test the mechanical properties.

83

4.2. Future work

In this work, two models for the ultimate tensile strength model and the elongation

to failure were considered. However, the approach used can be applied to any other

models produced by neural network, or even any physical model include ab initio

methods. Targets can be anything such as Charpy toughness or hardness. It is

possible that the domains of input parameters leading to any particular choice of

mechanical properties can be obtained.

Two objectives were considered at once in this work. Actually, several models can

be considered simultaneously by genetic algorithm, but the more targets are

combined, the more complexity should be incurred. It means that in order to use the

genetic algorithm on multiple aspect optimization problems, multiple objective

functions should be combined into a fitness function.

However, there is normally no way to satisfy the multiple objectives at the same

time because there may exist some contradictions among them like the inverse

relationship between the ultimate tensile strength and the elongation to failure. Thus

the multiple paths to the targets should be selected by considering carefully the

priority of the problem. In this case, it is necessary that optimal paths for multiple

objectives should be searched by considering all possible tradeoffs among the

multiple and conflicting objective functions.

So, the concept of Pareto optimality, which is known as best method for multi-

objective genetic algorithm, is needed. The fitness function of the two-objective

model in this work is simply coordinated; randomly weighted for fitness from each

84

objective and linearly summed. It can be improved by considering Pareto optimal

solution to reflect the complexity of multiple objectives.

85

References

Alder, J. F. and Phillips, V. A., J. Inst. Met. 83: 80-86, 1954.

Ashby, M. F., Oxide Dispersion Strengthening, Ansell, G. S., Cooper, T. D. and

Lenel, F. V., Eds., Gorden and Breach, New York, 143, 1968.

Bhadeshia, H. K. D. H. and Edmonds, D. V., Analysis of the Mechanical Properties

and Microstructure of a High-Silicon Dual-Phase Steels, Metal Science, 14: 41-49,

1980.

Bhadeshia, H. K. D. H., Alternatives to the ferrite-pearlite microstructures,

Materials Science Forum 29: 284-286, 1998.

Bhadeshia, H. K. D. H., Neural networks in materials science, ISIJ International,

39: 966-979, 1999.

Bhadeshia, H. K. D. H., Bainite in steels, IOM Communications Ltd, London, 2nd

edition, 2001.

Bhadeshia, H. K. D. H., The Importance of Uncertainty, Neural Networks and

Genetic Algorithms in Materials Science and Engineering, Tata McGraw-Hill

86

Publishing Company, Bengal Engineering and Science University, India, 2006.

Bishop, C. M., Neural Networks for Pattern Recognition, Oxford University Press,

London, 1995.

Callister, W. D., Material Science and Engineering: An Introduction 7th edition,

Wiley, 2007.

Carlton, C. E., Ferreira, P. J., What is Behind the Inverse Hall-Petch Behavior in

Nanocrystalline Materials?, Materials Research Society Symposium Proceedings,

976:19-24, 2007.

Chakraborti, N., Genetic algorithms in materials design and processing,

International Materials Reviews, 49: 246-260, 2004.

Chatterjee, S., Transformations in TRIP-assisted steels: microstructure and

properties, Ph.D. Thesis, University of Cambridge, 2006.

Chatterjee, S. and Bhadeshia, H. K. D. H., δ-TRIP steel, Materials Science and

Technology, 23: 819-827, 2007.

Chen, B. L., Optimization Theories and Algorithms, Tsinghua University Press,

Beijing, 2002.

87

Conrad, H. and Narayan, J., On the grain size softening in nanocrystalline materials,

Scripta Materrialia, 42:1025–30, 2000.

Cottrell, A. H., Dislocations and Plastic Flow in Crystals, Oxford University Press,

London, 1953.

Delorme, A., Genetic algorithm for optimization of mechanical properties,

Technical report, University of Cambridge, 2003.

Dieter, G. E., Mechanical Metallurgy SI Metric Edition, McGraw Hill, London,

307−308, 1988.

Felbeck, D. K. and Atkins, A. G., Strength and Fracture of Engineering Solids,

Prentice-Hall Inc., 1984.

Fujii, Hidetoshi, MacKay, D. J. C. and Bhadeshia, H. K. D. H., Bayesian neural

network analysis of fatigue crack growth rate in nickel base superalloys, ISIJ

International, 36: 1373-1382, 1996.

Fukuda, Y., Oh-ishi, K., Horita, Z. and Langdon, T. G., Processing of a low-carbon

steel by equal-channel angular pressing, Acta Materialia, 50: 1359-1368, 2002

88

Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley, 1989.

Grefenstette, J. J., Optimization of Control Parameters for Genetic Algorithms,

IEEE Transactions on Systems, Man and Cybernetics, 16: 122-128, 1986.

Hall, E. O., Proc. Phys. Soc. London, 643: 747, 1951.

Honeycombe, R. W. K., The Plastic Deformation of Metals, Edward Arnold, 1968.

Hollomon, J. H., Trans AMIE, 162:268-290, 1945.

Irvine, K. J., Pickering, F. B., Heselwood, W. C. and Atkins, M., Journal of the Iron

and Steel Institute, 195: 54-67, 1957

Jaiswal, S. and Mclvor, I. D., Ironmaking and Steelmaking, 16: 49, 1989.

Kelly, A. and Nicholson, R. B., Progress in Materials Science, 10 - 4, Pergamon

Press, New York, 1963.

Kirkaldy, J. S. and Venugopalan, D., Prediction of microstructure and hardenability

in low alloy steel, Phase Transformations in Ferrous Alloys, eds A R Marder & J I

Goldstein, TMS-AIME, Warrendale, Ohio, 125-148, 1984.

89

MacKay, D. J. C., Bayesian interpolation, Neural Computation, 4: 415-447, 1992a.

MacKay, D. J. C., A practical Bayesian framework for backpropagation networks,

Neural Computation, 4: 448-472, 1992b.

MacKay, D. J. C., Evidence framework applied to classification networks, Neural

Computation, 4: 720-736, 1992c.

MacKay, D. J. C., Bayesian non-linear modelling with neural networks, University

of Cambridge programme for industry: Modelling Phase Transformations in Steels,

1995a.

MacKay, D. J. C., Probable networks and plausible predictions – a review of

practical bayesian methods for supervised neural networks, Computation in Neural

Systems, 6: 469-505, 1995b.

MacKay, D. J. C., Information theory, inference and learning algorithms,

Cambridge University Press, U. K., 2003.

McQueen, H. J., Blum, W., Zhu, Q. and Demuth, V., Advances in Hot Deformation

Textures and Microstructures, TMS-AIME, Warrendale, PA, 235–250, 1994.

90

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,

Springer, 1996.

Morrison, W. B., The effect of grain size on the stress-strain relationship in low

carbon steel, Trans. ASM, 59:824-846, 1966.

Murata, T., Ishibuchi, H. and Tanaka, H., Multi-Objective Genetic Algorithm and

its Applications to Flowshop Scheduling. Computers and Industrial Engineering,

30(4): 957-968, 1996.

Obitko, M. and Slavik. P., Visualization of Genetic Algorithms in a Learning

Envionment, Spring Conference on Computer Graphics, SCCG’99, Bratislava:

Comenius University, 101-106, 1999.

Orowan, E., Discussion in “Symposium on Internal Stress”, Inst. Metals, London,

451, 1947.

Osborne, M. J. and Rubenstein, A., A Course in Game Theory, MIT Press, 1994.

Petch, N. J., J. Iron Steel Inst. London, 173: 25, 1953.

Pickering, F. B., Physical Metallurgy and the Design of Steels, Applied Science

Publishers, London, 50, 1978.

91

Reed, R. and Bhadeshia, H. K. D. H., Reconstructive austenite-ferrite

transformation in low alloy steel, Materials Science and Technology, 8: 421-435,

1992.

Ryu, J. H., Model for mechanical properties of Hot-Rolled Steels, Master Thesis,

POSTECH, 2008.

Schuh, C. A., Hufnagel, T. C. and Ramamurty, U., Mechanical behavior of

amorphous alloys, Acta Materialia, 55: 4067-4109, 2007.

Taylor, G. I., Mechanism of plastic deformation of crystals, Proc. Roy. Soc., A145:

362, 1934.

Tsukatani, I., Hasimoto, S. and Inoue, T., Effect of Silicon and Mananese Addition

on Mechanical Properties of High-Strength Hot-Rolled Sheet Steel Containing

Retained Austenite, ISIJ international, 31: 992-1000, 1991

Zener, C. and Hollomon, H., J. Appl. Phys., 15: 22, 1944.

92

Appendix A

This is the documentation for the single objective genetic algorithm program, as

described in chapter 2.2.1. The target property is the UTS. This is associated

documentation following the MAP format,

http://www.msm.cam.ac.uk/map/mapmain.html.

Program MAP_HOTROLLEDSTEEL_UTS

1. Provenance of code.

2. Purpose of code.

3. Specification.

4. Description.

5. References.

6. Parameter descriptions.

7. Error indicators.

8. Accuracy estimate.

9. Any additional information.

10. Example.

11. Auxiliary subroutines required.

12. Keywords.

13. Sources.

93

1. Provenance of source code.

Min Sung Joo and H. K. D. H. Bhadeshia

Graduate Institute of Ferrous Technology (GIFT)

Pohang University of Science and Technology

Pohang, Kyoungbuk, Republic of Korea

athpimo@postech.ac.kr

2. Purpose of code.

An application of the genetic algorithm (GA) for reaching a solution given a fitting

function. This can in theory be applied to any problem, where a database of inputs

and outputs has trained a neural network.

3. Specification.

Language: C

Product form: Source code and executable files for UNIX/Linux machines.

Complete program.

4. Description.

The single_UTS.tar.gz file, which can be downloaded from here, contains the

94

following files. A working version of a GA is also included to optimize the ultimate

tensile strength of the hot-rolled steels as a function of chemical composition and

processing variables.

genetic.c - A C program used to run the genetic algorithm.

gareadme.doc - A manual giving further details about running and

using the GA program for altering different settings to

optimize the process.

gareadme.txt - A txt version of gareadme.doc

single_UTS - An executable program of genetic.c.

generate44 - It reads the normalized input data file,

input/norm_test.in, and uses the weight files in

subdicrectory input. The results are written to the

temporary output file _ot, _out, _res and _sen.

score_output - A file that contains the scroes of each chromosome

after the program has concluded.

unnormalise/treatout.c - A C program for un-normalising the output data files.

unnormalise/treatout - An executable program of unnormalise/treatout.c.

unnormalise/nn-output_b - A file which contains the normalized inputs and outputs

of the GA after the program has concluded.

unnormalise/result - A file which contains the unnormalized values for

inputs, outputs and error of each chromosome after

unnormalising data in the normalized nn-output_b file.

95

input/labels.txt - A list of input variables.

input /nn-input - Normalised inputs file (target and accuracy values for

the GA).

input /norm_test.in - A text file which contains the normalized input

variables initialized by the GA to be fed into the neural

network.

The following are concerned with the neural network files that work with the GA,

but can be changed according to user requirements:

input /_w*f - The weights files for the different models.

input /*.lu - Files containing information for calculating the size of

the error bars for the different models.

input /spec1.t1 - An altered version of spec.t1 which is a dynamic file,

created by neural network. It is read by the program

generate44.

input /outran.x - A normalized output file that was created when

developing the model. It is accessed by generate44 via

input/spec1.t1.

input /MINMAX - Minimum and maximum values for the input variables

used in the original database.

The file gareadme.txt contains a manual, which provides a detailed set of

instructions for downloading and running the GA program. A summary of the

96

information in this manual is given here.

5. References.

Ryu, J. H., Model for mechanical properties of Hot-Rolled Steels, Master Thesis,

POSTECH, 2008.

Shah, I., Tensile Properties of Austenite Stainless Steel, M. Phil. Thesis, University

of Cambridge, 2002.

Delorme, A., Genetic algorithm for optimization of mechanical properties,

Technical report, University of Cambridge, 2003.

6. Parameter descriptions.

Input parameters

To specify the target value and accuracy desired, input/nn-input must be amended.

The normalized target value relates to a real value, according to the input/MINMAX

file used.

Row1 Normalised target value

Row2 Accuracy (in decimal e.g. 0.1 for 10%)

To specify the permitted range of the output, genetic.c must be changed.

#define TARGET_UNNORMAL Unnormalised target value

#define MAX_UNNORMAL Maximum of target value in

97

intput/MINMAX

#define MIN_UNNORMAL

Minimum of target value in input/

MINMAX

#define

TARGET_PERCENT_PERMIT

Permitted range for the target (in

decimal e.g. 0.1 for 10%)

#define

UNCERTAINTY_PERCENT_PERMIT

Permitted range for the uncertainty (in

decimal e.g. 0.1 for 10%)

To initiate the GA search, the inputs are randomly generated and placed in

input/norm_test.in. It should be noted that each chromosome generally relates to a

different steel composition, but this could change over the course of optimization.

For the current ultimate tensile strength model, the composition and processing

variables, totally 17 data items, are specified:

Gene number Variable

1 Normalised C, wt%

2 Normalised Mn, wt%

3 Normalised Si, wt%

4 Normalised P, wt%

5 Normalised S, wt%

6 Normalised Cr, wt%

7 Normalised Ni, wt%

98

8 Normalised Mo, wt%

9 Normalised Ti, wt%

10 Normalised Nb, wt%

11 Normalised V, wt%

12 Normalised Al, wt%

13 Normalised N, ppm

14 Normalised B, ppm

15 Normalised Cu, wt%

16 Normalised Finishing rolling temperature, ˚C

17 Normalised Coiling temperature, ˚C

Each input is normalized using the equation:

Normalized value = (value – min)/(max-min) – 0.5

Where the values for min and max are defined as follows:

Gene number Variable Min Max

1 C, wt% 0.0204 0.8684

2 Mn, wt% 0.1670 1.4100

3 Si, wt% 0.0000 0.2170

4 P, wt% 0.0040 0.0220

5 S, wt% 0.0020 0.0150

99

6 Cr, wt% 0.0000 0.1600

7 Ni, wt% 0.0000 0.0600

8 Mo, wt% 0.0000 0.0200

9 Ti, wt% 0.0000 0.0040

10 Nb, wt% 0.0000 0.0040

11 V, wt% 0.0000 0.0030

12 Al, wt% 0.0000 0.0640

13 N, ppm 0.00 87.00

14 B, ppm 0.00 2.00

15 Cu, wt% 0.0000 0.0300

16

Finishing rolling temperature,

˚C

808.00 925.00

17 Coiling temperature, ˚C 478.00 714.00

Output parameters

Two output files are produced by the GA program: unnormalise/nn-output_b and

score-output.

score-output simply prints out the scores for each chromosome.

unnormalise/nn-output_b contains the inputs, prediction and (prediction + error).

This is done for the best chromosomes within all populations:

Column 1-17 The normalized predicted inputs

100

Column 18 The normalized predicted output

Column 19 A value for the error, which includes the experimental noise

of the database, an estimation of the uncertainty in the

prediction and the test error. However, this is added to the

prediction value so that the input/MINMAX file can easily

handle the value.

The normalized values in all columns must be un-normalised using the equation:

actual value = (normalized value + 0.5) * (max-min) + min

The C program, unnormalise/treatout.c, is used to translate the output files to

produce the actual values of inputs and outputs which are written to

unnormalise/result.

7. Error indicators.

None.

8. Accuracy estimate.

See:

Input parameters, output parameters.

101

9. Any additional information.

See:

gareadme.txt

10. Example.

1. Program text

Complete program

2. Program data

The input file (input/nn-input) is:

-0.385042

0.1

The input variables (genetic.c) are:

#define TARGET_UNNORMAL 400.0

#define MAX_UNNORMAL 1039.0

#define MIN_UNNORMAL 317.0

#define TARGET_PERCENT_PERMIT 0.1

#define UNCERTAINTY_PERCENT_PERMIT 0.15

3. Program results

The output file unnormalise/nn-output_b, which contains the normalised values for

102

the ultimate tensile strength model including compositions and processing variables

(following result is only single selected case):

C Mn Si P S

-0.283412 -0.067178 -0.420334 0.000000 0.000000

Cr Ni Mo Ti Nb

-0.346624 0.104346 -0.338664 0.000000 0.000000

V Al N B Cu

1.000000 0.000000 0.000000 -0.486950 0.378970

FRT CT Pred Pred + Err

0.000000 0.479550 -0.363828 -0.292822

These are then run with unnormalise/treatout.c, where the normalised values are

converted into the actual values to unnormalise/result:

C Mn Si P S

0.204067 0.704998 0.017288 0.013000 0.008500

Cr Ni Mo Ti Nb

0.024540 0.036261 0.003227 0.002000 0.002000

V Al N B Cu

103

0.004500 0.032000 43.50000 0.026100 0.026369

FRT CT Pred Pred + Err

866.5000 709.1738 415.3162 51.2663

11. Auxiliary subroutines required.

None.

12. Keywords.

hot-rolled steel, genetic algorithm, ultimate tensile strength, neural network.

13. Sources.

genetic.c

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <math.h>

#include <sys/time.h>

/* NN related */

#define NUM 17 /* Total number of genes

*/

#define LIMIT 150 /* Maximum number of

inputs the system can handle */

#define SESSIONS 1000 /* Number of

generations that we'll put the system through */

/* GA related */

#define POPS 2 /* Number of

populations */

#define SIZE 17 /* Size of vector in the

genetic algorithms */

#define MAXPOP 20 /* Size

of population */

#define BESTPOP 8 /*

Number of individuals taken from the best */

#define SELPOP 12 /*

SELPOP-BESTPOP = Number of people selected randomly to exchange

genes within their own population */

#define NEWPOP 16 /*

NEWPOP-SELPOP = Number of new people created randomly on each

gen. */

#define MUT1 18 /* MUT1-NEWPOP =

Number of genes that are severely mutated */

#define MIXGEN 1 /*

Number of generations between population mixing */

/* result selection */

#define TARGET_UNNORMAL

 400.0

#define MAX_UNNORMAL 1039.0

104

#define MIN_UNNORMAL 317.0

#define TARGET_PERCENT_PERMIT 0.1

#define UNCERTAINTY_PERCENT_PERMIT 0.15

#define CAR -0.03703703 /* Carbon */

#define MAN 0.28512388 /* Manganese */

#define SIL 0.03913045 /* Silicon */

#define PHO 0.03125002 /* Phosphorus */

#define SUL -0.3222222 /* Sulphur */

#define CHR -0.1 /*

Chromium */

#define NIC 0.1 /*

Nickel */

#define MOL -0.33848798 /* Molybdenum */

#define TIT -0.42857143 /* Titanium */

#define NIO -0.48947367 /* Niobium */

#define VAN -0.5 /*

Vanadium */

#define ALU -0.5 /*

Aluminium */

#define NIT -0.11728396 /* Nitrogen */

#define BOR -0.4333333 /* Boron */

#define COP -0.01428570 /* Copper */

#define FRT 0.1 /*

Finishin Mill Temperature */

#define CIT 0.1 /*

COiling Temperature */

/* BESTPOP x POPS = no of lines in output file*/

typedef struct

{

 float p[NUM];

} vector;

/* NN related */

vector test[LIMIT], w1,target;

int hits[LIMIT], total;

/* GA related */

float pop[POPS][MAXPOP][SIZE];

double score[POPS][MAXPOP];

double result[POPS][MAXPOP];

double error[POPS][MAXPOP];

double error2[POPS][MAXPOP];

/*---*\

 |

|

 | Randomize

|

 |

|

 ---/

randomize()

{

 struct timeval tp;

 struct timezone tzp;

 /* Use time of day to feed the random number generator

seed */

 gettimeofday(&tp, &tzp);

 srandom(tp.tv_sec);

}

/*---*\

 |

|

 | irand(range) - return a random integer in the range 0..(range-1)

|

 |

|

 ---/

int irand(range) int range;

{

 return(random() % range);

}

/*---*\

 |

|

 | scalar_mult - multiply two vectors

|

 |

|

 ---/

float scalar_mult(x, y) vector x, y;

{

 int i;

 float s = 0.0;

 for (i = 0 ; i < NUM ; i++) s += (x.p[i] * y.p[i]);

 return s;

}

/*---*\

 |

|

 | This function computes the NN's output for a certain input vector.

|

 | The NN is constructed from 2 layers, first layer has 6 neurons,

|

 | second layer has 1 neuron.

|

 |

|

 ---/

net(p,i)

 int p,i;

{

 FILE *nmin,*nmin2,*nmin3,*fcount,*ferr;

 int j,k,l,m,sum,e,no_of_columns;

 char c,s[100],minmax_file[50];

 float

res2,res3,res4,res5,res6,res7,res8,res9,res10,res11,res12;

 float

err2,err3,err4,err5,err6,err7,err8,err9,err10,err11,err12;

 float

err_a,err_b,err_c,err_d,err_e,err_f,err_g,err_h,err_i,err_j,err_k;

 float err_1,err_1a;

 float

min[50],max[50],dummy,mean,stdev,dev,generation,k1,k2;

 double check_performance();

 FILE *ifp;

 printf("Calling net with p=%d and i=%d",p,i);

 if ((nmin = fopen("./input/norm_test.in","w")) == NULL)

{

 printf ("Can't

write ./input/norm_test.in");

 exit(1);

 } else {

 l=0;

 for (j=0;j<SIZE;j++) {

#if 1

 fprintf(nmin,"%f

",w1.p[l]);

 ++l;

#else

 if (j != 5) {

 /*

change this line according to which

 variables are wanted to be fixed */

 fprintf(nmin,"%f ",w1.p[l]);

 ++l;

 } else {

 if (j ==

0){

 fprintf(nmin,"%f ",CAR);

 }

105

 if (j ==

1) {

 fprintf(nmin,"%f ",MAN);

 }

 if (j ==

2) {

 fprintf(nmin,"%f ",SIL);

 }

 if (j ==

3) {

 fprintf(nmin,"%f ",PHO);

 }

 if (j ==

4) {

 fprintf(nmin,"%f ",SUL);

 }

 if (j ==

5) {

 fprintf(nmin,"%f ",CHR);

 }

 if (j ==

6) {

 fprintf(nmin,"%f ",NIC);

 }

 if (j ==

7) {

 fprintf(nmin,"%f ",MOL);

 }

 if (j ==

8) {

 fprintf(nmin,"%f ",TIT);

 }

 if (j ==

9) {

 fprintf(nmin,"%f ",NIO);

 }

 if (j ==

10) {

 fprintf(nmin,"%f ",VAN);

 }

 if (j ==

11) {

 fprintf(nmin,"%f ",ALU);

 }

 if (j ==

12) {

 fprintf(nmin,"%f ",NIT);

 }

 if (j ==

13) {

 fprintf(nmin,"%f ",BOR);

 }

 if (j ==

14) {

 fprintf(nmin,"%f ",COP);

 }

 if (j ==

15) {

 fprintf(nmin,"%f ",FRT);

 }

 if (j ==

16) {

 fprintf(nmin,"%f ",CIT);

 }

 }

#endif

 }

 fprintf(nmin,"\n");

 fclose(nmin);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

6 ./input/_wf1f ./input/_wf1f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 1");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res2,&err2);

 printf("res2 err2 %f %f\n",res2,err2);

 printf("Indices %d %d\n",p,i);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

6 ./input/_wf3f ./input/_wf3f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 2");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res3,&err3);

 printf("res3 err3 %f %f\n",res3,err3);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

8 ./input/_wh2f ./input/_wh2f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 3");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res4,&err4);

 printf("res4 err4 %f %f\n",res4,err4);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

8 ./input/_wh4f ./input/_wh4f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 4");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res5,&err5);

 printf("res5 err5 %f %f\n",res5,err5);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

9 ./input/_wi4f ./input/_wi4f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 5");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res6,&err6);

 printf("res6 err6 %f %f\n",res6,err6);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

10 ./input/_wj2f ./input/_wj2f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 6");

 exit(1);

 } else {

106

 fscanf(nmin2,"%f %f",&res7,&err7);

 printf("res7 err7 %f %f\n",res7,err7);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

10 ./input/_wj4f ./input/_wj4f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 7");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res8,&err8);

 printf("res8 err8 %f %f\n",res8,err8);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

10 ./input/_wj5f ./input/_wj5f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 8");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res9,&err9);

 printf("res9 err9 %f %f\n",res9,err9);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

11 ./input/_wk1f ./input/_wk1f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 9");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res10,&err10);

 printf("res10

err10 %f %f\n",res10,err10);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

15 ./input/_wo5f ./input/_wo5f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 10");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res11,&err11);

 printf("res11

err11 %f %f\n",res11,err11);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

19 ./input/_ws4f ./input/_ws4f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 11");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res12,&err12);

 printf("res12

err12 %f %f\n",res12,err12);

 fclose(nmin2);

 }

 result[p][i] =

((res2+res3+res4+res5+res6+res7+res8+res9+res10+res11+res12)/11);

 printf("this is p %d %d\n", p,i);

 nmin3=fopen("./input/nn-input","r");

 fscanf(nmin3,"%f",&target.p[0]);

 err_a = pow ((res2-target.p[0]),2);

 err_b = pow ((res3-target.p[0]),2);

 err_c = pow ((res4-target.p[0]),2);

 err_d = pow ((res5-target.p[0]),2);

 err_e = pow ((res6-target.p[0]),2);

 err_f = pow ((res7-target.p[0]),2);

 err_g = pow ((res8-target.p[0]),2);

 err_h = pow ((res9-target.p[0]),2);

 err_i = pow ((res10-target.p[0]),2);

 err_j = pow ((res11-target.p[0]),2);

 err_k = pow ((res12-target.p[0]),2);

 err_1 =

(err2+err3+err4+err5+err6+err7+err8+err9+err10+err11+err12);

 err_1a = pow((err_1),2);

 printf("err_a is %f\n",err_a);

 printf("err_b is %f\n",err_b);

 printf("err_c is %f\n",err_c);

 printf("err_d is %f\n",err_d);

 printf("err_e is %f\n",err_e);

 printf("err_f is %f\n",err_f);

 printf("err_g is %f\n",err_g);

 printf("err_h is %f\n",err_h);

 printf("err_i is %f\n",err_i);

 printf("err_j is %f\n",err_j);

 printf("err_k is %f\n",err_k);

 printf("err_1 is %f\n",err_1);

 error2[p][i]=sqrt(err_1a);

 error[p][i] = sqrt (((err_1a)/11)+((err_a + err_b + err_c +

err_d + err_e + err_f + err_g + err_h + err_i + err_j + err_k)/11));

 printf("error pi is %f\n\n",error[p][i]);

 fcount=fopen("count","r");

 fscanf(fcount,"%d",&e);

 fclose(fcount);

 e++;

 fcount=fopen("count","w");

 fprintf(fcount,"%d",e);

 fclose(fcount);

 printf("\n-----------> sum %d\n",e);

 printf("In net() error is %f res

is %f\n\n",error[p][i],result[p][i]);

 fclose(nmin3);

}

/*---*\

 |

|

 | pop_swap(p, a, b) - swap two vectors and scores in the

population p|

 |

|

 ---/

pop_swap(p, a, b)

 int p, a, b;

{

 int t, i;

 float tg;

 /* Swap vector */

 for (i = 0 ; i < SIZE ; i++)

 {

 t = pop[p][a][i];

 pop[p][a][i] = pop[p][b][i];

 pop[p][b][i] = t;

 }

 /* Swap score */

 tg = score[p][a];

 score[p][a] = score[p][b];

 score[p][b] = tg;

 tg = result[p][a];

 result[p][b] = tg;

107

 result[p][a] = result[p][b];

 tg = error[p][a];

 error[p][a] = error[p][b];

 error[p][b] = tg;

}

/*---*\

 |

|

 | apply(p, i) - apply the i gene of the population p on the NN

|

 |

|

 ---/

apply(p, i)

 int p, i;

{

 /* Each component realtes to a gene in the NN */

 w1.p[0] = pop[p][i][0]; w1.p[1] = pop[p][i][1];

w1.p[2] = pop[p][i][2];

 w1.p[3] = pop[p][i][3]; w1.p[4] = pop[p][i][4];

w1.p[5] = pop[p][i][5];

 w1.p[6] = pop[p][i][6]; w1.p[7] = pop[p][i][7];

w1.p[8] = pop[p][i][8];

 w1.p[9] = pop[p][i][9]; w1.p[10] = pop[p][i][10];

w1.p[11] = pop[p][i][11];

 w1.p[12] = pop[p][i][12]; w1.p[13] = pop[p][i][13];

w1.p[14] = pop[p][i][14];

 w1.p[15] = pop[p][i][15]; w1.p[16] = pop[p][i][16];

}

/*---*\

 |

|

 | pop_copy(p1, a, p2, b) - copy the vector b in the population p2 into

|

 | the vector a in the population p1.

|

 |

|

 ---/

pop_copy(p1, a, p2, b)

 int p1, a, p2, b;

{

 int i;

 for (i = 0 ; i < SIZE ; i++)

 pop[p1][a][i] = pop[p2][b][i];

}

 for (p = 0 ; p < POPS ; p++) {

 /* Whole population gets values from -1

to 1 */

 for (i = 0 ; i < MAXPOP ; i++) {

 for (j = 0 ; j < SIZE ;

j++) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) *

2;

 while

(pop[p][i][j] < (-(min[j]/(max[j]-min[j])+0.5))) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) *

2;

 }

 }

 }

 }

}

/*---*\

 |

|

 | Calculate the scores of all the vectors in all the populations

|

 |

|

 ---/

calc_score()

{

 int p, i, j;

 double check_performance();

 for (p = 0 ; p < POPS ; p++){

 for (i = 0 ; i < MAXPOP ; i++){

 {

 printf("Here is scorecalc for pop %d

gene %d: %f\n\n",p,i,score[p][i]);

 apply(p, i);

 score[p][i] = check_performance(p,i);

 printf("Here is scorecc2 for pop %d

gene %d: %f\n\n",p,i,score[p][i]);

 printf("Read %f %f\n", result[p][i],error[p][i]);

 }

 }

 }

}

/*---*\

 |

|

 | Sort the populations

|

 |

|

 ---/

sort_population()

{

 int p, i, j, k;

 float best;

 /* Use insert sort */

 for (p = 0 ; p < POPS ; p++){

 for (i = 0 ; i < MAXPOP ; i++){

 {

 best =

score[p][i];

 for (j =

(i+1) ; j < MAXPOP ; j++)

 if (score[p][j] > best)

 {

 best = score[p][j];

 k = j;

 }

 if (best

> score[p][i])

 pop_swap(p, i, k);

 }

 }

 }

}

108

/*---*\

 |

|

 | Show (on the standard output) the best scores of all populations

|

 |

|

 ---/

statistics(generation)

 int generation;

{

 int p,i;

 printf("generationi is here: %d\n",generation);

 if (generation % MIXGEN == 0)

 printf("-----------------------------\n");

 printf(" %4d) First are: ", generation);

 for (p = 0 ; p < POPS ; p++) printf("%f ", score[p][0]);

 printf(" (from %d)\n",total);

}

/*---*\

 |

|

 | Generate the next generation in all populations

|

 |

|

 ---/

make_next_generation(generation)

 int generation;

{

 int a, p, i, j, k, k1, k2, m, stack;

 float dev,min[50],max[50],dummy,mean,stdev;

 char minmax_file[50],c;

 FILE *ifp;

 ifp=fopen("./input/MINMAX","r");

 while((c=getc(ifp)) != '\n');

 for (j = 0; j < SIZE+1; j++) {

 fscanf(ifp,"%f%f%f%f%f%f",&min[j],&max[j],&dummy,

&dummy,&dummy,&dummy);

 }

 fclose(ifp);

 for (p = 0 ; p < POPS ; p++) {

 /* keep best - BESTPOP */

 /* add another group, randomly -

(SELPOP-BESTPOP) */

 for (i = BESTPOP ; i < SELPOP ; i++) {

 pop_swap(p, i,

(irand(MAXPOP - i) + i));

 }

 /* create new individuals */

 for (i = MUT1 ; i < MAXPOP ; i++) {

 stack = 0;

 for (j = 0 ; j < SIZE ;

j++) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) * 2;

 while

(pop[p][i][j] < (-(min[j]/(max[j]-min[j])+0.5))) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) * 2;

 }

 }

 }

 /* SELPOP to MUT1 will be severe

mutations */

 stack = 0;

 for (i = NEWPOP ; i < MUT1 ; i++) {

 pop_copy(p, i, p,

irand(NEWPOP));

 /* 5000 is the nominal

mutation value */

 dev = 1 + ((irand(2000) -

1000)/ 5000);

 j=irand(SIZE);

 while (dev < (-

(min[j]/(max[j]-min[j])+0.5))) {

 dev =

1 + ((irand(2000) - 1000)/ 5000);

 }

 pop[p][i][j] = dev;

 }

 /* MUT2 to MAXPOP will be

crossovers */

 stack = 0;

 for (i = SELPOP ; i < NEWPOP ; i++)

{

 /* Every several

generations (set by MIXGEN) there is a cross-over */

 /* between different

populations. */

 pop_copy(p, i,

(((generation%MIXGEN)==0) ? irand(POPS) : p), irand(NEWPOP));

 j = irand(NEWPOP);

 k1 = irand(SIZE - 1);

 k2 = irand(SIZE - 1 -

k1) + k1 + 1;

 for (m = k1 ; m <= k2 ;

m++) pop[p][i][m] = pop[p][j][m];

 /* Mutate slightly to

preserve diversity */

 dev = 1 + ((irand(2000)

- 1000)/ 50000);

 j=irand(SIZE);

 while (dev < (-

(min[j]/(max[j]-min[j])+0.5))) {

 dev =

1 + ((irand(2000) - 1000)/ 50000);

 }

 pop[p][i][j] = dev;

 }

 }

 calc_score();

 sort_population();

 statistics(generation);

 printf("Done %d generations\n\n",generation);

}

/*---*\

 |

|

 | Return the number of cases for which the NN returns the correct

value |

 |

|

 ---/

double check_performance (p,i) int p,i;

{

 vector x;

 int j;

 float score_value=0,score_a,d,f;

 net(p,i);

 printf("score_a is %f\n",score_a);

 score_value = error[p][i];

 printf ("Answer is %f and target

is %f\n",result[p][i],target.p[1]);

 if (score_value < 0) {

 score_value = 0; }

 else {

 score_value = 1.0/(score_value);

 }

 printf("score_value is: %f\n",score_value);

 return score_value;

}

109

/*---*\

 |

|

 | Return the number of cases for which the NN returns the correct

value |

 |

|

 ---/

calc_limit_err()

{

 vector x;

 int j;

 float err=0;

 err = pow((target.p[2]*target.p[0]),2);

 target.p[1] = 1.0/sqrt(err) ;

 printf ("Norm Target Value is %f\n",target.p[0]);

 printf("Target Score is: %f\n",target.p[1]);

 return err;

}

/*---*\

 |

|

 | Get data (reads input file)

|

 |

|

 ---/

int get_data()

{

 char* FileName = "./input/nn-input";

 FILE *fd;

 int i, posnum, negnum;

 float x,y,t;

 /* opens the file */

 if ((fd = fopen(FileName,"r")) == NULL)

 {

 printf ("no-input-file");

 exit(10);

 }

 /* Total number of input values */

 total = 0;

 fscanf(fd,"%f",&t);

 target.p[0]=t;

 printf("Target is %f",target.p[0]);

 fscanf(fd,"%f",&t);

 target.p[2]=t;

 printf("Wanted accuracy is %f",target.p[2]);

 fclose(fd);

 return (0) ;

}/*---*\

 |

|

 | best_pop - Find the population with the best solution

|

 |

|

 ---/

int best_pop()

{

 int i, p;

 float best=0;

 for (i = 0 ; i < POPS ; i++)

 if (score[i][0] > best)

 {

 best = score[i][0];

 p = i;

 }

 return(p);

}

/*---*\

 |

|

 | Main

|

 |

|

 ---/

main() {

 int generation, i, j, l, p, best, done = 0,e=0, err_1a, k,z;

 float px, py, px1, py1,

p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,er1,er2;

 FILE *fp,*fb,*fcount, *ferr,*fscore;

 FILE *fd;

 double tempResult, tempUncertainty;

 fcount=fopen("count","w");

 fprintf(fcount,"%d",e);

 fclose(fcount);

 randomize();

 get_data(); /* Read input from file */

 calc_limit_err();

 printf("Target is :%f",target.p[0]);

 make_initial_population();

 calc_score();

 sort_population();

 for (p=0;p<POPS;p++) {

 printf("Score of %d

is %f",p,score[p][0]);

 }

 printf("We got here ");

 /* Educate the net */

 generation = 0;

 while ((done != 1) && (generation++ < SESSIONS))

 {

 make_next_generation(generation);

 p = best_pop();

 if (score[p][0] > target.p[1]) {

 printf ("Target error

was %f and error is %f",target.p[1],score[p][0]);

 done = 1;

 } else {

 printf("Done all !!\n");

 }

 fb=fopen("./unnormalise/nn-

output_b","a+");

 for (i=0;i<POPS;i++) {

 for

(j=0;j<BESTPOP;j++) {

 apply

(i,j);

 l=0;

 tempResult = (result[i][j] + 0.5) * (MAX_UNNORMAL -

MIN_UNNORMAL) + MIN_UNNORMAL;

 tempUncertainty = ((error[i][j] + result[i][j] + 0.5) *

(MAX_UNNORMAL - MIN_UNNORMAL) + MIN_UNNORMAL) -

tempResult;

 if

((fabs(TARGET_UNNORMAL - tempResult) <

(TARGET_PERCENT_PERMIT * TARGET_UNNORMAL))

 && (tempUncertainty < (2 *

UNCERTAINTY_PERCENT_PERMIT * TARGET_UNNORMAL)))

 {

110

 for

(k=0;k<SIZE;k++) {

#if 1

 fprintf(fb,"%f ",w1.p[l]);

 ++l;

#else

 if (k != 5) { /* change this line according to which

variables are wanted to be fixed */

 fprintf(nmin,"%f ",w1.p[l]);

 ++l;

 } else {

 if (k == 0){

 fprintf(nmin,"%f

",CAR);

 }

 if (k == 1) {

 fprintf(nmin,"%f

",MAN);

 }

 if (k == 2) {

 fprintf(nmin,"%f ",SIL);

 }

 if (k == 3) {

 fprintf(nmin,"%f

",PHO);

 }

 if (k == 4) {

 fprintf(nmin,"%f

",SUL);

 }

 if (k == 5) {

 fprintf(nmin,"%f

",CHR);

 }

 if (k == 6) {

 fprintf(nmin,"%f ",NIC);

 }

 if (k == 7) {

 fprintf(nmin,"%f

",MOL);

 }

 if (k == 8) {

 fprintf(nmin,"%f ",TIT);

 }

 if (k == 9) {

 fprintf(nmin,"%f

",NIO);

 }

 if (k == 10) {

 fprintf(nmin,"%f

",VAN);

 }

 if (k == 11) {

 fprintf(nmin,"%f

",ALU);

 }

 if (k == 12) {

 fprintf(nmin,"%f ",NIT);

 }

 if (k == 13) {

 fprintf(nmin,"%f

",BOR);

 }

 if (k == 14) {

 fprintf(nmin,"%f

",COP);

 }

 if (k == 15) {

 fprintf(nmin,"%f

",FRT);

 }

 if (k == 16) {

 fprintf(nmin,"%f ",CIT);

 }

 }

#endif

 }

 fprintf(fb,"%f %f

\n",result[i][j],(error[i][j]+result[i][j]));

 }

 }

 }

 fclose(fb);

 }

 printf("done! \n");

 printf("\n\n**** For unnormalisation, goto

/unnormalise and type a.out (no. of lines in output file) => BESTPOP x

POPS = no of lines in output file (no. of inputs)****\n");

 fscore=fopen("score_output","w");

 for (i=0;i<POPS;i++) {

 for (j=0;j<MAXPOP;j++) {

 fprintf(fscore,"Score for

score_T_298 pop %d gene %d is %f \n",i,j,score[i][j]);

 printf("scores for

score_T_298 pop %d chromo %d id %f \n",i,j,score[i][j]);

 }

 }

 printf("\n Scores printed to 'scores'\n\n");

 fclose(fscore);

}

111

Appendix B

This is the documentation for the single objective genetic algorithm program, as

described in chapter 2.2.1. The target property is the elongation to failure. This is

associated documentation following the MAP format,

http://www.msm.cam.ac.uk/map/mapmain.html.

Program MAP_HOTROLLEDSTEEL_EL

1. Provenance of code.

2. Purpose of code.

3. Specification.

4. Description.

5. References.

6. Parameter descriptions.

7. Error indicators.

8. Accuracy estimate.

9. Any additional information.

10. Example.

11. Auxiliary subroutines required.

12. Keywords.

13. Sources.

112

1. Provenance of source code.

Min Sung Joo and H. K. D. H. Bhadeshia

Graduate Institute of Ferrous Technology (GIFT)

Pohang University of Science and Technology

Pohang, Kyoungbuk, Republic of Korea

athpimo@postech.ac.kr

2. Purpose of code.

An application of the genetic algorithm (GA) for reaching a solution given a fitting

function. This can in theory be applied to any problem, where a database of inputs

and outputs has trained a neural network.

3. Specification.

Language: C

Product form: Source code and executable files for UNIX/Linux machines.

Complete program.

4. Description.

The single_EL.tar.gz file, which can be downloaded from here, contains the

113

following files. A working version of a GA is also included to optimize the ductility

of the hot-rolled steels as a function of chemical composition and processing

variables.

genetic.c - A C program used to run the genetic algorithm.

gareadme.doc - A manual giving further details about running and

using the GA program for altering different settings to

optimize the process.

gareadme.txt - A txt version of gareadme.doc

single_EL - An executable program of genetic.c.

generate44 - It reads the normalized input data file,

input/norm_test.in, and uses the weight files in

subdicrectory input. The results are written to the

temporary output file _ot, _out, _res and _sen.

score_output - A file that contains the scroes of each chromosome

after the program has concluded.

unnormalise/treatout.c - A C program for un-normalising the output data files.

unnormalise/treatout - An executable program of unnormalise/treatout.c.

unnormalise/nn-output_b - A file which contains the normalized inputs and outputs

of the GA after the program has concluded.

unnormalise/result - A file which contains the unnormalized values for

inputs, outputs and error of each chromosome after

unnormalising data in the normalized nn-output_b file.

114

input/labels.txt - A list of input variables.

input /nn-input - Normalised inputs file (target and accuracy values for

the GA).

input /norm_test.in - A text file which contains the normalized input

variables initialized by the GA to be fed into the neural

network.

The following are concerned with the neural network files that work with the GA,

but can be changed according to user requirements:

input /_w*f - The weights files for the different models.

input /*.lu - Files containing information for calculating the size of

the error bars for the different models.

input /spec1.t1 - An altered version of spec.t1 which is a dynamic file,

created by neural network. It is read by the program

generate44.

input /outran.x - A normalized output file that was created when

developing the model. It is accessed by generate44 via

input/spec1.t1.

input /MINMAX - Minimum and maximum values for the input variables

used in the original database.

The file gareadme.txt contains a manual, which provides a detailed set of

instructions for downloading and running the GA program. A summary of the

115

information in this manual is given here.

5. References.

Ryu, J. H., Model for mechanical properties of Hot-Rolled Steels, Master Thesis,

POSTECH, 2008.

Shah, I., Tensile Properties of Austenite Stainless Steel, M. Phil. Thesis, University

of Cambridge, 2002.

Delorme, A., Genetic algorithm for optimization of mechanical properties,

Technical report, University of Cambridge, 2003.

6. Parameter descriptions.

Input parameters

To specify the target value and accuracy desired, input/nn-input must be amended.

The normalized target value relates to a real value, according to the input/MINMAX

file used.

Row1 Normalised target value

Row2 Accuracy (in decimal e.g. 0.1 for 10%)

To specify the permitted range of the output, genetic.c must be changed.

#define TARGET_UNNORMAL Unnormalised target value

116

#define MAX_UNNORMAL

Maximum of target value in

intput/MINMAX

#define MIN_UNNORMAL

Minimum of target value in input/

MINMAX

#define TARGET_PERCENT_PERMIT

Permitted range for the target (in

decimal e.g. 0.1 for 10%)

#define

UNCERTAINTY_PERCENT_PERMIT

Permitted range for the uncertainty

(in decimal e.g. 0.1 for 10%)

To initiate the GA search, the inputs are randomly generated and placed in

input/norm_test.in. It should be noted that each chromosome generally relates to a

different steel composition, but this could change over the course of optimization.

For the current ultimate tensile strength model, the composition and processing

variables, totally 17 data items, are specified:

Gene number Variable

1 Normalised C, wt%

2 Normalised Mn, wt%

3 Normalised Si, wt%

4 Normalised P, wt%

5 Normalised S, wt%

6 Normalised Cr, wt%

117

7 Normalised Ni, wt%

8 Normalised Mo, wt%

9 Normalised Ti, wt%

10 Normalised Nb, wt%

11 Normalised V, wt%

12 Normalised Al, wt%

13 Normalised N, ppm

14 Normalised B, ppm

15 Normalised Cu, wt%

16 Normalised Finishing rolling temperature, ˚C

17 Normalised Coiling temperature, ˚C

Each input is normalized using the equation:

Normalized value = (value – min)/(max-min) – 0.5

Where the values for min and max are defined as follows:

Gene number Variable Min Max

1 C, wt% 0.0204 0.8684

2 Mn, wt% 0.1670 1.4100

3 Si, wt% 0.0000 0.2170

4 P, wt% 0.0040 0.0220

5 S, wt% 0.0020 0.0150

118

6 Cr, wt% 0.0000 0.1600

7 Ni, wt% 0.0000 0.0600

8 Mo, wt% 0.0000 0.0200

9 Ti, wt% 0.0000 0.0040

10 Nb, wt% 0.0000 0.0040

11 V, wt% 0.0000 0.0030

12 Al, wt% 0.0000 0.0640

13 N, ppm 0.00 87.00

14 B, ppm 0.00 2.00

15 Cu, wt% 0.0000 0.0300

16

Finishing rolling temperature,

˚C

808.00 925.00

17 Coiling temperature, ˚C 478.00 714.00

Output parameters

Two output files are produced by the GA program: unnormalise/nn-output_b and

score-output.

score-output simply prints out the scores for each chromosome.

unnormalise/nn-output_b contains the inputs, prediction and (prediction + error).

This is done for the best chromosomes within all populations:

Column 1-17 The normalized predicted inputs

Column 18 The normalized predicted output

119

Column 19 A value for the error, which includes the experimental noise

of the database, an estimation of the uncertainty in the

prediction and the test error. However, this is added to the

prediction value so that the input/MINMAX file can easily

handle the value.

The normalized values in all columns must be un-normalised using the equation:

actual value = (normalized value + 0.5) * (max-min) + min

The C program, unnormalise/treatout.c, is used to translate the output files to

produce the actual values of inputs and outputs which are written to

unnormalise/result.

7. Error indicators.

None.

8. Accuracy estimate.

See:

Input parameters, output parameters.

9. Any additional information.

See:

120

gareadme.txt

10. Example.

1. Program text

Complete program

2. Program data

The input file (input/nn-input) is:

0.083333

0.1

The input variables (genetic.c) are:

#define TARGET_UNNORMAL 35.0

#define MAX_UNNORMAL 50.0

#define MIN_UNNORMAL 14.0

#define TARGET_PERCENT_PERMIT 0.1

#define UNCERTAINTY_PERCENT_PERMIT 0.15

3. Program results

The output file unnormalise/nn-output_b, which contains the normalised values for

the ultimate tensile strength model including compositions and processing variables

(following result is only single selected case):

121

C Mn Si P S

-0.489758 -0.225548 -0.250718 0.000000 0.000000

Cr Ni Mo Ti Nb

-0.296620 0.000000 0.000000 0.000000 0.000000

V Al N B Cu

1.000000 0.000000 0.000000 -0.050906 1.000000

FRT CT Pred Pred + Err

0.000000 -0.657954 0.087502 0.198706

These are then run with unnormalise/treatout.c, where the normalised values are

converted into the actual values to unnormalise/result:

C Mn Si P S

0.029085 0.508144 0.054094 0.013000 0.008500

Cr Ni Mo Ti Nb

0.032541 0.030000 0.010000 0.002000 0.002000

V Al N B Cu

0.001500 0.032000 43.50000 0.898188 0.045000

122

FRT CT Pred Pred + Err

866.5000 440.7229 35.1500 4.00335

11. Auxiliary subroutines required.

None.

12. Keywords.

hot-rolled steel, genetic algorithm, elongation, neural network.

13. Sources.

genetic.c

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <math.h>

#include <sys/time.h>

/* NN related */

#define NUM 17 /* Total number of genes

*/

#define LIMIT 150 /* Maximum number of

inputs the system can handle */

#define SESSIONS 1000 /* Number of generations

that we'll put the system through */

/* GA related */

#define POPS 2 /* Number of populations

*/

#define SIZE 17 /* Size of vector in the

genetic algorithms */

#define MAXPOP 20 /* Size of

population */

#define BESTPOP 8 /*

Number of individuals taken from the best */

#define SELPOP 12 /*

SELPOP-BESTPOP = Number of people selected randomly to exchange

genes within their own population */

#define NEWPOP 16 /*

NEWPOP-SELPOP = Number of new people created randomly on each

gen. */

#define MUT1 18 /* MUT1-NEWPOP =

Number of genes that are severely mutated */

#define MIXGEN 1 /*

Number of generations between population mixing */

/* result selection */

#define TARGET_UNNORMAL

 35.0

#define MAX_UNNORMAL 50.0

#define MIN_UNNORMAL 14.0

#define TARGET_PERCENT_PERMIT 0.1

#define UNCERTAINTY_PERCENT_PERMIT 0.15

#define CAR -0.03703703 /* Carbon */

#define MAN 0.28512388 /* Manganese */

#define SIL 0.03913045 /* Silicon */

#define PHO 0.03125002 /* Phosphorus */

#define SUL -0.3222222 /* Sulphur */

#define CHR -0.1 /*

Chromium */

#define NIC 0.1 /*

Nickel */

#define MOL -0.33848798 /* Molybdenum */

#define TIT -0.42857143 /* Titanium */

#define NIO -0.48947367 /* Niobium */

#define VAN -0.5 /*

Vanadium */

#define ALU -0.5 /*

Aluminium */

#define NIT -0.11728396 /* Nitrogen */

#define BOR -0.4333333 /* Boron */

#define COP -0.01428570 /* Copper */

123

#define FRT 0.1 /*

Finishin Mill Temperature */

#define CIT 0.1 /*

COiling Temperature */

/* BESTPOP x POPS = no of lines in output file*/

typedef struct

{

 float p[NUM];

} vector;

/* NN related */

vector test[LIMIT], w1,target;

int hits[LIMIT], total;

/* GA related */

float pop[POPS][MAXPOP][SIZE];

double score[POPS][MAXPOP];

double result[POPS][MAXPOP];

double error[POPS][MAXPOP];

double error2[POPS][MAXPOP];

/*---*\

 |

|

 | Randomize

|

 |

|

 ---/

randomize()

{

 struct timeval tp;

 struct timezone tzp;

 /* Use time of day to feed the random number generator

seed */

 gettimeofday(&tp, &tzp);

 srandom(tp.tv_sec);

}

/*---*\

 |

|

 | irand(range) - return a random integer in the range 0..(range-1)

|

 |

|

 ---/

int irand(range) int range;

{

 return(random() % range);

}

/*---*\

 |

|

 | scalar_mult - multiply two vectors

|

 |

|

 ---/

float scalar_mult(x, y) vector x, y;

{

 int i;

 float s = 0.0;

 for (i = 0 ; i < NUM ; i++) s += (x.p[i] * y.p[i]);

 return s;

}

/*---*\

 |

|

 | This function computes the NN's output for a certain input vector.

|

 | The NN is constructed from 2 layers, first layer has 6 neurons,

|

 | second layer has 1 neuron.

|

 |

|

 ---/

net(p,i)

 int p,i;

{

 FILE *nmin,*nmin2,*nmin3,*fcount,*ferr;

 int j,k,l,m,sum,e,no_of_columns;

 char c,s[100],minmax_file[50];

 float res2,res3,res4;

 float err2,err3,err4;

 float err_a,err_b,err_c;

 float err_1,err_1a;

 float

min[50],max[50],dummy,mean,stdev,dev,generation,k1,k2;

 double check_performance();

 FILE *ifp;

 printf("Calling net with p=%d and i=%d",p,i);

 if ((nmin = fopen("./input/norm_test.in","w")) ==

NULL) {

 printf ("Can't

write ./input/norm_test.in");

 exit(1);

 } else {

 l=0;

 for (j=0;j<SIZE;j++) {

#if 1

 fprintf(nmin,"%f

",w1.p[l]);

 ++l;

#else

 if (j != 5) {

 /*

change this line according to which

 variables are wanted to be fixed */

 fprintf(nmin,"%f ",w1.p[l]);

 ++l;

 } else {

 if (j ==

0){

 fprintf(nmin,"%f ",CAR);

 }

 if (j ==

1) {

 fprintf(nmin,"%f ",MAN);

 }

 if (j ==

2) {

 fprintf(nmin,"%f ",SIL);

 }

 if (j ==

3) {

 fprintf(nmin,"%f ",PHO);

 }

 if (j ==

4) {

 fprintf(nmin,"%f ",SUL);

 }

 if (j ==

5) {

 fprintf(nmin,"%f ",CHR);

 }

 if (j ==

6) {

 fprintf(nmin,"%f ",NIC);

 }

 if (j ==

7) {

124

 fprintf(nmin,"%f ",MOL);

 }

 if (j == 8)

{

 fprintf(nmin,"%f ",TIT);

 }

 if (j == 9)

{

 fprintf(nmin,"%f ",NIO);

 }

 if (j ==

10) {

 fprintf(nmin,"%f ",VAN);

 }

 if (j ==

11) {

 fprintf(nmin,"%f ",ALU);

 }

 if (j ==

12) {

 fprintf(nmin,"%f ",NIT);

 }

 if (j ==

13) {

 fprintf(nmin,"%f ",BOR);

 }

 if (j ==

14) {

 fprintf(nmin,"%f ",COP);

 }

 if (j ==

15) {

 fprintf(nmin,"%f ",FRT);

 }

 if (j ==

16) {

 fprintf(nmin,"%f ",CIT);

 }

 }

#endif

 }

 fprintf(nmin,"\n");

 fclose(nmin);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

8 ./input/_wh1f ./input/_wh1f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 1");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res2,&err2);

 printf("res2 err2 %f %f\n",res2,err2);

 printf("Indices %d %d\n",p,i);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

8 ./input/_wh4f ./input/_wh4f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 2");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res3,&err3);

 printf("res3 err3 %f %f\n",res3,err3);

 fclose(nmin2);

 }

 sprintf(s, "./generate44 ./input/spec1.t1

12 ./input/_wl4f ./input/_wl4f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 3");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res4,&err4);

 printf("res4 err4 %f %f\n",res4,err4);

 fclose(nmin2);

 }

 result[p][i] = ((res2+res3+res4)/3);

 printf("this is p %d %d\n", p,i);

 nmin3=fopen("./input/nn-input","r");

 fscanf(nmin3,"%f",&target.p[0]);

 err_a = pow ((res2-target.p[0]),2);

 err_b = pow ((res3-target.p[0]),2);

 err_c = pow ((res4-target.p[0]),2);

 err_1 = (err2+err3+err4);

 err_1a = pow((err_1),2);

 printf("err_a is %f\n",err_a);

 printf("err_b is %f\n",err_b);

 printf("err_c is %f\n",err_c);

 printf("err_1 is %f\n",err_1);

 error2[p][i]=sqrt(err_1a);

 error[p][i] = sqrt (((err_1a)/3)+((err_a + err_b +

err_c)/3));

 printf("error pi is %f\n\n",error[p][i]);

 fcount=fopen("count","r");

 fscanf(fcount,"%d",&e);

 fclose(fcount);

 e++;

 fcount=fopen("count","w");

 fprintf(fcount,"%d",e);

 fclose(fcount);

 printf("\n-----------> sum %d\n",e);

 printf("In net() error is %f res

is %f\n\n",error[p][i],result[p][i]);

 fclose(nmin3);

}

/*---*\

 |

|

 | pop_swap(p, a, b) - swap two vectors and scores in the

population p|

 |

|

 ---/

pop_swap(p, a, b)

 int p, a, b;

{

 int t, i;

 float tg;

 /* Swap vector */

 for (i = 0 ; i < SIZE ; i++)

 {

 t = pop[p][a][i];

 pop[p][a][i] = pop[p][b][i];

 pop[p][b][i] = t;

 }

125

 /* Swap score */

 tg = score[p][a];

 score[p][a] = score[p][b];

 score[p][b] = tg;

 tg = result[p][a];

 result[p][a] = result[p][b];

 result[p][b] = tg;

 tg = error[p][a];

 error[p][a] = error[p][b];

 error[p][b] = tg;

}

/*---*\

 |

|

 | apply(p, i) - apply the i gene of the population p on the NN

|

 |

|

 ---/

apply(p, i)

 int p, i;

{

 /* Each component realtes to a gene in the NN */

 w1.p[0] = pop[p][i][0]; w1.p[1] = pop[p][i][1]; w1.p[2]

= pop[p][i][2];

 w1.p[3] = pop[p][i][3]; w1.p[4] = pop[p][i][4]; w1.p[5]

= pop[p][i][5];

 w1.p[6] = pop[p][i][6]; w1.p[7] = pop[p][i][7]; w1.p[8]

= pop[p][i][8];

 w1.p[9] = pop[p][i][9]; w1.p[10] = pop[p][i][10];

w1.p[11] = pop[p][i][11];

 w1.p[12] = pop[p][i][12]; w1.p[13] = pop[p][i][13];

w1.p[14] = pop[p][i][14];

 w1.p[15] = pop[p][i][15]; w1.p[16] = pop[p][i][16];

}

/*---*\

 |

|

 | pop_copy(p1, a, p2, b) - copy the vector b in the population p2 into |

 | the vector a in the population p1.

|

 |

|

 ---/

pop_copy(p1, a, p2, b)

 int p1, a, p2, b;

{

 int i;

 for (i = 0 ; i < SIZE ; i++)

 pop[p1][a][i] = pop[p2][b][i];

}

/*---*\

 |

|

 | Initialize the populations

|

 |

|

 ---/

make_initial_population()

{

 int p, i, j, k, stack = 0

 float min[50],max[50],dummy,mean,stdev;

 char minmax_file[50],c;

 FILE *ifp;

 ifp=fopen("./input/MINMAX","r");

 while((c=getc(ifp)) != '\n');;

 for (j = 0; j < SIZE+1; j++) {

 fscanf(ifp,"%f%f%f%f%f%f",&min[j],&max[j],&dumm

y,&dummy,&dummy,&dummy);

 }

 fclose(ifp);

 for (p = 0 ; p < POPS ; p++) {

 /* Whole population gets values from -1

to 1 */

 for (i = 0 ; i < MAXPOP ; i++) {

 for (j = 0 ; j < SIZE ;

j++) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) *

2;

 while

(pop[p][i][j] < (-(min[j]/(max[j]-min[j])+0.5))) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) *

2;

 }

 }

 }

 }

}

/*---*\

 |

|

 | Calculate the scores of all the vectors in all the populations

|

 |

|

 ---/

calc_score()

{

 int p, i, j;

 double check_performance();

 for (p = 0 ; p < POPS ; p++){

 for (i = 0 ; i < MAXPOP ; i++){

 {

 printf("Here is scorecalc for pop %d

gene %d: %f\n\n",p,i,score[p][i]);

 apply(p, i);

 score[p][i] = check_performance(p,i);

 printf("Here is scorecc2 for pop %d

gene %d: %f\n\n",p,i,score[p][i]);

 printf("Read %f %f\n", result[p][i],error[p][i]);

 }

 }

 }

}

/*---*\

 |

|

 | Sort the populations

|

 |

|

 ---/

sort_population()

{

 int p, i, j, k;

 float best;

 /* Use insert sort */

 for (p = 0 ; p < POPS ; p++){

 for (i = 0 ; i < MAXPOP ; i++){

 {

126

 best =

score[p][i];

 for (j =

(i+1) ; j < MAXPOP ; j++)

 if (score[p][j] > best)

 {

 best = score[p][j];

 k = j;

 }

 if (best >

score[p][i])

 pop_swap(p, i, k);

 }

 }

 }

}

/*---*\

 |

|

 | Show (on the standard output) the best scores of all populations

|

 |

|

 ---/

statistics(generation)

 int generation;

{

 int p,i;

 printf("generationi is here: %d\n",generation);

 if (generation % MIXGEN == 0)

 printf("-----------------------------\n");

 printf(" %4d) First are: ", generation);

 for (p = 0 ; p < POPS ; p++) printf("%f ", score[p][0]);

 printf(" (from %d)\n",total);

}

/*---*\

 |

|

 | Generate the next generation in all populations

|

 |

|

 ---/

make_next_generation(generation)

 int generation;

{

 int a, p, i, j, k, k1, k2, m, stack;

 float dev,min[50],max[50],dummy,mean,stdev;

 char minmax_file[50],c;

 FILE *ifp;

 ifp=fopen("./input/MINMAX","r");

 while((c=getc(ifp)) != '\n');

 for (j = 0; j < SIZE+1; j++) {

 fscanf(ifp,"%f%f%f%f%f%f",&min[j],&max[j],&dummy,

&dummy,&dummy,&dummy);

 }

 fclose(ifp);

 for (p = 0 ; p < POPS ; p++) {

 /* keep best - BESTPOP */

 /* add another group, randomly -

(SELPOP-BESTPOP) */

 for (i = BESTPOP ; i < SELPOP ; i++) {

 pop_swap(p, i,

(irand(MAXPOP - i) + i));

 }

 /* create new individuals */

 for (i = MUT1 ; i < MAXPOP ; i++) {

 stack = 0;

 for (j = 0 ; j < SIZE ;

j++) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) *

2;

 while

(pop[p][i][j] < (-(min[j]/(max[j]-min[j])+0.5))) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) *

2;

 }

 }

 }

 /* SELPOP to MUT1 will be severe

mutations */

 stack = 0;

 for (i = NEWPOP ; i < MUT1 ; i++) {

 pop_copy(p, i, p,

irand(NEWPOP));

 /* 5000 is the nominal

mutation value */

 dev = 1 + ((irand(2000)

- 1000)/ 5000);

 j=irand(SIZE);

 while (dev < (-

(min[j]/(max[j]-min[j])+0.5))) {

 dev =

1 + ((irand(2000) - 1000)/ 5000);

 }

 pop[p][i][j] = dev;

 }

 /* MUT2 to MAXPOP will be

crossovers */

 stack = 0;

 for (i = SELPOP ; i < NEWPOP ; i++)

{

 /* Every several

generations (set by MIXGEN) there is a cross-over */

 /* between different

populations. */

 pop_copy(p, i,

(((generation%MIXGEN)==0) ? irand(POPS) : p), irand(NEWPOP));

 j = irand(NEWPOP);

 k1 = irand(SIZE - 1);

 k2 = irand(SIZE - 1 -

k1) + k1 + 1;

 for (m = k1 ; m <= k2 ;

m++) pop[p][i][m] = pop[p][j][m];

 /* Mutate slightly to

preserve diversity */

 dev = 1 + ((irand(2000)

- 1000)/ 50000);

 j=irand(SIZE);

 while (dev < (-

(min[j]/(max[j]-min[j])+0.5))) {

 dev =

1 + ((irand(2000) - 1000)/ 50000);

 }

 pop[p][i][j] = dev;

 }

 }

 calc_score();

 sort_population();

 statistics(generation);

 printf("Done %d generations\n\n",generation);

}

127

/*---*\

 |

|

 | Return the number of cases for which the NN returns the correct

value |

 |

|

 ---/

double check_performance (p,i) int p,i;

{

 vector x;

 int j;

 float score_value=0,score_a,d,f;

 net(p,i);

 printf("score_a is %f\n",score_a);

 score_value = error[p][i];

 printf ("Answer is %f and target

is %f\n",result[p][i],target.p[1]);

 if (score_value < 0) {

 score_value = 0; }

 else {

 score_value = 1.0/(score_value);

 }

 printf("score_value is: %f\n",score_value);

 return score_value;

}

/*---*\

 |

|

 | Return the number of cases for which the NN returns the correct

value |

 |

|

 ---/

calc_limit_err()

{

 vector x;

 int j;

 float err=0;

 err = pow((target.p[2]*target.p[0]),2);

 target.p[1] = 1.0/sqrt(err) ;

 printf ("Norm Target Value is %f\n",target.p[0]);

 printf("Target Score is: %f\n",target.p[1]);

 return err;

}

/*---*\

 |

|

 | Get data (reads input file)

|

 |

|

 ---/

int get_data()

{

 char* FileName = "./input/nn-input";

 FILE *fd;

 int i, posnum, negnum;

 float x,y,t;

 /* opens the file */

 if ((fd = fopen(FileName,"r")) == NULL)

 {

 printf ("no-input-file");

 exit(10);

 }

 /* Total number of input values */

 total = 0;

 fscanf(fd,"%f",&t);

 target.p[0]=t;

 printf("Target is %f",target.p[0]);

 fscanf(fd,"%f",&t);

 target.p[2]=t;

 printf("Wanted accuracy is %f",target.p[2]);

 fclose(fd);

 return (0) ;

}

/*---*\

 |

|

 | best_pop - Find the population with the best solution

|

 |

|

 ---/

int best_pop()

{

 int i, p;

 float best=0;

 for (i = 0 ; i < POPS ; i++)

 if (score[i][0] > best)

 {

 best = score[i][0];

 p = i;

 }

 return(p);

}

/*---*\

 |

|

 | Main

|

 |

|

 ---/

main() {

 int generation, i, j, l, p, best, done = 0,e=0, err_1a, k,z;

 float px, py, px1, py1,

p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,er1,er2;

 FILE *fp,*fb,*fcount, *ferr,*fscore;

 FILE *fd;

 double tempResult, tempUncertainty;

 fcount=fopen("count","w");

 fprintf(fcount,"%d",e);

 fclose(fcount);

 randomize();

 get_data(); /* Read input from file */

 calc_limit_err();

 printf("Target is :%f",target.p[0]);

 make_initial_population();

 calc_score();

 sort_population();

 for (p=0;p<POPS;p++) {

 printf("Score of %d

is %f",p,score[p][0]);

 }

 printf("We got here ");

 /* Educate the net */

 generation = 0;

 while ((done != 1) && (generation++ < SESSIONS))

 {

 make_next_generation(generation);

 p = best_pop();

 if (score[p][0] > target.p[1]) {

 printf ("Target error

was %f and error is %f",target.p[1],score[p][0]);

 done = 1;

 } else {

 printf("Done all !!\n");

 }

128

 fb=fopen("./unnormalise/nn-

output_b","a+");

 for (i=0;i<POPS;i++) {

 for

(j=0;j<BESTPOP;j++) {

 apply

(i,j);

 l=0;

 tempResult = (result[i][j] + 0.5) * (MAX_UNNORMAL -

MIN_UNNORMAL) + MIN_UNNORMAL;

 tempUncertainty = ((error[i][j] + result[i][j] + 0.5) *

(MAX_UNNORMAL - MIN_UNNORMAL) + MIN_UNNORMAL) -

tempResult;

 if

((fabs(TARGET_UNNORMAL - tempResult) <

(TARGET_PERCENT_PERMIT * TARGET_UNNORMAL))

 && (tempUncertainty < (2 *

UNCERTAINTY_PERCENT_PERMIT * TARGET_UNNORMAL)))

 {

 for

(k=0;k<SIZE;k++) {

#if 1

 fprintf(fb,"%f ",w1.p[l]);

 ++l;

#else

 if (k != 5) { /* change this line according to which

variables are wanted to be fixed */

 fprintf(nmin,"%f ",w1.p[l]);

 ++l;

 } else {

 if (k == 0){

 fprintf(nmin,"%f

",CAR);

 }

 if (k == 1) {

 fprintf(nmin,"%f

",MAN);

 }

 if (k == 2) {

 fprintf(nmin,"%f ",SIL);

 }

 if (k == 3) {

 fprintf(nmin,"%f

",PHO);

 }

 if (k == 4) {

 fprintf(nmin,"%f

",SUL);

 }

 if (k == 5) {

 fprintf(nmin,"%f

",CHR);

 }

 if (k == 6) {

 fprintf(nmin,"%f ",NIC);

 }

 if (k == 7) {

 fprintf(nmin,"%f

",MOL);

 }

 if (k == 8) {

 fprintf(nmin,"%f ",TIT);

 }

 if (k == 9) {

 fprintf(nmin,"%f

",NIO);

 }

 if (k == 10) {

 fprintf(nmin,"%f

",VAN);

 }

 if (k == 11) {

 fprintf(nmin,"%f

",ALU);

 }

 if (k == 12) {

 fprintf(nmin,"%f ",NIT);

 }

 if (k == 13) {

 fprintf(nmin,"%f

",BOR);

 }

 if (k == 14) {

 fprintf(nmin,"%f

",COP);

 }

 if (k == 15) {

 fprintf(nmin,"%f

",FRT);

 }

 if (k == 16) {

 fprintf(nmin,"%f ",CIT);

 }

 }

#endif

 }

 fprintf(fb,"%f %f

\n",result[i][j],(error[i][j]+result[i][j]));

 }

129

 }

 }

 fclose(fb);

 }

 printf("done! \n");

 printf("\n\n**** For unnormalisation, goto

/unnormalise and type a.out (no. of lines in output file) => BESTPOP x

POPS = no of lines in output file (no. of inputs)****\n");

 fscore=fopen("score_output","w");

 for (i=0;i<POPS;i++) {

 for (j=0;j<MAXPOP;j++) {

 fprintf(fscore,"Score for

score_T_298 pop %d gene %d is %f \n",i,j,score[i][j]);

 printf("scores for

score_T_298 pop %d chromo %d id %f \n",i,j,score[i][j]);

 }

 }

 printf("\n Scores printed to 'scores'\n\n");

 fclose(fscore);

}

130

Appendix C

This is the documentation for the multiple objective genetic algorithm program, as

described in chapter 2.2.2. The target properties are the ultimate tensile strength and

the elongation to failure of hot-rolled steels. This is associated documentation

following the MAP format,

http://www.msm.cam.ac.uk/map/mapmain.html.

Program MAP_HOTROLLEDSTEEL_DOMAINS

1. Provenance of code.

2. Purpose of code.

3. Specification.

4. Description.

5. References.

6. Parameter descriptions.

7. Error indicators.

8. Accuracy estimate.

9. Any additional information.

10. Example.

11. Auxiliary subroutines required.

12. Keywords.

13. Sources.

131

1. Provenance of source code.

Min Sung Joo and H. K. D. H. Bhadeshia

Graduate Institute of Ferrous Technology (GIFT)

Pohang University of Science and Technology

Pohang, Kyoungbuk, Republic of Korea

athpimo@postech.ac.kr

2. Purpose of code.

This program is an implementation of a genetic algorithm which can reach optimum

sets of parameters for two target values of the ultimate tensile strength and the

elongation to failure of hot-rolled steels. This can in theory be applied to any

problem, where a neural network exists.

3. Specification.

Language: C

Product form: Source code and executable files for UNIX/Linux machines.

Complete program.

132

4. Description.

The multiple_UTS_EL.tar.gz file, which can be downloaded from here, contains the

following files. A working version of a GA is also included to optimize the ductility

of the hot-rolled steels as a function of chemical composition and processing

variables.

genetic.c - A C program used to run the genetic algorithm.

genetic.c - A header file for genetic.c.

multiple_UTS_EL - An executable program of genetic.c.

generate44 - It reads the normalized input data file,

input/norm_test.in, and uses the weight files in

subdicrectory input. The results are written to the

temporary output file _ot, _out, _res and _sen.

unnormalise/treatout.c - A C program for un-normalising the output data files.

unnormalise/treatout - An executable program of unnormalise/treatout.c.

unnormalise/nn-output_b - A file which contains the normalized inputs and outputs

of the GA after the program has concluded.

unnormalise/result - A file which contains the unnormalized values for

inputs, outputs and error of each chromosome after

unnormalising data in the normalized nn-output_b file.

input/labels.txt - A list of input variables.

input /TARGETS - Normalised inputs file (target and accuracy values for

the GA).

133

input /norm_test.in - A text file which contains the normalized input

variables initialized by the GA to be fed into the neural

network.

The following are concerned with the neural network files that work with the GA,

but can be changed according to user requirements:

input /11/_w*f - The weights files for the UTS model.

input /11/*.lu - Files containing information for calculating the size of

the error bars for the UTS model.

input /11/spec1.t1 - An altered version of spec.t1 which is a dynamic file

for UTS model, created by neural network. It is read by

the program generate44.

input /11/outran.x - A normalized output file that was created when

developing the UTS model. It is accessed by generate44

via input/11/spec1.t1.

input /17/_w*f - The weights files for the EL model.

input /17/*.lu - Files containing information for calculating the size of

the error bars for the EL model.

input /17/spec1.t1 - An altered version of spec.t1 which is a dynamic file

for EL model, created by neural network. It is read by the

program generate44.

input /17/outran.x - A normalized output file that was created when

developing the EL model. It is accessed by generate44

134

via input/11/spec1.t1.

input /MINMAX - Minimum and maximum values for the input variables

used in the original database.

How to run the GA to find optimum sets of parameters:

First, you have to define in the "values" of the inputs you wish to vary or those you

wish to fix and the corresponding fixed value. Then, you must normalise the desired

target value of the ultimate tensile strength and the elongation and enter them in the

"input/nn-input" file, as well as the wanted accuracy. For example,

2

0.4 0.1

0.2 0.1

First line means that the number of target is 2.

Second line means that 0.4 of normalised target for UTS with 0.1 (10%) accuracy.

Third line means that 0.2 of normalised target for EL with 0.1 (10%) accuracy.

Secondly, you need to set the permitted values for targets in genetic.h

#define MAX_UNNORMAL_UTS 1039.0

#define MIN_UNNORMAL_UTS 317.0

#define MAX_UNNORMAL_EL 50.0

#define MIN_UNNORMAL_EL 14.0

#define TARGET_UNNORMAL_UTS 400.0

#define TARGET_UNNORMAL_EL 35.0

#define TARGET_PERCENT_PERMIT 0.1

#define UNCERTAINTY_PERCENT_PERMIT 0.15

MAX_UNNORMAL_UTS is maximum UTS, MIN_UNNORMAL_UTS is

135

minimum UTS, MAX_UNNORMAL_EL is maximum elongation,

MIN_UNNORMAL_EL is minimum elongation, TARGET_UNNORMAL_UTS is

target UTS and TARGET_UNNORMAL_EL is target EL in MINMAX.

TARGET_PERCENT_PERMIT is permitted range for the targets and

UNCERTAINTY_PERCENT_PERMIT is permitted range for the uncertainties.

Finally, compile the C program "genetic.c" and execute it.

How to change GA parameters

The efficiency of the GA depend on the values of parameters such as the number of

population, the number of generations ... which are not defined for any problem but

must be adapted for each GA. The values are entered directly in the "genetic.h" file

so you have to edit it and change the desired values in the header of the file.

5. References.

Ryu, J. H., Model for mechanical properties of Hot-Rolled Steels, Master Thesis,

POSTECH, 2008.

Shah, I., Tensile Properties of Austenite Stainless Steel, M. Phil. Thesis, University

of Cambridge, 2002.

Delorme, A., Genetic algorithm for optimization of mechanical properties,

Technical report, University of Cambridge, 2003.

136

6. Parameter descriptions.

Input parameters

To specify the target value and accuracy desired, input/TARGETS must be amended.

The normalized target value relates to a real value, according to the input/MINMAX

file used.

Row1 The number of targets

Row2

Normalised target value of UTS and its accuracy (in decimal e.g.

0.1 for 10%)

Row3

Normalised target value of EL and its accuracy (in decimal e.g.

0.1 for 10%)

To specify the permitted range of the output, genetic.h must be changed.

#define MAX_UNNORMAL_UTS The maximum UTS in MINMAX

#define MIN_UNNORMAL_UTS The minimum UTS in MINMAX

#define MAX_UNNORMAL_EL The maximum elongation in MINMAX

#define MIN_UNNORMAL_EL The minimum elongation in MINMAX

#define TARGET_UNNORMAL_UTS The target of UTS

#define TARGET_UNNORMAL_EL The target of elongation

#define

TARGET_PERCENT_PERMIT

The permitted range for the targets

#define

UNCERTAINTY_PERCENT_PERMIT

The permitted range for the uncertainties

137

To initiate the GA search, the inputs are randomly generated and placed in

input/norm_test.in. It should be noted that each chromosome generally relates to a

different steel composition, but this could change over the course of optimization.

For the current multi-objective model, the composition and processing variables,

totally 17 data items, are specified:

Gene number Variable

1 Normalised C, wt%

2 Normalised Mn, wt%

3 Normalised Si, wt%

4 Normalised P, wt%

5 Normalised S, wt%

6 Normalised Cr, wt%

7 Normalised Ni, wt%

8 Normalised Mo, wt%

9 Normalised Ti, wt%

10 Normalised Nb, wt%

11 Normalised V, wt%

12 Normalised Al, wt%

13 Normalised N, ppm

14 Normalised B, ppm

15 Normalised Cu, wt%

138

16 Normalised Finishing rolling temperature, ˚C

17 Normalised Coiling temperature, ˚C

Each input is normalized using the equation:

Normalized value = (value – min)/(max-min) – 0.5

Where the values for min and max are defined as follows:

Gene number Variable Min Max

1 C, wt% 0.0204 0.8684

2 Mn, wt% 0.1670 1.4100

3 Si, wt% 0.0000 0.2170

4 P, wt% 0.0040 0.0220

5 S, wt% 0.0020 0.0150

6 Cr, wt% 0.0000 0.1600

7 Ni, wt% 0.0000 0.0600

8 Mo, wt% 0.0000 0.0200

9 Ti, wt% 0.0000 0.0040

10 Nb, wt% 0.0000 0.0040

11 V, wt% 0.0000 0.0030

12 Al, wt% 0.0000 0.0640

13 N, ppm 0.00 87.00

139

14 B, ppm 0.00 2.00

15 Cu, wt% 0.0000 0.0300

16

Finishing rolling temperature,

˚C

808.00 925.00

17 Coiling temperature, ˚C 478.00 714.00

Output parameters

Two output files are produced by the GA program: unnormalise/nn-output_b and

score-output.

score-output simply prints out the scores for each chromosome.

unnormalise/nn-output_b contains the inputs, prediction and (prediction + error).

This is done for the best chromosomes within all populations:

Column 1-17 The normalized predicted inputs

Column 18 The normalized predicted UTS

Column 19 The normalized uncertainty for UTS

Column 20 The normalized predicted EL

Column 21 The normalized uncertainty for EL

The normalized values in all columns must be un-normalised using the equation:

actual value = (normalized value + 0.5) * (max-min) + min

The C program, unnormalise/treatout.c, is used to translate the output files to

produce the actual values of inputs and outputs which are written to

140

unnormalise/result.

7. Error indicators.

None.

8. Accuracy estimate.

See:

Input parameters, output parameters.

9. Any additional information.

See:

MAP_HOTROLLEDSTEEL_UTS, MAP_HOTROLLEDSTEEL_EL

10. Example.

1. Program text

Complete program

2. Program data

The input file (input/nn-input) is:

2

141

-0.385042 0.1

0.083333 0.1

The input variables (genetic.h) are:

#define MAX_UNNORMAL_UTS 1039.0

#define MIN_UNNORMAL_UTS 317.0

#define MAX_UNNORMAL_EL 50.0

#define MIN_UNNORMAL_EL 14.0

#define TARGET_UNNORMAL_UTS 400.0

#define TARGET_UNNORMAL_EL 35.0

#define TARGET_PERCENT_PERMIT 0.1

#define UNCERTAINTY_PERCENT_PERMIT 0.15

3. Program results

The output file unnormalise/nn-output_b, which contains the normalised values for

the ultimate tensile strength model including compositions and processing variables

(following result is only single selected case):

C Mn Si P S

-0.467796 -0.247790 -0.287128 0.103290 -0.404806

Cr Ni Mo Ti Nb

-0.431536 -0.128436 0.153316 -0.200750 -0.233212

V Al N B Cu

1.000000 0.206896 -0.148574 -0.157592 -0.194496

FRT CT Predicted UTS Uncertainty for UTS

0.001974 -0.414350 -0.381139 -0.323613

142

Predicted EL Uncertainty for EL

0.133929 0.246229

These are then run with unnormalise/treatout.c, where the normalised values are

converted into the actual values to unnormalise/result:

C Mn Si P S

0.047709 0.480497 0.046193 0.014859 0.003238

Cr Ni Mo Ti Nb

0.010954 0.022294 0.013066 0.001197 0.001067

V Al N B Cu

0.004500 0.045241 30.57406 0.684816 0.009165

FRT CT Predicted UTS Uncertainty for UTS

866.7310 498.2134 402.82 41.53

Predicted EL Uncertainty for EL

36.82 4.04

11. Auxiliary subroutines required.

None.

143

12. Keywords.

hot-rolled steel, genetic algorithm, ultimate tensile strength, elongation, neural

network.

13. Sources.

genetic.h

#ifndef __GENETIC_H__

#define __GENETIC_H__

#include <stdio.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include <math.h>

#include <sys/time.h>

/* NN related */

#define NUM 17 /* Total number of genes

*/

#define LIMIT 150 /* Maximum number of

inputs the system can handle */

#define SESSIONS 1000 /* Number of

generations that we'll put the system through */

/* GA related */

#define POPS 3 /* Number of

populations */

#define SIZE 17 /* Size of inputs in the

genetic algorithms */

#define MAXPOP 20 /* Size

of population, number of chromosomes */

#define BESTPOP 3 /*

Number of individuals taken from the best */

#define SELPOP 12 /*

SELPOP-BESTPOP = Number of people selected randomly to exchange

genes within their own population */

#define NEWPOP 16 /*

NEWPOP-SELPOP = Number of new people created randomly on each

gen. */

#define MUT1 18 /* MUT1-NEWPOP =

Number of genes that are severely mutated */

#define MIXGEN 1 /*

Number of generations between population mixing */

/* for Fixed Values of inputs */

#define CAR -0.03703703 /* Carbon */

#define MAN 0.28512388 /* Manganese */

#define SIL 0.03913045 /* Silicon */

#define PHO 0.03125002 /* Phosphorus */

#define SUL -0.3222222 /* Sulphur */

#define CHR -0.1 /*

Chromium */

#define NIC 0.1 /*

Nickel */

#define MOL -0.33848798 /* Molybdenum */

#define TIT -0.42857143 /* Titanium */

#define NIO -0.48947367 /* Niobium */

#define VAN -0.5 /*

Vanadium */

#define ALU -0.5 /*

Aluminium */

#define NIT -0.11728396 /* Nitrogen */

#define BOR -0.4333333 /* Boron */

#define COP -0.01428570 /* Copper */

#define FRT 0.1 /*

Finish Deformation Temperature */

#define CIT 0.1 /*

Coiling Temperature */

/* OBJECTIVES */

#define OBJECTIVE_FILE_NAME "./input/TARGETS"

#define MINMAX_FILE_NAME "./input/MINMAX"

#define INPUT_VAR_FILE_NAME "./input/norm_test.in"

#define RESULT_FILE_NAME "./unnormalise/nn-output_b"

#define MAX_TARGET_NUM 10

#define MAX_SMALL_MODEL_NUM 25

/* For two model, UTS, EL */

#define MAX_UNNORMAL_UTS 1039.0

#define MIN_UNNORMAL_UTS 317.0

#define MAX_UNNORMAL_EL

 50.0

#define MIN_UNNORMAL_EL 14.0

#define TARGET_UNNORMAL_UTS 400.0

#define TARGET_UNNORMAL_EL 35.0

#define TARGET_PERCENT_PERMIT 0.1

#define UNCERTAINTY_PERCENT_PERMIT 0.15

typedef struct _targets

{

 int num_targets;

 float targets[MAX_TARGET_NUM];

 float targets_accuracy[MAX_TARGET_NUM];

 float targets_limit_err[MAX_TARGET_NUM];

 float total_limit_err;

} targets_strt;

typedef struct _populations

{

 float pop[POPS][MAXPOP][SIZE];

 float total_score[POPS][MAXPOP];

 float score[MAX_TARGET_NUM][POPS][MAXPOP];

 float result[MAX_TARGET_NUM][POPS][MAXPOP];

 float error[MAX_TARGET_NUM][POPS][MAXPOP];

} populations_strt;

#define MAX_SYSTEM_STRING 255

144

// Computation of NN models with the inputs

void check_performance();

// initialize the populations

void make_initial_population();

// generate the next generation in all populations

void make_next_generation(int generation);

// sort the populations

void sort_population();

// set the error limitation

void calc_limit_err();

// score calculation

void calc_score();

// get data

void get_data();

#endif /* __GENETIC_H__ */

genetic.c

#include "genetic.h"

static targets_strt objectives;

static populations_strt populations;

static float input_to_nn[NUM];

static float input_to_nn_all[POPS][MAXPOP][NUM];

/* initialize this program */

static void init() {

 memset(&objectives, 0x00, sizeof(targets_strt));

 memset(&populations, 0x00, sizeof(populations_strt));

}

/* init random */

static void randomize() {

 struct timeval tp;

 struct timezone tzp;

 /* Use time of day to feed the random number generator

seed */

 gettimeofday(&tp, &tzp);

 srandom(tp.tv_sec);

}

/* input apply for NN */

static void apply(int p,int i) {

 int j;

 /* Each component realtes to a gene in the NN */

 for(j=0; j<SIZE; j++) input_to_nn[j] =

populations.pop[p][i][j];

}

static void apply_all() {

 int p, i, j;

 for(p=0; p<POPS; p++) {

 for(i=0; i<MAXPOP; i++) {

 for(j=0;j<SIZE;j++) {

 input_to_nn_all[p][i][j] = populations.pop[p][i][j];

 }

 }

 }

}

// swap two vectors and scores in the population p

static void pop_swap(int p,int a,int b) {

 int i;

 float tg;

 /* Swap vector */

 for (i = 0 ; i < SIZE ; i++)

 {

 tg = populations.pop[p][a][i];

 populations.pop[p][a][i] =

populations.pop[p][b][i];

 populations.pop[p][b][i] = tg;

 }

 tg = populations.total_score[p][a];

 populations.total_score[p][a] =

populations.total_score[p][b];

 populations.total_score[p][b] = tg;

 /* Swap score */

 for(i = 0; i<objectives.num_targets; i++) {

 tg = populations.score[i][p][a];

 populations.score[i][p][a] =

populations.score[i][p][b];

 populations.score[i][p][b] = tg;

 tg = populations.result[i][p][a];

 populations.result[i][p][a] =

populations.result[i][p][b];

 populations.result[i][p][b] = tg;

 tg = populations.error[i][p][a];

 populations.error[i][p][a] =

populations.error[i][p][b];

 populations.error[i][p][b] = tg;

 }

}

// find the population with the best solution

static int best_pop() {

 int m, i, p;

 float best=0;

 for (i = 0 ; i < POPS ; i++) {

 if (populations.total_score[i][0] > best)

{

 best =

populations.total_score[i][0];

 p = i;

 }

 }

 return p;

}

145

// return a random integer in the range 0..(range-1)

static int irand(int range)

{

 return(random() % range);

}

// copy the vector b in the population p2 into the vector a in the population

p1

static void pop_copy(int p1,int a,int p2,int b)

{

 int i;

 for (i = 0 ; i < SIZE ; i++)

 populations.pop[p1][a][i] =

populations.pop[p2][b][i];

}

/* for NN model */

static void model(int model_num) {

 FILE *fp = NULL;

 int num_res_err = 0, p = 0, i = 0, j = 0;

 float

res[POPS][MAXPOP][MAX_SMALL_MODEL_NUM] = {'\0'};

 float

err[POPS][MAXPOP][MAX_SMALL_MODEL_NUM] = {'\0'};

 float sum_res[POPS][MAXPOP] = {'\0'},

sum_err[POPS][MAXPOP] = {'\0'};

 float sum_diff_err[POPS][MAXPOP] = {'\0'}, dump;

 if(model_num == 0) {

 /* small model is doing */

 system("./generate44 ./input/11/spec1.t1

6 ./input/11/_wf1f ./input/11/_wf1f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL) {

 printf ("Cannot open _out

stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

6 ./input/11/_wf3f ./input/11/_wf3f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL) {

 printf ("Cannot open _out

stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

8 ./input/11/_wh2f ./input/11/_wh2f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL)

{

 printf ("Cannot open

_out stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++) {

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

8 ./input/11/_wh4f ./input/11/_wh4f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL)

{

 printf ("Cannot open

_out stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++) {

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

9 ./input/11/_wi4f ./input/11/_wi4f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL)

{

 printf ("Cannot open

_out stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++) {

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

10 ./input/11/_wj2f ./input/11/_wj2f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL)

{

 printf ("Cannot open

_out stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

146

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

10 ./input/11/_wj4f ./input/11/_wj4f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL) {

 printf ("Cannot open _out

stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

10 ./input/11/_wj5f ./input/11/_wj5f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL) {

 printf ("Cannot open _out

stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

15 ./input/11/_wo5f ./input/11/_wo5f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL) {

 printf ("Cannot open _out

stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/11/spec1.t1

19 ./input/11/_ws4f ./input/11/_ws4f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL)

{

 printf ("Cannot open

_out stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++) {

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 /* results */

 for (p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++) {

 sum_res[p][i] = 0.0;

 sum_err[p][i] = 0.0;

 for(j=0;j<num_res_err;j++) {

 sum_res[p][i] += res[p][i][j];

 sum_err[p][i] += err[p][i][j];

 }

 populations.result[model_num][p][i] =

 sum_res[p][i]/num_res_err;

 sum_diff_err[p][i] = 0.0;

 for(j=0;j<num_res_err;j++) {

 sum_diff_err[p][i] +=

 pow(res[p][i][j]-

 objectives.targets[model_num],

 2);

 }

 populations.error[model_num][p][i] =

 sqrt((pow(sum_err[p][i],2)/num_res_err)+

 (sum_diff_err[p][i]/num_res_err));

 if

(populations.error[model_num][p][i] < 0) {

 populations.score[model_num][p][i] =

 0.0;

 } else

{

147

 populations.score[model_num][p][i] =

 1.0/populations.error[model_num][p][i];

 }

 }

 }

 }

 if(model_num == 1) {

 /* small model is doing */

 system("./generate44 ./input/17/spec1.t1

8 ./input/17/_wh1f ./input/17/_wh1f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL) {

 printf ("Cannot open _out

stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/17/spec1.t1

8 ./input/17/_wh4f ./input/17/_wh4f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL) {

 printf ("Cannot open _out

stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 system("./generate44 ./input/17/spec1.t1

12 ./input/17/_wl4f ./input/17/_wl4f.lu &> /dev/null");

 if ((fp = fopen("_out","r")) == NULL) {

 printf ("Cannot open _out

stage 1 of model %d", model_num);

 exit(1);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++)

{

 fscanf(fp,"%f %f %f %f",

 &res[p][i][num_res_err],

 &err[p][i][num_res_err],

 &dump, &dump);

 }

 }

 fclose(fp);

 fp = NULL;

 num_res_err++;

 /* results */

 for (p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++) {

 sum_res[p][i] = 0.0;

 sum_err[p][i] = 0.0;

 for(j=0;j<num_res_err;j++) {

 sum_res[p][i] += res[p][i][j];

 sum_err[p][i] += err[p][i][j];

 }

 populations.result[model_num][p][i] =

 sum_res[p][i]/num_res_err;

 sum_diff_err[p][i] = 0.0;

 for(j=0;j<num_res_err;j++) {

 sum_diff_err[p][i] +=

 pow(res[p][i][j]-

 objectives.targets[model_num],

 2);

 }

 populations.error[model_num][p][i] =

 sqrt((pow(sum_err[p][i],2)/num_res_err)+

 (sum_diff_err[p][i]/num_res_err));

 if

(populations.error[model_num][p][i] < 0) {

 populations.score[model_num][p][i] =

 0.0;

 } else

{

 populations.score[model_num][p][i] =

 1.0/populations.error[model_num][p][i];

 }

 }

 }

 }

}

/* Main Function */

int main() {

 int generation, done;

 int m, p, i, j, k, l;

 double tempResultUTS, tempUncertaintyUTS,

tempResultEL, tempUncertaintyEL;

 FILE *fp = NULL, *fcount = NULL;

 // initialize the program

 init();

 randomize();

 // read input from file

 get_data();

 // make initial populations

 make_initial_population();

 // calculate the initial score with NN model

 calc_score();

 sort_population();

148

 generation = 0;

 done = 0;

 if ((fp=fopen(RESULT_FILE_NAME,"a+")) == NULL) {

 printf("Cannot open %s\n",

RESULT_FILE_NAME);

 exit(1);

 }

 while ((done != 1) && (generation++ < SESSIONS)) {

 if((fcount = fopen("count", "w")) ==

NULL){

 printf("Cannot open

count\n");

 exit(1);

 }

 fprintf(fcount, "%d", generation);

 fclose(fcount);

 make_next_generation(generation);

 p = best_pop();

 if (populations.total_score[p][0] >

objectives.total_limit_err) {

 printf ("Target error

was %f and error is %f",

 objectives.total_limit_err,

 populations.total_score[p][0]);

 done = 1;

 } else {

 printf("Done all,

target : %f, score : %f!!\n", objectives.total_limit_err,

populations.total_score[p][0]);

 }

 for (i=0;i<POPS;i++) {

 for (j=0;j<BESTPOP;j++)

{

 apply

(i,j);

 l=0;

 /* for

only two model, UTS, EL */

 tempResultUTS = (populations.result[0][i][j] + 0.5) *

(MAX_UNNORMAL_UTS - MIN_UNNORMAL_UTS) +

MIN_UNNORMAL_UTS;

 tempUncertaintyUTS = ((populations.error[0][i][j] +

populations.result[0][i][j] + 0.5) * (MAX_UNNORMAL_UTS -

MIN_UNNORMAL_UTS) + MIN_UNNORMAL_UTS) - tempResultUTS;

 tempResultEL = (populations.result[1][i][j] + 0.5) *

(MAX_UNNORMAL_EL - MIN_UNNORMAL_EL) +

MIN_UNNORMAL_EL;

 tempUncertaintyEL = ((populations.error[1][i][j] +

populations.result[1][i][j] + 0.5) * (MAX_UNNORMAL_EL -

MIN_UNNORMAL_EL) + MIN_UNNORMAL_EL) - tempResultEL;

 if

((fabs(TARGET_UNNORMAL_UTS - tempResultUTS) <

(TARGET_PERCENT_PERMIT * TARGET_UNNORMAL_UTS))

 && (fabs(TARGET_UNNORMAL_EL - tempResultEL) <

(TARGET_PERCENT_PERMIT * TARGET_UNNORMAL_EL))

 && (tempUncertaintyUTS < (2 *

UNCERTAINTY_PERCENT_PERMIT * TARGET_UNNORMAL_UTS))

 && (tempUncertaintyEL < (2 *

UNCERTAINTY_PERCENT_PERMIT * TARGET_UNNORMAL_EL)))

 {

 for

(k=0;k<SIZE;k++) {

#if 1

 fprintf(fp,"%f ",input_to_nn[l]);

 ++l;

#else

 if (k != 19) {

 fprintf(fp,"%f ",input_to_nn[l]);

 ++l;

 } else {

 /* change this line according to which

 variables are wanted to be fixed */

 if (k == 19) fprintf(fp,"%f ",pwhtT);

 }

#endif

 }

 for(m

= 0; m < objectives.num_targets; m++) {

 fprintf(fp,"%f %f

",populations.result[m][i][j],(populations.error[m][i][j]+populations.resul

t[m][i][j]));

 }

 fprintf(fp, "\n");

 }

 }

 }

 }

 printf("done! \n");

 fclose(fp);

 return 1;

}

void get_data() {

 FILE * fp = NULL;

 int num_targets = 0, i = 0;

 float temp_value = 0.0;

 if ((fp = fopen(OBJECTIVE_FILE_NAME, "r")) ==

NULL) {

 printf("Cannot open the %s\n",

OBJECTIVE_FILE_NAME);

 exit(1);

 }

 fscanf(fp, "%d", &num_targets); // get model(target)

numbers

 objectives.num_targets = num_targets;

 for(i = 0; i < num_targets; i++) {

 fscanf(fp, "%f%f",

 &(objectives.targets[i]),

 &(objectives.targets_accuracy[i]));

 temp_value =

pow(((objectives.targets[i]) * (objectives.targets_accuracy[i])), 2);

 objectives.targets_limit_err[i] =

1.0/sqrt(temp_value);

 }

 for (i = 0; i < num_targets; i++) {

 objectives.total_limit_err +=

objectives.targets_limit_err[i];

 }

 fclose(fp);

 return;

}

149

void make_initial_population() {

 int p, i, j;

 char c;

 FILE *fp = NULL;

 float min[NUM+MAX_TARGET_NUM]={'\0'},

max[NUM+MAX_TARGET_NUM]={'\0'};

 float dummy = 0;

 if((fp=fopen(MINMAX_FILE_NAME,"r")) == NULL) {

 printf("Cannot open %s\n",

MINMAX_FILE_NAME);

 exit(1);

 }

 while((c=getc(fp)) != '\n');

 for (j = 0; j < SIZE+objectives.num_targets; j++) {

 fscanf(fp,"%f%f%f%f%f%f",&min[j],&max[j],

 &dummy,&dummy,&dummy,&dummy);

 }

 for (p = 0 ; p < POPS ; p++) {

 /* Whole population gets values from -1

to 1 */

 for (i = 0 ; i < MAXPOP ; i++) {

 for (j = 0 ; j < SIZE ;

j++) {

 populations.pop[p][i][j] = ((random()&1048575) /

1000000.0 - 0.5) * 2;

 while

(populations.pop[p][i][j] < (-(min[j]/(max[j]-min[j])+0.5))) {

 populations.pop[p][i][j] = ((random()&1048575) /

1000000.0 - 0.5) * 2;

 }

 }

 }

 }

 fclose(fp);

 return;

}

void calc_score() {

 int p, i;

#if 0

 for (p = 0 ; p < POPS ; p++){

 for (i = 0 ; i < MAXPOP ; i++){

 apply(p, i);

 check_performance(p,i);

 }

 }

#else

 apply_all();

 check_performance();

#endif

 return;

}

void check_performance()

{

 FILE *fp_input_var = NULL,*fp_output = NULL;

 char system_string[MAX_SYSTEM_STRING] = {'\0'};

 int p,i,j,l,r;

 /* set the input values */

 if ((fp_input_var =

fopen(INPUT_VAR_FILE_NAME,"w")) == NULL) {

 printf ("Cannot open %s\n",

INPUT_VAR_FILE_NAME);

 exit(1);

 }

 for(p=0;p<POPS;p++){

 for(i=0;i<MAXPOP;i++){

 l=0;

 for (j=0;j<SIZE;j++) {

#if 1

 fprintf(fp_input_var,"%f ",input_to_nn_all[p][i][l]);

 ++l;

#else

 if (j !=

19) {

 /* change this line according to which

 variables are wanted to be fixed */

 fprintf(fp_input_var,"%f ",input_to_nn_all[p][i][l]);

 ++l;

 } else {

 if (j == 19) fprintf(fp_input_var,"%f ",pwhtT);

 }

#endif

 }

 fprintf(fp_input_var,"\n");

 }

 }

 fclose(fp_input_var);

 for(j = 0; j<objectives.num_targets;j++) {

 model(j);

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++) {

 populations.total_score[p][i] = 0.0;

 }

 }

 for(p=0;p<POPS;p++) {

 for(i=0;i<MAXPOP;i++) {

#if 0

 for(j = 0;

j<objectives.num_targets;j++) {

 populations.total_score[p][i] +=

populations.score[j][p][i];

 }

#else // Two models

 r = irand(1000);

 populations.total_score[p][i] =

 (((float)r/1000) * populations.score[0][p][i]) + ((1 -

((float)r/1000)) *populations.score[1][p][i]);

#endif

 }

 }

 return;

}

void sort_population()

{

 int m, p, i, j, k;

 float best;

 /* Use insert sort */

 for (p = 0 ; p < POPS ; p++){

 /* best total_score */

 for (i = 0 ; i < MAXPOP ; i++){

 best =

populations.total_score[p][i];

 k = i;

 for (j = (i+1) ; j <

MAXPOP ; j++)

 if

(populations.total_score[p][j] >= best)

 {

 best = populations.total_score[p][j];

150

 k = j;

 }

 if (best >

populations.total_score[p][i])

 pop_swap(p, i, k);

 }

 /* best for model i */

 for (m = 0; m<objectives.num_targets;

m++) {

 best =

populations.score[m][p][m+1];

 k = m+1;

 for (i = m+2 ; i <

MAXPOP ; i++){

 if

(populations.score[m][p][i] >= best) {

 best = populations.score[m][p][i];

 k = i;

 }

 }

 pop_swap(p, m+1, k);

 }

 }

}

void make_next_generation(int generation)

{

 int p, i, j, k1, k2, l, stack;

 float dev = 0.0, min[NUM+MAX_TARGET_NUM] =

{'\0'}, max[NUM+MAX_TARGET_NUM] = {'\0'}, dummy = 0.0;

 char c;

 FILE *fp = NULL;

 if((fp=fopen(MINMAX_FILE_NAME,"r")) == NULL) {

 printf("Cannot open file %s\n",

MINMAX_FILE_NAME);

 exit(1);

 }

 while((c=getc(fp)) != '\n');

 for (j = 0; j < SIZE+objectives.num_targets; j++) {

 fscanf(fp,"%f%f%f%f%f%f",&min[j],&max[j],

 &dummy,&dummy,&dummy,&dummy);

 }

 for (p = 0 ; p < POPS ; p++) {

 /* keep best - BESTPOP */

 /* add another group, randomly -

(SELPOP-BESTPOP) */

 for (i = BESTPOP ; i < SELPOP ; i++)

{

 pop_swap(p, i,

(irand(MAXPOP - i) + i));

 }

 /* create new individuals */

 for (i = MUT1 ; i < MAXPOP ; i++) {

 stack = 0;

 for (j = 0 ; j < SIZE ;

j++) {

 populations.pop[p][i][j] = ((random()&1048575) /

1000000.0 - 0.5) * 2;

 while

(populations.pop[p][i][j] < (-(min[j]/(max[j]-min[j])+0.5))) {

 populations.pop[p][i][j] = ((random()&1048575) /

1000000.0 - 0.5) * 2;

 }

 }

 }

 /* SELPOP to MUT1 will be severe

mutations */

 stack = 0;

 for (i = NEWPOP ; i < MUT1 ; i++) {

 pop_copy(p, i, p,

irand(NEWPOP));

 /* 5000 is the nominal

mutation value */

 dev = 1 + ((irand(2000)

- 1000)/ 5000);

 j=irand(SIZE);

 while (dev < (-

(min[j]/(max[j]-min[j])+0.5))) {

 dev = 1

+ ((irand(2000) - 1000)/ 5000);

 }

 populations.pop[p][i][j]

= dev;

 }

 /* MUT2 to MAXPOP will be crossovers

*/

 stack = 0;

 for (i = SELPOP ; i < NEWPOP ; i++) {

 /* Every several

generations (set by MIXGEN) there is a cross-over */

 /* between different

populations. */

 pop_copy(p, i,

(((generation%MIXGEN)==0) ? irand(POPS) : p), irand(NEWPOP));

 j = irand(NEWPOP);

 k1 = irand(SIZE - 1);

 k2 = irand(SIZE - 1 -

k1) + k1 + 1;

 for (l = k1 ; l <= k2 ;

l++) populations.pop[p][i][l] = populations.pop[p][j][l];

 /* Mutate slightly to

preserve diversity */

 dev = 1 + ((irand(2000)

- 1000)/ 50000);

 j=irand(SIZE);

 while (dev < (-

(min[j]/(max[j]-min[j])+0.5))) {

 dev = 1

+ ((irand(2000) - 1000)/ 50000);

 }

 populations.pop[p][i][j]

= dev;

 }

 }

 calc_score();

 sort_population();

 printf("Done %d generations\n\n",generation);

 fclose(fp);

 return;

}

151

Curriculum Vitae

Name: Joo, Min Sung

E-mail: athpimo@postech.ac.kr

Date of birth: 23
th
 June, 1980

Place of birth: Seoul, South Korea

Education

M. S. 2008, POSTECH (Pohang, Korea), Graduate Institute of Ferrous Technology,

Computational Metallurgy Group

B. S. 2006, POSTECH (Pohang, Korea), Department of Computer Science and

Engineering

Publications

Minsung Joo, Joohyun Ryu and H. K. D. H. Bhadeshia: Domains of Steels with

Identical Properties, submitted to Materials and Manufacturing Processes.

