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Abstract 
 
Although the principles of microalloying are well-established, the complexity of 
thermomechanical processing is such that it is difficult to deconvolute the 
contribution to strength of the microalloying additions as a function of the many 
variables involved. We report in this paper the analysis of a large database on hot-
rolled steels to create a neural network model which estimates the strength as a 
function of chemical composition and process variables. This model is then used to 
make comparisons against equivalent data in order to realise the role of minute 
additions of carbide formers in changing the properties of steels. 
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1 Introduction 
 
 
Microalloying has made a major contribution to the development of steels which help 
improve the quality of life through the better design of infrastructure. The principle 
is simple, that precipitates which are stable at high temperatures where steels are 
thermomechanically processed, serve to pin austenite grain boundaries [1]. This 
induces repeated recrystallisation of the austenite, and prevents its grain growth 
during hot-rolling, so that the fine austenite then transforms into correspondingly 
fine ferrite. 
 
The strength of hot-rolled steels clearly must depend on thermomechanical 
processing and chemical composition, in particular the carbo-nitride forming 
elements niobium, vanadium and titanium, small concentrations  (<0.10 wt%) of 
which both strengthen and toughen the standard carbon-manganese steels [1-4]. 
The purpose here was to interpret a large database in order to decipher the role of 
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microalloying additions in modern steels with respect to strength. The problem is 
non-linear and best handled using a neural network. It is not the intention here to 
present the details of the technique itself, since this has been described elsewhere 
[5-9] and has been applied extensively in the context of steels [10-18]. 
 
2 Neural network 
 
A hyperbolic tangent is a flexible, non-linear function, and combinations of different 
hyperbolic tangents allow mathematical functions which are able to capture 
empirical patterns in complex, multidimensional data. Such functions form the 
essence of neural networks. Their very flexibility, however, raises the possibility of 
overfitting data, a problem that can be avoided by using a randomly chosen sub-set 
(the training set) of the full set of available data. The part not used in creating the 
model, i.e., the test dataset, is then exploited in testing how the empirical fit 
generalises on unseen data. By ensuring that the model created represents both the 
training and test data equally well, it is possible to avoid overfitting.  
 
There are two kinds of errors taken into account in the present work. The first is a 
noise, which represents the effect of missing variables, which is calculated as a 
constant value per model.  The second is related to the fact that many empirical 
functions may adequately represent the same set of data, but which behave 
differently in extrapolation or interpolation. This modelling uncertainty is important 
in defining regions where the model is not firmly based on data. This is useful both 
in highlighting the danger of extrapolation and in defining regions of the input space 
where experiments are needed. Naturally, unlike the noise, the modelling uncertainty 
is a function of the position of input space where calculations are done. 
 
2.1 Data 
 
All of the data used have been provided by POSCO, based on experiments done on 
the tails of hot-rolled coils. Each experiment is associated with a value for the 
concentrations of carbon, manganese, silicon, phosphorus, sulphur, chromium, 
nickel, molybdenum, titanium, niobium, vanadium, aluminium, nitrogen, boron, 
copper, tin and calcium. In addition, the finish-rolling temperature (TFR), coiling 
temperature (TC), coil thickness (Ct), reheating time (tR), reheating temperature (TR) 
and total reduction ratio (reduction in thickness divided by the initial thickness εr) 
are specified. The statistical characteristics of the data are listed in Table 1. 
 
2.2 Modell ing 
 
One hundred models were trained from which a committee of models which led to 
the smallest generalisation error was produced, and then retrained on the entire 
dataset without changing the complexity of any of the individual models. The details 
of these procedures have been described elsewhere [5,9] but the characteristics of 
the committee models for the ultimate tensile strength and yield strength are as 
follows: 
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Output Noise  σν Number of models in committee 

UTS σU ±0.014 3 
Yield σY ±0.040 4 

The performance of the fully trained committee-models is illustrated in Fig. 1, and 
the ability of each input to explain variation in the output (i.e., the significance) is 
shown in Fig. 2.  As expected, C, Mn and Si  correlate well with σU, as do the 
microalloying elements (Ti, Nb, V) even though they are added in small 
concentration. With the yield strength, the most significant variables are C, Mn, Si, 
Nb, Ct and εr. These outcomes will be discussed later in the text. 
 

 
3 Analysis 
 
In order to extract knowledge from the models, they were used to make predictions 
on the particular alloys listed in Table 2.  Alloy A represents a mean set of 
parameters within the data used to create the models, whereas B, C and D 
correspond to reports in the literature, in order to test the role of microalloying 
additions [4,20,21]. When the full information was not reported with respect to the 
rolling schedule, it was assumed that the parameters corresponded to the mean 
values used here. When studying the effect of a particular variable, the remaining 
inputs were as listed in table 2. All the error bars represent the combined effect of 
the modelling uncertainty (±1σ ) and noise of the committee model. 
 
Nb, Ti and V carbonitrides prevent austenite grain coarsening during reheating and 
also help refine the austenite grain size during hot-rolling by pinning the grain 
boundaries and retarding recrystallisation [1,21]. By suppressing recrystallisation, 
they allow a higher fraction of the strain to be retained in the austenite. This 
increases the number density of ferrite nucleation sites, and finer ferrite grains are 
obtained after cooling. Nb is the most effective microalloying addition for 
suppressing the recrystallisation [3]. Many parts of this work are concentrated on 
the effect of Nb on the strengths. 
 
Figure 3 shows the calculated effect of niobium on the strength of alloy B; 
experimental data due to [4] are also plotted for a niobium concentration of 0.023 
wt%. It can be concluded that the 0.023 wt% addition has increased the yield 
strength by some 112 MPa but the ultimate tensile strength by only 46 MPa.  The 
strength increment is of course useful but the difference between yield and ultimate 
strength has been dramatically reduced by the niobium addition which makes the 
steel less suitable for critical applications, such as earthquake-resistant steels, and 
where fatigue resistance is important [22]. Analysis of steel C, which is microalloyed 
with titanium, revealed a similar effect and the method accurately predicted the 
experimental data of [19] with calculated yield and UTS values being 450 and 542 
MPa which compares with the measured values of 480 and 540 MPa respectively 
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(Fig. 4). This is in spite of the fact that steel C is not well-represented in the data 
used to train the model, resulting in large modelling uncertainties. 
 
The greater sensitivity of the yield strength to microalloying is expected given that 
yield corresponds to the initial events leading to the propagation of slip across grain 
boundaries.  On the other hand, the ultimate strength is associated with a large 
amount of plasticity and a work-hardened state, i.e., when the microstructure has 
homogenised.  
 
Figure 5 shows some interesting calculations designed to see the synergistic effects 
of microalloying with the combined additions of vanadium and niobium. They confirm 
that the yield strength is more sensitive to microalloying additions than the UTS. 
They further show that in steel A, an increase in the niobium concentration leads to 
strengthens the steel whereas the perceived effect of vanadium is small compared 
with the uncertainties to conclude that it is significant. In a series of studies, Medina 
and co-workers [23, 24] have shown that niobium is the most effective of 
microalloying elements in raising the static recrystallisation temperature of 
austenite, thus allowing more plastic strain to be retained before the austenite 
transforms into ferrite. The latter is therefore finer, thus adding to the strength of 
the steel. Similar results have been reported by Everett et al. [25]. Fig. 5 is 
consistent with these observations. 
 
Fig. 6 shows a similar analysis with Ti and Nb as the microalloying additions. It is 
interesting that an increasing titanium concentration consistently leads to a 
reduction in the yield strength, and in general the UTS. Titanium is a stronger carbo-
nitride former than niobium, and hence precipitates at a much higher temperature 
into relatively coarse particles, thus being less effective than niobium in raising the 
static recrystallisation temperature. Furthermore, its addition to a niobium-
containing steel somewhat deprives the latter the opportunity to combine with 
interstitial elements and hence reduces the overall strength, making niobium less 
effective. 

 
 
3.1 Heat Treatment and Roll ing Temperatures 
 
We have confirmed using the model that the strength of steel A hardly varies as a 
function of the reheating temperature over the range 1130-1250°C within the limits 
of uncertainty in the calculations. This is because the temperatures are all high 
enough to produce recrystallised austenite.   
 
In the absence of microalloying, the yield strength decreases when rolling is finished 
at a high temperature (Fig. 7). This is not the case when a niobium addition is made 
because the TFR is then below Tnr, which can be calculated using [26]: 
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where the concentrations of the elements (W) are in wt %. For steel A, Tnr is found 
to be 920°C meaning that pancaked austenite would be obtained for all Tnr below 
that temperature, consistent with Fig. 7 which shows that the strength of the Nb-
containing alloy is insensitive to TFR. 
 
Fig. 8 shows that the properties of steel D are insensitive to the coiling 
temperature, and this is confirmed by the plotted experimental data from [27]. The 
insensitivity arises from the fact that the steels have a mixed microstructure of 
ferrite and pearlite, which completes transformation close to the eutectoid 
temperature (>700°C), so that the cooling subsequent to transformation does not 
influence the microstructure significantly. This would not be the case when lower 
temperature transformation products such as bainite are desired. 
 
3.2 Model Validation 
 
Data for further steels were collected from published results [4,19,28- 33]. Their 
chemical compositions are described in Table 3. These experimental results were 
used to demonstrate the predictive abilities of the models. The models are seen to 
work rather well (Fig. 9) on these data, for both microalloyed and steels which do 
not contain microalloying elements.  
 
It is interesting that the model is able to generalise to data which evidently are out 
of the range used in the creation of the models. This statement is emphasised by 
the fact that the modelling uncertainties associated with the predictions in Fig. 9 
are large (as would be the case for data out of the range of the training process), 
and yet the predictions are good. This indicates that the model has perceived 
physical relationships which are well-behaved on extrapolation. 
 
 
4 Conclusions 
 
It has been possible to create empirical models which are nonlinear and hence are 
able to capture the complex array of parameters which control the yield and 
ultimate tensile strengths of hot-rolled steels with a mixed microstructure of ferrite 
and pearlite. The method used is the neural network in a Bayesian framework. It is 
found without exception, that the model predictions are consistent with 
metallurgical observations and theories published in diverse sources. 
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 Minimum Maximum Mean St. Dev. 
C / wt% 0.0012 0.8684 0.1009 0.0842 
Mn / wt% 0.045 1.41 0.4763 0.2237 
Si / wt% 0 1.954 0.0216 0.0594 
P / wt% 0.003 0.11 0.0133 0.0055 
S / wt% 0 0.017 0.0069 0.0025 
Cr / wt% 0 0.46 0.0203 0.0266 
Ni / wt% 0 0.44 0.0152 0.0239 
Mo / wt% 0 0.2 0.0009 0.0044 
Ti / wt% 0 0.058 0.0008 0.0035 
Nb / wt% 0 0.041 0.0005 0.0026 
V / wt% 0 0.041 0.0014 0.0018 
Al / wt% 0 0.288 0.0319 0.0123 
N / wt% 0 0.0087 0.0034 0.0014 
B / wt% 0 0.0002 0.000026 0.000046 
Cu / wt% 0 0.54 0.0098 0.0283 
Sn / wt% 0 0.008 0.0019 0.0014 
Ca / wt% 0 0.0032 0.0001 0.0004 
TFR / °C  700 930 867.3663 14.6396 
TC / °C 449 695 600.0074 26.9377 
Ct / mm 1.4 12.7 4.76 2.56 
tR / min 116 903 205.7459 82.9132 
TR / C 1128 1247 1145.671 12.1482 
Reduction 0.7214 0.9696 0.9039 0.0476 
     
σU  / MPa 292 1039 413.6963 71.9043 
σY  / MPa 150 676 296.8 47.0699 

 
Table 1: Properties of data from 3385 experiments. 
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 A B C D 
C / wt % 0.1009 0.046 0.058 0.1 

Mn / wt % 0.4763 1.19 0.52 0.91 
Si / wt % 0.0216 0.03 0 0.01 
P / wt % 0.0133 0.015 0 0.011 
S / wt % 0.0069 0.002 0 0.008 
Cr / wt % 0.0203 0 0 0 
Ni / wt % 0.0152 0 0 0 
Mo / wt % 0.0009 0 0 0 
Ti / wt % 0 0 0.057 0.04 
Nb / wt % 0.0005 0.023 0.054 0.03 
V / wt % 0 0 0 0 
Al / wt % 0.0319 0.038 0.052 0.04 
N / wt % 0.0034 0.0067 0.0088 0.007 

B / wt % 0.00002
6 0 0 0 

Cu / wt % 0.0098 0 0 0.029 
Sn / wt % 0 0 0 0 
Ca / wt % 0 0 0 0 

TFR / °C 867 850 880 860 
TC / °C 600 450 600 520 

Ct / mm 4.76 4.00 4.00 4.76 
tR / min 205 45 60 205 
TR / °C 1145 1100 1250 1150 
εr 0.9039 0.88 0.87 0.9 

 
Table 2: Compositions of alloys used to study the effects of individual variables on 

the strengths 
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C Mn S i P S C r N i M o Ti N b V Al N B Cu Sn C a

0.13 0.85 0.073 0.032 0.004 0 0 0 0 0 0 0.03 0.0038 0 0 0 0

0.12 1.34 0.044 0.021 0.001 0 0 0 0 0 0 0.033 0.003 0 0 0 0

0.1 1.2 0.79 0.013 0.001 0 0 0 0 0 0 0.043 0.003 0 0 0 0

0.312 1.51 0.27 0.021 0.008 0 0 0 0 0 0 0.029 0.0031 0 0 0 0

0.1 0.91 0.01 0.011 0.008 0 0 0 0.041 0.031 0.003 0.04 0.007 0 0.029 0 0

0.08 0.8 0.25 0.014 0.011 0 0 0 0 0 0 0.03 0 0 0 0 0

0.08 0.81 0.26 0.013 0.011 0 0 0 0 0.03 0 0.03 0 0 0 0 0

0.08 0.8 0.23 0.012 0.011 0 0 0.3 0 0.03 0 0.03 0 0 0 0 0

0.08 0.8 0.25 0.014 0.011 0 0 0.6 0 0.03 0 0.03 0 0 0 0 0

0.08 0.8 0.25 0.013 0.011 0 0 0.3 0 0 0 0.03 0 0 0 0 0

0.08 0.8 0.26 0.013 0.011 0 0 0.6 0 0 0 0.03 0 0 0 0 0

0.018 0.15 0.01 0.015 0.01 0 0 0 0 0 0 0.05 0.0035 0 0 0 0

0.0026 0.17 0 0.011 0.011 0 0 0 0.053 0 0 0.06 0.0013 0 0.008 0 0

0.0026 0.17 0 0.011 0.011 0 0 0 0.053 0 0 0.06 0.0013 0 0.008 0 0

0.025 1.56 0.24 0.002 0.0006 0 0 0.32 0 0.039 0.019 0 0.0062 0 0 0 0

0.049 1.45 0.51 0.014 0.002 0 0 0 0 0.025 0 0.047 0.0094 0 0 0 0

0.1 1.5 0.35 0 0.005 0 0 0 0 0 0.03 0.025 0.006 0 0 0 0

0.057 0.53 0 0 0 0 0 0 0 0 0 0.044 0.0046 0 0 0 0

0.052 0.52 0 0 0 0 0 0 0 0.019 0 0.035 0.0053 0 0 0 0

0.05 0.52 0 0 0 0 0 0 0 0.05 0 0.027 0.0053 0 0 0 0

0.055 0.52 0 0 0 0 0 0 0.019 0.052 0 0.046 0.0054 0 0 0 0

0.057 0.54 0 0 0 0 0 0 0.025 0.054 0 0.05 0.0062 0 0 0 0

0.058 0.52 0 0 0 0 0 0 0.057 0.054 0 0.052 0.0088 0 0 0 0

0.073 1.36 0 0 0.003 0 0 0 0 0.068 0 0.045 0.006 0 0 0 0

0.19 1.53 1.44 0 0 0 0 0 0 0 0 0 0 0 0.51 0 0

0.18 1.56 1.53 0 0 0.36 0 0 0 0 0 0 0 0 0.51 0 0

0.21 1.43 1.43 0 0 0 0.43 0 0 0 0 0 0 0 0.51 0 0

0.2 1.43 1.43 0 0 0.4 0.42 0 0 0 0 0 0 0 0.51 0 0  
Table 3: Chemical compositions (wt %) to demonstrate the further ability of the 
models to generalise. The details of rolling schedule for the calculation are assumed 
to be the same as the mean values used here if they were missing in the literature. 
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(a)  

(b)  
           
Figure 1: Comparison of measured and values calculated using the fully trained 
committee of models. 
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(a) 
 

 
(b) 
 
Figure 2:  An illustration of the ability of each input to explain variation in the output 
(a) ultimate tensile strength (b) yield strength.  Since committees of models are 
used, there are three values of significance illustrated for each variable 
corresponding to three members of each committee. 
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Fig. 3: Calculated curves showing the effect of niobium on strength of Alloy B. The points 

represent experimental measurements [4]. 
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Fig. 4: Calculated curves showing the effect of titanium, on strength of Alloy C. The points 

represent experimental measurements [19]. 
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Fig. 5: Combined effect of vanadium and niobium on the properties of steel A. The plots on 

the right represent the uncertainties and are plotted to exactly the same scale as the 
plots on the left. 
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Fig. 6: Combined effect of titanium and niobium on the properties of steel A. The plots on the 

right represent the uncertainties and are plotted to exactly the same scale as the plots on 
the left. 
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Fig. 7: Effect of finishing rolling temperature on the yield strength of alloy A. 

 

 
 

Fig. 8: Effect of coiling  temperature on the strength of  alloy D. The filled-square 
symbols represent experimental measurements [27]. 
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Fig. 9: Analysis of further data not included in the creation of the models. 


