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Abstract 
There have been many attempts in the past to reduce the variety of steels produced 
without compromising the range of properties available. The objective in doing so is to 
reduce costs. These attempts have largely focused on experiments in which 
thermomechanical processing parameters are varied in order to obtain a range of 
properties without changing the chemical composition.  
 
We have approached this problem differently by examining a large database on hot-
rolled steels, all with a final microstructure which is a mixture of ferrite and pearlite. 
Alloys like these form the bulk of all the steel production in the world. The database 
was used to create a neural network model in a Bayesian framework  with inputs 
consisting of the chemical composition  (C, Mn, Si, P, S, Cr, Ni, Mo, Ti, Nb, V, Al, N, B, 
Cu), the finish deformation temperature (TF) and the coiling temperature (TC); the 
output was either the ultimate tensile strength or tensile elongation to failure. The 
neural network model was then combined with a genetic algorithm to seek domains of 
input parameters which correspond to different target properties. The results revealed 
ambiguity in the inputs with respect to the required property, and the trends observed 
within these sets of inputs were found to be metallurgically meaningful..  
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1. Introduction 
Hot-rolled steels with a microstructure consisting of a mixture of ferrite and pearlite 
form the backbone of the steel construction industry because of the unique 
combination of strength, toughness and cost that they offer. They are also easy to 
fabricate using processes such as welding. It is possible that a reduction in the variety 
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of steels available could result in greater economies in the production process [1].  
 
One approach to investigating this problem would be to conduct a well-designed series 
of experiments, but this is in principle unnecessary because a vast quantity of data 
already exists in the form of research, production and quality-control experiments; 
these data have been accumulated over the years as a function of many variables and 
could be exploited both to develop quantitative relationships and to identify domains 
where further experiments are necessary. 
 
The most general way of developing quantitative relationships when dealing with 
complex problems is the artificial neural network [2-7]. It is ideal for the present 
problem as a means to express the relationship between the large number of variables 
which determine the properties of the steel, and the properties themselves. The 
method has been applied to hot-rolled steels [8-10]. Indeed, it has been used widely to 
model various aspects of commercial steels [11-17]. 
 
On the other hand, once the phenomenon has been modelled, the neural network like 
many other modelling techniques, requires the user to reach the desired solution by a 
trial and error choice of inputs. The user has to make educated guesses on what the 
inputs to use in order to reach the target value of the output parameter. This is akin to 
experimental programmes of research and suffers from the same issues, that an 
element of bias is introduced by the user in exploring the input space.  
 
The problem can be resolved by combining the method with a genetic algorithm which 
in its simplest form efficiently searches the input space [18,19]. The power of doing 
this has recently been demonstrated in reaching novel solutions out of the field of 
established knowledge, leading to the discovery of the δ-TRIP steel [20,21]. The 
combination of a neural network model with a genetic algorithm can allow the user to 
set the goals and let the algorithm discover the domain of inputs which can satisfy the 
conditions (output and constraints) set at the outset. The use of a Bayesian framework 
[2-5] for the network also allows the possibility of setting limits to the modelling 
uncertainty when searching the input space. In this way, outrageous solutions can be 
omitted.  
 
In this paper, we attempt to follow the procedure described above to identify the range 
of variables which lead to steels which have the required tensile strength or elongation; 
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the modeling uncertainty is used to control the search process. We begin with a brief 
description of the neural network – details can be found elsewhere [2-6], followed by a 
detailed description of the genetic algorithm and then the outcomes of the analysis for 
selected cases. 
 

2. Neural Network Model 
A neural network is a general method of non-linear regression analysis [2-6]. It is 
composed of input nodes, hidden units and an output node. The inputs xj such 
element  concentrations define the input nodes and the output such as tensile 
strength defines the output node. Each input is multiplied by a random weight wj and 
the products are summed together with a constant θ to give the output 
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A potential difficulty with the use of powerful non–linear regression methods is the 
possibility of overfitting data. To avert this difficulty, the experimental data can be 
divided into two sets, a training dataset and a test dataset. The model is produced 
using only the training data. And then the test data are used to check that the model 
behaves well.  
 
The overall error in the neural network model, ED, is calculated by comparing the 
predicted values yj of the output against those measured tj 

 ! "#
j

jjD ytE
2)(  (2-2) 

ED is expected to increase if important input variables have been excluded from the 
analysis. An alternative measure of fitting error is the log predictive error (LPE) which 
helps to minimise the influence of outliers: 
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One of the most important advantages of MacKay’s method is that in addition to the 
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measures of noise described above, the method also identifies a modelling uncertainty 
[3]. This is a recognition of the fact that many functions may adequately represent 
known data and yet extrapolate differently. The variation in the extrapolation behaviour 
is an indication of modelling uncertainty and is a key indicator in two respects. First, it 
gives an immediate indication of regions of the input space where knowledge is sparse 
and secondly, a large modelling uncertainty gives a clear indication of the input 
parameters for which new experiments are desirable. Thus, instead of using just a best-
fit set of weights, a distribution of weights is calculated. 
  
Finally, several different of the best-performing models are combined together to 
produce an optimised committee of models to allow more reliable predictions.  
 

3. Genetic Algorithm 
A genetic algorithm is a search technique used in computing to find true or 
approximate solutions to optimization and search problems. It is a particular class of 
evolutionary algorithms that use techniques inspired by evolutionary biology such as 
inheritance, mutation, selection, and crossover [18,22-24]. It can be implemented as a 
computer simulation. The general process of the algorithm is illustrated in Fig. 1. The 
initial population represents a possible solution group for the given problem. Each 
possible solution is called an individual. The problem is encoded in a series of bit strings 
which are then manipulated by the algorithm. These bit strings are coded 
representations of input variables. 
 
While in general optimization algorithms, the searching is done from a single initial set 
of inputs, genetic algorithms operate from many initial sets which are created before 
the algorithm operates. The choice of the initial sets can be important in influencing 
the computational efficiency of the optimization process. 
 
To decide whether a solution is meaningful in the context of the goal, it is necessary to 
define a fitness function which helps evaluated the suitability of each individual set. It 
determines how each individual is suited to the objective, and hence its ability to 
survive in the next iteration of the algorithm.  
 
Each model i created by the neural network gives a result y(i) and the associated error σ

y
(i). The average prediction of a committee of L models is: 
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The standard deviation error (σ) of p is as follows: 
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where t is the desired output. The score of an individual could be σ. 
 
The process of selecting the fittest input sets is inspired by the theory of natural 
selection. An evolutionary algorithm performs a selection process in which the most fit 
individuals of the population survive, and the least fit individuals are eliminate. There 
are many ways to select the survivors. In this paper, the fitness proportionate selection, 
also known as roulette-wheel selection is used. 
 
In fitness proportionate selection, the probability of selection of an individual i is 
determined as: 
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where fi is the fitness of the ith individual and N is the number of individuals in the 
population. Thus, the best solutions or chromosomes will be selected from those with 
the greater probability. As this method prevents the rapid lowering of diversity, it helps 
avoid a premature convergence of solutions. Reproduction is used to copy fitter 
populations to the locations left empty when unfit individuals are eliminated. 
 
Further procedures are needed to ensure the avoidance of local minima and permit 
attempts which deviate from the norm. Crossover is used to vary the nature of 
individual between generations, by taking genes from two parents, mixing them and 
producing an offspring. There are many ways to do crossover.  In this paper, the 
uniform-crossover method is used in which individual bits in the string comprising one 
individual are compared between two parents. The bits are swapped with a fixed 
probability, typically 0.5. 
 
Mutation is used to maintain genetic diversity from one generation of a population to 
the next. It periodically makes random changes in one or more members of the current 
population, yielding a new candidate solution. It particularly helps in a wider exploration 
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of the input space, thus avoiding local minima. 
 

4. Results 
We have used here models based on a total of 3508 experiments, for the ultimate 
tensile strength and for the total tensile elongation, as a function of the concentrations 
of C, Mn, Si, P, S, Cr, Ni, Mo, Ti, Nb, V, Al, N, B, Cu, the finish deformation temperature 
TF and the coiling temperature TC.  
 
Given the large number of variables, it was found necessary to implement at most 
10,000 generations to reach reasonable answers. Because in the previous research [19, 
24], the fitness scores converged within 5,000 generations, 10,000 was assessed to 
be sufficient to reveal the domains corresponding to specific properties. The population 
size was fixed at 20 [19, 24,25].  
The crossover rate is typically 80-95% [25] but a lower value of 60% was used in 
order to keep well-fitting solutions for as many generations as possible. The mutation 
rate was set between 0 and 0.2%. All the results are for reasons of clarity stated to a 
precision in four significant figures after the decimal point; this should not imply that 
measurements can be made to that accuracy and uncertainties must be considered 
alongside the estimated values. 
As mentioned in section 3, the neural network committee model has two outputs; the 
result and the uncertainty. The fitness function should therefore consider both of these 
parameters. Therefore the fitness f is:  
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Tensile Strength Model 
Fig. 2 shows the significance of each of the inputs, as perceived by the first five 
models in the neural network committee model which is combination of 11 different of 
the best performing individual models for the ultimate tensile strength. As expected, C, 
Mn and Si are most significant in influencing the strength. 
 
None of the input parameters were constrained in running the composite neural 
network – genetic algorithm model, though limits were placed on the size of the 
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modelling uncertainty in order to avoid results which simply may not make metallurgical 
sense.  
 
The first analysis conducted involved a search for the domain of inputs which would 
lead to an ultimate tensile strength of 400 MPa, allowing for a ±15% uncertainty 
including computational errors. Some 94 combinations of inputs were found to be 
consistent with this criterion. A selection of these data is plotted in Fig. 3, illustrating 
particularly the carbon, manganese, silicon, finish-rolling and coiling temperatures, 
together with the strength. It is interesting to see that low carbon concentrations (e.g., 
samples 4,5,8 and 9) are automatically associated by the model with low coiling 
temperature TC in order to maintain a value of strength close to 400 MPa.  This is 
expected since the increase in strength due to carbon is compensated for by a 
reduction in cooling rate due to the use of a high TC. Similarly, large manganese 
concentrations are compensated for by low carbon concentrations [e.g., 26,27]. The 
range of the key inputs which lead to the required strength are as follows: 
 

400 MPa target C / 
wt% 

Si / wt% Mn / wt% TC / °C TF / °C 

Minimum 0.11 0.02 0.70 596 828 
Maximum 0.20 0.11 0.79 709 983 

There are of course many more variables involved in the analysis but they have a 
relatively minor effect and hence are not listed here. The important point is that a 
significant range of inputs can lead to the required strength of 400 MPa, with the 
analysis coming up with a total of 94 solutions. 
 
The number of solutions decreased to 75 and 18 when the required strength was 
increased to 600 and 800 MPa respectively. For brevity we illustrate the change using 
just the 800 MPa simulation. It is clear from the data listed below and from Fig. 4, that 
not only has the number of available solutions decreased, but the permitted range of 
the inputs has decreased significantly.  The permitted ranges for C, Si, TC and TF 
decrease from 0.09 wt% to 0.03 wt%, 0.09 wt% to 0.00 wt%, 113 °C to 26 °C and 
155 °C to 39 °C respectively.  It is indicating that to achieve high strength in this alloy 
system would require careful control, perhaps beyond the accuracy available in 
practice: 
 
800 MPa target C / wt% Si / wt% Mn / wt% TC / °C TF / °C 
Minimum 0.44 0.11 0.70 596 771 
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Maximum 0.47 0.11 0.79 622 810 
 
 Another interpretation is that the alloy system considered in creating the model is too 
simple to allow flexibility in the choice of inputs when the target strength is high. In 
contrast, the 400 MPa is typical of ferrite-pearlite steels [28,29]. 

 

Elongation Model 
Fig. 5 indicates the significance of each of the inputs, as perceived by the all individual 
models in the neural network committee model which is combination of 3 different 
models for the elongation to failure. This shows that carbon and manganese are the 
most significant determinants of the elongation in the neural network model which 
included the same as the tensile strength analysis. The model was combined with a 
genetic algorithm. Some 129 solutions were found when the target elongation was set 
at 35% and 175 for 55% elongation.  
Target of 35% is used to check the behavior of the combining of neural network and 
genetic algorithm. This target is easy to achieve. It is about average of dataset which 
was used to make models. Target of 45% is to check the effect of combining of neural 
network and genetic algorithm. This value is higher than the average elongation of 
ferrite-pearlite steels [9][10]. Target of 55% is used to test the high values of 
elongation which we can’t reach easily. 
 
In 35% case, we get 129 varieties of inputs. It shows the model is reliable. In 45% case, 
we get 171 varieties of inputs and in 55% case, we get 175 varieties of inputs. It 
means we can get even high elongation steels. Figure 6 shows that in both cases, the 
range of compositions capable of producing the required elongation is very limited. This 
implies that the domain of compositions becomes much smaller if an attempt is made 
to simultaneously satisfy both strength and elongation targets.  
 
Figure 6 confirms the trend identified with the significance chart (Fig. 5) that carbon 
and manganese have the biggest influence on the absolute value of elongation. A high 
elongation can correspond to a high carbon and low manganese concentration and vice 
versa. A high concentration of carbon would lead to a greater fraction of pearlite and 
hence a larger work hardening rate; the latter in turn would delay plastic instability and 
hence enhance elongation. 
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5. Conclusions 
The identification of domains of independent parameters which lead to a particular 
strength or ductility can be systematically defined by using a combination of a neural 
network model with a genetic algorithm. The computational cost of doing so is large, 
but a trial and error search of the input space probably should incur a greater expense. 
 
The results of the search process have been found to be physically meaningful in terms 
of the metallurgy of hot-rolled steels with a mixed microstructure of ferrite and pearlite. 
It would now be interesting to make a more restrictive model in which a number of 
property targets are set. 
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Fig. 1. Illustration of the working of the genetic algorithm 

 

 

Fig. 2. Significance of inputs in tensile strength model 
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Fig. 3: Combinations of variables, all of which lead to an ultimate tensile strength of  
approximately 400 MPa. 

 
Fig. 4: Combinations of variables which lead to an ultimate tensile strength of 800 MPa. 
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Fig. 5: Perceived significance of input variables on elongation. 
 

(a)  

(b)  

Fig. 6: Combinations of variables which lead to an elongation of (a) 35%, (b) 55%. 
 
 


