

Radu Calin Dimitriu University of Cambridge, UK

http://www.msm.cam.ac.uk/phase-trans/

Hot-Strength of Ferritic Creep-Resistant Steels

Comparison of Neural Network and Genetic Programming

Strength of Ferritic Steels?

Neural networks

Neural networks in a Bayesian framework used to model the hot-strength of ferritic steels

Neural network: non-linear method of regression

Data fitted to a function to capture complex relations between inputs and output

Three layer neural network

General form of neural network

- y output
- w weight
- h hidden unit
- θ bias
- x inputs
- i, j subscripts

$$y = \sum_{i} w_i^{(2)} h_i + \theta^{(2)}$$

$$h_i = \tanh\left(\sum_j w_{ij}^{(1)} x_j + \theta_i^{(1)}\right)$$

Hyperbolic tangents

transfer functionvery flexible

Genetic programming

Machine learning technique to optimise a population of computer programs

Program may be an expression, formula, plan, control strategy, decision tree or learning model

Genetic programming evolution cycle

Genetic programming functions

- arithmetic (+, -, *, /)
- elementary (exp, log, power, ...)
- trigonometric (sin, cos, tan, ...)

- genetic operators (mutation, ...)

Input variables

- Al, C, Cu, Cr, Mn, Mo, Ni, N,Si
- Austenitising time and temperature
- Tempering time and temperature
- Test temperature

Variable	Minimum	Maximum
Aluminium / wt%	0.001	0.04
Carbon / wt $\%$	0.09	0.48
Copper / wt $\%$	0.0001	0.25
Chromium / $wt\%$	0.0001	12.38
Manganese / wt $\%$	0.38	1.44
Molybdenum / wt $\%$	0.01	1.05
Nickel / wt $\%$	0.0001	0.6
Nitrogen / wt $\%$	0.001	0.04
Silicon / wt $\%$	0.18	0.86
Austenitising time $/ \min$	10	5400
Tempering time $/ \min$	30	66 0
Austenitising temperature $/$ K	1143.15	1243.15
Tempering temperature / K	898.15	1023.15
Test temperature $/$ K	293.15	973.15
Hot strength / MPa $$	69	660

Significance

Hot Strength / MPa

Conclusions

Both methods where similar in capturing the two regimes in the decrease of hot strength

The neural network having a plus in also capturing the slopes correctly

ACKNOWLEDGEMENTS

- Many thanks to professor H. K. D. H. Bhadeshia
- Department of Material Science and Metallurgy
- University of Cambridge
- European Commission under the Marie Curie Early Stage Research Training Programme

Thank you for listening