
COMPLEX MECHANICAL

PROPERTIES OF STEEL

Radu Calin Dimitriu

Department of Materials Science and Metallurgy

University of Cambridge

Churchill College

A dissertation submitted for the
degree of Doctor of Philosophy

at the University of Cambridge
January 2009



Facilis descensus Averno

Publius Vergilius Maro



i

Preface

This dissertation is submitted for the degree of Doctor of Philosophy

at the University of Cambridge. The research reported herein was con-

ducted under the supervision of Professor H. K. D. H. Bhadeshia in the

Department of Materials Science and Metallurgy, University of Cam-

bridge, between October 2005 and November 2008.

This work is to the best of my knowledge original, except were acknowl-

edgement and references are made to previous work. Neither this, nor

any substantially similar dissertation has been or is being submitted for

any degree, diploma or other qualification at any other university or in-

stitution. This dissertation does not exceed the word limit of 60,000

words.

Part of the work described herein has been published or has been ac-

cepted to be published in the following publications:

R.C. Dimitriu and H.K.D.H. Bhadeshia. Hot Strength of Creep Resis-

tant Ferritic Steels and Relationship to Creep Rupture Data. Materials

Science and Technology, 23:1127-1131, 2007.

R.C. Dimitriu, H.K.D.H. Bhadeshia, C. Fillon, and C. Poloni. Strength

of Ferritic Steels: Neural Network and Genetic Programming. Materi-

als and Manufacturing Processes, 24:10-15, 2009.

H.K.D.H. Bhadeshia, R.C. Dimitriu, S. Forsik, J.H. Pak and J.H. Ryu.

On Performance of Neural Networks in Materials Science. Materials

Science and Technology, in press.

Radu Calin Dimitriu

January 2009



ii

Acknowledgements

I would like to express my sincere thanks and gratitude to my su-

pervisor Professor H. K. D. H. Bhadeshia for his support, guidance and

enthusiasm.

I also want to acknowledge all the Phase Transformation and Com-

plex Properties Research Group from the Department of Materials Sci-

ence and Metallurgy, University of Cambridge, especially Mathew, Mo-

hamed, Stephane, Saurabh, Amir, Gonzalo, Richard, for their assis-

tance and the relaxing tea and coffee breaks.

I am greatly indebted to my wife Anca, my parents Octavian and

Domnica, my family Oana, Grigore, Maria, Aurelian, Carmen, Andra,

Maria, Ioan, Adrian, Monica, Marinel and Raluca, my friends Mar-

ius, Ioan, Ovidiu, Marcel and Mihai for their assistance, devotion and

understanding throughout my life.

I express my sincere gratitude to the European Union which through

the Marie-Curie Actions sponsored my Early Stage Career Fellowship

which made it possible for me to study in Cambridge.



iii

Abstract

Whereas considerable progress has been reported on the quantita-

tive estimation of the microstructure of steels as a function of most of

the important determining variables, it remains the case that it is im-

possible to calculate all but the simplest of mechanical properties given

a comprehensive description of the structure at all conceivable scales.

Properties which are important but fall into this category are impact

toughness, fatigue, creep and combinations of these phenomena.

The work presented in this thesis is an attempt to progress in this

area of complex mechanical properties in the context of steels, although

the outcomes may be more widely applied. The approach used relies

on the creation of physically meaningful models based on the neural

network and genetic programming techniques.

It appears that the hot–strength, of ferritic steels used in the power

plant industry, diminishes in concert with the dependence of solid so-

lution strengthening on temperature, until a critical temperature is

reached where it is believed that climb processes begin to contribute. It

is demonstrated that in this latter regime, the slope of the hot–strength

versus temperature plot is identical to that of creep rupture–strength

versus temperature. This significant outcome can help dramatically

reduce the requirement for expensive creep testing.

Similarly, a model created to estimate the fatigue crack growth rates

for a wide range of ferritic and austenitic steels on the basis of static

mechanical data has the remarkable outcome that it applies without

modification to nickel based superalloys and titanium alloys. It has

therefore been possible to estimate blindly the fatigue performance of

alloys whose chemical composition is not known.

Residual stress is a very complex phenomenon especially in bearings
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due to the Hertzian contact which takes place. A model has been

developed that is able to quantify the residual stress distribution, under

the raceway of martensitic ball bearings, using the running conditions.

It is evident that a well–formulated neural network model can not

only be extrapolated even beyond material type, but can reveal physical

relationships which are found to be informative and useful in practice.
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Nomenclature

α control parameter

β control parameter

δ delta ferrite

ǫ0 creep rate

ǫf fatigue ductility coefficient

η fatigue ductility exponent

π constant (3.14159265...)

ρ dislocation density

σ uncertainty

σY hot–strength

σ0.2 0.2% proof stress

σf flow stress

σi friction stress

σy stress necessary to propagate yield

θ bias

A number of models in the committee
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E elastic modulus
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EE calculated error

Ew regulator
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h neuron

i node

K stress intensity factor

k constant

Kc critical stress intensity factor

Keff effective stress intensity factor

KIc fracture toughness

Kmax maximum stress intensity factor
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Kmin minimum stress intensity factor
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Chapter 1

INTRODUCTION

The purpose of the work presented in this thesis is to assist the

continuing progress of steel and by correlating the properties with the

materials response to stress and strain facilitate the development of

steels. The vast array of interconnected properties, explains the success

of steel, and in this context the steels chemical composition and heat

treatment influences the mechanical properties which in turn influences

the response of the material to external forces.

The principal aim of modelling is to create increasingly complex

models which will be able to calculate all the properties and can cap-

ture all the complex interactions in steels, thus reducing the need for

trial and error development of steel and subsequent testing. Creat-

ing such a model requires vast amounts of data and it is impossible

to accomplish this in one single try, so a more systematic approach is

required where individual properties and interactions are successfully

modelled, following this the data and knowledge of these models are

combined to create a truly general model.

Work toward this aim has already been completed with models cov-

ering the creep strength of austenitic stainless steel [1], prediction of
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Vickers hardness in austempered ductile irons [2], modelling precipita-

tion sequences in power plant steels [3, 4], modelling irradiation harden-

ing in low-activation steels [5], predicting the martensite–start temper-

ature of steels [6], modelling the Charpy toughness [7], recristalization

in mechanically alloyed materials [8] and many more. A schematic rep-

resentation, which is by no means exhaustive, of the models created

until present including the models described in this thesis is given in

Fig. 1.1.

Figure 1.1: Schematic representation of the models created which will
contribute towards a general applicable model. The red coloured mod-
els are described in the present thesis whilst the blue ones have already
been developed.

Bayesian neural networks are an established materials modelling

technique known for their ability to handle complex data hence the

reason why they were used in the present work. The hot–strength of

ferritic steels was modelled as a function of chemical composition and

heat treatment whereas the fatigue crack growth rates of steels were

modelled as a function of mechanical properties.

An overview of the problems associated with fatigue, strength, creep

and residual stress of steel and their influencing factors is provided in

Chapter 2.

Chapter 3 reviews the problems of modelling complex properties
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and describes the Bayesian neural network and genetic programming

methods used in the present work.

Chapter 4 describes the neural network model which enables the esti-

mation of hot–strength presenting a connection between hot–strength

and creep. This chapter also presents a comparison between neural

networks and genetic programming.

Chapter 5 describes the construction and exploitation of a neural

network model which calculates the fatigue crack growth rates in steels

and its remarkable ability to calculate the rates in nickel, titanium and

aluminium alloys.

The development of residual stress due to rolling contact fatigue

conditions in ball–bearings is detailed in Chapter 6.

Chapter 7 reviews the conclusions reached from the previous chap-

ters and explores further research pathways suggested by the present

work.



Chapter 2

LITERATURE REVIEW

2.1 FATIGUE CRACK GROWTH

Metal subjected to continual and fluctuating stress will fail at a stress

much lower than that required to cause fracture on a single application

of the load. These classes of failures occurring under dynamic load-

ing are labelled fatigue failures because they should occur only after

a substantial service life. Fatigue failures can be dangerous because

they sometimes occur with little warning, resulting in a brittle looking

fracture, with no obvious deformation at the parted surface [9].

Fatigue failures occur only if three main factors are met: the maxi-

mum tensile stress has a sufficiently large value, there is a fluctuation

in the stress applied and the number of cycles is high enough for failure

to occur. In addition to this, stress concentration, temperature, corro-

sion, residual stress and basic mechanical properties influence fatigue

failure [10].
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2.1.1 Fatigue Failure Concepts

There are four concepts applied in fatigue, that are concerned with

design against failure [11].

Infinite–Life Design this design criterion is based on keeping the

stresses at a fraction of the fatigue limit, which in some materials such

as steel defines the minimum stress at which a fatigue can occur. This

is used for parts subjected to very large number of cycles of uniform

stress.

Safe–Life Design is based on the assumption that the part is initially

free from flaws and has a finite life in which to develop a critical crack.

The fatigue life is assumed even at constant stress amplitude to exhibit

statistical scatter. This concept is used in calculating the life of rotating

components in jet engines, pressure vessels and bearings.

Fail–Safe Design assumes that fatigue cracks will not lead to failure

before they can be detected and repaired. The fail–safe designs em-

ploy multiple load paths and crack stoppers built into the structure,

along with strong regulations and criteria for inspection and detection

of cracks. This method is used extensively in the aircraft industry.

Damage–Tolerant Design is based on the assumption that finite

cracks will exist in an engineering structure. Fracture mechanics are

employed to determine whether the cracks will grow large enough to

cause failure, between regular inspections. This method is applied to

materials with high fracture toughness, slow crack growth and when

reliable non–destructive evaluation methods are available.
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2.1.2 S-N Curve

Interest in fatigue started before 1870 when the first investigation

into characterising the fatigue behaviour of materials was published [12].

Wohler found that fatigue occurs by crack growth from surface defects

until the product can no longer support the applied load. This led to the

development of a relationship between the magnitude of applied cyclic

stress and the number of the cycles that a component could withstand

before complete failure. The relation takes the form of S-N curves or

also called Wohler curves, Fig. 2.1, where S represents stress and N

the number of cycles to failure at that stress.

Figure 2.1: Schematic S −N curve. Curve A is typical for steel, curve
B is for aluminium. For steel, there is a threshold stress below which,
the life of the component can be infinite. Aluminium, must eventually
fail regardless of the amplitude of the applied stresses.

The S-N curve is the easiest and best known method of presenting

fatigue data. The stress value plotted can be the maximum, minimum

or the alternating stress and usually is measured in reversed bending so
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that the mean stress is zero. The S-N curves represent fatigue failures

for a large number of cycles (N > 105 cycles), the stress conditions are

elastic on a gross scale, but the metal deforms plastically on a localised

scale.

For steel the S-N curve becomes horizontal at a limiting value of

stress, known as the fatigue limit. The material can, when the stress is

below this limit, withstand an ‘infinite’ number of cycles without fail-

ure. Non–ferrous1 metals and copper alloys have an S-N curve which

slopes gradually downward with increasing number of cycles. These ma-

terials do not have a fatigue limit so design is based on fatigue strength

selected according to the prescribed life of the component.

The procedure for creating the S-N curve is to test 8 to 12 specimens

at different stress levels. The first specimen is tested at high stress (two

thirds of the static tensile strength) where failure is expected after a

short number of cycles. The stress is then decreased for subsequent

specimens until one or two do not fail in the specified number of cycles

(at least 107). The highest stress at which failure does not occur is

considered the fatigue limit.

The S-N curves are generated by test specimens that have a very

good surface finish, and virtually no surface defects. Nevertheless, in

practice the majority of components do not have such a good surface

finish, so it is better to evaluate the life of the components based on

the ability of the component to function with a crack that has a certain

length. The crack can grow with each cycle at a rate which defines the

material resistance.

1An exception are the Al-Mg alloys which have a fatigue limit, since Mg causes
similar effects to C in steel i.e. segregates to dislocations.
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2.1.3 Fatigue Crack Growth

Fatigue is influenced by material properties such as yield strength,

elongation and fracture toughness; imposed parameters such as the

cyclic stresses applied, their magnitude, pattern and frequency must

clearly also influence life. Other important factors are the size of inter-

nal and surface defects, and the orientation in relation to the applied

stresses. Service temperature and corrosion also play an important role

in the development of fatigue [13].

Measuring the Crack Length

Fatigue crack growth rate measurements are conducted on machines

capable of applying constant–load amplitude cycles at different frequen-

cies. The standard method for constant–amplitude fatigue crack growth

rate is described in ASTM E 647 [14]. Specimens are pre–cracked by

cycling at a load amplitude equal to or less than the test–load ampli-

tude. The crack length is measured as a function of the number of

cycles as shown in Fig. 2.2. At a known crack length a it is possi-

ble to calculate ∆K (stress intensity range) as a function of load and

specimen geometry.

The basic data in fatigue crack propagation tests are the number of

cycles and crack length. The number of cycles is readily monitored by

electronic or mechanical counters. There are several methods employed

to determine the crack length[13, 15–17]:

• direct visual measurement, usually for thin sheet specimens where

crack dimensions can be visually inspected;

• ultrasonic sensing, where a probe is attached to the top edge of

the specimen and is moved along the surface such that a constant
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Figure 2.2: The basic data: crack length versus number of cycles.

relationship between the crack tip and the position of the probe

is maintained, the movement of the probe provides the amount

of crack advance;

• electrical potential drop measurements a constant d.c. current is

passed through the specimen and the change in resistance of the

specimen as the crack grows is detected by measuring the change

in potential across the opened notch;

• the compliance (displacement per unit load) method a.c. current

is passed through the specimen and a clip–gauge mounted across

the crack mouth measures the compliance as the crack grows.

Crack Propagation

Fatigue failures have been studied extensively over many decades [12,

18–20]. Most begin with the slow growth and propagation of pre-
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existing cracks or defects, under fluctuating stress. Once the crack

reaches a critical size, the remaining cross-section cannot withstand the

applied stress, leading to sudden and complete failure. For this reason

crack propagation relations are used to enable the implementation of

fail–safe design [21].

Fatigue crack propagation became a tool in an engineering context

with the comprehension that crack length versus the number of cycles

at different stresses can be represented by a general plot of log da
dN

versus

log ∆K as illustrated in Fig. 2.3.

Figure 2.3: Fatigue crack growth rate versus ∆K.

The stress intensity factor K, is used to predict the stress state near

the tip of a crack, caused by a remote load or residual stresses. When

this stress state becomes critical a crack will grow and the material will

fail. It is a theoretical construct applicable to a homogeneous elastic

material, used to provide a failure criterion.

There is a minimum threshold in the stress intensity required for the
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crack to grow, after this point the curve can be separated into three

regimes. In the first region, the crack growth rate varies sharply with

∆K once the ∆Kth is exceeded. The second ‘Paris law’ region is where

Equation 2.1 is applicable with a linear relationship between log da
dN

and logarithm of K in this region most of the fatigue life is consumed.

Finally the third region is where Kmax approaches the critical K for

instability; this zone is associated with a rapid growth of the crack

finally leading to fracture by mechanisms akin to static testing, for

example in tension alone [22].

The equation by which region two is governed:

da

dN
= C(∆K)n (2.1)

where a is the crack length, N is the number of fatigue cycles, ∆K is

the cyclic stress intensity range whereas C and n are materials con-

stants [22].

The graph presented in Fig. 2.3 is obtained from the data used to

plot the graph in Fig. 2.2 as follows: at a crack length a it is possible to

calculate ∆K from the maximum and minimum loads applied. At the

same crack length the value of da/dN is determined from the gradient

of the curve in Fig. 2.2. It is possible to obtain a figure similar to

Fig. 2.3 by plotting log da
dN

vs log ∆K.

Log da
dN

versus log ∆K graphs are considered a good way of rep-

resenting crack propagation given that defects will be present within

the material. S-N curves in contrast are considered a representation of

crack initiation due to the fact that at high stress the specimen spends

little time cracked and failure arrives quickly.
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2.2 ROLLING CONTACT FATIGUE

Contact fatigue is a common type of failure encountered in bearings,

rails, gears and valves. It differs from structural fatigue (bending or

torsion) in that the cyclic stress originates in Hertzian contact, when

a curved surface rolls over another curved or flat surface under normal

load. The life of the structures subjected to contact fatigue is limited

by surface disintegration. The parameters that influence fatigue are

contact pressure, material properties, lubrication properties, surface

roughness, amount of relative sliding or slip in the contact, residual

stresses and inclusion size and nature [23, 24].

Figure 2.4: Optical micrograph of a crack originating at an oxide–type
inclusion below the surface of a spur-gear tooth [23].

Failures, as the one presented in Fig. 2.4, due to rolling contact

fatigue will initiate from an inclusion or at the interface between layers

with different properties in the matrix. The initiation of the failure will

be triggered by the cyclic stresses developed below the surface near the

contact zone [25]. The useful life of a component is a direct function of
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tensile stress, stressed volume, alternating shear stress, number of stress

repetitions, depth of alternating shear stress and residual stress [26].

2.2.1 Residual Stress

Residual stress is that which remains in a body after processing

or use [27, 28]: it can be detrimental as it may reduce the tolerance

of the material to an externally applied force, such as the load that

a structure has to endure. In general, tensile residual stress reduces

fatigue life, and compressive residual stress improves it. However, the

details of how the residual stress patterns affect the life of components

are not easy to assess, because the residual stresses are self equilibrating

over a variety of distances (depending on the type of residual stress)

and also due to the multitude of factors influencing them [29].

In an ideal situation a residual stress will superimpose on an elastic

stress and this will result in an enhanced fatigue life for a component.

In the case of bodies of revolution the residual stresses which needs to

be taken into account are the tangential and axial components, because

the radial stress is generally minor [30].

Causes of Residual Stress

Residual stresses can be introduced by thermo–mechanical processes

such as machining, coating, sand blasting and shot peening, which in-

duce short–range residual stress or by heat treatment, rolling, forging,

and welding which induce long–range residual stress.

The stress can develop during the heterogeneous processing of steel

due to the a volume expansion associated with the transformation from

austenite to various body-centred cubic phases [31]. Heat treatment of
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the material can add to the residual stress. During carburizing, residual

compressive stress is developed in the hardened surface layers, which

expand owing to their higher carbon content; the core resists this ex-

pansion thus putting the surface layers in compression [32]. Grinding,

hard turning and other machining operations induce residual stress in

the component, due to the mechanical deformation of the surface lay-

ers [33, 34]. Tensile residual stress is found in the surface layers because

of the tempering owing to the heat generated by the grinding, which

results in shrinkage, while the base material remains unaffected [35–37].

There are many causes why a component subjected to contact fatigue

can fail. If the lubrication is not appropriate, the component will be

subjected to wear. When the lubrication is not filtered, indents will

appear in the contact surfaces. If the load is too high, seizure will occur,

but if all of these are avoided then the only alternative and viable cause

of failure is due to the continuous accumulation of residual stress until

spalling occurs. Such accumulation can be further enhanced by plastic

deformation and strain or stress-induced phase transformations due to

service load [38–40].

The residual stress pattern usually found beneath the raceway of

new and used bearings is illustrated in Fig. 2.5. The characteristic

feature of the residual stress for a new bearing is the high compressive

stress at the surface. The stress then decreases with depth, gradually

levelling around zero [41, 42].

For the used bearings, as shown in Fig. 2.5, an increase in the number

of cycles the compressive residual stress peaks at a depth between 0.1

and 0.5 mm, even though all the other parameters involved (load, speed,

temperature, lubricant) were kept constant [41, 43].
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Figure 2.5: A typical residual stresses profile for new and used bear-
ings [41].

Classification of Residual Stress

Residual stress is classified according to the scale over which it self-

equilibrates. Long–range stresses (type I) equilibrate over macroscopic

dimensions. Type II residual stress equilibrates over a number of grain

dimensions. Type III stresses on the other hand exist over atomic

dimensions and balance within the grain [27, 28].

Macrostress (type I stress or body stress) can arise from a non-

uniform expansion, contraction or shear. It can result from mechan-

ical, chemical or thermal operations performed on the body. Chem-

ical changes propagating from the surface to the interior give rise to

macrostress. Thermal volume changes induce residual stress if the body

is stress–free at the time when the temperature distribution in it is not
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uniform and then becomes so. Macro residual–stresses can accumulate

during cyclic loading, because there will be some plastic deformation,

the material will strain harden, its capacity for plastic stress redistri-

bution will decrease and the stress amplitude will rise in spite of the

constant amplitude of the load acting upon the structural part [44].

Microstress (type II and III) results from microstructural inhomo-

geneities such as inclusions with thermal expansion coefficients dif-

ferent from that of the surrounding matrix. There are many types

of microstresses, due to the grain structure (thermal stresses due to

anisotropic thermal expansion of the grains), from the inherent in-

homogeneity of deformation process (stress accompanying martensitic

transformation) and microstresses around inclusions [45].

Measurements of Residual Stresses

There are many techniques available for measuring residual stress,

varying in accuracy, spatial resolution, penetration below the surface

and completeness of information [28, 46, 47].

Mechanical stress measurements are based on the destruction of the

equilibrium state in the component. The stress is determined via the

progressive relaxation of the component. Mechanical measurements of

this type are sensitive only to macroscopic residual stress. Hole drilling,

ring core technique, bending deflection method, sectioning method and

compliance methods fall in this category.

Diffraction measurements are based on the study of variations in

the inter–planar spacing of the polycrystalline material using (electron

diffraction, neutron diffraction and X-ray diffraction). They can be

used to study all three kinds of residual stress.

Magnetic stress measuring methods rely on the interaction between
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magnetisation and elastic strain in ferromagnetic materials. Two mag-

netic stress-measuring methods are in use, the Barkhausen noise method

and the magnetostriction method.

Ultrasonic techniques are based on variations in the flight time differ-

ence of ultrasonic waves in the material. The ultrasonic and magnetic

methods are not destructive and are sensitive to all three kinds of resid-

ual stresses but cannot distinguish between them.

2.3 STRENGTH OF STEELS

Since iron was discovered, blacksmiths and later metallurgists tried

in various ways to enhance its properties [48–50]. One of the most

important properties of steel is its strength. There are different ways

by which the strength can be increased, and some of them are described

in the following paragraphs.

2.3.1 Strengthening Mechanisms

Solid Solution Strengthening

Solid solution strengthening is a mechanism which relies on adding a

foreign solute into the base structure. The approximate rules according

to the way an element dissolves in a base were formulated by Hume-

Rothery [51, 52]:

• if a solute differs in its atomic size by more than about 15% from

the host, then it is likely to have a low solubility in that metal.

The ‘size factor’ is said to be unfavourable;
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• if a solute has a large difference in electronegativity (the ability

to attract electrons) or electropositivity (the ability to donate

electrons) when compared with the host, then it is more likely to

form a compound. Its solubility in the host would therefore be

limited;

• a metal with a lower valency (a measure of the number of chemical

bonds formed by the atoms of a given element) is more likely to

dissolve in one which has a higher valency.

Depending on the size of the solute atom, a substitutional or an

interstitial solid solution can be formed. In both cases, the overall

crystal structure of the base metal is unchanged, apart from lattice

parameter variations as a function of composition. Substitutional solid

solution forms when the solute atom is comparable in size to that of

the solvent. Substitutional solutes cause symmetrical distortions in

their vicinity, resulting in hydrostatic stresses which lead to moderate

interactions with dislocation stress fields. The strengthening achieved

by substitutional solute is greater the larger the difference in atomic size

of the solute from that of the iron. Because the substitutional atoms

replace the iron atoms, the distortion in the lattice is limited so the

strengthening effect is smaller than for the interstitial solid solution [54].

Fig. 2.6 represents sizes of various alloying elements, both interstitial

and substitutional, compared to iron [53].

Interstitial solid solution forms when the size of the solute is markedly

smaller than that of the solvent. Depending on the symmetry of the

interstitial site, this can lead to anisotropic strains with huge inter-

actions with dislocations and have a substantial hardening from small

amounts of solute. In the case of iron, carbon and nitrogen are the most

important interstitial strengtheners, they have the tendency to reside

in the octahedral sites Fig. 2.7 where they distort the lattice, resulting

a powerful interaction with the dominant shear component of a dislo-
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Figure 2.6: Atomic size of alloying elements in iron and their solubility:
the squares represent the insoluble elements, the filled triangles and the
filled circles are the elements that expand the γ field, whilst the circles
and the filled squares represent the elements which restrict the γ field.
The dashed lines represent a deviation of 15% from the atomic size of
iron [53].
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Figure 2.7: On the right the rectangular octahedron interstice in fer-
rite, whilst on the left the octahedron interstice in ferrite. Two of the
axes are longer than the third (vertical) which leads to a tetragonal
distortion when the site is occupied by an interstitial atom [55].

cation strain field. Thus, carbon in ferrite causes a tetragonal strain

and intense hardening, whereas the same solute in the regular octahe-

dral interstices of austenite causes only isotropic strains and minimal

hardening. The maximum solubility of carbon in austenite under equi-

librium condition is about 2 wt% at a temperature of 1150◦C, whereas

its solubility in the smaller octahedral interstice in ferrite is only 0.025

wt% at a temperature of 720◦C [56, 57].

Dislocations

Dislocations are of two primary types, edge and screw dislocations;

mixed dislocations, shown in Fig. 2.8 represent a combination of these.

Dislocations are lines between slipped and unslipped regions on a slip

plane, their movement causes the relative shear displacement of the

atoms on opposite sides of the glide plane [58].

An edge dislocation is a defect where an extra half-plane of atoms
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is introduced partly through the crystal, distorting nearby planes of

atoms. The boundary is perpendicular to the slip direction and its

passage causes a relative displacement in a direction perpendicular to

itself.

A screw dislocation is a defect in the crystal structure where half

way through the crystal there is a cut and the two parts have slipped.

The boundary is parallel to the slip direction and its passage causes

relative displacement in the direction parallel to itself. It also gets its

name because of the path taken around it following the atomic planes

results in a helix or a screw.

Figure 2.8: A schematic representation of a mixed dislocation (formed
from a screw dislocation on top and an edge dislocation on the side)

The Burgers vector of a dislocation is a crystal vector, specified

by Miller indices, that quantifies the difference between the distorted
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lattice around the dislocation and the perfect lattice. To determine

the vector, in a faulted crystal a deformed rectangle, whose lengths

and widths are integer multiples of the interatomic vector, is drawn on

a plane which encompasses the dislocation line, the number of lattice

vectors travelled along each side of the loop is noted. Than the same

circuit will be performed in the crystal without the dislocation (perfect

crystal) than a closure failure will occur, this closure failure in the

perfect crystal represents the Burgers vector presented in Fig. 2.9 by

the green arrow which define the direction and magnitude of the Burgers

vector [59].

Figure 2.9: Schematic representation of a Burgers vector [60]

One of the ways by which dislocations affect the strength of steels is

through the flow stress σf which is related to the dislocation density ρ

by the relation:

σf = k
√

ρ (2.2)

where k is a constant incorporating the shear modulus and the Burgers

vector.

There are arrays of structures which act as pinning points for dislo-

cations and hence lead to hardening [61]:

• point defects such as vacancies or solute atom create stress fields

that interfere with the movement of dislocations;
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• precipitates create barriers which dislocations have to overcome,

either by cutting through the encountered particles or by looping;

• grain boundaries are also barriers to dislocations motion which

require lattice ordering to move through a material, so the grain

boundary stops the dislocation from moving.

Grain Size Refinement

Grain size refinement is one of the most useful strengthening pro-

cesses because it increases the toughness and the strength of the ma-

terial at the same time, as proposed by Hall and by Petch [62, 63].

Toughness is the material’s resistance to fracture which can be trans-

granular when the fracture passes through the grain, or intergranular

when the fracture follows the grains of the material. Both kinds of frac-

ture will require more energy to propagate the crack to a big enough

size to cause rupture if the grains are smaller.

The relationship is based on the assumption that the grain bound-

aries act as obstacles for slip dislocations, causing them to pile up at

the interfaces. The number of dislocations possible in a pile up is

greater when the grain size is large. The pile-ups therefore produce

a stress concentration in the adjacent grain, the magnitude of which

increases with the number of dislocations in the pile–up and the ap-

plied stress. Thus, in coarse–grained materials the stress concentration

will be greater than in those which are fine–grained, making it more

difficult to transmit plasticity across fine grains [64]. The Hall-Petch

relationship is [62, 63]:

σy = σi + kyd
−

1

2 (2.3)

where σy in the stress required to propagate yielding across grains, σi
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is the friction stress opposing the movement of dislocations within the

grains, ky is a constant and d is the average grain size.

The size of the grain for which this theory applies cannot be de-

creased indefinitely because it becomes more difficult for grains to ac-

commodate dislocations and the grains may then undergo sliding at

the boundaries. There is considerable interest in developing nano–

structured steels with sizes as small as 20 nm [65, 66]. It is unlikely that

the Hall-Petch equation applies at such small sizes since the concept of

dislocation pile–ups over very small distances than becomes difficult to

justify.

Downey et al. working on 0.012 C, 0.153 N, 17.52 Cr, 12.86 Ni,

0.071 Nb in wt% steel observed that twins encompass a large fraction

of the grain boundaries so they developed a model based on the Hall–

Petch relationship that takes into account the twins as well as grain size

and chemical composition. The relationship is based on the assumption

that twin interfaces are as effective barriers as grain boundaries. In

view of the fact the twin interfaces do allow the partial transmission

of piling dislocations, this prediction is expected to produce an upper

bound yield strength value [67].

The Hall–Petch relation considers only the mean grain size whereas

in reality the grains form a population of stochastic nature with dif-

ferent sizes and shapes. Berbenni et al. developed a computer model

which takes such variations into account. Based on grain to grain ac-

commodation and it was found to be more relevant than analytical mod-

els treating the yield stress as simple mixture rules of components [68].

An investigation by Song et al. revealed that ultra fined grained

steels with dual phase microstructure do not follow the Hall–Petch re-

lationship, because a relatively small increment in stress is achieved in

the dual phase steel when the ferrite grain size is refined from 19.4 to

0.8 µm [69]. Louchet et al. also working on nanometrer grain–sized
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steels observed that the Hall–Petch relation does not cover very small

grained steels due to the fact that instead of involving intermittent and

correlated motion of interacting dislocations, strain proceeds through

uncorrelated events of individual dislocation nucleation and propaga-

tion [70].

Bata and Pereloma developed a model to explain the Hall Petch re-

lation which addresses the fundamental premise that application of an

average stress is sufficient to induce the emission of a straight disloca-

tion from a boundary, even though that stress is far below that required

to overcome the highest energy barrier encountered by the emitted dis-

location [71]. The model’s validity was questioned because the aver-

aging process emphasises weak long-range interaction of the emitted

dislocation with the original boundary, is susceptible to perturbation

by the dislocation structure introduced during straining, and overlooks

the effect of boundary structure defects as heterogeneous dislocation

sources [72].

Precipitation Hardening

Precipitation hardening is a process which relies on small particles

dispersed in the materials matrix, which impede the movement of dis-

locations, to strengthen the material. The finer and numerous the

precipitates are the more effective they are in strengthening a mate-

rial [73].

The process to produce a fine dispersion of precipitates requires two

steps. Firstly a supersaturated solution is produced by annealing at

high temperature, followed by quenching to a lower temperature and

an isothermal transformation (the process of annealing and quenching

a supersaturated solution is called solution treatment) this is the first

stage in the precipitation hardening process [74]. Then precipitation
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of particles from the supersaturated solution occurs by nucleation and

growth (this is the aging treatment i.e. holding at an intermediate

temperature) [58].

The determining parameter is holding time and temperature. Too

long time results in loss of hardness (called overaging), whilst aging for

a too short period results that the optimum properties are not achieved.

Too high temperature result in an increase in hardness in a very short

time followed by a decrease, a too low temperature result that the

process of precipitation may take too long or even be delayed until the

optimum temperature is achieved [64].

2.4 CREEP

Creep is the term used to describe the tendency of a material to

deform permanently with the aid of diffusion, in order to relieve stresses

which may be much smaller than the yield strength measured in a

tensile test. The rate of this deformation is a function of the material

properties, exposure time, temperature and the applied load. Creep

naturally becomes important when evaluating components that operate

under high stresses and temperatures.

2.4.1 The Creep Curve

To determine the creep curve of a metal, a constant load is applied to

a tensile specimen maintained at a fixed temperature, and the resulting

strain is determined as a function of time.

A typical creep curve is illustrated in Fig. 2.10. Following an initial

rapid elongation of the specimen the creep rate (ǫ0) decreases with time,

then reaches a steady state in which the creep rate changes little with
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Figure 2.10: A typical creep curve showing the three steps of creep.
Curve A constant load test; curve B constant stress test [75].

time, followed by accelerated creep which leads to fracture.

It is usual practice to maintain the load constant during creep test,

leading to a curve similar to A in Fig 2.10. As the specimen elongates

and decreases in cross–sectional area, the axial stress increases until

fracture eventually occurs. Methods of compensating for the changes

in the dimensions of the specimen to ensure constant-stress conditions

have been developed [76, 77]. in these conditions the onset of stage

three is delayed, curve B in Fig 2.10.

A constant–stress creep curve can be considered to represent the

superimposition of two separate processes following elastic deforma-

tion [78]. The first is transient creep (Fig. 2.11c) with the creep rate

decreasing with time. Added to this is a constant–rate viscous creep

component shown in Fig. 2.11d. The strain ǫ0 occurs practically in-

stantaneously upon the application of the load and it is not entirely

elastic.

There are three stages in the development of the creep curve. In the

first stage, primary creep, the resistance of the material increases by
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(a) Constant–stress creep curve. (b) Instantaneous strain

(c) Transient creep (d) Viscous creep

Figure 2.11: The processes which determine the shape of the creep
curve [78].

virtue of its own deformation. For low temperatures and stresses (i.e.

lead at room temperature) primary creep is the dominant process. The

second stage, secondary creep, occurs at a constant rate due to balance

between strain hardening and recovery. The average value of this steady

state creep rate is called the minimum creep rate. Tertiary creep occurs

mostly in constant–load creep tests at stresses which are high in the

context of the test temperature. It occurs when there is a reduction

in the cross–sectional area either because of necking or internal void

formation [75].



Chapter 3

TECHNIQUES

There are material properties that can be modelled simply and el-

egantly in an analytical way, such as crystallization kinetics or the

tensile properties of composite materials. However, in some cases the

property arises from many interactions, not all of which are well under-

stood. Even if the mechanisms are known it may not be clear how they

work together, and simplification of the problem may be unacceptable

from an engineering point of view.

Some properties can be estimated on the basis of meaningfully com-

piled empirical models that have been fitted to experimental data. The

most general regression method involves neural networks, which have

proved to be incredibly powerful in the creation of new materials [79–

84].

3.1 NEURAL NETWORKS

Neural networks consist of interconnected processing elements called

nodes that work together to produce an output function. Processing
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the information by the network is characteristically done in parallel

rather than in series, since it relies on its member neurons collectively

to perform its functions. Neural networks can be used to model complex

relationships between inputs and outputs or to find patterns in the data.

3.1.1 Bayesian Neural Networks

An artificial neural network is a method for fitting a function to

a number of points in the data space [85]. More technically, it is a

parametrised non–linear model which can be used to perform regression

in which a flexible non–linear function is fitted to experimental data.

Neural networks have been studied intensively [86–90] and for a long

time [91]. The particular features of the method employed here, which

is due to MacKay [92, 93], are described in the following paragraphs.

Assume that the material property of interest in this case is the

ultimate tensile strength (UTS) of a particular steel, and that it can

be expressed as a non linear function f , of a number of experimental

available variables in a database:

UTS = f(ci, tt, Tt, ta, Ta, TT , ...) (3.1)

where ci represents the chemical composition of the steel, tt is the tem-

pering time, Tt is the tempering temperature, ta is the austenitising

time, Ta is the austenitising temperature, TT represents the test temper-

ature and “...”represents all the other parameters that might influence

the UTS.

The reason for using a Bayesian neural network [92, 93] is that it

makes as few assumptions as possible about the form of the fitting

function, whilst trying to infer and thus mimic its shape. The only
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assumption it makes is that the function modelled is continuous and

differentiable. The method also has an outstanding treatment of uncer-

tainties. It has been shown that a three-layer neural network which has

a sufficiently high degree of complexity can represent any non–periodic

complex function [92]. The neural network is very flexible and can

capture interactions between the parameters.

Figure 3.1: Structure of a three-layer neural network. The model com-
plexity is controlled by the number of hidden nodes in the second layer.

The three-layer feed-forward neural network used in the present work

and generally used for material property applications is shown schemat-

ically in Fig. 3.1. The first layer consists of the inputs to the network,

the second of a number of non–linear operators (h – neurons ) whose

arguments are provided by the first layer in the network. Each consists

of an activation function, that describes the output by a non-linear,

continuous and differentiable function. In the present work tanh was

used due to its flexibility and its invaluable property of being able to

combine two or more functions to obtain highly flexible functions. The

target to the output y, can be any function, but is commonly a linear

one. The activation function for a node i is given by [92, 93]:
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hi = tanh

(

∑

j

w
(1)
ij xi + θ

(1)
i

)

(3.2)

and the output weighting function is:

y =
∑

i

w
(2)
ij hi + θ(2) (3.3)

The xi are inputs, and wij the weights which define the network.

The superscripts (1) and (2) denote weights and biases in the hidden

layer and in the output layer. The aim of training a network is to find

the optimum values for w. The parameters θ are known as biases, and

are treated internally as weights associated with a constant input set

to unity.

The inputs are normalised within a range of ± 0.5:

xj =
x − xmin

xmax − xmin

− 0.5 (3.4)

where x is the un-normalised input, xmin and xmax are the minimum

and maximum values in the database for that specific input, and xj

is the normalised value. The purpose of normalising is to be able to

compare the sensitivity of the output to the inputs without biasing the

comparison due to the differing magnitudes of the variety of inputs.

The complexity of the neural network model increases as the number

of hidden units increases. The trained network is transparent because

the inputs are known, the output is known and the weights can be ex-

amined, although they may be difficult to interpret directly because of

the non–linearity of the model. The easiest way to find the interactions

between inputs and output in a model is to use it to make predictions

and visualise the behaviour which emerges from various combinations

of inputs.
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Overfitting

Due to the fact that neural networks are powerful and flexible, there

is a danger of overfitting the model to an unjustified level of accuracy.

Training a network involves finding a set of weights and biases which

minimise an objective function, which balances complexity and accu-

racy, typically:

M(w) = αEw + βED (3.5)

in which Ew is a regulator, designed to force the network to use small

weights and limit the number of hidden units:

Ew =
1

2

∑

ij

w2
ij (3.6)

and ED is the overall error between target output values and network

output values, given by:

ED =
1

2

∑

k

(tk − yk)2 (3.7)

where tk is the set of targets for the set of inputs xk, while yk is the set of

corresponding network outputs. α and β are control parameters which

influence the balance between a simple but inaccurate model, and an

over–complex, also inaccurate model as shown in Fig. 3.2. MacKay’s

algorithm allows the inference of these parameters from the data, per-

mitting control of the model complexity [92].

To accomplish training without overfitting, the data are randomly

split into two parts a training set and a test set. The model is trained

on the former set, and then its ability to generalise is compared against

the test set of data. Fig. 3.3 shows how increasing the complexity

continuously lowers the training error (the mismatch between model
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Figure 3.2: Underfitting and overfitting. A set of data was split into
a training (the filled triangles) and a testing (the stars) set based on
the training set two models were trained. The first one (a) represents
linear regression and it can be seen that it only gives a poor represen-
tation of both the training and the testing data. The second model (b)
represents a complex function which gives an excellent representation
of the training data but a poor one for the testing data.

predictions and the training dataset), while the test error (the mis-

match between model predictions and the test dataset) goes through

a minimum and increases again. As the model’s complexity increases,

overfitting causes the test error to increase as the number of hidden

units increases. The aim of the training is to minimise the test error

against the dataset and against new data not seen by the model.

For the present work, the fitting method is based on a Bayesian

framework and treats training as an inference problem, allowing esti-

mates to be made of the uncertainty of the model fit. Rather than

trying to identify one best set of weights, the algorithm infers a prob-

ability distribution for the weights from the data presented. The per-

formance of different models is best evaluated using the log predictive

error (LPE) instead of the test error. This error penalises wild pre-

dictions to a lesser extent when they are accompanied by appropriately

large error–bars and it is defined by:
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Figure 3.3: Comparison of error on training and testing sets as a func-
tion of network complexity, illustrating the problem of over complex
models.

LPE =
1

2

∑

k

[

(

tk − yk
)2

(

σk
y

)2 + log
(

2π
(

σk
y

)2)
]

(3.8)

where t and y were defined previously, and σt
y is related to the uncer-

tainty of fitting for the set of inputs xk.

In the training process a large number of models (for 20 hidden units

and 5 seeds 100 models result after training) are created. These models

perform differently when making predictions and are ranked according

to the log predictive error. However more accurate predictions are

obtained if instead of just using the best model a number of models is

used to make predictions on unseen data. This is called a committee

of models. The optimum number of models which will make up the

committee is determined according to the combined test error of all the

members of the committee. The prediction y of a committee of models

is the mean prediction of its members, and the uncertainty is:
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σ2 =
1

A

∑

l

(

σl
y

)2

+
1

L

∑

l

(yl − y)2 (3.9)

where A is the number of models in the committee and the exponent l

refers to the model used to give the corresponding prediction yl. During

training it is usual to compare the performance of increasingly large

committees on the testing set. Usually the error is minimised by using

more than one model in the committee, and then the selected models

are retrained on the entire database.

Significance

Another advantage of the method is an indicator of the network-

perceived significance of each input, which is a function of the regu-

larisation constants for the weights associated with an input σw. The

regularisation is similar to a partial correlation coefficient in that it rep-

resents the amount of variation in the output that can be attributed

by a particular input.

To determine the sensitivity of the model to individual input param-

eters, predictions must be made by varying one parameter only whilst

keeping all the others constant. In some cases where an input is a func-

tion of one or more of the other inputs (for example, both temperature

T and an Arrhenius function exp( 1
T
)) varying one of these parameters

in isolation is not physically meaningful.

The network structure allows the assessment of input parameters

based on physical models to be included in the training data, and those

parameters which are not useful in explaining the output will have much

lower significances than those that are useful as shown in Fig. 3.4 (the

depth has a much bigger influence on the output than the hoop stress).
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Figure 3.4: Example of a selected set of σw values from a committee.
In this case the committee has 13 members, the error–bars represent
the upper and lower limit from the members in the committee [94].

Uncertainty

When dealing with neural networks it is important to distinguish

between two kinds of error. Noise is when the outcome of an experi-

ment which is repeated a number of times results is slightly different

results. This is because there may be variables which are not con-

trolled. Suppose that a model has been created in such a way that

overfitting has been avoided, the noise in the output can be assessed by

comparing the predicted values of the output versus those measured.

The noise is a constant measure and does not help much in assessing

the generalization behaviour of the model.

The second kind of error is the uncertainty which originates in the

ambiguity in the mathematical functions capable of representing the

same experimental data. It is likely in complex problems that there

may exist many mathematical functions which adequately represent
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the same set of empirical data but which behave differently in extrap-

olation. This difference in behaviour is characterised by a modelling

uncertainty. Fig. 3.5 illustrates how a number of different functions

might adequately represent the same data, but which behave differ-

ently in regions where data are sparse or noisy.

Figure 3.5: Schematic illustration of the uncertainty in defining a fit-
ting function in regions where data are sparse (B) or noisy (A). In the
(B) region the outer lines represent the error–bars due to uncertainties
determining the weights. Outside the range of data the extrapolation
is increasingly uncertain (C). The regions (B and C) will provide the
most informative experiments [85].

The magnitude of the modelling uncertainty varies as a function of

the position in the input space. It is an excellent way of identifying

domains where further experiments are needed to reduce uncertainty

or where the predictions should be used alongside an assessment based

on other techniques, known trends or experience. The minimum noise

level that the fitting procedure can achieve in the output can be fixed

if it is known prior to the training process. Doing so helps to avoid

overfitting.
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Improving The Model

Artificial neural networks obviously perform best with good quality

data, which are physically meaningful. It is also necessary to optimise

the number of input variables, to ensure that they form a physically

meaningful set. An over-ambitious set will however limit the quality

data available for analysis since many reported experiments do not

cover all the necessary input variables. A pragmatic approach ensures

sufficient data and variables to capture the complexity of the problem.

Fig. 3.6a shows the model-perceived noise (σ) for a database with

16 input parameters and Fig. 3.6b shows the model-perceived noise (σ)

for a database with 11 input parameters. The noise is smaller, for the

16 input parameter model because for the 11 input parameter model 5

important inputs were eliminated before training. The figure Fig. 3.6a

represents the noise level from training a hot–strength model as a func-

tion of chemical composition, heat treatment, and test temperature

whereas for Fig. 3.6b only chemical composition was chosen as input

parameters.

 0.01
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Figure 3.6: Perceived level of noise for the same problem but with
different numbers of input parameters.

The maximum and minimum values for each input should be checked

before commencing the modelling, to ensure that these limits are mean-
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ingful (for example a maximum value for carbon at 88 wt% would ob-

viously be a compiling error). Table 3.1 shows steel related data used

for training a neural network.

Input Units Minimum Maximum Average Deviation

C wt% 0.04 0.48 0.1514 0.0627
Si wt% 0.03 0.86 0.3624 0.143
Mn wt% 0.35 1.73 0.6091 0.2402
S wt% 0.005 0.029 0.0149 0.0056
P wt% 0.001 0.1 0.0101 0.0085
Ni wt% 0.0001 2.64 0.2216 0.4075
Cr wt% 0.0001 12.9 3.603 4.114
Mo wt% 0.005 2.03 0.6944 0.3855

Table 3.1: The minimum–maximum table.

A uniform spatial distribution of data minimises the uncertainties

for interpolation and extrapolation. Fig. 3.7 illustrates how the unifor-

mity with which the data are distributed may not be the same for all

the inputs. In the case of nickel, it is likely that predictions may be

associated with large uncertainties in the concentration range 1-2 wt%.
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Figure 3.7: Data distribution for different input parameters.

Experimental data should, prior to training be assessed for accuracy

and reliability. Outliers such as the ones shown in Fig. 3.8, are those
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points whose 95% confidence limits are so far away from expectation

that they are unlikely to be right. Such data should be tracked back to

their origin to see if there is a mistake in the process of collecting and

compiling the database. If no errors are found then some reasoning has

to be applied to ensure that the model construction is correct. A model

that has a lot of outliers is likely to behave poorly on unseen data. The

particular reason for the outlier illustrated in Fig. 3.8 is because there

was a compiling error in the database.

Figure 3.8: Example of outliers.

The input parameters can be inserted in the database in raw form,

for example the chemical composition of a steel, or in a functional

form, for example the free-energy of transformation calculated from

the composition. Indeed both the raw data and the functional forms

can be included as inputs to avoid biasing the model.

An input logarithm parameter may be included in the database if

that parameter is linked to a time dependent process, for example the

time period of heat-treatment is an input, and then along with the time

a logarithm of time may be included log(time) as an input [95].

The logarithm of an input should also be used if it is desired to

obtain better spread of the data. For example Fig. 3.9a shows the
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distribution of residual stress developed in the raceway of a bearing as

a function of revolutions; it can be seen that the data are clustered in

two zones leaving a gap in the middle of the figure. If the logarithm of

the revolutions is considered for the same data it can be seen Fig. 3.9b

that the distribution is much more proportional resulting in smaller

modelling uncertainties and a better deviation of the fitting function [2].
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Figure 3.9: The difference in data distribution if the logarithm of an
input is considered.

For thermally activated processes, temperature is expected from the-

ory to act via the function:

exp
(

− Q

RT

)

(3.10)

where R is the universal gas constant, T is the temperature in Kelvin

and Q is an activation energy. It was used by Shen [96] when modelling

the rate of creep deformation because it builds in a dependence of the

creep deformation rate on the activation energy. It could be argued

therefore that it incorporates a physical relationship based on scientific

understanding.

If a combination of two or more existing variables has a particular

significance, it can be added to the database. For example, the following
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could be added as an input from kinetic theory, a function of time and

temperature (called ‘kinetic time’ [97]):

time × exp
(

− Q

RT

)

(3.11)

A neural network, like any empirical method, is a mathematical

function and is not constrained to a particular range of output values.

As such, it can predict unphysical values for the output, for example,

the volume fraction of bainite can only take values between zero and

one, in order to avoid the output taking values outside this range, a

function is imposed on the output [2]:

foutput = ln
(

− ln
(

1 − zmax − z

zmax − zmin

))

(3.12)

where z is the output and zmax and zmin are values set by the user. In

the case of volume fraction zmax has the value of unity and zmin is zero.

3.2 GENETIC PROGRAMMING

In genetic programming, problems are viewed as the discovery of

computer programs through an evolutionary search process [98, 99]. A

computer program can be a formula. Brajlih et al. used genetic pro-

gramming to acquire a formula which expresses a material shrinking

coefficient [100]. It can be a plan; Shimizu et al. implemented a de-

cision making plan based on genetic programming, which decides the

optimal disassembly sequence in a recycling plant [101]. It may be a

control strategy; Beldek and Leblebicioglu used genetic programming

to create a control strategy which navigates particles in a area filled

with obstacles [102]. Another alternative is a decision tree; Estrada

et al. have successfully implemented a genetic programming method
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which induces a decision tree which is able to detect interactions in

genetic mutated viruses [103]. Whigham and Crapper used a learning

model for rainfall-runoff based on genetic programming [104].

The learning problems can be divided into two kinds. The first one

uses a dataset such as input/output mappings for supervised learning

the information source provides examples of the inputs and the correct

outputs during the training period, the supervised learning was used

successfully in image classification [105]. The second deals with real

or simulated robotic behaviour in a specific environment for example

robots whose behaviour is determined by a robotic controller. The con-

troller programs are automatically generated with the help of genetic

programming [106].

A population of computer programs is randomly generated, each of

which is then assessed by a fitness function which quantifies the ability

to solve a given problem. To make possible the application of genetic

programming it is necessary to define a fitness function, for that prob-

lem the definition of a quantitative measure of the performance of a

possible solution. Fitter programs are selected for recombination to

produce a new population of programs using genetic operators such as

crossover and mutation [107]. This step is iterated for a number of gen-

erations until, the optimum solution has been reached, or an econom-

ical computational effort has been exhausted. The cycle is illustrated

in Fig. 3.10.

As already explained, the method relies on a population of candidate

solutions or programs generated at random. The population size is

specified by the user and depends on the difficulty of the problem. A

large population is needed for complex phenomena to maintain diversity

and to avoid premature convergence [98, 108].
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Figure 3.10: The evolutionary cycle in genetic programming.

Representation

The programs can be represented as abstract syntax trees, where a

branch node is an element from a function set which may contain arith-

metic and, or logic operators, or elementary functions with at least one

argument. A leaf node of the tree is an element from a terminal set,

which contains variables, constants and functions with no arguments.

There are other representations such as linear genetic programming

which is the evolution of computer programs written as linear sequences

of instructions resulting in an acceleration of execution time and evolu-

tionary progress. This was used in the selection and purchase of market

shares [109] and in determining the optimal spatial distribution of agri-

cultural ammonia emissions in order to minimize atmospheric nitrogen

deposition in nature reserves [110].

Grammatical evolution is a different type of genetic programming

used to provide alternatives to the syntax tree. This is done by ob-
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taining the solution according to a user-specified grammar resulting in

a restricted search space and faster times for solving the problem with

the domain knowledge of the problem being incorporated into the so-

lution. This has been used to optimize neural networks for use in gene

detection studies [111].

The function and terminal set are provided by the user, who specifies

in advance blocks that can be used for constructing a solution to the

problem. The identification of the elements that will be included in the

function and terminal sets should be chosen so that the functions are

sufficiently complex to express the solution [112].

Fig. 3.11 represents an example of abstract syntax tree for a math-

ematical expression.

Figure 3.11: A tree representation of a × b × (1 + 0.3) − (1 − a).

Fitness Function

This provides a measure of fit and is a criterion that helps select

the optimum function. Fitness is usually evaluated over a set of cases.

The fitness functions most commonly used are the error variance (mean

square error ) and the error standard deviation (root mean square er-

ror) [113, 114]:
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MSE =
1

n

n
∑

i=1

(yi − t)2 (3.13)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − t

t

)2

(3.14)

where yi is the predicted value and t is the target value.

Selection

The objective of the selection is to apply the survival of the fittest

mechanism on candidate solutions:

• roulette-wheel selection where the probability that an individual

will be selected depends on his normalised fitness value [115];

• ranking selection which is based on the ranking of the fitness

values of the individuals in the population [116];

• tournament selection where n individuals with n ≥ 2 are chosen in

the population, and the individual with the highest fitness value

is selected [117];

• elitism, which copies the best few individuals in the next genera-

tion, can increase performance and avoids losing the best known

solutions [118].

Genetic Operators

Genetic operators perturb the structure of the trees by combining

or modifying two or more parental individuals to create possibly better

solutions.
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The simplest operator in genetic programming is duplication since

it only replicates an individual without any modification.

Crossover is an operation for the probabilistic exchange of genetic

information between two randomly picked parents, facilitating a global

search for the optimum in the process. The crossover operator is

schematically represented in Fig. 3.12.

Figure 3.12: A sub–tree crossover.

Mutation is an operator inducing a small probabilistic change in the

genetic make up, resulting in a local search. It begins with the selection

of a point at random within the tree, and then the mutation operation

replaces the function or the terminal set with the same type of element.

This operation is useful for creating diversity without modifying the

shape of the tree, presented in Fig. 3.13.

There are many variations of mutation and crossover available in

the literature [119, 120]. It is believed that the crossover operator

allows a quicker convergence than mutation but the subject is open for

debate [121–124].
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Figure 3.13: A one–point mutation.

3.3 THE PURPOSE

The purpose of any neural network and genetic programming model

is to enable the quantitative expression and understanding of compli-

cated problems.

It is usual to publish research in the form of papers which describe

the work in sufficient detail to enable it to be reproduced. Research in-

volving neural network/genetic programming models is similarly pub-

lished but the work often cannot be independently reproduced from

the publication alone, because, neither the data on which the model

was created nor the coefficients needed to reproduce the mathematical

structure can be incorporated in the paper.

Modern technology in the form of the world–wide web provides an

elegant solution in that the numerical model itself or the data can

be archived and made available for scrutiny, as a supplement to the

normal research paper. The dissemination of the model has the added

advantage that it will be exposed to a much wider audience with the

potential of applications not originally envisaged by the creators of the

model.

In Table 3.2 a marking scheme is presented, which has the purpose

to encourage a useful guide to publication in this field [125]. The first
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achievement is of course to do the work necessary to assemble the data

and to create a model. Such a model must be considered potentially un-

reliable unless its behaviour and predictions are explored, both within

the domain of the training data and beyond. The term ‘prediction’ in

this context means conducting calculations in a regime where data do

not exist.

Characteristic Mark

Model or data disseminated 3
Modelling uncertainty 2
Prediction investigated experimentally 2
Predictions made and interpreted 2
Model created 1

Table 3.2: Marking scheme for models. Prediction refers to using the
model in a regime of inputs not included in the data used to create
the model. A model refers to a transparent mathematical function
and associated coefficients. Dissemination implies making the model
available to others.

The trends revealed by the model should be interpreted in terms of

the known science of the problem. It is possible that a model captures

false correlations and these can render it unsafe in application.

Some of the predictions of the network may be usefully investigated

by conducting specific experiments.

It is important to realise that the extrapolation of a network can-

not be satisfactorily explored without an indication of modelling un-

certainty (discussed in Chapter 3 page 36). In a non–linear model

extrapolation cannot be defined as being out of the range of the train-

ing data unless the latter are absolutely uniformly distributed in the

input space. Modelling uncertainty, however it is calculated, must be

considered an essential feature of any model.

Finally, the dissemination of the model or data is vital for scientific
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progress and independent verification.



Chapter 4

HOT STRENGTH OF

STEELS

The strength of a material refers to the material’s ability to resist

an applied force without undergoing permanent deformation. There

were many attempts to model the strength of steel, in the following

paragraphs mathematical models used to estimate the strength are de-

scribed together with their drawbacks. In the second part of the chapter

a more capable model is presented.

4.1 MATHEMATICAL MODELS FOR

STRENGTH

There are many researchers who tried and succeeded in creating

empirical models to express the strength of steels. Classic equations

due to Irvine et al. quantify the strength in terms of alloying element

contributions, grain size and δ–ferrite content [126].
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0.2% proof stress = 4.1 + 23C + 1.3Si + 0.24Cr +

+ 0.94Mo + 1.2V + 0.29W + 2.6Nb + 1.7Ti +

+ 0.28Al + 32N + 0.16(δ − ferrite) + 0.46d−
1

2 (4.1)

where d represents the average grain size which in the investigation1

ranged from 2 to 15 mm−
1

2 , δ–ferrite represents the volume % in the

range 0 – 60%, the C, Si, etc represent the contribution in wt% of

the respective components to strength; resulting in a 0.2% proof stress

between 120 and 400 MPa.

Tomita and Okabayashi working on steels with mixed microstruc-

tures 2 (martensite and bainite) found that a mixture can perform bet-

ter than the individual phases, with strength peaking as a function of

volume fraction because the properties are affected by the size [127]:

σMix
0.2 = σi + kS

−
1

2

LM − (σi + kS
−

1

2

LM − σB
0.2)VB (4.2)

where σMix
0.2 is the 0.2% proof stress (MPa) of the mixed microstruc-

ture steel, σi is the frictional stress, k is a constant, SLM represents

the martensite size partitioned by lower bainite, SUM represents the

martensite size narrowed by upper bainite, σB
0.2 is the 0.2% proof stress

of bainite in the mixed structure and VB represents the volume fraction

of bainite.

A more general model which takes account of the number of intrinsic

components was provided by Young and Bhadeshia [128]. The maxi-

1The base steel used for the investigation had the chemical composition C 0.091,
Mn 1.06, Si 0.42, Ni 10.03, Cr 18.04, N 0.0105 wt% to which different alloying
elements were added.

2The steel used for the investigation had the chemical composition C 0.4, Si 0.15,
Mn 0.66, P 0.011, S 0.009, Ni 1.87, Cr 0.8, Mo 0.2 wt%, with heat treatments
resulting in yield strengths of 800 to 1800 MPa.
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mum in the strength of mixed microstructures is said to be due to the

increase in the strength of martensite as carbon is partitioned into the

residual austenite during the formation of bainite, and the plastic con-

straint in which the strength of bainite is enhanced by the surrounding

more rigid martensite.

These models and others are valid in expressing the yield strength,

but they usually are limited to a particular type of steel, they require

extensive microstructural data and they do not extend beyond the range

of the strength which was used in their development. All the empiri-

cal models assume a linear dependence between the various parameters

and the strength, but there is no general justification for this approach.

In order to remedy the situation it is necessary to address the complex-

ity issue, and hence the resort to Bayesian neural networks. These are

flexible mathematical functions which are not restricted to the type of

data available. Because of this they can cover a huge range of param-

eters and have been proven to reveal new phenomena that have led to

novel steels [79–84, 129].

4.2 NEURAL NETWORK MODEL

The Bayesian neural network method used to express the hot–strength

of steels as a function of chemical composition and heat treatment, was

described in Chapter 3. The method has been used previously with

success for modelling the Charpy energy, weld cooling rate, strength

of steel weld metals, the yield strength and ultimate tensile strength

of nickel base superalloys, the behaviour of high temperature creep–

resistant steels [87, 130–135]. A review of these applications has been

given by Bhadeshia [85].

There have been studies in which the hot–strength of austenite has
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been modelled, primarily as an aid to the simulation of the hot–rolling

processes or that of the bending of steel during the continuous casting

process [136–140]. There do not appear to be similar studies for creep–

resistant ferritic steels, even though hot–strength is a parameter in the

design of power plant components.

4.2.1 The Variables

There exist a lot of data in the literature on the strength of ferritic

steels. The present analysis is based on published data on the hot–

strength (0.2% proof strength) of ferritic creep–resistant steels including

but not limited to the classical 21
4
Cr1Mo, 5Cr, 9Cr1Mo and 12Cr1Mo

type steels [141].

Fig. 4.1 illustrates the range of the input variables used to develop

the model, plotted against the output – hot–strength. Fig. 4.1 does

not have the role of showing functional dependencies; it is intended

just to show the distribution of the data without correlation between

the different variables. The data are not distributed uniformly, but the

Bayesian framework of the neural network recognises this by associating

large modelling uncertainties with the sparse or noisy domains.

The input parameters used to develop the hot–strength model are

listed in Table 4.1 and include most of the parameters thought to in-

fluence the hot–strength: chemical composition, heat treatment, and

test temperature. The microstructure is not included as a separate

parameter because it is a consequence of heat treatment and chemical

composition. The Bayesian framework of the neural network enables

the assessment of the relevance of each individual input, so it is unnec-

essary to exclude any variable prior to the analysis because the variables

which hold little influence on the output will be associated with small

weights [142, 143].
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Figure 4.1: Visual illustration of the distribution of data used to create
the model.
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Variable Minimum Maximum

Aluminium / wt% 0.001 0.04

Carbon / wt% 0.09 0.48

Copper / wt% 0.0001 0.25

Chromium / wt% 0.0001 12.38

Manganese / wt% 0.38 1.44

Molybdenum / wt% 0.01 1.05

Nickel / wt% 0.0001 0.6

Nitrogen / wt% 0.001 0.04

Vanadium / wt% 0.01 0.3

Cobalt / wt% 0 0.15

Silicon / wt% 0.18 0.86

Austenitising time / min 10 5400

Tempering time / min 30 660

Austenitising temperature / K 1143.15 1243.15

Tempering temperature / K 898.15 1023.15

Test temperature / K 293.15 973.15

Hot strength / MPa 69 660

Table 4.1: The variables used to develop the model.

The hot–strength was modelled directly as a raw value, rather than

as a functional form which would bound its values. This is because a

bounding function leads to bias [144]. This is particularly the case when

training the model with logarithmic values, which induces an upper and

a lower limit for the predicted values and hence biases the model, this

becomes extremely obvious when extrapolating over long ranges. To

avoid this, the model was directly trained on the hot–strength data.
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4.2.2 Training the Model

All the individual models can be ranked according to the test error

or the log predictive error. The advantage of ranking them according to

the log predictive error has been discussed in the previous chapter where

was shown that combining a number of models to obtain a committee

is a better procedure. Throughout this thesis the committee of X best

models ranked according to log predictive error is used. The reason

why the combined test error is presented for the committee of models

is simply because it is easier to illustrate that the error is reduced when

the committee is used.

The data were split into the training and testing sets, which were

normalized as described in the Chapter 3. One hundred networks were

trained, with hidden units ranging from one to twenty and five seeds

in each case. As the number of hidden units increases so does the

complexity and flexibility of the network, so the expected noise level

from the training data decreased, Fig. 4.2a.

As can be seen in Fig. 4.2b, the ability of the models to generalise

on the test data has an optimum at about ten hidden units, as does

the log predictive error in Fig. 4.2c. The optimum number of models to

form a committee was found to be thirteen as shown in Fig. 4.2d. The

network perceived significances are shown in Fig. 4.3. Both the mean

significance, and the upper and lower limits from the members of the

committee are shown.

Fig. 4.3 shows that there is no one chemical component that has an

overwhelming influence on the hot–strength: however carbon, nickel,

chromium and molybdenum are most significant. This is expected as

they are carbide formers, but the reason for nickel is not clear. A

possible explanation for the low significance associated with the other

elements could be their compositional narrow range. The range is illus-
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Figure 4.2: (a) Perceived level of noise for the training data (b) the test
error (c) the log predictive error (d) the test error for the committees
of different sizes.

trated in Fig. 4.1. The tempering heat treatment naturally has a large

effect on the strength as does the test temperature.

The final trained committee tested on the whole dataset shows rea-

sonable agreement between the predicted and measured values; even

those few data which are badly estimated are accompanied by larger

uncertainties as shown in Fig. 4.4. There is clear improvement over the

predictions shown in Fig. 4.5a and b by the best single model.
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Figure 4.3: Model perceived significance for the committee of the mod-
els.
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Figure 4.4: The performance of the committee of models on the whole
database. For the committee model the standard deviation for pre-
dicted versus measured is 34 MPa, and there were only 28 points more
than three standard deviations away from their measured values out of
1107 data points.

4.2.3 Interpretation of Hot–Strength

For all the predictions in the present thesis resulting from neural

network models the modelling uncertainties are ± 1 σ.
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Figure 4.5: (a) The performance of the best single model on the training
data, (b) the performance of the best single model on the testing data.

In order to assess the hot–strength model, three examples where

considered, using steels in the 21
4
Cr1Mo, 5Cr and 9Cr1Mo categories.

In each case, phase diagrams were calculated using MTDATA [145] and

the ‘solution plus’ thermodynamic database. The phases allowed in the

calculation were cementite, M3C2, M7C3, M23C6, M6C (‘M’stands for

metal atoms) and ferrite, including Fe, C, Si, Mn, Ni, Cr, Mo, Cu,

Al, N as the components. The composition used to estimate the solid

solution strengthening of ferrite was that calculated for the tempering

temperature, since this is higher than the tensile test temperature and

because the test itself is of a short duration3.

With the calculated concentrations of substitutional solutes in the

ferrite, their contributions were estimated as a function of test temper-

ature using a model due to Sugden [146]. The small concentrations of

interstitials in equilibrium with carbides were neglected since they are

likely to be located at defects [147–150], and hence do not contribute

to solid solution effects; at the tempering temperature the approximate

amount of interstitials for the steels was C 0.009 and N 0.008 wt%.

3The hot–tensile tests are reported to have been carried out to Japanese standard
JIS G 0567 – after reaching the specified temperature, the sample is held there for
15 min before testing.



4.2 NEURAL NETWORK MODEL 62

The strength of pure iron with a coarse microstructure, as a function

of temperature, is from Leslie [151]. The microstructural contribution

from carbides and the tempered martensite or bainite plates, is then the

difference between the neural network estimate and the SS+Fe curve,

where SS stands for solid solution strengthening.

The hot–strength predictions for the three steels are presented in

Figs. 4.6a,c,e. It is seen that hot–strength can be categorised into

two regimes. The first is an almost linear decrease in strength with

temperature approximately over the range 200–700 K. This occurs at

a rate consistent with the loss of strengthening due to substitutional

solutes and iron (cf. SS+Fe curve). The second part of the hot–strength

is also approximately linear over the range 800–950 K, but the decrease

in strength with temperature is much more dramatic. By extrapolating

the low and high–temperature behaviour, TC , which is the transition

temperature between the two regimes is found to be 793 K, 845 K and

780 K for the 21
4
Cr1Mo, 5Cr and 9Cr1Mo steels respectively.

The accelerated decrease in hot–strength when T > TC cannot be at-

tributed to coarsening phenomena or microstructural changes, because

in all the cases illustrated, the samples have been tempered at temper-

atures in excess of 990 K, which is much higher than the tensile test

temperatures. Neither can it be associated with any similar behaviour

in the solute strengthening or the strength of pure iron, both of which

are almost monotonic straight lines.

The phase diagrams (Figs. 4.6b,d,f) show that there is no dramatic

or consistent change in equilibrium phase fractions at TC . The remain-

ing possibility is that it becomes easier for dislocations to overcome

obstacles by a thermally activated mechanism beyond TC within the

time scales of the experiments.
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(a) 2 1

4
Cr steel: 0.15C-0.18Si-0.63Mn-

0.024Ni-2.23Cr-0.97Mo-0.2Cu-0.01Al-
0.0083N wt%, 1193 K for 480 min, air
cooled, tempered at 993 K for 360 min
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(c) 5Cr steel: 0.12C-0.33Si-0.56Mn-
0.046Ni-5Cr-0.049Mo-0.05Cu-0.066Al-
0.017N wt%, 1173 K for 10 min, air
cooled, tempered 1023 K for 120 min
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(d) 5Cr steel

 0

 100

 200

 300

 400

 500

 300  500  700  900

H
ot

 S
tr

en
gt

h 
/ M

P
a

Test Temperature / K

Fe
SS+Fe

NN

(e) 9Cr1Mo steel: 0.11C-0.59Si-0.41Mn-
0.1Ni-9.15Cr-1.05Mo-0.02Cu-0.011Al-
0.018N wt%, 1133 K for 30 min, air
cooled, tempered 1033 K for 90 min
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(f) 9Cr1Mo steel

Figure 4.6: (a,c,e) Hot strength; (b,d,f) equilibrium phase fractions.
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Relevance to Creep–Rupture Data

The microstructural component of strength is maintained below TC

but decreases dramatically about that temperature. Since this hap-

pens in a short duration hot–tensile tests, there should exist a similar

phenomenon in creep rupture testing.
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Figure 4.7: Comparison of temperature–sensitivity of creep–rupture
and proof strength. (a) 21

4
Cr1Mo. (b) 5Cr. (c) 9Cr1Mo. (d) The

allowable stress for 21
4
Cr1Mo steel [152].

Figs. 4.7a–c show creep rupture data (103, 104, 105 h) [141] plot-

ted on the same graphs as the hot–strength data. It is striking that

the temperature sensitivity of the rupture stress is similar to that of

the proof strength for T > TC . Unfortunately, low–temperature creep

data are not available to make a similar comparison for T < TC , but
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Fig. 4.7d shows that the allowable stress in creep design varies in a man-

ner strikingly similar to the behaviour of hot–strength as a function of

temperature.

This analysis suggests that hot–strength tests could in research pro-

grammes be used as rough indicators of the temperature sensitivity

of creep rupture data. This may not be too far fetched if for T > TC ,

the mechanism remains thermally activated dislocation motion for both

tensile and creep deformation.

4.3 GENETIC PROGRAMMING

MODEL

The genetic programming method, used to create the models for

predicting the hot–strength as a function of chemical composition and

heat treatment, was described in Chapter 3. The method has been

used previously in steel research for predicting the bending capability

of rolled metal sheet and modelling the yield stress of carbon steel [153,

154].

In the previous section it was shown how the rate at which the

strength (σY ) decreased with temperature (T ) becomes much more pro-

nounced beyond TC ≃ 800 K, as shown in Fig. 4.7a–c. Furthermore,

the slope ∂σY /∂T for T > TC was found to be similar for hot–strength

and for creep rupture data, as illustrated in Fig. 4.7a–c. This behaviour

is thought to be associated with the onset of atomic mobility, such that

dislocation climb becomes possible at temperatures beyond TC .

Another useful outcome is that |∂σY /∂T | in the high temperature

regime correlates directly with the tensile strength measured at ambient

temperature, Fig. 4.8. An alloy which is strong at ambient temperature
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loses more of its strength as the temperature is raised above TC . Fig. 4.8

could in principle be used to determine |∂σY /∂T | for an arbitrary steel,

and hence to work out the temperature–dependent strength simply by

measuring the ambient temperature strength:

σYT
= σYTA

+
∂σY

∂T
× (T − TA) (4.3)

where TA is the ambient temperature.

Note that for T < TC , |∂σY /∂T | seems independent of alloy (Fig. 4.8)

and corresponds to the temperature sensitivity of the solid–solution

strength and that of pure iron [129].

Figure 4.8: Plot of ∂σY /∂T as a function of σY measured at ambient
temperature. Two cases are illustrated, for T > TC and vice versa. The
alloys considered are the 21

4
Cr1Mo, 5Cr and 9Cr1Mo.

Given the utility of the phenomena described above, the scope of

the following section is to asses the possibility of replicating the neu-

ral network results presented in the earlier section, by an alternative
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empirical method. Therefore the same data were used for the genetic

programming model.

The specific training parameters for the genetic programming models

are as follows: Koza crossover, a crossover rate of 0.78, a duplication

rate of 0.04, point node type mutation at a rate of 0.18, tournament

selection, with an initial population size of 1000 individuals, resulting

in a correlation coefficient of 0.91 (if it reaches 1 it follows that the

ideal solution is reached).

4.3.1 Comparison of Methods

In making these comparisons the calculations are based on the same

data used for creating the neural network model. This is because the

neural network methods have been shown to faithfully reproduce those

data [129] – the genetic programming should therefore at least replicate

those outcomes or reveal new structure within the generally verified

trends.

The experimental data were in each case split randomly into two

parts to create the training and test datasets, the latter being used to

assess the ability of the model to predict unseen data; the test error is

calculated as follows:

EE =
∑

j

(tj − yj)
2 (4.4)

where yj is a predicted value and tj the target value; to calculate this

error we normalised the output to be in the range ±0.5 .

The neural network model used for the present thesis is in a Bayesian

framework and hence gives a modelling uncertainty associated with

each prediction [85, 142, 143, 155]. This is extremely helpful in avoiding
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the usual dangers of extrapolation. For the genetic programming, the

modelling uncertainty was improvised by plotting the standard devia-

tion of three models within a committee of models. The three compo-

nent models were created simply by starting the training process three

times; on each occasion a different model is obtained because of the

randomness–based components of the genetic programming process.

The training process for the genetic programming begins by apply-

ing only the elementary (+ − ∗ /), and if necessary after assessment,

more complex models can be created by including other functions such

as (sin, cos, tan, tanh, log, exp...). In what follows, all functions refer to

the case where the elementary, trigonometric and arithmetic functions

have all been made available to the genetic program, whereas trigono-

metric functions only trigonometric functions (sin, cos, tan, tanh, cosh

and sinh) were allowed in the genetic programming. The test errors for

the different approaches are listed in Table 4.2 it should be noted that

in all cases the committee of models has smaller test errors than any of

the individual models. The genetic programs are seen from Table 4.2

to perform less well when compared with the neural network.

Model Test error

All functions genetic program, 3–member committee 0.611
Trigonometric functions genetic algorithm,

3–member committee 0.361
Neural network, 13–member committee 0.293

Table 4.2: Test errors for committees of models.

4.3.2 Predictions with Genetic Programming

Model

The best way of assessing the performance of non–linear models is

to use them to make predictions. Fig. 4.9 shows prediction for a 12Cr
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steel, whereas Fig. 4.10 shows predictions for a 2.25Cr steel.

(a) (b)

(c)

Figure 4.9: Calculations for steel containing
0.21C 0.44Si 0.62Mn 0.85Ni 11.64Cr 0.97Mo 0.06Cu 0.03Al 0.02N
wt%, 1323 K for 25 min, air cooled, tempered at 913 K for 60 min. (a)
Genetic programming using arithmetic, elementary and trigonometric
functions. (b) Genetic programming using trigonometric functions. (c)
Corresponding outcome using the neural network.

The predictions from the genetic program trained with arithmetic,

elementary and trigonometric functions, failed to capture the complex-

ity of the data. The different temperature dependency of stress on

temperature on either side of TC is not captured – instead, a rather

stiff model is produced because the search for the final function was

restricted to relatively simple formulae. With this limitation removed,

the genetic program based on just the trigonometric functions is able to

capture the stress–temperature behaviour correctly, probably because

it includes hyperbolic functions which are know to be very flexible func-

tions. Indeed, the neural network uses the hyperbolic tangent transfer
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(a) (b)

(c)

Figure 4.10: Calculations for steel containing
0.15C 0.25Si 0.61Mn 0.32Ni 2.35Cr 0.96Mo 0.03Cu 0.01Al 0.01N
wt%, 1193 K for 210 min, air cooled, tempered at 988 K for 300
min. (a) Genetic programming using arithmetic, elementary and
trigonometric functions. (b) Genetic programming using trigonometric
functions. (c) Corresponding outcome using the neural network.

function as indicated in the previous chapter.

4.4 CONCLUSIONS

The strength of any steel can in principle be decomposed into compo-

nents consisting of the strength of the respective phases that are present

in the steel, or it can also be decomposed into parts that represent the

strength of pure iron, solid solution strengthening, microstructure and

grain size. However, the exact proportion contributed by each compo-

nent to the overall strength it is not fully determined due to the myriad
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of factors that determine the process. The evaluation of all these factors

would require huge resources.

To estimate the hot–strength of creep–resistant ferritic steels as a

function of chemical composition and heat treatment a neural network

model was created. The model can successfully represent the hot–

strength of steels based on chemical composition and heat treatment,

it is easy to use and transparent to interpret; it does not require exper-

iments in order to be used.

The model was combined with other observations to establish that

there is a regime of temperature beyond which there is a steep decline

in the microstructural contribution to strength. This decline cannot

be attributed to changes in microstructure, but rather to an increased

ability of dislocations to overcome obstacles with the help of thermal

activation.

Creep–resistant ferritic steels are used for building steam turbines

and steam pipes used in the energy sector for the generation of electric-

ity, and they have a design life in excess of 25 years. When new alloys

are invented and developed it is necessary therefore to engage in long-

term testing. It was demonstrated using the mathematical modelling

that in steam turbine conditions, the temperature dependence of the

hot tensile-strength is essentially identical to that of creep deformation.

From a technological point of view, the similarity in ∂σY /∂T for

hot–strength and creep–rupture provides a ready method for estimating

expensive creep data using ordinary tensile tests. Therefore, a short-

term creep test combined with quick hot–strength data may be used

to extrapolate the creep data to long times, thus reducing the need for

creep testing.

For pure iron and solid solution strengthening the decrease of strength

as the temperature increases is linear, however at TC the strength of
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Figure 4.11: Micrograph of a steel, potentially able to withstand service
temperatures in excess of 800 K [152].

the ferritic steels in taking a different slope, which is attributed to the

fact that it becomes easier for dislocations to overcome obstacles by

a thermally activated mechanism beyond TC . It would be quite an

achievement if a steel would be developed that can withstand service

temperatures in excess of 800 K, due to the gains in the efficiency for

the energy industry. This can be accomplished by strengthening the

steel through solid solution alone resulting in a steel with very large

grain. A possible candidate could be the one shown in Fig. 4.11 which

achieves its strength due to solid solution strengthening instead of a

fine microstructure.

Two empirical modelling methods were used on the same database,

neural networks and genetic programming. The two methods are found

to be similar in being able to create sufficiently complex non–linear

functions to represent experimental information in ferritic creep–rupture

resistant steels. In many respects, both methods require trials to find
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the optimum overall function, but the genetic programming was more

computer intensive and did not generalise as well as the highly–flexible

neural network method, it also required greater intervention in the

choice of functions.



Chapter 5

FATIGUE CRACK

PROPAGATION

There are three steps in the failure of a component by fatigue. Crack

initiation may occur at surface scratches caused by handling or ma-

chining, slip bands or dislocations intersecting the surface as a result of

previous cyclic loading or work hardening, pores located at grain bound-

aries that are perpendicular to the applied stress direction, metallic and

non–metallic inclusions, surface pits formed due to corrosion etc. [156–

160].

Fatigue damage is described as the nucleation and growth of cracks

to final failure, although the differentiation of their two stages can be

ambiguous [161, 162].

After the crack is initiated and if the external stress persists the

crack enters the propagation stage. Factors influencing the rate of

growth are:

• compressive residual stresses which tend to close cracks, whilst

tensile residual stresses stimulate the advance of the crack by
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opening it [163];

• an increase in temperature improves toughness in ferritic steels,

this in turn raises the fatigue limit and reduces the crack growth

rates. These events are attributed to the decrease of tensile

strength at high temperature [164, 165]. Other researchers have

attributed the difference in fatigue crack growth between room

temperature and 750◦C to the variation in Young’s modulus with

temperature [166], which is due to the fact that at high temper-

atures the role of the interatomic bonding forces decreases;

• corrosive environments accelerate fatigue crack growth rates by

some 2 to 3 orders of magnitude when compared with an air

environment [167–169]. In air, fatigue-crack propagation is asso-

ciated with alternating blunting and re-sharpening of the crack

tip, whereas in corrosive environments cyclic cleavage may occur,

by hydrogen embrittlement from electrochemical reactions associ-

ated with corrosion. The growth rates in vacuum are slower than

in air because of the effect of moisture. Fatigue crack growth

rates in a hydrogen environment are faster than in air because of

hydrogen embrittlement [170, 171];

• a decrease in the test frequency can accelerate fatigue crack growth

rates due either to hydrogen embrittlement or to an acceleration

of the corrosion process at the crack tip [172–174];

• the ratio of the minimum to the maximum stress tends to propor-

tionally increase fatigue crack growth rates by enhancing crack tip

opening displacement1 [175, 176];

• fatigue crack growth rates naturally depend on the stress intensity

range ∆K, as will be seen later;

1The crack opening displacement represents the relative displacement of the two
edges which form the crack.
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• there are different ways of loading: mode I involves tension to sep-

arate crack surfaces, mode II is an in-plane shear mode where the

crack surfaces slide over one another in a direction perpendicular

to the leading edge of the crack, mode III is tearing and antiplane

shear where the crack surfaces move relative to one another and

parallel to the leading edge of the crack;

• standardized test specimens are used [177], such that the dimen-

sions do not overly influence the crack propagation rate. The only

influence comes from the thickness of the test specimens because

it is important to maintain a state of plane strain in order to

ensure that material properties are measured [165, 178];

• it is difficult to assess the influence of just one of the material

properties on the crack propagation because they are in many

cases interdependent [178, 179]. An increase in the Young’s mod-

ulus however, will result in a proportional increase in the stress

intensity factor [180]. The crack propagation rate is known to

decrease with grain size [181, 182];

• the isolated effect of microstructure is difficult to assess. Stud-

ies on overaged and underaged 7049 aluminium alloys2 revealed

that the fatigue crack growth is influenced by the effect of mi-

crostructure and deformation mechanisms. More homogeneous

slip occurs in the overaged condition, whereas localised slip leads

to a crack branching tendency in the underaged condition, with

a consequential increase in fatigue strength for a fine microstruc-

ture [183, 184].

Ultimate failure occurs when the crack cannot withstand the ap-

plied stress with fracture mechanisms consistent with ordinary tensile

2Zn 7.1, Mg 2.8, Cu 0.06, Cr 0.3, Si 0.1, Mn 0.06, Ti 0.05, Ga 0.01, Zr 0.1 in
wt% resulting in a fine microstructure for the underaged condition and a coarse
microstructure for the overaged condition.
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deformation [185].

5.1 MODELS FOR CRACK

PROPAGATION

An elegant model for fatigue crack growth was proposed by Paris et

al., one which is still used today. The model was the first to recognize

and quantify a direct relationship between the fatigue crack growth

rate and the stress intensity factor K [186]. In the crack propagation

regime Paris and Erdogan discovered that the fatigue crack growth rate

is described by a power law equation:

da

dN
= C(∆K)m (5.1)

where a is the crack length, N represents the number of cycles, ∆K

is the stress intensity range, C and m are constants depending on the

material [21]. The Paris equation is extremely useful in representing

the crack propagation data (Fig. 5.1) for a big variety of materials, but

it has some disadvantages.

The Paris equation generally describes constant amplitude data. El-

ber modified the relation to include an effective stress intensity range

∆Keff for variable amplitude loads. It was proposed that fatigue cracks

grow only during the portion of the load cycle when the crack tip is

open [187]:

da

dN
= C0(∆Keff)

m (5.2)

where
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Figure 5.1: Fatigue crack growth data.

∆Keff =

{

Kmax − Kmin if Kmin > Kopen

Kmax − Kopen if Kmin < Kopen

where Kopen is the applied stress required to open the crack, whereas

Kmin and Kmax are the minimum respectively the maximum stress

intensity factor, and:

C0 =
C

0.7m
(5.3)

where C and m are the same constants from the Paris equation.

The Paris equation draws little influence from the material prop-

erties through the constants C and m. Duggan expressed the crack

growth rate in terms of the elastic modulus, toughness, and ductil-

ity, postulating that the crack growth is critically dependent upon the
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condition at the crack tip:

da

dN
=
( π

32

)

1

2η 1

η

( 2

ǫfE(Kc − Kmax)

(

1 − K

Kc

))

1

η

K
2

η (5.4)

where η is the so-called fatigue ductility exponent, ǫf is the fatigue

ductility coefficient, E is the elastic modulus, Kc is the critical stress

intensity factor, Kmax is the maximum stress intensity factor and K is

the stress intensity factor [188].

Ramsamooj and Shugar extended the Griffith3 fracture criterion to

include fatigue, they derived the following expression for fatigue crack

growth rate:

da

dN
=

0.041

EY
(K − Kth)

2 1

1 − (Kmax

KIc
)2 (5.5)

where K is the stress intensity factor, KImax is the maximum value

of KI , KIc is the fracture toughness, Kth is the stress intensity factor

threshold, E is the elastic modulus, and Y is the yield strength [190].

The model gives satisfactory agreement with experimental data (tested

against iron, aluminium and titanium alloys), but does not take account

of frequency and it cannot be applied to other than mode I loading.

The Paris equation represents data only for the propagation stage of

the crack growth. There have been attempts to overcome this. Khan

and Paul proposed a new equation based on the Paris equation which

would represent data for all three stages:

da

dN
= C

(Keff

Y

)2(∆K − ∆Kth

KIc − Kmax

)n

(5.6)

where Keff is the effective stress intensity factor, Y is the material’s

3Griffith postulated that brittle fracture occurred when the energy release rate
during crack growth exceeded the rate that energy was required [189].
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yield strength, ∆K is the stress intensity range, ∆Kth is the stress

intensity range threshold, KIc is the fracture toughness, Kmax is the

maximum stress intensity factor, the equation works well on 4340 steel4,

but it was not tested on other steels. It does not take account of

frequency and can only be applied to mode I loading [191].

Finite element modelling was used by Socie for predicting the fa-

tigue crack propagation of notched specimens subjected to irregular

loading [192]. The model is restricted to the type of data used to

create it. Furthermore finite element modelling is computationally in-

tensive as its success depends on an appropriate mesh size, which needs

to ensure that the strain gradients are not compromised.

Seed and Murphy used neural networks to find the constants m and

C of the Paris equation; the results were encouraging but were limited

to short cracks and only one type of steel [193]. Haque and Sudhakar

applied neural networks to the fatigue crack growth behaviour of dual

phase steels with various gradients of martensite; the model’s behaviour

on known data is positive but it is restricted to dual phase steels [194].

These models are useful but they have not been demonstrated to apply

beyond their specific ranges studied.

An attempt will be made in the present work to develop a generally

applicable neural network model based on physical parameters.

5.2 FATIGUE MODEL

The Bayesian framework chosen for the neural network model, de-

scribed in Chapter 3, was used to express the fatigue crack growth rates

of steels as a function of mechanical properties and test conditions.

4C 0.4, Cr 0.8, Mn 0.7, Mo 0.25, Ni 1.8, Si 0.2, P 0.035, S 0.04 in wt%.
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5.2.1 The Variables

There exist a lot of data in the literature on the fatigue crack growth

rates of metallic materials, which form the basis of the present work [195].

Steels were studied with the chemical compositions presented in Ta-

ble 5.1. Traces of alloying elements (titanium, aluminium and vana-

dium) and residual elements (sulphur and phosphorus) were present in

some of the steels, which were subjected to a maximum of three heat

treatments.

Element Minimum Maximum

Carbon / wt% 0.1 0.8

Copper / wt% 0 0.2

Chromium / wt% 0 5

Manganese / wt% 0 2

Molybdenum / wt% 0 2

Nickel / wt% 0 2

Silicon / wt% 0 2

Table 5.1: Chemical composition range of the steels studied.

Fig. 5.2 illustrates the input variables, plotted versus the output
da
dN

, which were used to develop the model. Fig. 5.2 does not have

the role of showing functional dependencies, it is intended just to show

the distribution of the data without correlation between the different

variables. The data are not distributed uniformly, but the Bayesian

framework of the neural network recognises this by associating large

modelling uncertainties with the sparse or noisy domains.

The properties of a steel depend on the detailed chemical composi-

tion and heat treatment, but these were not chosen as the input pa-

rameters, rather the mechanical properties which according to theory

[13, 21, 186, 196] should control the crack growth rate during fatigue.
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Figure 5.2: Visual illustration of the distribution of data used to create
the model.

The dimensions of the test specimens and the test conditions are also

important in this respect and were included as described in Table 5.2.

There were two types of loadings, an axial mode I and an in-plane

bending mode II incorporated in the analysis; mode III data were not

available.

5.2.2 Training the Model

The data were randomly split into two equal groups, the training

and testing sets, which were normalized as described in the Chapter 3.

One hundred networks were trained, with hidden units ranging from

one to twenty and five seeds in each chase. As the number of hidden
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Variable Minimum Maximum

Elongation / % 0.2 61.8

0.2% Proof stress / MPa 121.59 1735.66

Tensile strength / MPa 270.65 2206.35

Specimen length / mm 13 260

Specimen thickness / mm 1.2 134

Pre-crack length / mm 1 52

Stress ratio -1 1

Frequency / Hz 1 150

∆K / 2.5 142
da
dN

/ mm cycle−1 9.82×10−10 4.86×10−1

Table 5.2: The variables and the corresponding output da
dN

the crack
advance per cycle.

units increases so does the complexity and flexibility of the network,

so the expected noise level from the training data decreased, with a

minimum at nineteen hidden units, Fig. 5.3a.

As can be seen in Fig. 5.3b, the ability of the models to generalise on

the test data does not decrease monotonically, but has an optimum at

about nineteen hidden units, the log predictive error has an optimum

at seventeen hidden units in Fig. 5.3c. The optimum number of models

to form a committee was found to be seven as shown in Fig. 5.3d.

The final trained committee tested on the whole dataset shows rea-

sonable agreement between the predicted and measured values; even

those few data which are badly estimated are accompanied by uncer-

tainties as shown in Fig. 5.5. There is clear improvement over the

predictions shown in Fig. 5.4a and b by the best single model.

The network perceived significances are shown in Fig. 5.6. Both the

mean significance and the upper and lower limits from the members of



5.2 FATIGUE MODEL 84

 0.03

 0.04

 0.05

 0.06

 0.07

 0  4  8  12  16  20

N
oi

se
 L

ev
el

Number of Hidden Units

(a)

 2
 3
 4
 5
 6
 7
 8

 0  4  8  12  16  20

T
es

t E
rr

or

Number of Hidden Units

(b)

 5000

 6000

 7000

 8000

 0  4  8  12  16  20

Lo
g 

P
re

di
ct

iv
e 

E
rr

or

Number of Hidden Units

(c)

 2.22

 2.26

 2.3

 2.34

 2.38

 2.42

 0  4  8  12  16  20

C
om

bi
ne

d 
T

es
t E

rr
or

Number of Models

(d)

Figure 5.3: (a) Perceived level of noise for the training data (b) the test
error (c) the log predictive error (d) the test error for the committees
of different sizes.
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Figure 5.4: (a) The performance of the best single model on the training
data, (b) The performance of the best single model on the testing data.
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Figure 5.5: The performance of the committee of models on the whole
database (training and testing data). For the committee model the
standard deviation for predicted versus measured of 0.003 mm/cycle,
and there were only 158 points more than three standard deviations
away from their measured values out of 12807 data points.

the committee are shown.

The magnitude of the significance is a measure of the extent to which

a particular input explains the variation of the output. Fig. 5.6 illus-

trates the significance of each input variable, as perceived by the neural

network model. It can be seen that the mechanical properties (elonga-

tion, ultimate tensile strength and proof stress) have a great influence

on the fatigue crack growth rates. However the input which influences

the fatigue crack growth rate the most is the stress intensity range,

this is normal since da
dN

is expected to be proportional with ∆K. The

model also picks up an influence from specimen size. According to

Griffiths and Richards, in the vast majority of the cases (because the

specimens are thick plane strain condition exists) the specimen size has

no significance on the fatigue crack growth [197].
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Figure 5.6: Perceived significance of the inputs in the committee model.

5.2.3 Behaviour of the Model

In order to evaluate the model behaviour a first set of estimations

is illustrated in Fig. 5.7 for a typical steel having 9.5% elongation, 660

MPa 0.2% proof stress and 810 MPa tensile strength, considering the

specimen length 70 mm, specimen thickness 15 mm, pre-crack size 5

mm, frequency 120 Hz, stress ratio 0 and 10 MPa
√

m stress intensity

factor. While each specific input shown in Fig. 5.7 is varied all the

other ones are kept constant at the above mentioned values.

As it can be seen from Fig. 5.7 the input parameters have a complex

influence on the crack growth rates. An increase in elongation produces

an initial decrease in the crack growth rates until around 20% elongation

after which there is a continuous increase. The behaviour of tensile

strength is somewhat similar with that of elongation with an initial

sharp decrease in the lower values followed by a sharp increase. For

proof stress the behaviour is again similar with the other two mechanical
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properties with an initial decrease followed by an increase. It can be

concluded that a material with a good fatigue crack growth resistance

will have 20 % elongation, 800 MPa proof stress and 1000 MPa tensile

strength.
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Figure 5.7: Behaviour of the model. The influence of the input param-
eters on the crack growt rates.

From the three specimen size inputs the only one which can be ac-

counted for and verified against previous observations is the specimen

thickness. An increase in thickness will lead to a change in the state

of stress in the specimen from plane stress for thin specimens to plane

stress in thick specimens resulting in higher rates in thicker sheets [198].

The change and the resulted difference in crack growth rates is due to

fact that the crack growth is slower in plane stress at the same stress

intensity.

The stress ratio is a very important parameter and its influence
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was investigated previously and as can be seen in Fig. 5.7 decreasing

the stress ratio results in smaller crack growth rates [199]. The effect

of frequency is less pronounced than stress ratio with only a small

difference in the fatigue crack rates between low and high frequency.

The best way of assessing a model is by making predictions. Such

estimates are presented in Fig. 5.8, a bearing steel known in different

countries under the names, SUJ 25 in Japan, AISI 521006 in U.S.,

EN 317 in Europe, a hard and tough steel. Its properties were not in

the database used to create the model so the necessary inputs were

collected from the published literature [200], including 5% elongation,

2030 MPa 0.2% proof stress, 2240 MPa tensile strength, loading mode 2,

specimen length 80 mm, specimen thickness 2 mm, pre-crack size 3 mm,

frequency 2 Hz and stress ratio 0. The prediction parameters were set

so they would be the same as the ones reported in the experiments [200],

so that a realistic assessment can be made of the performance of the

model.

The measured data fall well within the range of the predictions. The

model successfully captured the trends for the first and second region of

the crack growth behaviour, i.e. crack initiation and the region which

determines most of the fatigue life.

The factors which determine the crack properties of a material are

numerous and amongst them, some are more important than others.

It is in the author’s opinion that from the materials point of view

the factors which determine the fatigue crack initiation, propagation

and failure are its mechanical properties. Factors such as the chemi-

cal composition, heat treatment and microstructure feature indirectly

since they determine the mechanical properties. In these circumstances

the model which is developed using data on steels should be applica-

5C 0.98, Mn 0.3, Cr 1.44, Si 0.24 in wt%.
6C 1.05, Mn 0.35, Cr 1.45, Si 0.35 in wt%.
7C 1, Mn 1.1, Cr 1.25, Si 0.25 in wt%.
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Figure 5.8: Performance of the model, for a bearing steel. The points
represent experimental data from [200], whereas the uncertainty range
is obtained using the neural network model.

ble, without modifications, to other materials such as titanium and

aluminium alloys. All that is required are the values of the relevant

inputs.

Nickel–Base Superalloys

Calculations for three nickel–base superalloys (Udimet 7008, Inconel

7189 and Waspaloy10) are shown in Fig. 5.9, Fig. 5.10 and Fig. 5.11

where the uncertainty range represent the model predictions, whilst

the circles represent the actual data points collected from the litera-

ture [201–205].

8C 0.06, Mn 0.1, Si 0.1, Co 16.6, Fe 0.23, Mo 4.95, Fe 1.6, Ti 3.48, Al 4.15,
B 0.025, Zr 0.04, S 0.003, P 0.01, Cu 0.1 in wt%.

9C 0.08, Mn 0.35, Si 0.35, P 0.015, Cr 21, Co 1, Al 0.8, Mo 3.3, Ti 1.15, B 0.006,
Cu 0.15, Ta 5.5 in wt%.

10C 0.1, Mn 0.5, Si 0.75, Cr 21, B 0.008, Fe 2, Co 15, Ti 3,25, Al 1.5, Mo 5,
Zr 0.12, Cu 0.1, S 0.02 in wt%.
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The inputs for the predictions in Figs. 5.9–5.11 are presented in

Table 5.3–5.5 and are as follows:

Variable Fig. 5.9a Fig. 5.9b

Elongation / % 5 15

0.2% Proof stress / MPa 1020 1172

Tensile strength / MPa 1520 1404

Specimen length / mm 72.5 63.5

Specimen thickness / mm 12.5 25.4

Pre-crack length / mm 12.5 18.3

Stress ratio 0.1 0.1

Frequency / Hz 40 20

Table 5.3: The corresponding inputs for the predictions in Fig. 5.9.

Variable Fig. 5.10a Fig. 5.10b

Elongation / % 20 20

0.2% Proof stress / MPa 1113 1113

Tensile strength / MPa 1373 1373

Specimen length / mm 50.8 31.8

Specimen thickness / mm 12.7 8.89

Pre-crack length / mm 6.4 5.3

Stress ratio 0.05 0.05

Frequency / Hz 0.667 0.667

Table 5.4: The corresponding inputs for the predictions in Fig. 5.10.

The results are fascinating since the model correctly calculates the

Paris slopes for all the alloys, presented in Figs. 5.12–5.14, where the

red line represent the predicted Paris slope, whilst the green line repre-

sents the actual measured Paris slope. In each case it only marginally

overestimates the fatigue behaviour. The actual data lie within the

uncertainty limits of the predictions.
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(a) Predictions for Udimet 700 nickel base superalloy [201]
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(b) Predictions for Inconel 718 nickel base superalloy [202]

Figure 5.9: Predictions for Udimet 700 and Inconel 718 nickel–base
superalloys. The filled circles represent published data [201, 202] whilst
the uncertainty range represent the model predictions.
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(a) Predictions for Inconel 718 nickel base superalloy [203]
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(b) Predictions for Inconel 718 nickel base superalloy [203]

Figure 5.10: Predictions for Inconel 718 nickel–base superalloys. The
filled circles represent published data [203] whilst the uncertainty range
represent the model predictions.
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(a) Predictions for Waspaloy nickel base superalloy [204]
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(b) Predictions for Waspaloy nickel base superalloy [205]

Figure 5.11: Predictions for Waspaloy nickel–base superalloys. The
filled circles represent published data [204, 205] whilst the uncertainty
range represent the model predictions.
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Variable Fig. 5.11a Fig. 5.11b

Elongation / % 27 33

0.2% Proof stress / MPa 1076 921

Tensile strength / MPa 1441 1351

Specimen length / mm 62.5 5

Specimen thickness / mm 25 3

Pre-crack length / mm 17.5 0.4

Stress ratio 0.5 0.5

Frequency / Hz 20 100

Table 5.5: The corresponding inputs for the predictions in Fig. 5.11.
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Figure 5.12: Calculated versus measured Paris slope for the nickel–base
superalloys.

Titanium and Aluminium Alloys

Calculations for titanium 11 and aluminium 12 alloys were made and

compared with actual data from the literature [206, 207].

Table 5.6 presents the corresponding inputs parameters for Fig. 5.15.

11Ti-6Al-4V alloy, Al 6.3, V 4.17, Fe 0.19, O 0.19, N 0.013, H 0.0035 in wt%.
127075 aluminium alloy, Zn 7.2, Mg 2.8, Cu 1.7, Cr 0.06, Fe 0.3, Si 0.1, Mn 0.06,

Ti 0.05, Ga 0.01 Zr 0.1 in wt%.
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Figure 5.13: Calculated versus measured Paris slope for the nickel–base
superalloys.
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Figure 5.14: Calculated versus measured Paris slope for the nickel–base
superalloys.

As was the case for the nickel–base superalloys the model nicely

captured the slope for both the titanium and aluminium alloys, and it

again slightly overestimates the fatigue crack growth rates.

Blind Predictions

In order to further test the model an aeroengine manufacturer was

asked if they are interested in obtaining fatigue crack growth predic-
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Variable Fig. 5.15a Fig. 5.15b

Elongation / % 14 8

0.2% Proof stress / MPa 930 524

Tensile strength / MPa 970 464

Specimen length / mm 155 155

Specimen thickness / mm 40 40

Pre-crack length / mm 9 9

Stress ratio -1 0.5

Frequency / Hz 20 20

Table 5.6: The corresponding inputs for the predictions in Fig. 5.15.

tions on a material of their choice, with the purpose of making blind

predictions. The company provided the mechanical properties from

unidentified materials of their choice along with test specimen size and

loading mode, in return they company received the predictions. They

later revealed the actual fatigue growth rates obtained in tests together

with the material type.

In Fig. 5.16 the uncertainty range represent the blind predictions

made with the model whilst the filled circles represent the actual data

sent back by the aeroengine manufacturer, after they consulted the

predictions. Table 5.7 presents the inputs for the blind predictions.

The predictions are very good considering there were no data about

the material in the database, the deviation from the actual data is small

whereas the slope is nicely estimated.
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Figure 5.15: Calculation for titanium and aluminium alloys compared
with actual data [206, 207], the uncertainty range represent neural net-
work predictions whilst the filled circles represent the data.
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Figure 5.16: Blind predictions for Ti 6/4 forging material, having dif-
ferent heat trestments and chemical compositions resulting in various
mechanical properties, the uncertainty range represent neural network
predictions whilst the filled circles represent actual data.
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Variable Fig. 5.16a Fig. 5.16b

Elongation / % 20 14

0.2% Proof stress / MPa 1172 940

Tensile strength / MPa 1440 998

Specimen length / mm 7 7

Specimen thickness / mm 7 7

Pre-crack length / mm 0.5 0.5

Stress ratio 0.1 0.5

Frequency / Hz 0.25 100

Table 5.7: The corresponding inputs for the predictions in Fig. 5.16.

5.3 CONCLUSIONS

A neural network model was developed, on steel data to enable the

estimation of the fatigue crack growth rates as a function of material

properties, test specimen size and loading conditions. The resulting

model successfully predicts the fatigue crack growth rates in the first

and second regimes for steels, even for data not included in the analysis,

this was expected since the model was created on steel data and the

number of data points available was large enough for the model to

capture the interactions between the inputs and the output.

The model’s ability to extrapolate was tested on bearing steel with

properties which were not included in the training database and they

were outside the data range for training and testing. The calculations

successfully predicted the fatigue crack growth rates, when compared

with data from the literature, predictions correspond with the data

resulting in the same slope and behaviour.

A considerable series of calculations were conducted on nickel, tita-

nium and aluminium alloys with the aim of establishing whether the

model, with only as mechanical properties as inputs, generalises on
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materials which are fundamentally different. This would be of great

importance since when a new material is designed, or an old one is

modified, only the mechanical properties are necessary in establishing

the fatigue behaviour, with the microstructure and heat treatment im-

plicitly included through their influence on the materials properties.

The model can be exploited in the design of new metallic alloys.

Regarding nickel, titanium and aluminium alloys the model has been

demonstrated to be able to reasonably estimate the fatigue crack growth

rates. There is a persistent small overestimation of the fatigue crack

growth rates though this is always within the predicted uncertainties.



Chapter 6

CONTACT FATIGUE

The life of a component is determined by its ability to perform its

intended role; when it is no longer able to do this, it is considered

to have failed. In the case of ball–bearings such as the one shown in

Fig. 6.1, a failure is considered when the bearing is no longer able to

perform rotations or when rotations take place with excessive vibrations

and noise [9]. Complete failures happen in very few cases because the

bearings are stopped when vibrations and noise are detected (continued

use leads to seizure). Vibration and noise normally arise due to the

formation of spalls and pits at the contact surface between the raceway

and the balls [10].

The majority of such defects develop below the contact surface and

their formation is influenced by:

• contact pressure increase results in a greater probability of defects

appearance;

• the number of revolutions that the bearing endures relates directly

to spall and pit formation;
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Figure 6.1: Schematic representation of a ball–bearing, formed from
an inner ring blue, an outer ring purple and the balls yellow which are
kept aligned by a cage green.

• a greater frequency of revolutions correlates with a larger rate of

defect formation;

• an increase in temperature leads to lubricant and seal failure,

resulting in metal to metal contact between ball and raceway,

thus accelerating failure;

• lubricant serves to minimise metal–to–metal contact and to trans-

mit load. Its viscosity decreases as the temperature increases with

a dramatic drop in performance when temperature increases by

as little as 20◦C [208];

• the seal, which keeps the lubricant in place;

• the nature of the material determines its response to fatigue.
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The mechanisms leading to spall and pit formation are not fully un-

derstood. Residual stress which accumulates with each cycle, is one

culprit [25, 209–212]. There are puzzling microstructural changes dur-

ing service which some researchers correlate with the development of

residual stress [213–217]. Others point out that the changes take place

at different depths beneath the raceway, compared to where the peak

residual stress occurs; the changes are instead attributed to load and

temperature, the very factors responsible for residual stress develop-

ment [218–221].

Figure 6.2: Schematic representation of the inner ring and ball in the
context of a bearing. The blue area is where microstructural changes
take place, this being approximately the same zone where the residual
stress peaks.

The depth beneath the raceway where the maximum residual stress

is recorded varies as a function of bearing geometry [211]. The depth

where microstructural changes take place is not as easy to correlate

with bearing geometry, load and temperature [215, 216].

The current method for estimating the life of bearings was proposed
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by Lundberg and Plamgren [222], an empirical formula which only takes

account of load, and is based on Weibull [223] distribution1.

L10 =
(D

P

)p

(6.1)

where L10 represents the life of the bearings when 10 % of the bearings

fail before the estimated life time, D represents the bearing dynamic

load i.e. the maximum load that the bearing can endure, P represents

the equivalent load, and p is an exponent that varies according to the

bearing geometry.

The Lundberg and Plamgren formula was modified, by Ioannides et

al. [224]2, to take in account the nature of the material used and the

type of lubricant.

Ln = a1a2a3

(D

P

)p

(6.2)

where a1 is a reliability constant that is equal to unity if the reliability

level is 10 %, a2 is the constant which takes into account the material

fatigue properties and a3 is the constant which is related to lubricant

Introducing residual stress and microstructural change in this model

is difficult since the model is statistical whereas residual stress and

structure are irregular and complex. For this reason, a Bayesian neural

network model may be more appropriate [85, 142, 143, 155].

1The Weibull distribution (named after Waloddi Weibull) is a continuous prob-
ability distribution, with the essential property of being versatile so it can take on
the characteristics of other types of distributions.

2The original formula needed to be modified because it was experimentally ob-
served that it no longer predicted the life of bearings with the desired accuracy,
because the influence of material and lubricant became greater.
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6.1 RESIDUAL STRESS MODEL

The Bayesian neural network method used was described in Chap-

ter 3. There are neural networks models in the literature which deal

with residual stress, but none deals with the development of residual

stress during the life of a bearing. The majority focus on stress due to

machining or other processing stages [225–228].

6.1.1 The Variables

Experimental information on the distribution of subsurface residual

stress in the ball–bearing inner ring, run under different testing condi-

tions, were used for the development of the model. The inputs to the

network are: contact pressure, hoop stress, revolutions, logarithm of

revolutions, outer ring temperature and depth, presented in Table 6.1,

whereas the output is the residual stress which develops in the inner

ring of the bearings. The logarithm of revolutions was used in order to

get a better distribution of data.

Variable Minimum Maximum
Outer ring temperature / ◦ C 73 123
Revolutions 26000 264000000
Contact pressure / MPa 2800 3300
Hoop stress / MPa 70 170
Depth /µm 0 700
Residual stress / MPa -1110 257

Table 6.1: The variables used to develop the model.

It is emphasised that unlike linear regression analysis, the ranges

stated in Table 1 and graphically shown in Fig. 6.3 are not there to de-

fine the range of applicability but just to give an impression of the dis-

tribution of the available data. This is because the inputs are not nec-
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essarily uniform in all the dimensions of the input space. The Bayesian

framework used makes possible the calculation of uncertainties which

vary in magnitude with position in the input space, and it is these that

indicate the risk of extrapolation.
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Figure 6.3: Visual illustration of the distribution of data used to create
the model.

6.1.2 Training the Model

The data are split into training and testing sets, and the networks

are then normalized as described in Chapter 3. The model creation

trends are illustrated in Fig. 6.4.

Fig. 6.4b reflects the ability of the models to generalise on the test

data, showing an optimum at about six hidden units, whereas log pre-

dictive error associates the optimum at eight hidden units (Fig. 6.4c).

The optimum number of models to form a committee was found to be

three as shown in Fig. 6.4d. The difference between the log predictive

error and test error arises from the different formulas employed to cal-

culate them, the performances of different models are best evaluated

using the log predictive error because it penalises unexpected predic-
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Figure 6.4: (a) Noise for the training data (b) the test error (c) the log
predictive error (d) the test error for the committees of different sizes.

tions when they are accompanied by large uncertainties (the test error

does not have this advantage).

The network perceived significances are shown in Fig. 6.5.

The depth where the residual stress is calculated is the most signifi-

cant input to the network, entirely reasonable since the depth where the

stress develops in not uniform but has a peak followed by a decrease.

Contact pressure, revolutions and temperature follow in this order as

the most influential parameters to the model, the order is not random as

temperature depends on revolutions which in turn depends on contact

pressure to develop the residual stress. The effect of the hoop stress is

small relative to contact pressure and hence has a low significance. A

bearing usually is subjected to a hoop stress of 50–200 MPa whereas
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Figure 6.5: Model perceived significance for the committee.

contact pressure ranges between 1000 up to 5000 MPa [208].

The final trained committee tested on the whole dataset shows rea-

sonable agreement between the predicted and measured values; even

those few data which are badly estimated are accompanied by large

uncertainties as shown in Fig. 6.6. There is clear improvement over the

predictions shown in Fig. 6.7a and Fig. 6.7b by the best single model,

which justifies the use of a committee of models instead of the best

model.

6.1.3 Model’s Behaviour

Fig. 6.8 shows calculation for the distribution of residual stress, in

the radial direction. Predictions are made for depth ranging from the

surface to a distance of 1000 µm; all the other input parameters are kept

constant at the following values: contact pressure 3300 MPa, 2.6×108

revolutions, 123◦C ring temperature and hoop stress of 170 MPa.
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Figure 6.6: The performance of the committee of models on the whole
database. The standard deviation is 98 MPa, and there were 47 points
more than three standard deviations away from their measured values,
out of a total of 922 data points.

-1200

-800

-400

 0

 400

-1200 -800 -400  0  400

P
re

di
ct

ed
 / 

M
P

a

Measured / MPa

Residual Stress

(a)

-1200

-800

-400

 0

 400

-1200 -800 -400  0  400

P
re

di
ct

ed
 / 

M
P

a

Measured / MPa

Residual Stress

(b)

Figure 6.7: (a) The performance of the best single model on the training
data; (b) the performance of the best single model on the testing data.

The calculations presented in Fig. 6.8 captures the transition, of

residual stress, from compression to tension and back to compression,

then beginning to level at around 0 MPa after 800 µm depth. A sec-

ond characteristic is the peak at around 50 µm in the tensile region
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Figure 6.8: Residual stress distribution in the radial direction beneath
the raceway. Input parameters contact pressure 3300 MPa, revolutions
2.6×108, ring temperature 123◦C and hoop stress 170 MPa.

and a minimum at around 400 µm in the compression region. This

double transition with a levelling around 0 MPa has been observed

experimentally [25, 209–212, 215, 216]. The transition is due to a

combination of rolling and sliding present simultaneously during the

life of bearings. The curve is composed of two different ones which if

overlaid results in the residual stress shown in Fig. 6.8. The first one

results from sliding and creates a tensile effect which looses its strength

quickly as the depth increases and the second one results from rolling

has a stronger compressive effect and it takes deeper depths to lose its

strength (Fig. 6.9).

Calculations for contact pressure are presented in Fig. 6.10, for con-

tact pressure ranging from 2000 to 5000 MPa at three different assumed

depths in the bearing raceway (the surface, 50 and 400 µm depth) with

all the other inputs kept constant.

The predictions for the surface (Fig. 6.10a) are as expected since

the residual stress is not influenced by contact pressure, but deter-

mined mostly by previous machining and heat treatment operations.
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Figure 6.9: Schematic representation of how the complex development
beneath the raceway of bearings takes place.

In Figs. 6.10b and 6.10c the magnitude of residual stress increases (in

the tensile and respective compressive region) proportionally with the

contact pressure, again expected [211, 221].

Hoop stress development is presented in Fig. 6.11 for values between

50 and 300 MPa, at the same depths as contact pressure whilst the rest

of the parameters were contact pressure 300 MPa, revolutions 2.6×108

and ring temperature 123◦C. The influence of hoop stress is not very

significant as it is not an active parameter but is a bearing assembly

parameter and secondly because the value itself is small, and seldom

surpasses 400 MPa [208].

The influence of temperature on residual stress is shown in Fig. 6.12
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Figure 6.10: The values of the input parameters kept constant are ring
temperature 123◦C, hoop stress 170 MPa and 2.6×108 revolutions.

over the range 50 to 200◦C with the other parameters locked at 3300

MPa contact pressure, 70 MPa hoop stress and 2.6×108 revolution. At

all the different depths as the outer ring temperature is increased the

accumulation of residual stress begins with a small decrease followed

by an increase. The influence of increasing the temperature is not big

by itself but it facilities kinetic processes in the steel which result in

residual stress development.

The effect of increasing the number of revolutions is revealed in

Fig. 6.13 at the same depth as the previous figures and for 3300 MPa

contact pressure, 170 hoop stress and 123◦C outer ring temperature.

The predictions are as expected since the magnitude of the residual

stress increases with the number of revolutions. This has been ob-
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Figure 6.11: The fixed values for the input parameters: 3300 MPa
contact pressure, 2.6×108 revolutions and 123◦C ring temperature.

served before and is due to the fact that with each new revolution, the

bearing accumulates a tiny amount of residual stress [211, 221].

6.2 CONCLUSIONS

The model was developed to estimate the residual stress develop-

ment below the raceway of ball–bearings as a function of contact pres-

sure, hoop stress, revolutions, outer ring temperature and depth. The

model accurately expressed the influence that depth has on the devel-

opment of residual stress, followed by contact pressure revolution and

temperature. The uncertainties are larger when extrapolating beyond
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Figure 6.12: Values of the fixed input parameters: contact pressure
3300 MPa, hoop stress 170, revolutions 2.64×108.

populated regions of the input space, to eliminate this inconvenience

more data are required for those particular areas.

The model’s performance was tested on all the input parameters and

the calculation are considered successful, especially for depth where

the complex shape of the curve was captured and when compared to

experimental data is very similar [211, 221]. The influence of contact

pressure, revolutions, temperature and hoop stress was expected as an

increase in each of them will lead to residual stress accumulation.



6.2 CONCLUSIONS 115

-5000

-3000

-1000

 1000

 3000

 0  2e+08  4e+08  6e+08

R
es

id
ua

l s
tr

es
s 

/ M
P

a

Revolutions

(a) Revolutions effect at the surface
on residual stress

-5000

-3000

-1000

 1000

 3000

 0  2e+08  4e+08  6e+08

R
es

id
ua

l s
tr

es
s 

/ M
P

a

Revolutions

(b) Revolutions at 50 µm depth

-5000

-3000

-1000

 1000

 3000

 0  2e+08  4e+08  6e+08

R
es

id
ua

l s
tr

es
s 

/ M
P

a

Revolutions

(c) Revolutions at 400 µm depth

Figure 6.13: Input parameters values contact pressure 3300 MPa, hoop
stress 170 MPa, outer ring temperature 123◦C.
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CONCLUSIONS AND

FUTURE WORK

In this thesis considerable progress has been made towards the quan-

titative estimation of complicated properties such as hot–strength, fa-

tigue crack growth rates and residual stress. The work could be seen as

the beginning of an adventure to similarly cover all other properties of

interest and to lead eventually to a suite of methods useful in design.

The exciting outcome is that the models successfully captured known

relationships and revealed new trends, thus making it clear that well

designed models based on information theory can be exploited even in

regimes where extrapolation is required.

One of the most important outcomes, which will lead to shortening

testing times and thus cost savings, is the remarkable similitude be-

tween hot–strength and creep strength, making it possible to estimate

the long time (105 hours) creep strength of ferritic steels from the hot–

strength corroborated with a short time (103 hours) creep test. This

is due to the fact that both hot–strength, which is quantified through

short term tests and creep strength, which is quantified through pro-
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longed testing, have their thermal dependence influenced by the same

factors i.e., climb mechanisms.

The model which describes the hot–strength as a function of chemical

composition and heat treatment is a ready–to–use tool that enables

the estimation of hot–strength for ferritic steels. This is of value as it

reduces the need for testing since it is possible to estimate the hot–

strength during the development of new steels.

The energy sector relies heavily on ferritic steels pipes for the trans-

port of steam at high temperatures, and for the manufacture of boilers.

The operating temperature of these components is limited by the ca-

pability of the steel to perform its intended function. An operating

temperature of 650 ◦C is desired but not currently possible. The model

findings lead to the conclusion that a different concept is required in

which the steel should not be strengthened by fine grains, but exclu-

sively by solid solution strengthening.

The hot–strength model could be enhanced as follows:

• the possibility that creep rupture strain and hot–ductility can be

correlated should be investigated;

• from a fundamental point of view conducting creep tests for tem-

peratures below 700 K would be useful for further validation.

The first appreciable result of the fatigue model is its ability to calcu-

late the fatigue crack growth rates for steels. Another exciting outcome

is that the fatigue model created for steels seems to properly represent

the behaviour of other metallic materials such as alloys of titanium,

aluminium and nickel. This is the first time that such a procedure

has been attempted and the results are encouraging. This is proba-

bly a reflection of the fact that fatigue has been expressed in terms
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of simpler mechanical properties, rather than factors such as composi-

tion and heat treatment, which determine the properties. The latter

dependence will de different for different materials. It is not beyond

the imagination that creep properties may be similarly expressed, us-

ing inputs consisting of the melting temperature, activation energy for

diffusion mechanical properties, without incorporating microstructure

in an explicit manner.

Given that the fatigue behaviour for metallic materials can also be

estimated through the basic mechanical properties one might consider

that even the toughness, an important design parameter, should be

possible to formulate via elementary properties.

The fatigue crack growth rate model can be subjected to the follow-

ing improvements:

• introducing Young’s modulus as an input, which might resolve the

overestimation of fatigue rates for nickel, titanium and aluminium

alloys;

• as some of the applications to which a material is subjected are at

high temperatures, introducing elevated temperature data to en-

able the calculation of fatigue rates in circumstances where creep

and fatigue act together.

The accumulation of residual stress in ball bearings is the mechanism

which produces failure in the bearing if the running conditions are

optimum. Given that the running conditions for bearings are usually

known the model created that enables the prediction of residual stress is

of significant interest as potentially it might reduce the need for residual

stress measurement techniques. It is limited to ball bearings however

is easily usable and applicable, it captures the residual stress profiles at

various depths below the raceway of bearings just from temperature,

number of cycles and applied stresses.
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The following steps could be followed to enhance the residual stress

model

• lubrication and impurities size is one of the major factors influenc-

ing the usefulness of bearings, their introduction will transform

the model into a more complex one;

• bearing geometry should be introduced as input parameter as this

will enable the model to be applicable to other types of bearings

such as taper and roller bearings;

• as residual stress is a factor influencing the life of bearings; it is

not difficult with the right data to create a model which represents

the influence of residual stress on the overall life of bearings.



Chapter 8

Appendix

8.1 Computer Programs

Program MAP STEEL HOT STRENGTH

Provenance of Source Code

R.C. Dimitriu,
Phase Transformations Group,
Department of Materials Science and Metallurgy,
University of Cambridge,
Cambridge, CB2 3QZ, U.K.
E-mail: rcd34@cam.ac.uk

The neural network program was produced by:

David MacKay,
Cavendish Laboratory,
University of Cambridge,
Madingley Road,
Cambridge, CB3 0HE, U.K.

Added to MAP: April 2007
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Purpose

This package allows prediction of hot–strength of ferritic steels, as a
function of chemical composition and heat treatment.

Specification

Language: FORTRAN / C
Product form: Source code / Executable files
Operating System: Linux & Windows 95/98/200/XP

Description

MAP NEURAL HOT STRENGTH contains a suite of programs which
enable the user to estimate the hot–strength of ferritic steels as a func-
tion of chemical composition and heat treatment conditions. It makes
use of a neural network program called generate44, which was developed
by David MacKay and is part of the bigback5 program. The network
was trained using a large database of experimental results [141]. 20 dif-
ferent models are provided, which differ from each other by the number
of hidden units and by the value of the seed used when training the
network. It was found that a more accurate result could be obtained
by averaging the results from all the models [129]. This suite of pro-
grams calculates the results of each model and then combines them,
by averaging, to produce a committee result and error estimate, as de-
scribed by MacKay (page 387 of reference [86]). The source code for
the neural network program can be downloaded from David MacKay’s
website; the executable files only are available from MAP. Also pro-
vided are FORTRAN programs (as source code) for normalising the
input data, averaging the results from the neural network program and
unnormalising the final output file, along with other files necessary for
running the program.

Programs are available which run on a Linux, and on a PC under
Windows 95/98/2000/XP. A set of program and data files are provided
for the model, which calculate the hot–strength of ferritic steels in NN.
The files for unix and Linux are included in a directory called NN. This
directory contains the following files and subdirectories:

README
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A text file containing step-by-step instructions for running the program,
including a list of input variables.

MINMAX
A text file containing the minimum and maximum limits of each input
and output variable. This file is used to normalise and unnormalise the
input and output data.

test.dat
An input text file containing the input variables used for predictions.

model.gen
This is a unix shell file containing the command steps required to run
the module. It can be executed by typing csh model.gen at the com-
mand prompt. This shell file compiles and runs all the programs nec-
essary for normalising the input data, executing the network for each
model, unnormalising the output data and combining the results of
each model to produce the final committee result.

HOT STR.exe
This executable program for the PC correspond to the unix command
file model.gen.

no of lines.ex
This executable file reads the information of number of data from key-
board input and creates

no of rows.dat
file, this file is used by spec.ex/spec.exe to create spec.t1.

spec.ex/spec.exe
This executable file reads the information in no of rows.dat and creates
a file called spec.t1.

spec.t1
A dynamic file, created by spec.ex/spec.exe, which contains information
about the module and the number of data items being supplied. It is
read by the program generate44/generate55.exe.

norm test.in
This is a text file which contains the normalised input variables. It is
generated by the program normtest.for in subdirectory s.
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generate44 / generate55
This is the executable file for the neural network program. generate44
runs on unix and generate55 on the PC. It reads the normalised input
data file, norm test.in, and uses the weight files in subdirectory c. The
results are written to the temporary output file out.

ot, out, res, sen
These files are created by generate44 and can be deleted.

Result
Contains the final un-normalised committee results for the predicted
hot–strength.

SUBDIRECTORY s

no of lines.c
The source code for program no of lines.ex.

spec.c
The source code for program spec.ex.

normtest.for
Program to normalise the data in test.dat and produce the normalised
input file norm test.in. It makes use of information read in from no of
rows.dat and committee.dat.

gencom.for
This program uses the information in committee.dat and combines the
predictions from the individual models, in subdirectory outprdt, to ob-
tain an averaged value (committee prediction). The output (in nor-
malised form) is written to com.dat.

treatout.for
Program to un-normalise the committee results in com.dat and write
the output predictions to unnorm com. This file is then renamed Result.

committee.dat
A text file containing the number of models to be used to form the
committee result and the number of input variables. It is read by
gencom.for, normtest.for and treatout.for.

SUBDIRECTORY c
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w*f
The weights files for the different models.

*.lu
Files containing information for calculating the size of the error bars
for the different models.

c*
Files containing information about the perceived significance value for
each model.

R*
Files containing values for the noise, test error and log predictive error
for each model.

SUBDIRECTORY d

outran.x
A normalised output file which was created during the building of the
model. It is accessed by generate44 via spec.t1.

SUBDIRECTORY outprdt

out1, out2 etc.
The normalised output files for each model.

com.dat
The normalised output file containing the committee results. It is gen-
erated by gencom.for.

Detailed instructions on the use of the program are given in the README
files. Further information about this suite of programs can be obtained
from reference [129].

Parameters

Input parameters
The input variables for the model are listed in the README file. The
maximum and minimum values for each variable are given in the file
MINMAX.

Output parameters
These program gives the hot–strength of ferritic steels. The correspond-
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ing output files is called Result.dat or Result.

Error Indicators
None.

Accuracy
A full calculation of the error bars is presented in reference [129].

Further Comments
None.

Example

1. Program text
Complete program.

2. Program data
See sample data file: test.dat.

3. Program results
See sample output file: Result or Result.dat.

Auxiliary Routines
None

Keywords
neural network, hot–strength, creep
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Program MAP STEEL-NI-TI-AL CRACK

Provenance of Source Code

R.C. Dimitriu,
Phase Transformations Group,
Department of Materials Science and Metallurgy,
University of Cambridge,
Cambridge, CB2 3QZ, U.K.
E-mail: rcd34@cam.ac.uk

The neural network program was produced by:

David MacKay,
Cavendish Laboratory,
University of Cambridge,
Madingley Road,
Cambridge, CB3 0HE, U.K.

Purpose

This package allows the estimation of fatigue crack growth rates of
steels, nickel, titanium and aluminium alloys as a function of material’s
mechanical properties, test specimen size, loading mode, test conditions
and stress intensity factor.

Specification

Language: FORTRAN / C
Product form: Source code / Executable files
Operating System: Linux & Windows 95/98/200/XP

Description

MAP STEEL-NI-TI-AL CRACK contains a program that enables the
user to calculate the fatigue crack growth rates in steels, nickel, tita-
nium, aluminium alloys and any other metallic material having as in-
put parameters the material’s mechanical properties (elongation, proof
stress and tensile strength), test specimen size, loading mode, test con-
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ditions and stress intensity factor. It uses a neural network program
called generate44, developed by David MacKay and is part of the big-
back5 program. The network was trained using a very large database
of experimental results [195]. 100 networks were trained, which differ
from each other by the number of hidden units (ranging from 1 to 20)
and by the value of the seeds (ranging from 1 to 5) used when train-
ing the network. It was found that a more accurate result could be
obtained by averaging the results from all the models [129]. The pro-
grams calculates the results for each model and then combines them,
by averaging, to produce a committee result and error estimate, as de-
scribed by MacKay (page 387 of reference [86]). The source code for
the neural network program can be downloaded from David MacKay’s
website; the executable files only are available from MAP. Also pro-
vided are FORTRAN programs (as source code) for normalising the
input data, averaging the results from the neural network program and
unnormalising the final output file, along with other files necessary for
running the program.

Programs are available which run on a Linux, and on a PC under Win-
dows 95/98/2000/XP. A set of program and data files are provided for
the model, which calculate the crack growth rates in metallic materials.
The files for unix and Linux are included in a directory called NN. This
directory contains the following files and subdirectories:

README
A text file containing step-by-step instructions for running the program,
including a list of input variables.

MINMAX
A text file containing the minimum and maximum limits of each input
and output variable. This file is used to normalise and unnormalise the
input and output data.

test.dat
An input text file containing the input variables used for predictions.

model.gen
This is a unix shell file containing the command steps required to run
the module. It can be executed by typing csh model.gen at the com-
mand prompt. This shell file compiles and runs all the programs nec-
essary for normalising the input data, executing the network for each
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model, unnormalising the output data and combining the results of
each model to produce the final committee result.

model.exe
This executable program for the PC correspond to the unix command
file model.gen.

no of lines.ex
This executable file reads the information of number of data from key-
board input and creates

no of rows.dat
file, this file is used by spec.ex/spec.exe to create spec.t1.

spec.ex/spec.exe
This executable file reads the information in no of rows.dat and creates
a file called spec.t1.

spec.t1
A dynamic file, created by spec.ex/spec.exe, which contains information
about the module and the number of data items being supplied. It is
read by the program generate44/generate55.exe.

norm test.in
This is a text file which contains the normalised input variables. It is
generated by the program normtest.for in subdirectory s.

generate44 / generate55
This is the executable file for the neural network program. generate44
runs on unix and generate55 on the PC. It reads the normalised input
data file, norm test.in, and uses the weight files in subdirectory c. The
results are written to the temporary output file out.

ot, out, res, sen
These files are created by generate44 and can be deleted.

Result
Contains the final un-normalised committee results for the predicted
fatigue crack growth rates.

SUBDIRECTORY s
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no of lines.c
The source code for program no of lines.ex.

spec.c
The source code for program spec.ex.

normtest.for
Program to normalise the data in test.dat and produce the normalised
input file norm test.in. It makes use of information read in from no of
rows.dat and committee.dat.

gencom.for
This program uses the information in committee.dat and combines the
predictions from the individual models, in subdirectory outprdt, to ob-
tain an averaged value (committee prediction). The output (in nor-
malised form) is written to com.dat.

treatout.for
Program to un-normalise the committee results in com.dat and write
the output predictions to unnorm com. This file is then renamed Result.

committee.dat
A text file containing the number of models to be used to form the
committee result and the number of input variables. It is read by
gencom.for, normtest.for and treatout.for.

SUBDIRECTORY c

w*f
The weights files for the different models.

*.lu
Files containing information for calculating the size of the error bars
for the different models.

c*
Files containing information about the perceived significance value for
each model.

R*
Files containing values for the noise, test error and log predictive error
for each model.
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SUBDIRECTORY d

outran.x
A normalised output file which was created during the building of the
model. It is accessed by generate44 via spec.t1.

SUBDIRECTORY outprdt

out1, out2 etc.
The normalised output files for each model.

com.dat
The normalised output file containing the committee results. It is gen-
erated by gencom.for.

Detailed instructions on the use of the program are given in the README
files. Further information about this suite of programs can be obtained
from reference [129].

Parameters

Input parameters
The input variables for the model are listed in the README file. The
maximum and minimum values for each variable are given in the file
MINMAX.

Output parameters
These program gives the fatigue crack growth rates for steel and other
metallic materials. The corresponding output files is called Result.dat
or Result.

Error Indicators
None.

Accuracy
A full calculation of the error bars is presented in reference [129].

Further Comments
None.

Example

1. Program text
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Complete program.

2. Program data
See sample data file: test.dat.

3. Program results
See sample output file: Result or Result.dat.

Auxiliary Routines
None

Keywords
neural network, fatigue crack growth rates, steel, nickel base superalloy,
titanium alloy, aluminium alloy
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Program MAP STEEL RES STRESS

Provenance of Source Code

R.C. Dimitriu,
Phase Transformations Group,
Department of Materials Science and Metallurgy,
University of Cambridge,
Cambridge, CB2 3QZ, U.K.
E-mail: rcd34@cam.ac.uk

The neural network program was produced by:

David MacKay,
Cavendish Laboratory,
University of Cambridge,
Madingley Road,
Cambridge, CB3 0HE, U.K.

Purpose

This package allows the calculation of the residual stress developed
during rolling within a steel bearing as a function of temperature, revo-
lutions, contact pressure, hoop stress and the depth within the bearing
were the residual stress develops.

Specification

Language: FORTRAN / C
Product form: Source code / Executable files
Operating System: Linux & Windows 95/98/200/XP

Description

MAP STEEL RES STRESS contains a program that facilitates the
calculation of residual stress development within the raceway of a ball–
bearing as a function of temperature, revolutions, contact pressure,
hoop stress and depth. It uses a neural network program called gener-
ate44, developed by David MacKay and is part of the bigback5 program.
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The network was trained using a large database of experimental results
provided by SKF the ball–bearing manufacturing company. 100 net-
works were trained, with one to twenty hidden units and one to five
seeds. It was found that a more accurate result could be obtained by
averaging the results from all the models [129]. The programs calcu-
lates the results for each model and then combines them, by averag-
ing, to produce a committee result and error estimate, as described by
MacKay (page 387 of reference [86]). The source code for the neural
network program can be downloaded from David MacKay’s website;
the executable files only are available from MAP. Also provided are
FORTRAN programs (as source code) for normalising the input data,
averaging the results from the neural network program and unnormal-
ising the final output file, along with other files necessary for running
the program.

Programs are available which run on a Linux, and on a PC under Win-
dows 95/98/2000/XP. A set of program and data files are provided for
the model, which calculate the residual stress development in bearings.
The files for unix and Linux are included in a directory called NN. This
directory contains the following files and subdirectories:

README
A text file containing step-by-step instructions for running the program,
including a list of input variables.

MINMAX
A text file containing the minimum and maximum limits of each input
and output variable. This file is used to normalise and unnormalise the
input and output data.

test.dat
An input text file containing the input variables used for predictions.

model.gen
This is a unix shell file containing the command steps required to run
the module. It can be executed by typing csh model.gen at the com-
mand prompt. This shell file compiles and runs all the programs nec-
essary for normalising the input data, executing the network for each
model, unnormalising the output data and combining the results of
each model to produce the final committee result.
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model.exe
This executable program for the PC correspond to the unix command
file model.gen.

no of lines.ex
This executable file reads the information of number of data from key-
board input and creates

no of rows.dat
file, this file is used by spec.ex/spec.exe to create spec.t1.

spec.ex/spec.exe
This executable file reads the information in no of rows.dat and creates
a file called spec.t1.

spec.t1
A dynamic file, created by spec.ex/spec.exe, which contains information
about the module and the number of data items being supplied. It is
read by the program generate44/generate55.exe.

norm test.in
This is a text file which contains the normalised input variables. It is
generated by the program normtest.for in subdirectory s.

generate44 / generate55
This is the executable file for the neural network program. generate44
runs on unix and generate55 on the PC. It reads the normalised input
data file, norm test.in, and uses the weight files in subdirectory c. The
results are written to the temporary output file out.

ot, out, res, sen
These files are created by generate44 and can be deleted.

Result
Contains the final un-normalised committee results for the predicted
residual stress.

SUBDIRECTORY s

no of lines.c
The source code for program no of lines.ex.
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spec.c
The source code for program spec.ex.

normtest.for
Program to normalise the data in test.dat and produce the normalised
input file norm test.in. It makes use of information read in from no of
rows.dat and committee.dat.

gencom.for
This program uses the information in committee.dat and combines the
predictions from the individual models, in subdirectory outprdt, to ob-
tain an averaged value (committee prediction). The output (in nor-
malised form) is written to com.dat.

treatout.for
Program to un-normalise the committee results in com.dat and write
the output predictions to unnorm com. This file is then renamed Result.

committee.dat
A text file containing the number of models to be used to form the
committee result and the number of input variables. It is read by
gencom.for, normtest.for and treatout.for.

SUBDIRECTORY c

w*f
The weights files for the different models.

*.lu
Files containing information for calculating the size of the error bars
for the different models.

c*
Files containing information about the perceived significance value for
each model.

R*
Files containing values for the noise, test error and log predictive error
for each model.

SUBDIRECTORY d
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outran.x
A normalised output file which was created during the building of the
model. It is accessed by generate44 via spec.t1.

SUBDIRECTORY outprdt

out1, out2 etc.
The normalised output files for each model.

com.dat
The normalised output file containing the committee results. It is gen-
erated by gencom.for.

Detailed instructions on the use of the program are given in the README
files. Further information about this suite of programs can be obtained
from reference [129].

Parameters

Input parameters
The input variables for the model are listed in the README file. The
maximum and minimum values for each variable are given in the file
MINMAX.

Output parameters
These program gives the residual stress for ball bearings. The corre-
sponding output files is called Result.dat or Result.

Error Indicators
None.

Accuracy
A full calculation of the error bars is presented in reference [129].

Further Comments
None.

Example

1. Program text
Complete program.

2. Program data
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See sample data file: test.dat.

3. Program results
See sample output file: Result or Result.dat.

Auxiliary Routines
None

Keywords
neural network, residual stress, steel, bearings
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