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Abstract 
 

Cementite precipitation from austentite in steels can be suppressed by 

alloying with silicon and aluminum. There are, however, no validated 

thermodynamic data to enable phase equilibria to be estimated when silicon 

and aluminum are present in cementite. The formation energies of Fe3C, 

(Fe11M  
  )C4 and (Fe11M  

  )C4, where M means an alloying element Si, Al or 

Mn, have therefore been estimated using first-principles calculations based on 

the total energy all-electron full-potential linearized augmented plane-wave 

method within the generalized gradient approximation to density functional 

theory. The ground state properties such as lattice constants and bulk moduli 

have also been calculated. The calculations show that (Fe11Si  
  )C4 and 

(Fe11Si  
  )C4 have about 52.1 kJ mol   and 37.2 kJ mol   greater formation 

energy, respectively, than Fe3C, while (Fe11 Al  
  )C4, (Fe11 Al  

  )C4, 

(Fe11Mn  
  )C4 and (Fe11Mn  

  )C4 have about 10.0 kJ mol  , 13.6 kJ mol  , 

4.4 kJ  mol   and 5.0 kJ  mol   smaller. The formation energy for 

hypothetical cementite Si3C, Al3C and Mn3C have also been calculated to be 

about 256.4 kJ mol  , 95.6 kJ mol   and −52.7 kJ mol  . The magnetic 

moments have also been estimated. The calculated electronic structures 

indicate that the magnetic moment reduction at the Fe(4c) site by the Si 

substitution at Fe(4c) site is indirect through the neighboring carbon atom, 

whereas at the Fe(8d) site it is direct.  
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Nomenclature 

 

3D-BZ  Three dimensional Brillouin zone 

    Eutectoid temperature  

    Curie point 

    The temperature at which ferrite transforms to austenite 

    The temperature at which austentite transforms to ferrite 

    The critical temperature for cooling process 

    The critical temperature for equilibrium 

    The critical temperature for heating process 

   Bulk modulus 

    The pressure derivative of bulk modulus 

BCC  Body centered cubic  

DOS  Density of states 

      Cohesive energy 

     The ground state energy 

 [ ]  Energy density functional 

   [ ]  Exchange-correlation density functional 

 (Fe M C ) The total energy at equilibrium state 

    Fermi energy level  

FCC  Face centered cubic  

Fe3C  Cementite 

(Fe11M  
  )C4 Structure with an iron atom which is replaced by M at 4c 

(Fe11M  
  )C4  Structure with an iron atom which is replaced by M at 8d 

(Fe11Si  
  )C4  Structure with an iron atom which is replaced by Si at 4c 

(Fe11Si  
  )C4  Structure with an iron atom which is replaced by Si at 8d 

(Fe11Al  
  )C4  Structure with an iron atom which is replaced by Al at 4c 

(Fe11Al  
  )C4  Structure with an iron atom which is replaced by Al at 8d 



v 

 

(Fe11Mn  
  )C4  Structure with an iron atom which is replaced by Mn at 4c 

(Fe11Mn  
  )C4  Structure with an iron atom which is replaced by Mn at 8d 

FM  Ferromagnetic 

GGA   Generalized gradient approximation 

      Total sum of Hamiltonian  

   Reciprocal lattice vectors 

LDA  Local density approximation 

LDOS  Projected local density of states 

MT  Muffin-tin  

 ( )  Electronic density function 

      Electron density value for homogeneous electrons 

      The ground state electronic density 

NM  Nonmagnetic  

   Bravais lattice vectors 

    Nuclei kinetic part of Hamiltonian 

    Electronic kinetic part of Hamiltonian 

∆   The formation energy 

  ( )  Radial part to express inside muffin-tin sphere 

 n-n  Interaction part between nuclei and nuclei  

 e-e  Interaction part between nuclei and electrons  

 n-e.  Interaction part between electrons and electrons 

      External potential  

      Effective potential 

   ( ,  ) Spherical harmonics  

α  Ferrite 

γ  Austenite 

   Wave function of Schrödinger equation  

    Wave function of nuclei part of Schrödinger equation 
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    Wave function of electronic part of Schrödinger equation  

     The ground state wave function 

    Wave function of electronic part of Schrödinger equation  

     The ground state wave function 

    
   The wave function which give the minimum value of 

kinetic and electronic interaction part with density   
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I  Introduction 
 

1.1 Aim of the Work 

 

 Steels are usually combinations of body-centered-cubic (BCC) ferrite, face-

centered-cubic (FCC) austenite and orthorhombic cementite (Fe3C) phases. 

The concentrations of solutes and thermo-mechanical processing of the steel 

determine the fractions of each phase and the details of the microstructure. 

The phases and microstructure can in turn determine properties such as 

strength, toughness and hardenability. Cementite can be detrimental in many 

strong steels and mechanisms must be found to suppress its formation during 

the evolution of the final microstructure.  

 

There is a particular mixture of phases in steels which has led to dramatic 

developments in their application (Matsumura et al., 1987; Caballero et al., 

2001; Speer et al., 2004, Caballero et al., 2004; Jacques, 2004; Yang et al., 

2005; De Cooman, 2004; Chatterjee, 2007). This combination is commonly 

designated carbide-free bainite and consists of a mixture of fine ferrite plates, 

embedded in a matrix of carbon-retained austenite. This latter phase is usually 

unstable at room temperature, but is made so by preventing cementite 

precipitation using silicon and aluminum addition to the steel. The austenite is 

then able to retain carbon in solid solution, allowing it to stay untransformed 

to room temperature.  

 

 The specific role of silicon in retarding cementite precipitation has been 

known for a long time (Bain, 1939; Allten and Payson, 1953; Owen, 1954; 

Matas and Hehemann, 1961; Entin, 1962; Keh and Leslie, 1963; Deliry, 1965; 

Pomey, 1966; Gordine and Codd, 1969; Hehemann, 1970; Le-Houillier et al., 

1971; Lorimer et al., 1972; Sandvik, 1982; Bhadeshia and Edmonds, 1983). 
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During precipitation of cementite at low temperature, it must maintain the 

silicon concentration of the parent phase; since the solubility of silicon in 

cementite is almost zero, the entrapping of silicon is thought to dramatically 

decrease the driving force for precipitation (Bhadeshia, 2003; Ghosh and 

Olson, 2002; Kozeschnik and Bhadeshia, 2008).  

 

However, it has not been possible to theoretically support the mechanism by 

which the silicon acts, because thermodynamic data on silicon in cementite 

cannot be measured due to its incredibly low solubility in the carbide. Values 

based on educated guesses are used in the limited calculations that exist 

(Ghosh and Olson, 2002; Kozeschnik and Bhadeshia, 2008). The purpose of 

this work was specifically to derive the relevant thermodynamic data using 

total energy calculations, in particular, by using the all-electron full-potential 

linearized augmented plane-wave (FLAPW) method (Wimmer at al., 1981; 

Weinert at al., 1928) implemented in the QMD-FLAPW package.  

 

1.2 Thermodynamics and Kinetics 

 

 The study of steels and irons usually begins with the iron-carbon diagram. 

Fig. 1.1 is the iron-carbon system metastable diagram. In steel systems, many 

of the properties are determined by the phases and microstructures which 

appear in this diagram. These factors also influence the behavior not only in 

iron-carbon system but also more complex alloy systems, both equilibrium 

and para-equilibrium transformation. The phases which are found in the iron-

carbon diagram can be found also in complex steels, but alloying elements 

will affect the formation and properties of these phases.  
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Figure 1.1 An iron-carbon system metastable equilibrium diagram  

(Pollack, 1988). 

 

 There are several important phases in the iron-carbon system such as BCC 

ferrite at low temperatures ( -ferrite) and high temperature ( -ferrite), FCC 

austenite ( -austenite) and cementite ( -carbide). There are several critical 

temperatures in the iron-carbon phase diagram. First, there is the    

temperature which represents the eutectoid at about 723℃ in the binary 

system. Second,    is the Curie point at which ferritic iron transforms from 

its ferromagnetic state to become paramagnetic at about 769℃. The third 

point is the    temperature at which ferrite transforms to austenite at about 

910℃ in pure iron. The last point is    when austenite transforms to  -
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ferrite, 1390℃ for pure iron. These temperatures can be determined for 

heating (  ), cooling (  ) and equilibrium (  ). The alloying elements 

change the shape and critical temperatures on the phase diagram, and indeed, 

may lead to the introduction of new phases and multiphase equilibria.  

 

 The alloying elements can be classified as four groups according to the 

binary phase diagrams with iron, as two groups of ferrite formers and 

austenite formers. Fig. 1.2 represents four categories of alloying elements 

with respect to the phase diagram with iron. Class 1 (Fig. 1.2.a) is for open  -

field which makes  -phase more stable. The elements nickel, manganese, 

cobalt and ruthenium, rhodium, palladium, osmium, iridium and platinum of 

this group eliminate the ferrite phase and replace it with the austenite phase so, 

depress the phase transformation from   to  , i.e. both     and     

temperatures are lowered. Class 2 (Fig. 1.2.b) is for expanded  -field which 

also makes  -phase stable. The  -field is expanded, but there is a limiting 

temperature for the existence of the  -phase, and a critical concentration for 

expansion; likewise carbon, nitrogen, copper, zinc and gold. These classes 1 

and 2 are  -stabilizers. Class 3 (Fig. 1.2.c) is for a closed  -field and 

contains silicon, aluminum, beryllium and phosphorus. These elements help 

the formation of ferrite and restrict the formation of the  -phase, so the  -

ferrite and  -ferrite phase fields are connected. Class 4 (Fig. 1.2.d), in which 

boron is the most significant element but includes tantalum, niobium and 

zirconium, are for a contracted  -field. Class 3 and class 4 solutes are 

classified as  -stabilizers.  

 



5 

 

 

 

Figure 1.2 Classification of iron alloy phase diagrams: (a) open  -field (b) 

expanded  -field (c) closed  -field (d) contracted  -field  

(Honeycombe and Bhadeshia, 2006) 

 

Zener and Andrews described these behaviors using the formation enthalpy 

(Bhadeshia and Honeycombe, 2006). Let ∆  is the enthalpy change which is 

the formation energy per unit of solute dissolving in  -phase minus the 

formation energy per unit of solute dissolving in  -phase. A ferrite former has 

a positive value of ∆ , whereas an austenite former has a negative. Fig. 1.3 is 

the classification of ferrite and austenite formers.  
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Figure 1.3 Relative strength of alloying elements as (a) ferrite formers (b) 

austenite formers (Honeycombe and Bhadeshia, 2006). 

 

 Silicon and aluminum encourage the formation of BCC iron (ferrite), and 

they are contained in the categories of class 3 in Fig. 1.2. In the 

transformation from austenite to ferrite with cementite, silicon and aluminum 

enter only the ferrite phase. These elements are also used to suppress the 

formation of cementite. Silicon is usually added to steels in the range 1.5 – 2.5 

wt% to retard the formation of cementite and to retain austenite. Aluminum 

also decreases the rate of cementite precipitation (Leslie, 1977) so there have 

been attempts to substitute it for silicon.  

 

 If manganese is added in sufficiently large quantities, ferrite is replaced by 

austenite at ambient temperature, Fig. 1.2. In the transformation from 

austenite to ferrite with cementite, manganese enters into solid solution in 

cementite instead of forming manganese carbide. The growth process from 
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austenite to ferrite occurs with partition and local equilibrium at the 

transformation interface. Manganese increases the solubility of carbon in 

austenite, but high concentrations of manganese induce carbide precipitation 

in austenite.  

 

 Figs. 1.4 – 1.6 show calculated equilibrium ternary phase diagrams of Fe-C-

[Si, Al, Mn] at 773K, respectively, using MTDATA, which is a Gibbs free 

energy minimization algorithm developed the National Physical Laboratory, 

U.K. with TCFE database. In the minimization process, only cementite and 

austenite have been allowed. The tie lines in cementite-austenite equilibrium 

region are connected with concentration points of pure Fe3C, but the tie lines 

of Fe-Mn-C systems are connecting the equilibrium region from Fe3C to 

Mn3C.  

 

 

 

Figure 1.4 Ternary phase diagram of Fe-Si-C system at 773 K. Only austenite 

and cementite are permitted to exist. 
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Figure 1.5 Ternary phase diagram of Fe-Al-C system at 773 K. Only austenite 

and cementite are permitted to exist. 

 

  

 

Figure 1.6 Ternary phase diagram of Fe-Mn-C system at 773 K. 
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Fig. 1.7 is equilibrium and corresponding para-equilibrium phase diagrams 

when austenite and cementite coexist, using unjustified thermodynamic data 

for the presence of silicon in cementite (Bhadeshia et al., 2003). It is clear that 

the single phase austenite field is greatly expanded when transformation is 

occurred by para-equilibrium mechanism. The solubility of silicon was 

assumed arbitrarily to be 1 p.p.m. at 298K and other thermodynamic 

interactions were assumed to be ideal to calculate para-equilibrium 

transformation. At 773K, the concentration of x-point is in two phase region 

in equilibrium transformation, but it falls into single phase austenite regions in 

para-equilibrium. This shows that a silicon addition can dramatically affect 

the fraction of cementite phase in para-equilibrium conditions.  

 

 

 

Figure 1.7 Calculated equilibrium and corresponding para-equilibrium phase 

diagrams for Fe-Si-C system. The concentrations are in mole fractions. 

(Bhadeshia et al., 2003) 



10 

 

Figs. 1.8 (a) and (b) illustrate the calculation results of silicon and 

manganese on the fraction of cementite as a function of temperature in 

equilibrium and para-equilibrium condition, respectively (Kozeschnik and 

Bhadeshia, 2008). Whereas the equilibrium fractions are a little increased by a 

silicon addition, there are dramatic changes for the para-equilibrium condition 

in which silicon atoms are trapped inside the cementite lattice. In contrast, the 

addition of manganese has a smaller effect on the cementite fraction at para-

equilibrium cases compared with a silicon addition. 

 

Fig. 1.9 is a schematic Gibbs free energy graph of austenite and cementite as 

a function of carbon concentration to illustrate the fraction of cementite 

results. The fraction of cementite is determined by using the lever rule on the 

tangential line with cementite chemical potential point and austenite curve. At 

equilibrium condition, since the solubility of silicon in cementite is very low, 

the concentration and chemical potential of cementite will be the same as with 

pure cementite. Therefore, almost all of the silicon will be in the austenite and 

ferrite phases, and increase the free energies of austenite and ferrite. As a 

consequence the equilibrium carbon concentration of austenite is lowered and 

the fraction of cementite is a little increased. However, with the para-

equilibrium condition (silicon atoms do not partition between the phases), 

trapped silicon makes cementite much less stable relative to austenite. 
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Figure 1.8 Calculated phase fraction of cementite in equilibrium or para-

equilibrium with austenite, in system Fe-Si-Mn-C with base composition Fe-

1.2C-1.5Mn-1.5Si (wt%) (Kozeschnik and Bhadeshia, 2008). 
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Figure 1.9 A schematic Gibbs free energy graph of austentite and cementite as 

a function of carbon concentration. 
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1.3 Previous Work 

 

 As seen in Fig. 1.11, the crystal structure of cementite is orthorhombic with 

space group Pnma and its empirical lattice constants are known to be 

 = 5.0896 Å ,  = 6.7443 Å  and  = 4.5248 Å  (Fasiska and Jeffrey, 

1965). Cementite has four Fe atoms taking Fe(4c) positions which are not 

equivalent to the Fe(8d) locations of the other eight Fe atoms, and four C 

atoms located at C(4c) positions (Fasiska and Jeffrey, 1965; Herbstein and 

Smuts, 1964).  

 

 

 

Figure 1.11 Crystal structure of cementite. The dark small spheres, the dark 

big spheres, and the light big spheres represent C(4c), Fe(4c) and Fe(8d) 

atoms, respectively. (Jang et al, 2008) 
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The crystal structures, atomic positions, formation energies and magnetic 

properties of η-carbide (Fe2C), χ-carbide (Fe2C5) and cementite (Fe3C) have 

been calculated using first-principles calculations. An ab-initio study on pure 

cementite using the linear muffin-tin orbital (LMTO) method has indicated 

the magnetic moments in the ferromagnetic state to be 1.98 μ , 1.74 μ  and 

−0.06 μ  for the Fe(4c), Fe(8d) and the carbon atoms, respectively. The 

calculated cohesive energy per atom, Ecoh, was found to be 8.37 eV (Haglund 

et al., 1991). The calculated bulk modulus is found to be 235 GPa and the 

magnetic moment to be 5.77 μ  (Faraoun, 2006). The transition from the 

metallic ferromagnetic to the paramagnetic state occurs at about 483 K 

(Tsuzuki, 1984).  

 

The replacement of Cr into cementite has formerly been investigated; the 

Fe(8d) positions were found to be the favored sites for Cr, whose occupancy 

enhance the atomic interactions in Fe3C leading to a considerable change in 

the local distribution of the electron density according to the self consistent 

full-potential LMTO (FP-LMTO) method (Medvedeva, 2006).  
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Ⅱ First Principles Calculation 
 

2.1 Historical Background 

 

Classical theories based on empirical or semi-empirical methods have in the 

past provided valuable understanding about the properties and phenomena of 

materials such as the thermodynamics of chemical vapor deposition (Hwang 

et al., 1992), abnormal grain growth (Hwang et al., 1998), multi-component 

diffusion (Lee, 1999), interfacial reaction (Lee, 1999) and spinodal 

decomposition (Hilliard, 1970). However, the importance of a quantum 

mechanical treatment is increasing as the scale of interest decreases towards 

the nano-scales. But even more importantly, as we come to realize that certain 

properties cannot be measured experimentally for materials of any scale, 

because of the lack of precision in methods or some other phenomenon which 

are not experimentally accessible. The most fundamental information, for 

example, structural, mechanical, electrical, vibrational, thermal and optical 

properties, of a given crystal is related with its electronic structure which can 

be achieved by solving Schrödinger equation. It should at the same time be 

emphasized that such calculations are not a panacea and there are many more 

problems which are best treated using macroscopic theories such as those 

involving dislocations.  

 

2.1.1 Quantum Mechanics 

 

The study of quantum mechanics seems to have begun from Planck’s 

radiation law, the Einstein-Debye theory of specific heats, the Bohr atom, de 

Broglie’s matter waves together with careful analyses of some key 

experiments such as the Compton effect, the Franck-Hertz experiment, and 

the Davisson-Germer-Thompson experiment (Sakurai, 1994). After some 
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decades, Heisenberg, Schrödinger, Dirac and Feynman succeeded in 

formulating quantum mechanics mathematically. Dirac described the quantum 

mechanics using an infinite dimensional Hilbert space which consists of bra 

and ket vectors, and regarding the observables as self adjoint linear operators 

which contains the Hamiltonian operator. An element, which represents a 

physical state and contains all the information of the state, in this infinite 

dimensional vector space can be expressed as a function known as the 

Schrödinger wave-function,  ( ), which is also a normalized eigenfunction 

of the Hamiltonian operator. 

 

The fundamental interaction of solids is known well to be the 

electromagnetic interaction. The solid consists of nuclei and electrons which 

are somewhat pragmatically classified two groups; valence electrons which 

contribute to chemical bonding and core electrons which are tightly bound in 

the closed shells of the lattice nuclei. In principle, the solution of the many-

body time-dependent and time-independent Schrödinger equations with 

electrons and nuclei, for a given solid, gives all possible time-dependent and 

time-independent information, respectively. However, it is impractical to 

solve the many-body coupled-equation directly.  

 

The Hamiltonian of a solid consists of the nuclei kinetic   , the electronic 

kinetic  e part and the interaction part between the nuclei  n-n and electrons 

 e-e with nuclei-electrons interaction  n-e. 

 

    =   +  n-n +  e +  e-e +  n-e             (2.1) 

    = −∑
 

  
∇ 
 +

 

 
∑

 

|     |
   −∑

 

   
 ∇ 

 +
 

 
∑

    

|     |
   −∑

  

|     |
 , .   

(2.2) 
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The Hamiltonian in Eq. (2.2) is subjected to the time-dependent or time-

independent Schrödinger equation 

 

     ({  }, {  };  } =      ({  }, {  };  }           (2.3) 

      {  }, {  } =       {  }, {  }  ,            (2.4) 

 

where   is the normalized eigenfunction of the Hamiltonian operator     . 

Since the Schrödinger equation (2.3) and (2.4) have complex structure, it is 

necessary to use a variety of approximations to reach a practical solution. 

 

2.1.2 The Born-Oppenheimer Approximation 

 

The masses of the nuclei of the solid are heavy with respect to those of the 

electrons, so nuclei by comparison have almost no wave-like properties. The 

nuclei are not much affected by the movements of the electrons, but the 

electrons do respond to the motions of the nuclei. Therefore, it is possible to 

approximate the positions of nuclei as being fixed, with respect to the electron 

motion. This is the so-called adiabatic or Born-Oppenheimer approximation 

(Born, 1926; Born and Oppenheimer, 1930; Jost and Pais, 1951; Kohn, 1954), 

and lead to the decoupling of Eqs (2.3) and (2.4) into the electronic and nuclei 

components.  

 

When it is assumed that the eigenfunction   of the Hamiltonian      is 

 

 ({  }, {  };  } =    ({  };  )   ({  } | {  })         (2.5) 

  {  }, {  } =    ({  })   ({  } | {  }),           (2.6) 

 

where    is a function depending only on the position of the lattice nuclei, 

Eqs (2.3) and (2.4) can be solved approximately using (Michael, 1994) 
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{ e +  e-e +  n-e({  })}   =   ({  })             (2.7) 

{ n +  n-n +   ({  })}   =        .            (2.8) 

 

Eqs (2.7) and (2.8) represent the adiabatic approximation of the solid. Most 

problems in solid state physics are reduced to the solution of Eq. (2.7), with 

N-electrons permeating a given static nucleus array, in a solid.  

 

2.1.3 Many-electron Systems 

 

The most general way to solve the many-body solid state problems is the 

application of the finite temperature quantum field theory (QFT) of relativistic 

particles (Kapusta, 1989). However, it is difficult to achieve an exact solution 

and has had limited applications to electron gases, liquids and elementary 

solids (Anderson, 1997; Zinn-Justin, 1997). One of the earliest and most 

widely used approximations for   is due to Hartree (1928), who 

approximated the many-electron wave function as a product of single-particle 

functions, i.e., 

 

 (  , , ⋯ ,   ) =    (  )⋯  (  ).             (2.9) 

 

Each of the functions    satisfies a one-electron Schrödinger equation 

 

 −
 

 
∇ +     +     ( ) =     ( ) ,           (2.10) 

 

where the Coulomb potential    is given by Poisson’s equation 

 

∇   = 4 ∑ | 
   ,      |

 ,               (2.11) 
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     is the potential due to the nuclei. This picture has been modified 

applying the Pauli exclusion principle (Fock, 1930). An extension of the 

Hartree-Fock method, known to be the GW approximation, suggested by 

Quinn and Ferrel (1958) and then Hedin (1965) has been developed based on 

this approximation.  

 

 In the mid 1960’s, new approach for obtaining the ground state of a given 

many electron system was suggested by Hohenberg and Kohn (1964). The 

density functional theory (DFT) treats the electron density of a system as the 

basic variable in the electronic problem instead of the wave functions; the 

problem is then reformulated to a single quasi-electron Schrödinger-like 

equation (Kohn and Sham, 1965) to obtain the appropriate energy functional 

of the system. The efficiency of the DFT in calculation makes it popular in the 

field of electronic structure theory. 

 

2.2 The Density Functional Theory 

 

 In principle, the time-independent static properties can be determined from 

the time-independent Schrödinger Eq. (2.7) when assuming the Born-

Oppenheimer approximation to be valid. Eq. (2.7) can be rewritten as  

 

{ e +  e-e +∑     (  )
 
   }  (  ,⋯ ,   )  =   (  ,⋯ ,   )    (2.12) 

∫ ∗(  ,   , ⋯ ,   ) (  ,   , ⋯ ,   )d  ⋯d  = 1,      (2.13) 

 

where,    is the position of the  th electron, N is the total number of 

electrons,      is the external field in which the electrons move which is the 

electrostatic potential generated by the nuclei, whose positions are assumed 

fixed and whose spatial movements are assumed negligible. E is the total 
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electronic energy. Although considering only spatial coordinates in order to 

simplify the problem, Eq. (2.12), it is still impossible to solve in the general 

case. The eigenfunction   depends on 3N position coordinates, but most 

experimental observables depend only on the one-electron density function 

(Michel, 1995) 

 

 ( )( ,   ) =  ∫ ∗( ,   , ⋯ ,   ) ( 
 ,   , ⋯ ,   )d  ⋯d     (2.14) 

 

or the two-electron density function 

 

 ( )(  ,   ,   
 ,   

 ) =
 (   )

 
∫ ∗(  ,   ,⋯ ,   ) (  

 ,   
 ,⋯ ,   )d  ⋯d   

(2.15) 

 

and most noteworthy is the electron density in position space 

 

 ( ) =   ( )( ,  )                  (2.16) 

∫  ( )d =                      (2.17) 

 

Therefore,   with 3N parameters gives much more detailed information than 

is actually needed in practical applications, and it would simplify calculations 

if the redundant information can be avoided by finding the solution with 3 

parameters. 

 

2.2.1 The Hohenberg-Kohn Theorem 

 

Hohenberg and Kohn (1964) derived the basic theorems of the density 

functional formalism that the electron density  ( ) determines uniquely the 

external potential     ( ) using a variational principle. This implies that the 

electron density in three-dimensional position space is sufficient in 
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constructing the Hamiltonian operator of Eq. (2.12) since electron kinetic part 

 e  and electron-electron interaction contribution   e-e  is determined by 

electron density naturally, but     ( ) is not. Thus,  ( ) determines any 

ground-state properties and any ground-state property is a functional of  ( ). 

Let     
  gives the minimum value of <  | +    | > for all   such 

that  ( ) =  ∫ ∗ d  ⋯d   , and be a functional  [ ] as 

 

  [ ] ≡ ∫    ( ) ( )d + <     
 | +    |    

 >.     (2.18) 

 

Let be    ,     and     to be the ground-state energy, wave function, and 

density, respectively. Then, the Hohenberg and Kohn theorems can be 

formulated as 

 

<   ∑     (  )
 
     >= ∫    ( ) ( )d , 

 ∀ , which satisfies  ( ) =  ∫ ∗ d  ⋯d        (2.19) 

 [ ] ≥     , ∀ ( )                  (2.20) 

 [   ] =                         (2.21) 

 

Eqs (2.19-2.21) can be proven as following (Jones and Gunnarsson, 1989).  

 

Since  e +  e-e +∑     (  )
 
    is symmetric which has no difference of 

changing coordinate vectors in Eq. (2.12),  (  ,⋯ ,   ) also must be a 

symmetric function. Therefore it can be redefined  ( ) as 

 

 (  ) =  ∫ ∗ d  ⋯        ⋯d   ,       (2.22) 

 

for arbitrary chosen  . Then 
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  <   ∑     (  )
 
     > =  ∑ < 

    |    (  )| > 

                     = ∑ ∫ ∗    (  ) d  ⋯d  
 
    

                     = ∑
 

 
∫    (  )

 
    (  )d   

                  = ∫    ( ) ( )d .               (2.23) 

 

Writing  = ∑     (  )
 
   ,  

 

        [ ] = ∫    ( ) ( )d + <     
 | +    |    

 >  

           = <     
  ∑     (  )

 
        

 > + <     
 | +    |    

 >  

            = <     
 | +  +    |    

 >                     (2.24) 

 

A     
  may not be an eigenfunction of the Hamiltonian operator  +  +

   , but it can be expanded as a linear combination of the actual 

eigenfunctions {  }, which is orthonormalized, of the operator which is a 

self-adjoint linear operator.  

 

    
 = ∑      .                     (2.25) 

 

To find the expectation value of  +  +    , Eq. (2.24) can be changed to 

 

   <     
 | +  +    |    

 > = < ∑      | | ∑      > 

                           = ∑ < ,     |  |    >  

                          = ∑   
∗

 ,     <   |  > 

                          = ∑ |  |
 

     

                          ≥    ∑ |  |
 

  

=    .                         (2.26)  

 

This proves the inequality Eq. (2.20). Eq. (2.26) is called the variational 
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principle. Using the minimum property of the ground state (GS),  

 

 [   ] =      ( )   ( )d + <     
   | +    |    

   > 

             =<     
   | +  +    |    

   >  

             ≥     

             = <    | +  +    |   > 

= ∫    ( )   ( )d + <    | +    |   >      (2.27) 

 

and by the definition of     
   , 

 

<     
   | +    |    

   > ≤  <    | +    |   >.      (2.28) 

 

Eqs (2.27) and (2.28) show that inequality should be equality, so Eq. (2.21) 

holds which means  [ ] can be a density functional for ground state energy. 

 

This completes the proof of the theorem. Eq. (2.27) shows also that     
    

should be equal to     if the ground state is not degenerate. This proof and 

theorem is valid only on the ground state since Eq. (2.27) cannot be go further 

for other states. This theorem provides a general method for calculating the 

ground-state properties, but they gave information only about existence, but 

not about the relevant functional. A practical calculation was introduced by 

Kohn and Sham (1965).  

 

2.2.2 The Kohn-Sham Equation  

 

The total kinetic energy of the system is a ground-state property, and it is a 

density functional by Hohenberg and Kohn theorem, 
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 =  [ ].                        (2.29) 

 

It is also possible to write the classical electrostatic Coulomb energy for the 

electron density as a functional of  ( ), 

 

  [ ] =
 

 
∬

 (  ) (  )

|     |
d  d  = 

 

 
∫  (  )  (  ) d      (2.30) 

  (  ) = ∫
 (  )

|     |
d  ,                (2.31) 

 

therefore Eq. (2.18) can be rewritten as follows,  

 

     [ ] = ∫    ( ) ( )d + <   | +    | 
 >  

        = ∫    ( ) ( )d +  [ ] +    [ ] +    [ ] 

= ∫    ( ) ( )d +  [ ] + 
 

 
∫  ( ) ( )d +    [ ].  (2.32)  

 

where    [ ] is exchange-correlation functional which is everything not 

contained in the other term, and its approximation determines the quality of 

practical applications and their results. 

 

To have a minimum value of  [ ] with constraint of Eq. (2.17), Eq. (2.32) 

should follow the Lagrange multiplier principle. From the definition of 

functional derivative, it can be obtained 

 

 

  
∫    ( ) ( )d =  

 

  
     ( ) ( ) =     ( )     (2.33) 

   [ ]

  
=

 

  
 ∫

 (  ) (  )

 |     |
d   = ∫

 (  )

|     |
d  =   ( )   (2.34) 

 
 

  
∫ ( )d =

 

  
  ( ) =  1.             (2.35) 

 

By variational principle,  [ ] should have minimum value at ground state 
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electron density,  

 

  [ ]

  
=     ( ) +

  [ ]

  
+   ( ) +

    [ ]

  
=  

 

  
∫ ( )d =    (2.36) 

 

where   is Lagrange multiplier. Kohn and Sham compared this result with 

that obtained for N non-interacting fictitious particles, moving in another 

external effective potential      , which gives the same energy of the 

considering electronic system, but without inter-particle interactions. The 

equivalent of equation (2.36) is in this case,  

 

  [ ]

  
=

   [ ]

  
+     ( ) =  ,              (2.37) 

 

where   [ ] is the kinetic energy of these non-interacting particles. The 

advantage of the fictitious particles is that it is possible to solve the 

Schrödinger equation which is a single-particle equation of the form 

 

 −
 

 
∇ +        ( ) =     ( ).            (2.38) 

 

The ground state for this system by occupying the N energetically lowest 

single particle and the total density is given by 

 

 ( ) = ∑   
∗( )  ( )

 
   .               (2.39) 

 

Comparing the Eq. (2.36) with Eq. (2.37), the effective potential given by 

 

    ( ) =     ( ) +   ( ) +
    [ ]

  
+  

  [ ]

  
−
   [ ]

  
  

             ≡     ( ) +   ( ) +
    

 [ ]
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             ≡     ( ) +   ( ) +    ( ).                     (2.40) 

 

where    ( ) is the exchange-correlation potential 

 

   ( ) =
    

 [ ]

  
                    (2.41) 

 

as well as 

 

   
 [ ] =    [ ] +  [ ] −   [ ].              (2.42) 

 

2.2.3 The Exchange-Correlation Functional  

 

Now, the remaining major problem in solving Eq. (2.7) is to find    ( ). 

The exact functionals for exchange and correlation are not known except for 

the free electron gas.     and    
  are functionals of the electron density 

 ( ), and may depend on the behaviour of  ( ) in the whole space not only 

the local distribution. In physics, the mostly widely used approximation is the 

local density approximation (LDA), suggested by Hedin and Lundqvist (1971) 

based on the assumption that    ( ) depends on the local electron density at 

the point  .     at the point   is calculated as for the homogeneous electron 

gas with the density of that point,  

 

    =  ( )                      (2.43) 

 

It is possible to obtain the complete form of    [    ] and    
 [    ] , 

which are functions of     , dependence on the number      considering 

a homogeneous electron gas (Michel, 1995). Therefore, the following 

approximated form is suggested,  
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 [ ( )] = ∫   (  ( )) ( )d              (2.44) 

 

where    (    ) =      ( )  is the exchange-correlation energy per 

electron of a homogeneous electron gas with uniform density of Eq. (2.43).  

 

Even though the LDA has in fact been found to give good results for a broad 

range of systems, its derivation shows that it is appropriate only for free and 

nearly free electron systems such as simple metals which closely resemble the 

homogeneous electron gas. Therefore, for strongly correlated systems (e.g. 

materials containing atoms with 3d or 4f electrons such as transition metals 

including Fe-systems and rare-earth systems), it is necessary to develop 

another method. There have been many attempts to improve upon the LDA 

functional.  

 

Among the most successful achievement have been the Generalized Gradient 

Approximations (GGA), the so-called PW91 scheme of Perdew and Wang 

(1991) and the PBE scheme of Perdew, Burke and Ernzerhof (1996). The 

definition of functional derivative gives following formula,  

 

 

  
(∫ ( ,  ( ), ∇ ( ),⋯ , ∇  ( ))) =

  

  
− ∇ ∙

  

 (∇ )
+ ∇ ∙

  

 (∇  )
−⋯, 

(2.45) 

 

therefore LDA can be treated as the first term approximation of Eq. (2.45) for 

   . The improvement of this approximation can be achieved by treating the 

second term approximation, i.e. 

 

   
 [ ( )] = ∫ (  ( ), ∇ ( ))d .             (2.46) 

 

Eq. (2.46) is the general form of exchange-correlation functional of GGA 
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scheme. Unlike the LDA scheme, where the energy functional has a known 

form, the form ∫  ( ( ), ∇ ( )) is unfixed. There is a large amount of 

variations in determining their form, since there is no specific physical system 

to fit. A variety of exchange-correlation functional, referred to as mPWPW91, 

B3LYP, MPW1K, PBE1PBE, BLYP, and PBE, have developed for 

calculations on specific classes of system, but since the choice is dependent 

on the problem the calculations are not truly first. Table 2.1 shows the list of 

the exchange-correlation functionals.  
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 Name Equation 

LDA WVWN 1.0E (Slater) + 1.0E (VWN) 

GGA BLYP 1.0E (Slater) + 1.0∆E (B88) + 1.0E (LYP) 

 BP86 1.0E (Slater) + 1.0∆E (B88) + 1.0E (PZ81,local) + 

1.0∆E (B86,nonlocal) 

 BPW91 1.0E (Slater) + 1.0∆E (B88) + 1.0E (PW91) 

 PWPW 1.0E (Slater) + 1.0∆E (PW91) + 1.0E (PW91) 

 mPWPW 1.0E (Slater) + 1.0∆E (mPW) + 1.0E (PW91) 

 PBEPBE 1.0E (Slater) + 1.0∆E (PBE) + 1.0E (PW91,local) + 

1.0∆E (PBE,nonlocal) 

 XLYP 1.0E (Slater) + 1.0∆E (B88) + 0.347E (PW91) + 

1.0E (LYP) 

Hybrid BH&HLY

P 

0.5E (HF) + 0.5E (Slater)  + 0.5∆E (B88) + 1.0E (LYP) 

 B3LYP 0.2E (HF) + 0.8E (Slater)  + 0.72∆E (B88) + 

0.19E (VWN) + 0.81E (LYP) 

 B3P86 0.2E (HF) + 0.8E (Slater)  + 0.72∆E (B88) + 1.0E (VWN) 

+ 0.81E (LYP) 

 B3PW91 0.2E (HF) + 0.8E (Slater)  + 0.72∆E (B88) + 

1.0E (PW91,local) + 0.81∆E (PW91,nonlocal) 

 PW1PW1 0.25E (HF) + 0.75E (Slater)  + 0.72∆E (PW91) + 

1.0E (PW91) 

 mPW1PW 0.25E (HF) + 0.75E (Slater)  + 0.72∆E (mPW91) + 

1.0E (PW91) 

 PBE1PBE 0.25E (HF) + 0.75E (Slater)  + 0.72∆E (PBE) + 

1.0E (PW91,local) + 1.0∆E (PBE,nonlocal) 

 X3LYP 0.218E (HF) + 0.782E (Slater)  + 0.542∆E (B88) + 

0.167∆E (PW91) + 0.219E (VWN) + 0.871E (LYP) 

 

Table 2.1: Summary of the exchange-correlation functional (Lee, 2006). 
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2.3 The Full-Potential Linearized Augmented Plane-Wave 

(FLAPW) Method 

 

Now, the problem of solving many electron problems has been changed to an 

eigenvalue problem of single particle Kohn-Sham equation, Eqs (2.38) and 

(2.40). 

 

 −
 

 
∇ +     ( ) +   ( ) +    ( )   ( ) =     ( ).      (2.47) 

 

A lot of methods have been proposed for solving Eq. (2.47) for different 

applications, geometries, symmetries, chemical elements and materials 

requiring different approximations (Blügel, 2006). Fig. 2.1 shows roughly an 

overview of electronic structure methods.  

 

 

 

Figure 2.1 Overview of electronic structure calculations (Blügel, 2006). 
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2.3.1 Choosing Basis Functions  

 

The last task of the eigenvalue problem Eq. (2.47) is choosing basis function 

sets {  ( )} for   ( ), 

 

  ( ) = ∑    ( ).                   (2.48) 

 

Using Eq. (2.48), the partial differential equation (2.47) can be solved through 

algebraic equations which gives the values of   ’s. A lot of candidates for 

{  ( )} have been suggested. The plane-waves can be one of choice, since 

they are the eigenstates of a translation operator in the solid through the Bloch 

theorem (Slater, 1972; Ashcroft and Mermin, 1976). The other method such as 

linear combination of atomic orbital (LCAO) method (Bloch, 1928), the 

Wigner-Seitz method (1933) which is sometimes called the cellular method, 

the orthorgonalized plane-wave (OPW) method (Herring, 1940), the method 

of pseudopotential (PP) theory (Phillips and Kleinman, 1959), the mixed basis 

(MB) method (Brwon, 1962), the augmented plane-wave (APW) method 

(Slater, 1937; Saffren and Slater, 1953), KKR method which means Korringa 

(1947) and Kohn and Rostoker (1954) and full-potential LAPW (FLAPW) 

method (Wimmer, Krakauer and Freeman, 1981) have been used for 

electronic structure calculation.  

 

The convergence of the summation in Eq. (2.48) depends on the similarity of 

choice and real solution. For example, in treating isolated clusters or 

molecules, methods based on localized orbitals or Gaussian function sets are 

frequently selected with the chemical intuition of the system, and a plane-

waves set, which is used in pseudopotential and LAPW method, converges 

efficiently to the density of valence electrons in the system which is three 

dimensional periodic symmetries such as solid state (Bloch, 1928). Although 
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the plane-waves set is a good choice for illustrating valence electrons, it 

diverges as 
 

 
 at the nucleus and have a singular point at the center of nucleus, 

where   represents the distance from nucleus (Blügel, 2006).  

 

The pseudopotential method substitutes a singular potential near nucleus to a 

smooth potential by changing a nucleus to an ion which consists of nucleus 

and core electrons. Therefore, it is popular in the field of simple metals or 

semi-conductor material systems which contain carbon or silicon. However, 

for ferromagnetic materials and complex metals such as Fe, not only valence 

electrons but also core electrons which are tightly bound to the nucleus 

influence the properties of the entire system. This means that it is necessary to 

introduce another basis function to represent the bound electrons. The LAPW 

method divides the whole space to inside muffin-tin (MT) sphere, which is 

illustrated using spherical harmonics that are the same with atomic orbital 

shapes, and outside which is well approximated using plane-waves (Koelling 

and Arbman, 1975; Andersen, 1975). Therefore the LAPW method is the one 

of the most accurate method for all electrons and can treat transition metal 

including Fe systems with complex electron structure, although it demands 

more computational cost than others. 

 

2.3.2 The Bloch Theorem 

 

 For the system which follows the Born-von Karman periodic boundary 

conditions, for all (  ,   ,   )  and not only eigenfunction, but also any 

function  ( ),  

 

 (  +   ,   ,   ) =  (  ,   ,   ) 

 (  ,   +   ,   ) =  (  ,   ,   ) 

 (  ,   ,   +   ) =  (  ,   ,   ),            (2.49) 
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the eigenfunction    of the one-electron Hamiltonian  = −
 

 
∇ +  ( ), 

where  ( ) =  ( +  ) for all   in a Bravais lattice, can be chosen to 

have the form of a plane-wave times a function with the periodicity of the 

Bravais lattice (Ashcroft and Mermin, 1976), i.e.  

 

  ( ) =    ∙   ( ),                  (2.50) 

 

where   ( ) =   ( +  ) for all   in the Bravais lattice, and Eq. (2.50) 

also implies that 

 

  ( +  ) =    ∙(   )  ( +  ) =    ∙    ∙   ( ) =    ∙   ( ). (2.51) 

 

The Bloch theorem is equivalent to an alternative form that there exists an 

eigenstate   for each    such that,   

 

  ( +  ) =    ∙    ( ).                 (2.52) 

 

for every   in the Bravais lattice.  

 

 The Bloch theorem can be proved as follows. Let   +   +    be the 

primitive Bravais lattice and    =     +     +     ,   =     +

    +     for any integers    and   . Then there exist the minimum 

integer    which satisfies 

 

     =                         (2.53) 

 

where   = |  | and    from Eq. (2.49). Let     be a translation operator 

which operating on any function  ( ) shifts by   , i.e. 
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    ( ) =  (  +  ).                (2.54) 

 

Since the Hamiltonian has a periodicity of (  ,   ,   ),  

 

    ( ) ( ) =  (  +  ) (  +  ) 

=  ( ) (  +  ) =  ( )    ( ).           (2.55) 

 

Because Eq. (2.55) holds for any function  ,  

 

    ( ) =   ( )   .                 (2.56) 

 

In addition, the result of applying two successive translations does not depend 

on the order in which they are applied, since for any  ( ) 

 

       ( ) =        ( ) =  (  +  +  ) =        ( ). (2.57) 

 

Eqs (2.56) and (2.57) show that the set of translation operators     and the 

Hamiltonian   form set of commuting linear operators. Since this follows 

the fundamental theorem of quantum mechanics that simultaneous 

diagonalization of commuting operators in an infinite dimensional vector 

space (Ashcroft and Mermin, 1976), the eigenfunction    , where   is 

eigenstate index vector, of   can be chosen to be simultaneous 

eigenfunctions of all the    , 

 

   =     , 

     =  (  )   

     =  (  )                    (2.58) 
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where  (  ) and  (  ) is scalar value since       and       should 

represent the same eigenstate with    and    is also eigenfunction of 

translation operator     and    . Moreover, according to Eq. (2.57) 

 

        =        ( ) =   (  +  )           (2.59) 

        =   (  )     =   (  ) (  )          (2.60) 

 

If follows that the eigenvalues must satisfy 

 

 (  +   ) =   (  ) (  ) =  (  ) (  ),       (2.61) 

 

and the set of  (  ) makes an Abelian group with regarding  ( ) =   as 

the identity and  (−  ) as an inverse element with respect to multiplicative 

operation. If we consider one coordinate and Eq. (2.53),  

 

 (    ) = ( (  ))
                    (2.62) 

 (    ) =  .                     (2.63) 

 

Eqs (2.62) and (2.63) means that the set of  (    ) builds a finite cyclic 

subgroup of  (  ) with respect to multiplication and  (  ) is a generator 

of that subgroup with    order (Hungerford, 1973). Therefore  (  ) can be 

expressed as 

 

 (  ) =  
   

  =                      (2.64) 

 

where    is related to    by   =
  

  
=

    

  
 with  th component of    
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 (    ) =                         (2.65) 

 (  ) =   (    ) (    ) (    ) =   (              ) =    ∙    (2.66) 

 

where  =     +     +     , and the    are the reciprocal lattice 

vectors satisfying   ∙   =    , i.e. 

 

  =
  ×  

  ∙(  ×  )
, 

  =
  ×  

  ∙(  ×  )
, 

  =
  ×  

  ∙(  ×  )
.                    (2.67) 

 

Summarizing Eqs (2.54), (2.58) and (2.66), it has been shown that the 

eigenfunction    of   can be chosen so that for every Bravais lattice vector 

 ,  

 

    ( ) =   (  +  ) =  (  )  ( ) =    ∙    ( ).     (2.68) 

 

This is precisely Bloch theorem, in the form Eq. (2.52). Let any vector    

satisfy   = 2 (    +    +    ), where    are the integer. The 

scalar product   ∙    has the value 2 (    +    +    ) = 2   

and the addition of    to   yields 

 

  (    )∙  =    ∙  .                 (2.69) 

 

This shows the periodicity of   space. The space of the form 2 (    +

    +     ), where 0 ≤    ≤ 1, named the first Brillouin zone can give 

information of the whole space, and the set of 
  

  
 is called the reciprocal-

lattice vector.  
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2.3.3 The FLAPW Method 

 

 There are many possible method to solve Kohn-Sham equations according to 

the choice of the basis set   ( ,  ) for all reciprocal lattice vectors up   to 

the largest value of     ,  

 

  , ( ) = ∑   , 
   ( ,  )|   |     

.           (2.70) 

 

where   , 
  are variational coefficients (Blügel, 2006). Eq. (2.70) is 

equivalent with Eq. (2.48), and the vector   has the a role of quantum 

number  . The Bloch theorem gives the most straightforward suggestion for 

three dimensional periodic solids, which would be to expand the wave 

function into plane-waves or Fourier series, respectively, 

 

  ( ,  ) =   (   )∙ .                 (2.71) 

 

The plane-wave basis set has some important advantages that plane-waves 

are orthogonal so that, the Fast Fourier Transformation (FFT) method can be 

applied to simplify calculations. However, plane-wave basis sets do not 

converge with the 1/r singularity at the nuclei. Thus, they can only be used in 

the context of a pseudopotential approximation to the true potential (Phillips 

and Kleinman, 1959), where the 1/r potential has been replaced by an 

appropriate smooth potential with ions instead of the nuclei. 

 

Slater (1937) developed the Augmented Plane-wave (APW) method in 

which the space is partitioned into spheres centered at each atom site, which is 

strongly varying but nearly spherical, the so-called muffin-tins, and into the 

remaining interstitial region as in Fig. 2.2.  
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Figure 2.2 The space division both in the APW and LAPW methods. 

 

In the APW method, space is divided into regions and different basis 

expansions are used in these regions with radial solutions of the Schrödinger 

equation inside the MT spheres, and plane-waves for the interstices,  

 

  ( ,  ) =   (   )∙ ,  ∈ Interstitial 

  ( ,  ) = ∑    
   ( )   (   ,  ),  ∈ MT sphere  .  (2.72) 

 

The radial function   ( ) satisfies 

 

 −
  

   
+

 (   )

  
+   ( ) −       ( ) = 0,          (2.73) 

 

where    is the spherically symmetric potential inside the  -th sphere and 

   is the angular momentum dependent energy parameter. The spherical 

harmonics    ( ,  ) , which is used to illustrate an atomic orbital of 
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hydrogen atom, is the solution of the angular part of Laplace’s equation 

∇  = 0 (Arfken, 1985). Fig. 2.3 shows the three dimensional shape of 

   ( ,  ) for 0 ≤  ≤  ≤ 3, which has similar appearance with s,p,d and f 

orbitals. 

 

 

 

Figure 2.3 Illustrations of Re|   ( ,  )|
  and Im|   ( ,  )|

  for 

0 ≤  ≤  ≤ 3. (http://mathworld.wolfram.com) 

 

 The different choice of the basis functions in the different regions demands a 

boundary condition to be satisfied at the sphere boundary. Hence,    
  are 

completely determined by the energy parameters   . Unfortunately, the 

APWs are solutions inside the spheres only at the energy   . This means the 

lack of variational freedom to allow for changes in the wave function as the 

band energy deviates for given   .  

 

It is required to give the degree of freedom to resolve it, and Koelling and 

Arbman (1975) and independently Andersen (1975) proposed a linearization 

method in the radial functions inside the MT sphere, i.e., the basis functions 
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inside the spheres are linear combinations of   ( )   ( ,  ) and its radial 

derivative  ̇ ( )   ( ,  ). 

 

  ( ,  ) =   (   )∙ ,  ∈ Interstitial 

  ( ,  ) = ∑ [   
   ( ) +    

  ̇ ( )]   (   ,  ),  ∈ MT sphere  . (2.74) 

 

These functions are matched to the values and derivatives of the plane-waves 

on the sphere boundaries and the basis functions augmented in the way are the 

Linearized APW (LAPW) method. The LAPW basis has greater flexibility 

than the APW method inside the MT sphere, so it avoids the spherical 

potential approximation. However, higher plane-wave cutoffs are necessary to 

apply the LAPW method for the non-spherical potential. Harmann (1979) and 

Weinert (1981) have introduced the full-potential LAPW (FLAPW) method 

which solves the non spherical potential problem by partitioning the region to 

vacuum, interstitial and MT sphere regions.  

 

2.4 Computational Model and Method 

 

 The Kohn-Sham equations Eq. (2.47) are Schrödinger-like independent-

particle equations which give consistent  ( ) for ground state. The ground 

state electron density    ( ) that minimizes the energy functional is a fixed 

point of the mapping 

 

  ( ) =  [ ( )].                   (2.75) 

 

where   gives the new electron density from a given  ( ) and the effective 

potential determined by  ( ). This fixed point problem can be solved by 

iteration. Fig. 2.4 is a schematic flow-chart for self-consistent density 

functional calculation. A starting density   ( ) can be constructed by atomic 
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densities. Self consistency can be achieved if the difference of output density 

 [  ( )]  and input density   ( )  within a sufficiently small error. 

Convergence can be achieved if the new input density     ( ) is old input 

density   ( ) mixed with output density  [  ( )] . The simplest and 

slowest of such mixing schemes is the simple mixing according to 

 

    = (1 −  )  +   [  ],              (2.76) 

 

where   is the so-called mixing parameter.  

 

 

 

Figure 2.4 Schematic flow-chart for self-consistent density functional 

calculation (Blügel, 2006) 

 

 The CPU time requirement for this process depends on the number of basis 

functions  , the number of  -vectors in the BZ used    and the number of 

states   (Blügel, 2006) which are determined by the required precision   
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of a calculation and by the volume   of the unit cell or the number of atoms 

in the unit cell,   , respectively. Typically the calculation CPU time varies as 

 

CPU ∝          
  for direct diagonalization 

CPU ∝              (  ln +   ) for iterative diagonalization (2.77) 

 

where       gives the number of eigenvalue iterations. The scaling 

dependencies for precision and to the number of atoms    as follows 

 

  ∝   
                       (2.78) 

 ∝                          (2.79) 

  ∝ 1/                        (2.80)  

 ∝                          (2.81)  

 ∝                          (2.82) 

 

where    is the precision controlling the  -point summation. From 

these considerations it is the aim to develop an efficient basis to reduce 

their number  .  

 

 

 

 

 

 

 

 

 



43 

 

Ⅲ Results and Discussions 
 

3.1 Computational Parameters 

  

The unit cell of cementite has an experimental volume of 155.32 Å  and 

contains four formula units of Fe3C, where four iron atoms take 4c positions 

which are not equivalent to the 8d positions of the other eight iron atoms, and 

four carbon atoms locate at 4c positions. The 4c positions for iron are linear, 

while the 8d positions are tri-planar as shown in Fig. 1.11.  

 

The Si, Al and Mn substituted Fe3C system is simulated by an orthorhombic 

unit cell with the compositions (Fe11Si)C4, (Fe11Al)C4 and  (Fe11Mn)C4 

corresponding to a silicon, aluminum and manganese content of 4.07 wt%, 

3.92 wt% and 7.67 wt%, respectively. This concentration is only a little higher 

than the typical concentration in silicon in common transformation induced 

plasticity steels based on bainite, and the aluminum and manganese 

concentrations are also reasonable. It is assumed that an alloying element 

atoms substitute into an iron site, because the atomic radius of Si (1.11 Å), Al 

(1.18 Å) and Mn (1.61 Å) are similar to that of Fe (1.56 Å), and much larger 

than that of C (0.67 Å). The location of the alloying atom M in the 4c or 8d 

site is identified using superscripts: (Fe11M  
  )C4 and (Fe11M  

  )C4, where M is 

Si, Al or Mn. The total energy calculations for the identical Wyckoff positions 

show essentially the same value within numerical error.  

 

The Kohn-Sham equation was solved self-consistently in terms of the total 

energy all-electron full-potential linearized augmented plane-wave (FLAPW) 

method by using the generalized gradient approximation (GGA) for the 

exchange-correlation potential. The integrations over the three dimensional 

Brillouin zone (3D-BZ) were performed by the tetrahedron method over a 
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9 × 9 × 9 Monkhorst-Pack mesh in the 3D-BZ which corresponds to 125, 

205 and 365 k-points inside the irreducible wedge of 3D-BZ for Fe3C, 

(Fe11M  
  )C4 and (Fe11M  

  )C4, respectively. The degree of precision was 

obtained by considering a plane-wave cutoff up to 21 Ry, which corresponds 

to about 1700 linearized augmented plane-waves per each  -point and spin. 

The wave functions, the charge densities, and the potential were expanded 

with l ≤ 8 lattice harmonics inside each muffin-tin (MT) sphere with the 

radii of 2.04 a.u. for Fe, Si, Al, Mn and 1.30 a.u. for C atoms, respectively. 

The density and potential in the interstitial region were depicted by using a 

star-function cutoff at 340 Ry. Core electrons were treated fully relativistically, 

while valence states were calculated scalar relativistically, without 

considering spin-orbit coupling. Fe semicore states were treated by employing 

the explicit orthogonalization (XO) scheme for ensuring the orthogonality 

between the core and valence electrons. Self-consistency was assumed when 

the root-mean-square distances between the input and output total charges and 

spin densities were less than 1.0 × 10   electrons/a. u.  

 

The Fe3C, (Fe11M  
  )C4 and (Fe11M  

  )C4 structures were calculated as 

ferromagnetic for any substitutional element M. The reference states of each 

system used ferromagnetic body-centered cubic (BCC) iron, nonmagnetic 

graphite carbon, nonmagnetic diamond silicon, nonmagnetic face-centered 

cubic (FCC) aluminum and nonmagnetic FCC manganese. 

 

3.2 Lattice Parameter Optimization 

 

The equilibrium lattice constants and the corresponding internal atomic 

positions were obtained in four steps, beginning with the reported lattice 

constants and internal coordinates (Fasiska and Jeffrey, 1965). The unit cell 

volume   was varied using a third order fitting polynomial with the data of 
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total energy value versus unit cell volume to find out the first step equilibrium 

volume   
( )

. Then,  /  was modified with the fixed volume   
( )

 to find 

out the equilibrium  / . With the constraint obtained, the equilibrium  /  

value is obtained. Based on the previously calculated equilibrium lattice 

variable set {   
( )

,  / ,  / }, the volume optimization was performed with 

atomic position relaxations by the third order polynomial fitting. This 

procedure greatly reduces optimization computational time, since it was not 

performed on the full {  ,  / ,  / } total energy calculation matrix with 

reasonable precision. The internal atomic positions are relaxed by using the 

total energy and force minimization scheme using the Broyden method to find 

the multi-dimensional zero. It was considered a relaxed structure, when the 

force on each atom was smaller than 2mRy/a. u., and the position did not 

change more than 3 × 10   a. u. The data were fitted to the third order 

polynomial for simplifying since it can give a good approximation of the 

shape of Murnaghan’s equation (Murnaghan, 1944) with a smaller number of 

fitting parameters.  

 

 Fig. 3.1 shows the calculated total energy versus unit cell volume with the 

data fitted to the third order polynomial, for both the nonmagnetic (NM) and 

ferromagnetic (FM) states of cementite. Table 3.1 shows the results of lattice 

parameter optimization of Fe3C and calculated internal coordinates compared 

with experimental values. The calculated unit cell volume of the 

ferromagnetic Fe3C is about 2% smaller than the experimental value. Based 

on the temperature dependent experimental lattice constants (Wood et al., 

2004), the extrapolation to zero temperature gives a lattice volume of 154.4Å , 

which is only about 1.4% larger than that calculated. 
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Figure 3.1 Total energy versus unit cell volume of Fe3C with the optimized 

values of  /  and  / . The crosses represent the nonmagnetic results, while 

the squares represent the ferromagnetic ones with experimental internal 

coordinates. The circles represent the ferromagnetic ones with optimized 

internal coordinates. The corresponding lines are third order polynomial fits. 

The arrows indicate the corresponding equilibrium lattice volumes.  
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 Fe3C (measured) Fe3C (calculated) 

a (Å) 5.0896 5.1281 

b (Å) 6.7443 6.6512 

c (Å) 4.5248 4.4623 

volume (Å3) 155.32 152.20 

x1 0.1816 0.1752 

x2 0.0367 0.0358 

x3 0.1230 0.1236 

y1 0.0666 0.0662 

z1 0.1626 0.1670 

z2 0.1598 0.1602 

z3 0.0560 0.0621 

 

Table 3.1: Calculated equilibrium lattice parameters (in units of Å), unit cell 

volume (in units of Å ) and internal coordinates (in fractional units) of the 

Fe3C cementite crystal structure. The experimental values of the cementite 

crystal structure are included for reference (Fasiska and Jeffrey, 1965).  
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 Table 3.2 contains the calculation results of equilibrium internal coordinates 

of Fe3C with the distance of each atom from one of Fe(4c) and Fe(8d) 

positions. The calculated shortest interatomic distances of Fe(8d), Fe(4c) and 

C(4c) from Fe(4c) are 2.495Å, 2.695Å and 2.015Å in Fe3C, respectively. The 

distances from Fe(8d) are 2.452Å, 2.495Å and 2.011Å in Fe3C, respectively. 

Tables 3.3 – 3.8 show the calculated equilibrium internal coordinates of 

(Fe11Si  
  )C4, (Fe11Si  

  )C4, (Fe11Al  
  )C4, (Fe11Al  

  )C4, (Fe11Mn  
  )C4 and 

(Fe11Mn  
  )C4, respectively, with the distances of each atom from substituted 

atom.  

 

The calculated shortest interatomic distances from substituted Si atom are 

changed to 2.466Å, 2.669Å and 2.061Å in (Fe11Si  
  )C4, respectively. In other 

words, the interatomic distances of Fe(8d) and Fe(4c) measured from Si are 

contracted 1.2% and 1.0%, respectively, while the distance from C(4c) is 

expanded 2.3%. Those are calculated to be 2.421Å, 2.466Å and 2.175Å in 

(Fe11Si  
  )C4, respectively, which means the distance of Fe(8d) and Fe(4c) 

from Si are contracted 1.3% and 1.2%, respectively, while the interatomic 

distance to C(4c) is expanded 8.2 %. These features reveal a general tendency 

that the substituted silicon atom pulls the neighboring iron atoms, whereas it 

pushes out the neighboring carbon atoms. In addition, the geometric 

distortions in (Fe11Si  
  )C4 are significantly larger than in (Fe11Si  

  )C4 case.  

  

 The calculated shortest interatomic distances from Al atom to Fe(8d), Fe(4c) 

and C(4c) atom are changed to 2.505Å, 2.739Å and 1.990Å in (Fe11Al  
  )C4, 

respectively, which shows 0.4% and 1.6% expansion of the distance from 

Fe(4c) and Fe(8d), while the distance from C(4c) is contracted about 1.3% 

compared with Fe3C. The tendency of (Fe11Al  
  )C4 is almost opposite to the 

(Fe11Si  
  )C4 case. The shortest interatomic distances of Fe(8d), Fe(4c) and 
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C(4c) measured from Fe(8d) atom are changed to 2.473Å, 2.494Å and 2.170Å 

in (Fe11Al  
  )C4. This feature means that the interatomic distance from Fe(8d) 

to Fe(8d) , Fe(4c) and C(4c) are 0.8% expansion, 0.1% contraction and 7.8% 

expansion by Al substitution, respectively.  

 

 In the case of (Fe11Mn  
  )C4, the shortest interatomic distances from Mn 

atom to Fe(8d), Fe(4c) and C(4c) atom are 2.495Å, 2.688Å and 2.014Å, 

respectively. This shows the slight contraction of the distance from both of 

three atoms. The calculated shortest interatomic distances from Mn atom to 

Fe(8d), Fe(4c) and C(4c) atom are changed to 2.470Å, 2.484Å and 2.000Å in 

(Fe11Mn  
  )C4, respectively. In other words, the interatomic distance of Fe(8d) 

measured from Mn atom are expanded 0.7% while the distances from Fe(4c) 

and C(4c) are contracted 0.4% and 0.5%, respectively. These features show 

that the geometry distortion effect of Mn substitution is relatively small than 

those of Al and Si substitution case at both of Fe(4c) and Fe(8d) sites.  
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Type x Y z d(4c) d(8d) 

Fe(8d) 0.1752 0.0662 0.3330 2.625 0.000 

Fe(8d) 0.1752 0.4338 0.3330 2.625 2.452 

Fe(8d) −0.1752 −0.0662 −0.3330 2.495 3.594 

Fe(8d) −0.1752 −0.4338 −0.3330 4.753 4.823 

Fe(8d) 0.3248 −0.0662 −0.1670 2.581 2.526 

Fe(8d) 0.3248 −0.4338 −0.1670 4.799 4.090 

Fe(8d) −0.3248 0.0662 0.1670 2.662 2.677 

Fe(8d) −0.3248 0.4338 0.1670 2.662 3.631 

Fe(4c) 0.0358 0.2500 −0.1602 0.000 2.625 

Fe(4c) −0.0358 −0.2500 0.2602 3.650 2.495 

Fe(4c) 0.4642 −0.2500 0.3398 4.582 2.581 

Fe(4c) −0.4642 0.2500 −0.3398 2.695 4.625 

C(4c) 0.1236 −0.2500 −0.4379 3.589 4.053 

C(4c) −0.1236 0.2500 0.4379 2.800 2.021 

C(4c) 0.3764 0.2500 0.0621 2.015 2.011 

C(4c) −0.3764 −0.2500 −0.0621 3.977 3.953 

 

Table 3.2: Calculated atomic positions (in fractional units) of Fe3C. d(4c) and 

d(8d) are the calculated interatomic distances in units of Å measured from 

one of the Fe(4c) and Fe(8d) atoms. 

. 
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 x y z d(Si) 

Fe(8d) 0.1780 0.0673 0.3382 2.644 

Fe(8d) 0.1780 0.4327 0.3382 2.644 

Fe(8d) −0.1726 −0.0644 −0.3298 2.466 

Fe(8d) −0.1726 −0.4356 −0.3298 4.754 

Fe(8d) 0.3201 −0.0646 −0.1638 2.575 

Fe(8d) 0.3201 −0.4354 −0.1638 2.575 

Fe(8d) −0.3214 0.0667 0.1583 2.601 

Fe(8d) −0.3214 0.4333 0.1583 2.601 

Si(4c) 0.0301 0.2500 −0.1578 0.000 

Fe(4c) −0.0368 −0.2500 0.1624 3.647 

Fe(4c) 0.4682 −0.2500 0.3424 4.607 

Fe(4c) −0.4627 0.2500 −0.3442 2.669 

C(4c) 0.1241 −0.2500 −0.4374 3.596 

C(4c) −0.1326 0.2500 0.4290 2.757 

C(4c) 0.3818 0.2500 0.0630 2.061 

C(4c) −0.3799 −0.2500 −0.0665 3.968 

 

Table 3.3: Calculated atomic positions (in fractional units) of (Fe11Si  
  )C4. 

d(Si) is the inteatomic distance in units of Å measured from the Si(4c) atom 

which replaces Fe(4c). 
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 x y z d(Si) 

Si(8d) 0.1987 0.0627 0.3391 0.000 

Fe(8d) 0.1725 0.4250 0.3314 2.421 

Fe(8d) −0.1737 −0.0727 −0.3353 3.688 

Fe(8d) −0.1181 −0.4391 −0.3320 4.904 

Fe(8d) 0.3207 −0.0713 −0.1627 2.498 

Fe(8d) 0.3262 −0.4375 −0.1628 4.076 

Fe(8d) −0.3192 0.0738 0.1613 2.781 

Fe(8d) −0.3233 0.4318 0.1630 3.772 

Fe(4c) 0.0408 0.2432 −0.1683 2.696 

Fe(4c) −0.0326 −0.2402 0.1684 2.466 

Fe(4c) 0.4587 −0.2490 0.3443 2.473 

Fe(4c) −0.4729 0.2429 −0.3549 4.799 

C(4c) 0.1196 −0.2739 −0.4255 4.114 

C(4c) −0.1414 0.2710 0.4484 2.287 

C(4c) 0.3825 0.2758 0.0380 2.175 

C(4c) −0.3771 −0.2512 −0.0540 4.032 

 

Table 3.4: Calculated atomic positions (in fractional units) of (Fe11Si  
  )C4. 

d(Si) is the inteatomic distance in units of Å measured from the Si(8d) atom 

which replaces Fe(8d). 
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 x y z d(Al) 

Fe(8d) 0.1783 0.0667 0.3403 2.712 

Fe(8d) 0.1783 0.4331 0.3403 2.625 

Fe(8d) −0.1771 −0.0674 −0.3344 2.505 

Fe(8d) −0.1771 −0.4326 −0.3344 4.761 

Fe(8d) 0.3244 −0.0662 −0.1676 2.570 

Fe(8d) 0.3244 −0.4338 −0.1676 4.786 

Fe(8d) −0.3278 0.0632 0.1636 2.680 

Fe(8d) −0.3278 0.4368 0.1636 2.705 

Al(4c) 0.0268 0.2500 −0.1467 0.000 

Fe(4c) −0.0330 −0.2500 0.1589 3.670 

Fe(4c) 0.4659 −0.2500 0.3414 4.617 

Fe(4c) −0.4583 0.2500 −0.3414 2.739 

C(4c) 0.1239 −0.2500 −0.4370 3.605 

C(4c) −0.1300 0.2500 0.4163 2.909 

C(4c) 0.3880 0.2500 0.0672 1.990 

C(4c) −0.3778 −0.2500 −0.0623 4.119 

 

Table 3.5: Calculated atomic positions (in fractional units) of (Fe11Al  
  )C4. 

d(Al) is the inteatomic distance in units of Å measured from the Al(4c) atom 

which replaces Fe(4c). 
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 x y z d(Al) 

Al(8d) 0.1871 0.0594 0.3403 0.000 

Fe(8d) 0.1742 0.4297 0.3281 2.470 

Fe(8d) −0.1788 −0.0685 −0.3297 3.590 

Fe(8d) −0.1772 −0.4359 −0.3340 4.814 

Fe(8d) 0.3256 −0.0688 −0.1597 2.528 

Fe(8d) 0.3249 −0.4350 −0.1668 4.084 

Fe(8d) −0.3213 0.0690 0.1658 2.677 

Fe(8d) −0.3230 0.4371 0.1618 3.634 

Fe(4c) 0.0422 0.2483 −0.1695 2.632 

Fe(4c) −0.0355 −0.2506 0.1635 2.484 

Fe(4c) 0.4634 −0.2549 0.3471 2.578 

Fe(4c) −0.4672 0.2499 −0.3471 4.626 

C(4c) 0.1218 −0.2594 −0.4285 4.036 

C(4c) −0.1371 0.2662 0.4462 2.010 

C(4c) 0.3809 0.2682 0.0430 2.000 

C(4c) −0.3779 −0.2530 −0.4040 4.947 

 

Table 3.6: Calculated atomic positions (in fractional units) of (Fe11Al  
  )C4. 

d(Al) is the inteatomic distance in units of Å measured from the Al(8d) atom 

which replaces Fe(8d). 
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 x y z d(Mn) 

Fe(8d) 0.1762 0.0625 0.3347 2.620 

Fe(8d) 0.1762 0.4347 0.3347 2.620 

Fe(8d) −0.1746 −0.0662 −0.3328 2.495 

Fe(8d) −0.1746 −0.4338 −0.3328 4.753 

Fe(8d) 0.3248 −0.0660 −0.1672 2.590 

Fe(8d) 0.3248 −0.4340 −0.1672 4.805 

Fe(8d) −0.3258 0.0654 0.1665 2.642 

Fe(8d) −0.3258 0.4346 0.1665 2.642 

Mn(4c) 0.0325 0.2500 −0.1545 0.000 

Fe(4c) −0.0355 −0.2500 0.1597 3.638 

Fe(4c) 0.4656 −0.2500 0.3402 4.583 

Fe(4c) −0.4639 0.2500 −0.3419 2.688 

C(4c) 0.1230 −0.2500 −0.4368 3.598 

C(4c) −0.1232 0.2500 0.4351 2.759 

C(4c) 0.3765 0.2500 0.0605 2.014 

C(4c) −0.3765 −0.2500 −0.0643 3.965 

 

Table 3.7: Calculated atomic positions (in fractional units) of (Fe11Mn  
  )C4. 

d(Mn) is the inteatomic distance in units of Å measured from the Mn(4c) 

atom which replaces Fe(4c). 

 

 

 

 

 

 

 

 



56 

 

 x y z d(Mn) 

Mn(8d) 0.1749 0.0646 0.3332 0.000 

Fe(8d) 0.1750 0.4347 0.3315 2.470 

Fe(8d) −0.1776 −0.0653 −0.3312 3.590 

Fe(8d) −0.1742 −0.4333 −0.3334 4.814 

Fe(8d) 0.3251 −0.0670 −0.1673 2.528 

Fe(8d) 0.3246 −0.4334 −0.1685 4.084 

Fe(8d) −0.3251 0.0763 0.1680 2.677 

Fe(8d) −0.3243 0.4335 0.1669 3.634 

Fe(4c) 0.0359 0.2510 −0.1597 2.632 

Fe(4c) −0.0360 −0.2495 0.1603 2.484 

Fe(4c) 0.4653 −0.2503 0.3385 2.578 

Fe(4c) −0.4642 0.2504 −0.3388 4.626 

C(4c) 0.1239 −0.2458 −0.4384 4.036 

C(4c) −0.1226 0.2467 0.4376 2.009 

C(4c) 0.3757 0.2467 0.0636 2.000 

C(4c) −0.3761 −0.2501 −0.0623 3.947 

 

Table 3.8: Calculated atomic positions (in fractional units) of (Fe11Mn  
  )C4. 

d(Mn) is the inteatomic distance in units of Å measured from the Mn(8d) 

atom which replaces Fe(8d). 
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3.3 The Formation Energy 

  

The Gibbs free energy is determined by the contribution of internal energy, 

work and entropy term. The changes of internal energy are calculated by 

formation energies. The formation energies were calculated as differences 

between the total energy of each phase and the sum of the energies of the 

stable state of pure elements forming this phase. The calculated total energies 

of the pure elements are summarized in Table 3.9. The formation energy (∆ ) 

of each system is defined, with the integers  ,   and  , at zero Kelvin, as 

follows: 

 

∆ =  (Fe M C ) −  ×  (Fe) −  ×  (M) −  ×  (C),      (3.1) 

 

where  (Fe M C ),  (Fe),  (Si),  (Al),  (Mn), and  (C) are the total 

energies of Fe M C , ferromagnetic BCC iron, diamond silicon, FCC 

aluminum, FCC manganese and graphite carbon, respectively, at the 

corresponding equilibrium lattice constants.  

 

Table 3.10 gives the corresponding equilibrium lattice volumes, the 

formation energies and calculated bulk moduli of Fe3C, (Fe11 Si  
  )C4, 

(Fe11Si  
  )C4, (Fe11Al  

  )C4, (Fe11Al  
  )C4, (Fe11Mn  

  )C4 and (Fe11Mn  
  )C4 for 

ferromagnetic states, respectively. Substitution of Si and Mn leads to slightly 

smaller cell volumes than pure Fe3C, while Al substitution induced bigger cell 

volumes. The calculated formation energy results show that Fe(8d) position 

replacements are more stable than Fe(4c) position for Si, Al and Mn alloying. 

 

 The formation energy of Fe3C per formula unit is calculated to be about 21.5 

kJ mol   which is only 3.2 kJ mol   larger than the experimental value, 

18.3 kJ mol   (Miyamoto et al., 2007). The formation energy of Fe3C for a 
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unit cell is 86.1 kJ mol  , which is four times of 21.5 kJ mol  , to compare 

with substituted structures since one unit cell contains four formula units. The 

formation energies of (Fe11Si  
  )C4 and (Fe11Si  

  )C4 are calculated to 138.1 

kJ mol   and 123.2 kJ mol  , respectively, which are 52.0 kJ mol   and 

37.1 kJ mol   larger than the formation energy of four formula units of Fe3C. 

It follows that 4.07 wt% silicon dissolved in a mole of cementite at zero 

Kelvin, requires 4.3 kJ for the Fe(4c) substitution and 3.1 kJ for the Fe(8d) 

substitution more energy than that required to form cementite using a mole of 

iron. It clearly is more difficult to form (Fe11Si  
  )C4 and (Fe11Si  

  )C4  than a 

mechanical mixture of Fe3C and Si.  

 

The formation energies of (Fe11Al  
  )C4 and (Fe11Al  

  )C4 are calculated to 

76.1 kJ mol   and 72.5 kJ mol  , respectively, which are 10.0 kJ mol   and 

13.6 kJ mol   smaller than that of Fe3C unit cell. For one mole of iron, 3.92 

wt% of aluminum solution at zero Kelvin, release 0.83 kJ for Fe(4c) 

substitution and 1.13 kJ for Fe(8d) substitution than required energy for 

cementite. The result is in disagreement with experimental observation that 

the solubility of aluminum in cementite is almost zero (Leslie, 1977) and with 

the MTDATA calculation results in Fig. 1.5. It is not at the moment clear why 

this discrepancy exists since there do not seem to be any adjustable 

parameters in the first principles calculations.  

 

The formation energy of (Fe11Mn  
  )C4 and (Fe11Mn  

  )C4 are calculated to 

81.7 kJ mol   and 81.1 kJ mol  , respectively, which are 4.4 kJ mol   and 

5.0 kJ mol   smaller than that of Fe3C unit cell. It means that 7.67 wt% 

manganese solution in a mole of cementite at zero Kelvin, release 0.37 kJ and 

0.42 kJ for Fe(4c) and Fe(8d) position substitution, respectively, and it is 

matched well the experimental observation that Mn can dissolve easily in 

cementite (Leslie, 1977).  
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element 

 

volume(Å3) 

 

V/ V0 

energy /  

kJ mol-1 

bulk modulus / GPa 

calculation  measure 

BCC Fe 11.36 0.97 −3340575.03 185.20 170 

graphite C 8.89 1.01 −99997.13 37.69 33 

diamond C 5.67 1.00 −99990.08 467.81 442 

diamond Si 20.46 0.99 −761219.33 88.52 100 

FCC Al 16.49 0.99 −637304.93 77.57 76 

BCC Mn 10.87 0.89 −3040972.35 283.72 
120 

FCC Mn 10.96 0.90 −3040979.39 292.23 

 

Table 3.9: Calculated equilibrium atomic volumes, total energies, and bulk 

moduli of the reference materials of ferromagnetic BCC Fe, graphite C, 

diamond C, diamond Si, FCC Al, BCC Mn and FCC Mn. The experimental 

bulk moduli of the pure elements as included for reference, V0 is the 

experimental volumes per atom of the reference elements 

(http://www.webelements.com).  
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type volume(Å3) V/ V0 ∆U \ kJ mol-1 bulk modulus\ GPa 

Fe3C 152.20 0.980 21.5(86.1) 226.84 

(Fe11Si4c)C4 151.44 0.975 138.1 221.83 

(Fe11Si8d)C4 151.97 0.978 123.2 221.00 

(Fe11Al4c)C4 152.48 0.982 76.1 224.02 

(Fe11Al8d)C4 154.33 0.994 72.5 222.60 

(Fe11Mn4c)C4 152.10 0.979 81.7 236.94 

(Fe11Mn8d)C4 151.96 0.978 81.1 234.33 

 

Table 3.10: Equilibrium unit cell volume, formation energy, and bulk moduli 

in ferromagnetic cases, which are calculated using the third order polynomial 

fitting with V0 = 155.32 Å , the experimental volume of Fe3C. The energy is 

stated in units of kJ mol   of each formula unit, Fe3C has also the formation 

energy which is multiplied by four in parentheses to compare with 

(Fe11M  
  )C4 and (Fe11M  

  )C4. The reference states are ferromagnetic BCC Fe, 

graphite C, diamond Si, FCC Al and FCC Mn.  

 

 Table 3.11 contains the calculated results of equilibrium lattice parameters 

and internal coordinate of Si3C, Al3C and Mn3C, which are composed of 

silicon, aluminum and manganese atoms by replacing all the iron atoms in 

cementite. Compared to those values of Fe3C, the  -axis of Si3C and Al3C 

enlarge much, so the total volume becomes about 208 Å , which are about 34 % 

larger volume than that of Fe3C. However the equilibrium volume of Mn3C is 

about 3% smaller than Fe3C.  

 

Table 3.12 shows the equilibrium unit cell volume, formation energy per 

formula unit and the bulk moduli of the hypothetical Fe3C, Si3C, Al3C and 

Mn3C cementite. The calculated formation energies are 21.5 kJ mol  , 256.4 

kJ mol  , 97.8 kJ mol   and −52.7 kJ mol   for its calculated equilibrium 
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lattice constants using the same optimization procedure with Fe3C. The 

calculated excess energy of the Si3C and Mn3C over Fe3C agree reasonably 

with 250 kJ mol   and −40 kJ mol   usually assumed in thermodynamic 

calculations (Miyamoto el al., 2007). The formation energy of Si3C is one 

order larger than that of Fe3C. When a silicon atom replaces an Fe atom in the 

ferromagnetic cementite, the required additional formation energy is 37.1 

kJ mol   and 52.0 kJ mol   for the Fe(4c) sites. If this excess energy is 

scaled in proportion to the corresponding site occupation numbers of iron 

atoms substituted with silicon in the cementite unit cell, then 505.6 kJ mol   

can be obtained that is about half the value of the four formula unit of Si3C. It 

follows that a simple analysis in terms of pair-wise Si-Fe binding energies is 

likely to be a gross approximation of the actual effect of silicon substitution. If 

the excess energies of aluminum and manganese substitution are scaled in 

proportion to the corresponding site occupation, then it can be obtained as 

−148.8 kJ mol   and −37.6 kJ mol  . The value for manganese substitution 

matched well with −40 kJ mol   which is usually used in thermodynamic 

calculations and the value of Mn3C, but the results of aluminum substitution 

gave a large difference. The results of VASP also are contained in the 

Table3.12. The results of Fe3C and Si3C are well acceptable in certain range of 

precision with FLAPW results. The result of Mn3C gives a gap with expected 

value since the VASP calculations do not treat core-valence interaction 

properly.  
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 Fe3C Si3C Al3C Mn3C 

a (Å) 5.1281 5.2745 5.3196 4.9914 

b (Å) 6.6512 8.1651 7.8539 6.6721 

c (Å) 4.4623 4.8365 4.9738 4.4321 

volume(Å3) 152.20 208.29 207.80 147.60 

x1 0.1752 0.2514 0.1828 0.1861 

x2 0.0358 0.0109 0.0193 0.0308 

x3 0.1236 0.2454 0.2282 0.1225 

y1 0.0662 0.0327 0.0845 0.0650 

z1 0.1670 0.1896 0.1630 0.1572 

z2 0.1602 0.2558 0.1867 0.1553 

z3 0.0621 0.0588 0.0994 0.0646 

 

Table 3.11: Calculated equilibrium lattice parameters in units of Å  and 

internal coordinate in fractional units of the hypothetical M3C with the fully 

optimized structure. The calculated values of the Fe3C cementite crystal 

structure are included for reference.  
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type 

 

volume(Å3) 

 

V/ V0 

∆U(kJ mol-1) 

VASP  FLAPW 

Bulk modulus / 

GPa 

Fe3C (FM) 152.20 0.980 18.8 21.5 226.84 

Si3C (NM) 208.29 1.341 260.0 256.4 130.90 

Al3C (NM) 207.80 1.338 58.0 97.8 94.76 

Mn3C (NM) 147.60 0.950 −26.7 −52.7 329.34 

 

Table 3.12: Equilibrium unit cell volume, formation energy, and bulk moduli 

which are calculated using the third order polynomial fitting with V0 = 155.32 

Å , the experimental volume of Fe3C. The energy is stated in units of kJ 

mol   of each formula unit. Only Fe3C is ferromagnetic state but the others 

are nonmagnetic cases. The formation energy from VASP are from 

Miyamoto’s paper (Miyamoto, 2007). The referenced states are ferromagnetic 

BCC Fe, graphite C, diamond Si, FCC Al and FCC Mn. 

 

Fig. 3.2 shows the dependency of formation energy at zero Kelvin with 

respect to silicon, aluminum and manganese atomic concentration in 

cementite for the ferromagnetic Fe3C, (Fe11Si  
  )C4, (Fe11Si  

  )C4, (Fe11Al  
  )C4, 

(Fe11Al  
  )C4, (Fe11Mn  

  )C4 , (Fe11Mn  
  )C4 and nonmagnetic Si3C, Al3C, 

Mn3C. It is clear to see that the formation energy behavior is nonlinear to the 

alloying concentrations in cementite. Figs. 3.3, 3.4 and 3.5 show the 

equilibrium ternary phase diagrams of Fe-Si-C, Fe-Al-C and Fe-Mn-C at 

773K, respectively, using MTDATA, with TCFE database and FLAPW 

calculation results. A free energy of cementite phase has been modified as 

substitutional solid solution (Fe, Si)3C, (Fe, Al)3C or (Fe, Mn)3C  using the 

same effect of temperature dependency with Fe3C and using the FLAPW 

results of Si3C, Al3C or Mn3C. The excess energy term has been modified 

using a regular solution model and using the FLAPW results of (Fe11M)C4 

without temperature dependency.  
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   =    (1 −  ).                 (3.2) 

 

These diagram results agree well with Figs. 1.4 and 1.5 at high Fe and at low 

Si, Al and Mn concentration. However, the details are unexpected, for 

example, the shape of the phase fields. These diagrams need further 

interpretation and detailed work, especially in the case of aluminum, where 

there appears to be a large solubility of aluminum in cementite, with a 

continuous transition from Fe3C to Al3C as if they are isomorphous carbides. 

This is probably inconsistent with experimental evidence.  

 

 

 

Figure 3.2 Calculated formation energy of one mole of unit cell with respect 

to alloying concentration (in units of at %) in Fe3C cementite. The lines are 

drawn as a guides.  
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Figure 3.3 Ternary phase diagram of Fe-Si-C system at 773K using FLAPW 

calculation results. 

 

  

 

Figure 3.4 Ternary phase diagram of Fe-Al-C system at 773K using FLAPW 

calculation results. 
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Figure 3.5 Ternary phase diagram of Fe-Mn-C system at 773K using FLAPW 

calculation results. 

 

3.4 Bulk Moduli 

 

Table 3.9 contains also the bulk moduli of pure elements for the reference 

state of system. The bulk modulus can be obtained from the fitting 

coefficients of Murnaghan’s equation (Murnaghan, 1944) or from the partial 

derivative of pressure (Ashcroft, 1976), 

 

 =  −(
  

  
)                       (3.3) 

 =  − (
  

  
).                      (3.4) 

 

The bulk modulus of three dimensional symmetric crystal structure such as 

BCC, FCC and diamond are calculated using the third order total energy 
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polynomial depend on lattice volume. But graphite carbon is hexagonal and 

the elastic modulus in  -direction is significantly smaller compared with the 

other axes. So the bulk modulus of hexagonal graphite should be calculated 

using elastic constants (Boettger, 1997) by using the equations  

 

   +    =
  

 

   

   

   
                    (3.5) 

   =
  

 

   

   

   
                      (3.6) 

   =
    

   

   

     
                     (3.7) 

B =
   (       )     

 

(       )          
.                 (3.8) 

 

where   ,    and    are the equilibrium value of volume and lattice 

parameter   and  . The 25 distinct combinations of the hexagonal lattice 

parameters   and   are used to determine a second order two dimensional 

fitting polynomial for graphite internal energy. The elastic constants 

(    +    ),     and     and bulk modulus of graphitic carbon are 

calculated to be 1248.3 GPa, 40.9 GPa, − 5.7 GPa and 37.69 GPa, 

respectively. The calculated bulk moduli for pure elements are agreed well 

with the known value except manganese case such as in Table 3.9. This comes 

from the fact that BCC and FCC structures are not equilibrium crystal 

structures of manganese in which the alpha structure is most stable.  

 

Table 3.10 contains the bulk moduli of Fe3C, (Fe11Si  
  )C4, (Fe11Si  

  )C4, 

(Fe11Al  
  )C4, (Fe11Al  

  )C4, (Fe11Mn  
  )C4 and (Fe11Mn  

  )C4. The calculated 

bulk modus of ferromagnetic Fe3C is 226.84 GPa which is agrees reasonably 

with the previous first-principles result of 235.13 GPa (Faraoun et al., 2006). 

The small discrepancy is attributed to the different precision criteria they used. 

The substitution of Si into the Fe(4c) site and Fe(8d) sites reduces the bulk 
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moduli about 2.2% and 2.6%, respectively. The corresponding reductions in 

the aluminum substitution are about 1.3% for the Fe(4c) substitution and 1.9% 

for the Fe(8d) substitution. These features indicate that the Si and Al 

substation at Fe(8d) positions lead to a larger reduction in the bulk modulus 

than that at the Fe(4c) positions. The bulk moduli of (Fe11Mn  
  )C4 and 

(Fe11Mn  
  )C4 are 4.5% and 3.3% higher than Fe3C. For the three alloying 

elements substitutions, replacements at Fe(4c) positions gives higher bulk 

moduli than at Fe(8d) positions.  

 

Table 3.12 shows the calculated bulk moduli of nonmagnetic Si3C, Al3C, and 

Mn3C. The tendency of bulk moduli increasing is the same as the alloying 

elements substitution described above such that silicon and aluminum 

decreased while manganese increased. However the bulk modulus of Si3C is 

higher than Al3C, which is different from the result that (Fe11Si  
  )C4, 

(Fe11Si  
  )C4 are smaller than (Fe11Al  

  )C4, (Fe11Al  
  )C4. 

 

3.5 Magnetic Properties 

 

 Table 3.13 summarizes the calculated total magnetic moments, in units of 

μ , which are 5.764μ , 4.907μ , 4.767μ , 4.729μ , 4.856μ , 5.654μ  and 

5.577μ  for Fe3C, (Fe11Si  
  )C4, (Fe11Si  

  )C4, (Fe11Al  
  )C4, (Fe11Al  

  )C4, 

(Fe11 Mn  
  )C4 and (Fe11 Mn  

  )C4, respectively. This shows Si and Al 

substitution reduced the total magnetic moments while Mn substitution 

increased. For Fe3C, the calculated spin magnetic moment inside the MT 

spheres of Fe(8d) and Fe(4c) are 2.059μ  and 1.957μ , respectively. On the 

other hand, the carbon atom spins are polarized negatively to have the 

magnetic moment of −0.089μ  and the interstitial regions have a magnetic 

moment of −0.120μ . 
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 The substitution of Si and Al reduced the total magnetic moments by 

reducing the spin magnetic moments in Fe(4c) and Fe(8d) muffin-tin sphere 

while the spin magnetic moments in C(4c) and interstitial are increased. The 

Al and Si substitution at Fe(8d) positions reduced more the magnetic moment 

at Fe(4c) while it is opposite tendency at Fe(8d). The substitution of Mn 

reduced the total magnetic moments less than is the case for Si and Al. The 

change of spin magnetic moments at each muffin-tin sphere is also relatively 

small.  

 

Fig. 3.6 presents the spin density contour plots in the plane normal to the  -

axis intersect the Fe(4c) positions, whereas Fig. 3.7 intersect the Fe(8d) 

positions for Fe3C, (Fe11Mn  
  )C4 , (Fe11Si  

  )C4 and (Fe11Al  
  )C4. The 

contours start from 1.0 × 10   electrons/a. u.  and increase successively by 

a factor of √2. The solid and broken lines represent the positively and 

negatively polarized spins, respectively. Fig. 3.8 presents the spin density 

contour plots in the plane which contains Fe(4c), C(4c), and Fe(8d) sites 

simultaneously for Fe3C, (Fe11Mn  
  )C4, (Fe11Si  

  )C4 and (Fe11Al  
  )C4. 

 

 The Mn substitution on one Fe(4c) and Fe(8d) site has relatively small 

effect on the spin density compared with Si and Al substitution. Fe(4c)-d and 

Mn(4c)-d bonding is more stronger than Fe(4c)-d and Fe(4c)-d bonding, so 

positively charged region surrounding Fe(4c) sites are expanded. The most 

significant difference is come from the comparison with Si and Al substitution 

at Fe(4c) sites. The Si substitution on one Fe(4c) site replaces the bonding 

between the Fe-d and the C-sp states by that of the Si-sp and C-sp. It is 

noticeable that the spins of the Si-C bonding region are polarized positively, 

while the Al substitution did not. In addition, the σ-like bonding between the 

Fe(4c)-d and the C(4c)-p shows enhanced negative spin polarizations, so the 

positively spin polarized region of Fe(4c) site is reduced. This indirect effect 
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of Si substitution is considered to cause the large reduction of the magnetic 

moment of Fe(4c) in (Fe11Si  
  )C4.  

 

The effects on the magnetism of the Si and Al substitution on the Fe(8d) site 

seems rather direct. The spins of the π-like bonding between Si(8d)-p and 

Fe(4c)-d and between Al(8d)-p and Fe(4c)-d are polarized negatively due to 

the Si and Al substitution. It is considered that the magnetic moment reduction 

on the Fe(4c) site by Si and Al substitution on Fe(8d) site is due to the direct 

effect of the π-like bonding between the Si(8d)-p and the Fe(4c)-d states and 

between Al(8d)-p and the Fe(4c)-d states.  

 

In Figs. 3.9-3.11, it is presented the calculated atom projected local density 

of states (LDOS) for the (a) Fe(4c) and (b) Fe(8d) atoms for Fe3C, 

(Fe11Si  
  )C4, (Fe11Si  

  )C4, (Fe11Al  
  )C4, (Fe11Al  

  )C4, (Fe11Mn  
  )C4 and 

(Fe11Mn  
  )C4, respectively. The spin down DOS values are factored by −1, 

and the Fermi levels (  ) are set to zero. It can be found that all the Fe bands 

are broadened and split into sub-bands by the silicon and aluminum 

substitution, due to local symmetry breaking caused by the substitution while 

manganese substitution gives relatively small effect on the band. This feature 

is considered to the reason for the general reduction of Fe magnetic moments 

by the silicon and aluminum substitution.  
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 total Fe(4c) Fe(8d) C(4c) interstitial M 

Fe3C 5.764 2.059 1.957 −0.089 −0.120 - 

Fe3C (LMTO) - 1.980 1.740 −0.060 - - 

(Fe11Si4c)C4 4.907 2.021 1.793 −0.075 −0.107 −0.055 

(Fe11Si8d)C4 4.767 1.881 1.852 −0.077 −0.259 −0.076 

(Fe11Al4c)C4 4.729 1.913 1.752 −0.078 −0.118 −0.054 

(Fe11Al8d)C4 4.856 1.890 1.805 −0.076 −0.103 −0.057 

(Fe11Mn4c)C4 5.654 2.080 1.895 −0.089 −0.102 1.978 

(Fe11Mn8d)C4 5.577 2.020 1.920 −0.088 −0.106 1.564 

 

Table 3.13: Calculated magnetic moments per formula unit of Fe3C, 

(Fe11M  
  )C4 and (Fe11M  

  )C4 those of each atom ( in units of μ ) inside each 

muffin-tin (MT) sphere and those of interstitial region. The LMTO calculation 

is referenced from the paper of Haglund (1991). 
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(a)                         (b) 

 

 

(c)                         (d) 

 

Figure 3.6 Spin density contour plots in the plane normal to the  -axis, 

cutting the Fe(4c) positions of (a) Fe3C (b) (Fe11Mn  
  )C4 (c) (Fe11Si  

  )C4 (d) 

(Fe11Al  
  )C4. The horizontal axis represents [100] direction, while the vertical 

axis represents [001] one. Contours start from 1.0 × 10   electrons/a. u.  

and increase successively by a factor of √2. The solid and broken lines 

represent the positively and negatively polarized spins, respectively.  
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(a)                         (b) 

 

 

(c)                         (d) 

 

Figure 3.7 Spin density contour plots in the plane normal to the  -axis, 

cutting the Fe(8d) positions of (a) Fe3C (b) (Fe11Mn  
  )C4 (c) (Fe11Si  

  )C4 (d) 

(Fe11Al  
  )C4. The horizontal axis represents [100] direction, while the vertical 

axis represents [001] one. Contours start from 1.0 × 10   electrons/a. u.  

and increase successively by a factor of √2. The solid and broken lines 

represent the positively and negatively polarized spins, respectively.  
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(a)                         (b) 
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(c)                         (d) 

 

Figure 3.8 Spin density contour plots in the plane which contains Fe(4c), C(4c) 

and Fe(8d) sites simultaneously for (a) Fe3C (b) (Fe11Mn  
  )C4 (c) (Fe11Si  

  )C4 

(d) (Fe11Al  
  )C4. The horizontal axis represents [100] direction, while the 

vertical axis represents [085] one. Contours start from 1.0 × 10   

electrons/a. u.  and increase successively by a factor of √2. The solid and 

broken lines represent the positively and negatively polarized spins, 

respectively.  
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Figure 3.9 The calculated atom projected local density of states (LDOS) for 

the (a) Fe(4c) and (b) Fe(8d) atoms. The solid lines, broken lines, and dot-

dashed lines represent the atoms belonging to Fe3C, (Fe11 Si  
  )C4 and 

(Fe11Si  
  )C4, respectively. The spin down DOS values are factored by −1, 

and the Fermi levels (  ) are set to zero. 
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Figure 3.10 The calculated atom projected local density of states (LDOS) for 

the (a) Fe(4c) and (b) Fe(8d) atoms. The solid lines, broken lines, and dot-

dashed lines represent the atoms belonging to Fe3C, (Fe11Al  
  )C4 and 

(Fe11Al  
  )C4, respectively. The spin down DOS values are factored by −1, 

and the Fermi levels (  ) are set to zero. 
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Figure 3.11 The calculated atom projected local density of states (LDOS) for 

the (a) Fe(4c) and (b) Fe(8d) atoms. The solid lines, broken lines, and dot-

dashed lines represent the atoms belonging to Fe3C, (Fe11Mn  
  )C4 and 

(Fe11Mn  
  )C4, respectively. The spin down DOS values are factored by −1, 

and the Fermi levels (  ) are set to zero. 
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Ⅳ Conclusions 
 

 The electronic structures and magnetic properties of cementite and its 

corresponding silicon, aluminum and manganese substituted forms have been 

investigated using first-principles calculations based on the FLAPW method 

within GGA. In addition, those of hypothetical Si3C, Al3C and Mn3C in the 

cementite crystal structure have been investigated by replacing the iron atoms 

with appropriate solute atoms. The calculated equilibrium volume of the 

ferromagnetic Fe3C ground state agrees well (within 1.4%) with the 

experimental data extrapolated to zero Kelvin. The internal coordinate 

relaxations show that the substituted Si atom pulls the neighboring Fe atoms, 

while it pushes the neighboring carbon atoms. The substituted Si atom and 

substituted Al atom at Fe(8d) sites push the neighboring carbon atoms while 

the substituted Mn atom and substituted Al atom at Fe(4c) pulls them. The 

bulk modulus of Fe3C is reduced a few percent on substitution of Si and Al 

and increased on substitution of Mn.  

  

 The total energy calculations indicate that the substitution of an individual 

silicon atom in cementite leads to an increase in the formation energy of pure 

cementite about 52.1 kJ mol   for the Fe(4c) substitutions or 37.2 kJ mol   

for the Fe(8d) substitutions. The Al and Mn substitution lead to reductions in 

the formation energy of pure cementite by 10.0 kJ mol   and 4.4 kJ mol   

for the Fe(4c) substitution or 13.6 kJ mol   and 5.0 kJ mol  , respectively. 

The corresponding excess energies when all the iron atoms are substituted to 

form Fe3C, Si3C, Al3C and Mn3C are 21.5 kJ mol  , 256.4 kJ mol  , 97.8 

kJ  mol   and −52.7 kJ  mol  , respectively. The results can give a 

explanation of the experimental observation that Si are not soluble in 

cementite while Mn can be solved easily. However, the reduction of the 

formation energy for Al substitution needs more study to explain that it 
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contradicts with experimental observation.  

 

 It is found that on substitution of a manganese atom, the magnetic moment 

changes relatively small compared with those of a silicon atom and aluminum 

atom. The calculated spin density contour plots and the Fe(4c) projected atom 

projected local density of states reveal that the magnetic moment reduction at 

Fe(4c) site by the Si substitution at Fe(4c) site is indirect bonding through the 

neighboring carbon atom, whereas at the Fe(8d) site it is direct.  
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Appedix  
 
This is the documentation for the new database of cementite for MTDATA.  
 
Fe:C<cementite:3:1>  E/J  T/K  P/Pa     
*** G-HSER(T,P) DATA FORMAT *** 
298.150  0.000  1  tcfe 
3 
-15.7450000E+03  7.06040000E+02  -1.20600000E+02 
6000.000 
0 
6 
2.63852850E-05 
2.40652500E-05 
2.06925000E-08 
0.0000000 
0.0000000 
6.5280750 
    
Si:C<cementite:3:1>  E/J  T/K  P/Pa    
*** G-HSER(T,P) DATA FORMAT *** 
298.150  0.000  1  tcfe 
3 
235.7450000E+03  7.06040000E+02  -1.20600000E+02 
6000.000 
0 
6 
2.63852850E-05 
2.40652500E-05 
2.06925000E-08 
0.0000000 
0.0000000 
6.5280750 
    
Si,Fe:C<cementite:3:1>  E/J 
*** GEX(REDLICH-KISTER) DATASET FORMAT *** 
298.150  1 
2 
-134.92600000000E+03   0 
6000.000 
0 0  
  
Al:C<cementite:3:1>  E/J  T/K  P/Pa 
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*** G-HSER(T,P) DATA FORMAT *** 
298.150  0.000  1  tcfe 
3 
62.7450000E+03  7.06040000E+02  -1.20600000E+02 
6000.000 
0 
6 
2.63852850E-05 
2.40652500E-05 
2.06925000E-08 
0.0000000 
0.0000000 
6.5280750 
    
Al,Fe:C<cementite:3:1>  E/J 
*** GEX(REDLICH-KISTER) DATASET FORMAT *** 
298.150  1 
2 
-127.92600000000E+03   0 
6000.000 
0 0 
 
Mn:C<cementite:3:1> E/J T/K P/Pa  
*** G-HSER(T,P) DATA FORMAT *** 
298.150  0.000 1 tcfe 
3 
-66.7450000E+03 7.06040000E+02  -1.20600000E+02 
6000.000 
0 
6 
2.63852850E-05 
2.40652500E-05 
2.06925000E-08 
0.0000000 
0.0000000 
6.5280750 
 
Mn,Fe:C<cementite:3:1> E/J 
*** GEX(REDLICH-KISTER) DATASET FORMAT *** 
298.150 1 
2 
64.92600000000E+03 0 
6000.000 
0  0 
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