
REVIEW

Mathematical models in materials science

H. K. D. H. Bhadeshia*

Modelling has now become a routine part of materials science. It is appropriate therefore to

assess some of the successes and failures of the method and to understand how and if modelling

differs from ordinary quantitative science. The subject is now sufficiently mature to bear some

constructive self-criticism and to temper exaggerated claims. The discussion here of modelling

methods and outcomes is intended to be generic, although the examples used come from the

author’s experience of work on metals.
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Introduction
There is much to be gained by creating theory
appropriate for materials science, in particular that
which is experimentally verifiable and which does not
compromise with the complexity of technology.
Modelling as a subject has become as much a part of
materials science as experimental characterisation for
two reasons. First, to compete, industry must achieve
solutions using minimal resources. Second, scientists are
excited by the quantitative expression of multivariate
problems.

One approach in explaining the subject is to categorise
it into distinct fields connected according to length scales
(Fig. 1a). There is the physics associated with the
bonding between atoms, the chemistry of atomic
arrangements followed by the microstructure of aggre-
gated crystals and their defects, where the thermody-
namic approach triumphs. The ultimate is the
engineering continuum where parameters such as
modulus and strength are macroscopically averaged.

While in Fig. 1a there is a two way flow of
information between the different subjects, the emphasis
on linking the length scales makes the task of creating a
sufficiently complex model impossible in practice (suffi-
cient complexity will be defined later, but it refers to the
solution of real life technologies without simplification).
Furthermore, diagrams such as those in Fig. 1a imply a
lesser significance to the flow between distant subjects,
whether this is intentional or not.

Figure 1b in contrast emphasises clusters of models
as tools to be exploited by individuals with the ability
to recognise limitations, to make approximations and to
communicate between disciplines. The ambition is to
deal with the problem as posed, and hence to create new
methods and connections as required. These materials
modellers, a rather recent breed, are located mostly in
materials science departments. The purpose of this paper
is to present a description of modelling and to highlight
the performance of the subject over the last two decades.

While the discussion is intended to be generic, the
examples used come from the author’s own experience in
metals.

Purpose of models
The role of models in materials science is often
overstated. It is important to appreciate that scientific
progress can happen from simple observations as well as
from numerical computations. Anderson1 expressed this
nicely in his 1977 Nobel lecture:

‘One of my strongest stylistic prejudices in science is
that many of the facts nature confronts us with are so
implausible …, that the mere demonstration of a
reasonable mechanism leaves no doubt of the correct
explanation. This is so especially if it also correctly
predicts unexpected facts…. Very often such, a simpli-
fied model throws more light on the real workings of
nature than any number of ‘ab initio’ calculations of
individual situations, which even where correct often
contain so much detail as to conceal rather than reveal
reality. It can be a disadvantage rather than an
advantage to be able to compute or to measure too
accurately, since often what one measures or computes is
irrelevant in terms of mechanism. After all, the perfect
computation simply reproduces Nature, does not
explain her.’

It is rare that mathematical models alone influence an
outcome. It is more often the case that they are a part of
a process which includes insight and experimental
observations. Models might be classified as follows:

(i) those which lead to an unexpected outcome that
can be verified

(ii) those which are created or used in hindsight to
explain diverse observations

(iii) existing models which are adapted or grouped
to design materials or processes

(iv) models used to express data, reveal patterns, or
for implementation in control algorithms.

While these categories are not exclusive, they serve to
highlight the applications of models, with the emphasis
being on quantitative expression, whether that is fuzzy
or discrete. How then does this differ from ordinary
science, which also yearns for the mathematical for-
mulation of Nature?
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The difference becomes obvious when faced with a
complex problem (Fig. 2). The technique of conven-
tional science is then to reduce the problem until it can
be expressed using rigourous mathematical theory and
then to do simplified experiments to validate the theory.
This procedure often loses the technology relevant in the
original problem, although the work adds to the pool of
knowledge.

Modelling, in contrast, faces the problem at the level
of complexity posed. It begins with wide consultation to
identify all the relevant issues. Methods are then
assembled and developed, and if necessary combined
with empirical techniques to create an overall procedure,
taking considerable care to estimate uncertainties.
Validation of the model is by testing against unseen
data, by creating tangible components and by exposing
the software to other scenarios. In this way, the
technological goal is hopefully achieved, and problems
are identified which in the longer term need to be
resolved using the scientific approach. Like ordinary
science, the proper use of models also leads to insight,
but by tackling complexity at the level that is posed, it

can reveal issues which are lost during the simplification
characteristic of ordinary science. For example, it is
unlikely that the existence of a detrimental phase in high
strength steel weld deposits would have been revealed
without the creation of a model which uncompromis-
ingly accounts for the full range of variables that
influence the Charpy toughness.2–6

Excess information and information loss
Modern instruments such as the atom probe,8,9 the
orientation imaging microscope10–12 or the four-
dimensional X-ray microscope13,14 generate huge and
often overwhelming quantities of data.

In the case of the three-dimensional atom probe,
collections of many millions of data in which individual
atoms are chemically and spatially resolved are fre-
quently reduced to images with a dramatic reduction in
information content. While these pictorial representa-
tions are useful, the totality of data could, for example,
be exploited to reveal the nature of solid solutions.15

The orientation imaging microscope has been a boon
in the study of the microscopic aspects of crystal-
lographic texture. The instrument measures individual
crystal orientations relative to a frame of reference. Each
such orientation is characterised by three pieces of
information, the axis and angle of rotation. The
accompanying image reveals also the boundaries
between adjacent crystals, another two degrees of
freedom. However, the wealth of information is lost in
many publications which present just coloured orienta-
tion maps or plot only the distribution of rotation
angles.

These examples highlight the fact that researchers
often have the capability to collect fine detail but
perhaps not the patience or skill to exploit that
information fully. Precisely the same issues arise in
materials modelling where data can often be generated
at resolutions not possible using experiments (for
example, heat and fluid flow during welding16). The
outputs of such methods are ‘coarse grained’ before
publication. Similarly, atomistic calculations require
huge computing resources, and yet the answers they
produce are quite simple, for example, the cohesive
energy of postulated crystal structures or the elastic

1 a sequential process of mathematical modelling and b interdisciplinary and disconnected approach

2 The defining qualities of a model compared with the

conventional scientific method7
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moduli. One could query whether the stages involved
in reaching the required accuracy of the final answer
contain information about intermediate states.
Otherwise there is little insight to be gained, as pointed
out by Anderson1 and more recently by Cottrell.17

To summarise, the danger with computationally
intensive methods is that the focus shifts on the final
outcome rather than on the steps leading to that
solution. It is of course difficult to assess the utility of
large quantities of data when scientific expertise tends to
be highly specialised. For this reason, a good practice
would be to make the data freely available so that others
can look at the information with a fresh perspective. The
World Wide Web makes this an easy task to implement.
Thus, after publication, Brun et al.66 made some 2700
sets of creep data, each with 32 variables available on
MAP.18 These were then used by Meyer and Gutte19 to
create a hybrid creep model which includes the thermo-
dynamics of such steels.

Phase diagrams
Kaufman,20,21 Hillert,22,23 Kubaschewski and Evans24

and others25,26 pioneered the method in which a
combination of solution models and carefully assessed
experimental data is used to estimate phase diagrams.
This has been remarkably successful in enabling the
routine estimation of multicomponent, multiphase dia-
grams, so much so that many industries have embraced
the method (for recent reviews see Refs. 27 and 28).

The method relies on thermodynamic data so
calculations are only possible for known phases. Thus,
the Z phase ([Cr,VNb]N) which became prominent in
research on ferritic power plant steels29 could not be
implemented in alloy design procedures. The phase can
cause a dramatic decline in the long term creep
properties. It was not until the necessary data were
measured and assessed that equilibrium calculations
could be attempted.30

In some cases, the necessary experiments may be
impossible to conduct. For example, the equilibrium
solubility of silicon in cementite is incredibly small but it
is necessary to understand the thermodynamic proper-
ties of relatively large concentrations trapped in
cementite during its paraequilibrium precipitation.31–33

Silicon is important in the design of TRIP assisted
steels34–38 or other stronger steels which exploit trans-
formation plasticity.39–45 However, silicon also forms an
adherent oxide resulting in poor surface finish. In the
absence of thermodynamic data it is not possible to

calculate the optimum concentration needed to suppress
cementite and at the same time avoid the surface oxide.
One possibility is to calculate the necessary data using
electron theory.

In atomistic calculations using ab initio methods, the
computing requirements increase dramatically with the
number of atoms. Initial (unpublished) work by Jae
Hoon Jang and In Gee Kim at POSTECH suggests that
the difference in energy between a unit cell of cementite
(Fe12C4zone isolated Si atom) and (Fe11SiC4zone
isolated iron atom) would amount to a few kJ/mol. This
huge increase in enthalpy on substituting one iron atom
with a Si atom occurs because of the large concentration
of silicon in Fe11SiC4. More realistic concentrations in
the context of TRIP steels should be smaller but will
require very large computing times. This may become
possible in the near future.

Another interesting problem where ab initio methods
are most useful is in the quasi-chemical theory for the
solution of carbon in ferrite.46–51 Large concentrations
of carbon are routinely trapped in the ferrite during
martensitic or bainitic transformations. It is important
therefore to be able to calculate the phase boundaries at
low temperatures and for concentrations of carbon well
in excess of equilibrium. One of the parameters needed
to do this properly is the carbon–carbon interaction
energy v.46 For ferrite there have over the years been
considerable discussions as to whether the interaction
between adjacent carbon atoms is attractive or repul-
sive49,51–54 but it turns out that it is not possible to reach
a firm conclusion based on experimental data alone.50

The solubility of carbon in ferrite is too small at
temperatures close to ambient, to experimentally deter-
mine its thermodynamic behaviour.

Ab initio calculations are ideal for this purpose.55

Calculations were made for the two scenarios as
illustrated in Fig. 3. An attractive interaction is
expected when the carbon atoms are located a
distance aa (lattice parameter of ferrite) apart because
tetragonal martensite would otherwise never form,
which serves as a test for the calculation method. The
results did indeed indicate attraction with a carbon–
carbon interaction energy of 20?169 eV whereas
because of the closer distance of approach, the interac-
tion between carbon atoms located 1

2
aa is strongly

repulsive at 2?166 eV. This means that interstitial sites
close to a carbon atom are blocked from occupation by
another carbon atom. This information can be sub-
stituted directly into the quasi-chemical thermodynamic
models.

a carbon atoms located a lattice parameter apart; b carbon atoms in near neighbour interstitial sites
3 A pair of carbon atoms (dark) in octahedral interstices within the ferrite unit cell
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Mechanical properties
A great deal is understood about the mechanical
behaviour of metals. It is possible for example to
calculate elastic moduli using first principles methods
and to estimate the yield strength taking into account
the size and distribution of defects and the overall
microstructure. However, there is no facility for
estimating more sophisticated properties where the
number of variables involved is very large and their
effects are ill understood. It is not surprising therefore
that numerous attempts have been made to use neural
network modelling to deal with complex properties such
as fatigue,56–59 toughness,60–63 corrosion resistance64

and creep rupture life.19,65–68

A neural network is a general method of regression
analysis.69–72 A few of the advantages of the network
over conventional regression can be listed as follows:

(i) there is no need to specify a function to which the
data are to be fitted. The function is an outcome
of the process of creating a network

(ii) the network is able to capture almost arbitrarily
non-linear relationships

(iii) with Bayesian methods, or methods based on
committees of models, it is possible to estimate
the uncertainty of extrapolation.

The subject has been reviewed extensively in the context
of materials science71,72 but it is worth commenting on
the treatment of uncertainties. Noise is easy to under-
stand – when an experiment is repeated, the outcome is
different because some unknown variable has not been
controlled. Modelling uncertainty arises when many
functions are able to accurately represent known data
but extrapolate differently. In Fig. 4, the input values 2,
3 and 4 represent experimental data. Both the linear and
non-linear functions exactly represent the experimental
data, but make different predictions when it comes to
input values 5 and 6, i.e. when the functions are used to
extrapolate beyond the experimental data. It is impos-
sible, without physical understanding, to choose
between these two.

This could be interpreted as a crisis, but instead, the
difference in the predicted values from the two functions
can be taken as an indication of the uncertainty of
extrapolation. This uncertainty arises because the
functions representing the data extrapolate differently.

It is extremely useful to have this indication of
uncertainty when dealing with non-linear functions
which are not physically based. MacKay’s work has
been seminal in expressing neural networks in a
Bayesian framework so that the modelling uncertainties
become transparent.69

There are now examples where neural networks in
combination with microstructural calculations and
experience have short circuited the development of
welding alloys. Murugananth and co-workers2–6 com-
piled a neural network model which led to the discovery
that in strong weld metals, nickel is only effective in
increasing toughness when the manganese concentration
is small. This is illustrated in Fig. 5, where the contour
plot shows the impact energy at 260uC for welds A
(7Ni–2Mn), B (9Ni–2Mn) and C (7Ni–0?5Mn); the
details are described elsewhere.2,3,73 Experiments vali-
dated the neural network predictions so fundamental
work was commenced to understand the Ni–Mn
phenomenon.

The mechanism by which a combination of high
manganese and nickel concentrations leads to a dete-
rioration in strength has been studied in detail by
Keehan and co-workers.4–6 It appears that when the
transformation temperatures are sufficiently suppressed,
such that there is only a narrow gap between the bainite
and martensite start temperatures, a coarse phase
labelled coalesced bainite forms.

Coalesced bainite occurs when adjacent small platelets
of bainite (‘subunits’) merge to form a single larger
plate.74 This striking change in form occurs at large
undercoolings. Since adjacent subunits of bainite have
an identical crystallographic orientation, they may
merge given sufficient driving force to sustain the greater
strain energy associated with the coarser plate, and if
there is nothing to stifle the lengthening of the
subunits.74 The first condition is satisfied by the large
undercooling. The second implies that coalescence is
only possible at the early stages in the transformation of
austenite, when growth cannot be hindered by hard
impingement with other regions of bainite.

Experiments have now confirmed that the coarse,
coalesced bainite appears in weld metals containing
large concentrations of both manganese and nickel, such
that the bainite forms at temperatures close to the

4 Two functions which exactly match the experimental data2,4,6 and extrapolate differently

Bhadeshia Mathematical models in materials science

Materials Science and Technology 2008 VOL 24 NO 2 131



martensite start temperature (Fig. 6).4–6 It leads to a
deterioration in toughness and can be avoided by careful
modifications of composition, for example, by reducing
the manganese concentration when the nickel concen-
tration is high.

Genetic algorithms
Design problems usually begin with a specification of the
required properties. It is useful therefore to discover,
using a model, the domain of inputs that lead to the
desired properties. This is frequently done by a trial and
error process beginning with inputs and seeing whether
the output is achieved.

Genetic algorithms do this more efficiently.75

Consider a model with n input variables and one output.
The desired value of the output is y0. The algorithm
begins with a set of N randomly selected sets of inputs
(x1,x2,…xn)i51,N. When the calculations are completed
there will be N corresponding values of the output yi. A
fitness function is defined to express the deviation of yi

from y0.

Some of the original sets of inputs which show strong
deviations from y0 are disposed and replaced with
others. The new sets can again be chosen randomly by

perturbing the more successful sets or by combining
inputs from different sets, e.g. (x1,x2,…xn)15

(x1,x2)2<(x3,…xn)5 etc. The new sets of input then
generate new outputs and the process is repeated until
the domain of inputs which leads to values close to y0 is
identified.

A combination of neural networks and genetic
algorithms has in this way been used to design a novel
low silicon TRIP assisted steel with a microstructure
consisting of d-ferrite dendrites and a mixture of bainitic
ferrite and carbon enriched retained austenite. The steel
has been manufactured and tested to reveal a tensile
strength of about 1 GPa and a uniform elongation of
23% (Fig. 7).76

Strong steels
Steels which are strong and yet have sensible levels of
toughness, cost or other properties are difficult to
achieve. This is an area where materials modelling has
led the steel industry with the creation of new products
which are now commercialised.

One example is the invention of Blastalloy 160, which
has a yield strength of 1110 MPa and a Charpy

5 a contours showing the combined effect of manganese and nickel on the calculated toughness for 260uC of weld

metal produced using arc welding with a heat input of 1 kJ mm21, a base composition (wt-%) of 0?034C–0?25Si–

0?008S–0?01P–0?5Cr–0?62Mo–0?011V–0?04Cu–0?038O–0?008Ti–0?025N and an interpass temperature of 250uC and b full

results for welds A–C

6 Coalesced bainite in a 7Ni–2Mn (wt-%) weld metal4–6 7 The microstructure of d–TRIP steel76
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toughness of y176 J at room temperature.77,78 The
alloy is designed as a blast resistant material for the hulls
of fighting ships and meets processability requirements.
It therefore has to be weldable so the carbon concentra-
tion is kept to a minimum. Its chemical composition
derived using thermodynamic and kinetic modelling is
Fe–0?04C–3?64Cu–6?61Ni–1?78Cr–0?58Mo–0?11V (wt-%).

The alloy relies on a mixed microstructure of bainite
and martensite, but is secondary hardened using 3 nm
sized body-centred cubic copper and M2C precipitates.
Multistep heat treatments are used to introduce a
dispersal of nickel rich austenite which enhances
toughness by transformation plasticity.

Another case in a higher category of strength is the
steel containing fine bainite, produced by transforma-
tion at low temperatures.42,45,79 The theory used in its
design relies on the atomic mechanisms of solid state
transformations, particularly the mechanisms of nuclea-
tion and growth of bainite and martensite. Trans-
formation at low temperatures leads to finer plates of
bainite.80–82 The key criterion to achieve fine bainite
then becomes one of keeping the bainite start (BS) and
martensite start (MS) temperatures separate. Bainite
nucleation involves the partitioning of carbon which
gives it a thermodynamic advantage over the diffusion-
less nucleation of martensite. In a high carbon steel it is
possible therefore to suppress both BS and MS while
keeping BS2MS significantly positive. In this way,
transformation to bainite can be achieved at tempera-
tures as low as 125uC. Of course, the time required for
transformation increases dramatically as the tempera-
ture is reduced, but fine bainite can be generated by
transforming at 200uC for a reasonable amount of time.
The result is a cheap steel which can be large in all its
dimensions and yet plates of bainite which are only 20–
40 nm in thickness, corresponding to a high strength,
ductility and toughness. The typical composition is Fe–
1C–1?5Si–2Mn–1?3Cr–0?25Mo–0?1V (wt-%).

This seems to be the first nanostructured metal to be
manufactured on a large scale.

Creep resistant steels
A huge amount of effort, both experimental and the
development of theory, has been devoted to the design
of ferritic steels capable of resisting creep and oxidation
at 600–650uC over 100 000 h and 100 MPa.83–87 The
actual stress applied during service is ,100 MPa so the
expected life is 250 000 h. It is fair to say that the work
has been singularly unsuccessful in achieving a ferritic
steel capable of sustaining 650uC. Early theoretical
predictions failed to perform66 and experimental pro-
grammes throughout the world failed to do much better
than the established NF61683 and HCM12A88 steels
designed for lower operating temperatures.

It is not relevant here to comment on why the
experimental programmes did not succeed, but the
reasons for the failure of theory might in hindsight be
summarised as follows:

(i) for the kind of steels considered, there are at
least 50 variables which determine the creep
rupture life. The dislocation theory available for
the estimation of creep rupture life is too
simplistic to be applied in alloy design

(ii) empirical models for creep, such as those based
on neural networks66 had large associated

modelling uncertainties.72 These uncertainties
might have been smaller if quantities of existing
data in industrial archives and other develop-
ment programmes would have been made
available

(iii) the microstructure models, which can be used
for intuitive design, suffered from a lack of
thermodynamic data. The Z phase, which some
identify with the long term deterioration of
properties,29 is such a case where data have only
recently become available

(iv) there are no models for oxidation resistance as a
function of many parameters implicit in alloy
design

(v) finally, it is possible that it may not in principle
be possible to achieve the required properties. It
is not clear how such a proof might be
formulated given the number of parameters
that determine creep and oxidation properties.

It is worth pointing out that models have nevertheless
contributed to reductions in experimental programmes,
for example in limiting the addition of solutes to avoid
the formation of d-ferrite.

Expense of modelling
Modelling is often presented in research proposals as a
method which leads to lower costs by minimising
experiments. One example used to illustrate this is the
calculation of phase diagrams across the periodic table.
To do this experimentally for 100 elements would
require much more than 100! experiments. However,
there is no evidence to suggest that calculations might be
a cheaper way to proceed. Furthermore, many of the
calculation methods are not sufficiently accurate to be
used in alloy design.89

The friction stir welding process90 has led to a
plethora of highly sophisticated models which include
coupled thermal, high strain rate plasticity and transport
subroutines together with complex tool and workpiece
geometries. The output then consists of vector and
scalar fields giving a comprehensive description of the
process. The calculations have been validated in a
limited way but in many cases not by exposure to users
of the process. A user needs process maps which
highlight the domain of input parameters (tool rotation

8 ‘Equivalent circle radius’ of M23C6 particles plotted as

a function of time at 650uC91
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speed, tool shape, penetration, etc.) which is associated
with successful welds. However, the computations are so
time consuming that it is not practical to use the
methods for producing process maps. This seems to be a
case where the generation of experimental maps may be
a lot cheaper and faster than using models.

Validation of models
There is a weakness in the experimental validation of
models. This is well illustrated by the fact that there are
two fitting parameters in almost all of kinetic theory, the
interfacial energy and the number density of nucleation
sites. There is no satisfactory method of calculating
these values in a generalised manner. Nucleation
processes occur on a scale which is not easy to monitor.
For this reason, many published kinetic models make
comparisons at a point where the particles are coarse
and hence most of the information about the nucleation
stage is lost.

Figure 8 is a case where classical nucleation and
growth theory was used to simulate the precipitation of
M23C6 in a particular power plant steel.91 The fitting
parameters included the number density of nucleation
sites and the carbide–ferrite interfacial energy per unit
area. The experimental data plotted are however for a
stage where coarsening rather than precipitation dom-
inates. This is not a good test of the kinetic assumptions
since it is the early part of the precipitation curve that is
sensitive to nucleation and growth phenomena.

Figure 9 shows a variety of comparisons for molyb-
denum carbide in ferrite in a simple Fe–Mo–C system.92

The only fitting parameters used are the interfacial
energy per unit area and the number density of
nucleation sites, but the treatment is otherwise

multicomponent and in a simultaneous transformations
framework93,94 which avoids assumptions about the
dissolution of cementite during the precipitation of the
alloy carbide. The comparison with experimental data
covers the early stages of precipitation and the closure
with theory is not all that impressive. Much more work
is needed to achieve a performance which is useful in
industry.

Summary
It is true to say that major advances have been made in
the mathematical modelling of all aspects of materials
science. And indeed, novel technologies and materials
have resulted from these efforts, a very few examples of
which have been presented in this paper. However, it is
also truly important to recognise the shortfalls of the
technique, of which there are many, so that progress can
be better defined.

The biggest gains seem to occur when emphasis is on
treating the problem at the level of complexity appro-
priate to technology. This not only serves to help
industry, but more importantly, provides challenging
problems which do not surface in ordinary science.

Finally, there is a need when comparing experimental
data against models to be transparent on what is
actually being validated.
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