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Abstract

We present here an analysis of a complex set of data on the strength of steels as a function of
chemical composition, heat treatment and test temperature. The steels represent a special class
designed to resist deformation at elevated temperatures (500–600◦C) over time periods in excess
of 30 years, whilst serving in hostile environments. The aim was to compare two methods, a
neural network based on a Bayesian formulation, and genetic programming in which the data are
formulated in an evolutionary procedure. It is found that in the present context, the neural network
is able more readily to capture greater complexity in the data whereas a genetic program seems to
require greater intervention to achieve an accurate representation.

1 Introduction

We have shown in recent work that interesting fundamental phenomena can be revealed by looking
for patterns in large and multivariate datasets [1]. In some cases robust models which capture the
physical principles underlying the behaviour of the data can lead to new developments, such as
the δ–TRIP steel which is a major departure from conventional thinking in the context of alloys
which rely on transformation plasticity [2]. It is true therefore, to assert that methods such as neural
networks, genetic programming and optimisation techniques have made a mark on the development
of materials.

In our continuing research on steels for the energy production industries [3], we recently analysed
how the strength of creep–resistant ferritic steels depends on the test–temperature and a variety
of other parameters such as the chemical composition of the steel and the heat treatment prior to
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testing [1]. Such steels form the back–bone of steam turbines used in electricity generation and
have to resist creep–deformation for many decades at temperatures up to 600◦C.

The most interesting outcome was that the rate at which the strength (σY ) decreased with tem-
perature (T ) became much more pronounced beyond TC ≃ 800K, Fig. 1. Furthermore, the slope
∂σY /∂T for T > TC was found to be similar for hot–strength and for creep rupture data, as illus-
trated in Fig. 1. This behaviour is believed to be associated with the onset of significant atomic
mobility, such that dislocation climb becomes much more feasible at temperatures beyond TC .
From a technological point of view, the similarity in ∂σY /∂T for hot–strength and creep–rupture
provides a ready method for estimating expensive creep data using ordinary tensile tests [1].

Another useful outcome is that |∂σY /∂T | in the high temperature regime correlates directly with
the tensile strength measured at ambient temperature, Fig. 2. An alloy which is strong at am-
bient temperature loses more of its strength as the temperature is raised above TC . Fig. 2 could
in principle be used to determine |∂σY /∂T | for an arbitrary steel, and hence to work out the
temperature–dependent strength simply by measuring the ambient temperature strength:

σY {T} = σY {TA} +
∂σY

∂T
× (T − TA) (1)

where TA is the ambient temperature.

Note that for T < TC , |∂σY /∂T | seems independent of alloy (Fig. 2) and corresponds to the
temperature sensitivity of the solid–solution strength and that of pure iron [1].

Figure 1: Comparison of
temperature–sensitivity of
creep–rupture and proof
strength for 21

4Cr1Mo. The
times associated with creep–
rupture are also indicated [1].
The detailed parameters for
the steel are 0.15C-0.18Si-
0.63Mn-0.024Ni-2.23Cr
0.97Mo-0.02Cu-0.01Al-
0.0083N wt%, 1193 K for
480 min, air cooled, tempered
at 993 K for 360 min.

It is important to emphasise that the use of the neural network in identifying the regime where
diffusion controls deformation is unique in that both plasticity and temperature are accounted for
in the context of practical steels which typically contain precipitates, boundaries, myriad of solutes
and a variety of defects. It is encouraging that it has been possible to reach clear conclusions in spite
of the complexity of each of the alloy systems studied [1]. The work also lays open the possibility of
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Figure 2: Plot of ∂σY /∂T as a
function of σY measured at ambi-
ent temperature. Two cases are
illustrated, for T > TC and vice
versa. The alloys considered are
the classical 21

4Cr1Mo, 5Cr and
9Cr1Mo. Data from [1].

defining a fundamental temperature limit to the applicability of ferritic steels in power plant. This
would require work to relate the depression of the creep–rupture curve relative to the hot–strength
curve on diagrams such as Fig. 1.

Given the utility of the phenomena described above, our aim in this paper was to see whether the
(empirical) neural network method used in the analysis [1] leads to results which can be replicated
by an alternative empirical method. We have therefore used the same data for the genetic program-
ming. The neural method has been described elsewhere so it is only introduced here to the extent
that it makes the paper readable; the main focus is on the other technique on the metallurgical
significance of the results.

2 The Methods Used

2.1 Bayesian Neural Networks

A general method for treating complex data is the neural network in a Bayesian framework. This
has been documented thoroughly [5–8] and applied extensively in the study and design of steels
[9–17]. For this reason only specific points of relevance are introduced here.

The network is a non–linear regression method which, because of its flexibility, is able to capture
enormous complexity in the data, whilst at the same time avoiding overfitting. There are a number
of interesting outputs other than the coefficients which help recognise the significance of each
input. First, there is the noise in the output, associated with the fact the input set is unlikely to be
comprehensive – i.e., a different result is obtained from identical experiments. Secondly, there is the
uncertainty of modelling because many mathematical functions may be able to adequately represent
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known data but which behave differently when extrapolated. A knowledge of this uncertainty helps
make the method less dangerous in extrapolation.

The mathematical structure of the network used is easily explained; in combination with the weights
(w, θ) fully describes the relationships between the inputs xI and the output y:

y =
∑

i

w
(2)
ij hi + θ(2) with hi = tanh







∑

j

w
(1)
ij xi + θ

(1)
i







(2)

As emphasised earlier, the details are described elsewhere but one major outcome of the method
is that the Bayesian framework indicates a modelling uncertainty in addition to the perceived level
of noise in the output. Noise refers to the case where a different outcome is obtained when an
experiment is repeated, because some variable which influences the output has not been controlled.
The modelling uncertainty on the other hand describes the range of predictions possible when using
a variety of models, each of which is able to reasonably represent the same data. Another way of
describing the modelling uncertainty is to say that instead of using a best–fit set of weights to derive
equation 2, we associate a distribution of weights. The width of such a distribution in a localised
region of the input space is then related to the modelling uncertainty when making a prediction
in that region. Unlike the noise, the modelling uncertainty is not therefore a constant parameter
and varies according to the values of the inputs used in calculating the output. The uncertainty is
large when the data on which the models are based are absent, sparse or noisy – it therefore gives
a firm indication of potential problems associated with the extrapolation of non–linear methods.

The Bayesian approach offers an indicator of the network-perceived significance of each input.
The measure provided is a function of the values of the regularisation constants for the weights
associated with an input σw. This measure is similar to a partial correlation coefficient in that it
represents the amount of variation in the output that can be attributed by any particular input.

2.2 Genetic Programming

In genetic programming, relationships are reached through an evolutionary search process [18, 19],
with a variety of possibilities for the actual algorithm involved, for example, an expression, a
formula, a plan, a control strategy, a decision tree or a learning model depending on the problem [20].
The learning problem of interest here is the mapping of inputs to outputs given a dataset. Genetic
programming in that context begins by creating a population of algorithms at random, followed
by an assessment of the fitness of the program with respect to its ability to reach a solution.
Programs which are particularly fit are selected for recombination to produce a new population by
using genetic operators(selection, crossover and mutation) [21]. The process is repeated until an
acceptable solution is reached, or for a predetermined number of runs. The evolutionary cycle is
illustrated in Figure 3.

The programs can be viewed as a syntax tree, where a branch node is an element from a function
set, which in turn may contain arithmetic functions, trigonometry and logic operators with at
least one argument [18]. Some nodes which are at the ends of branches represent elements from a
which contains independent variables and constants fixed according to the prior knowledge of the
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Figure 3: The artificial evolution cycle.

problem or may be randomly generated [22]. Figure 4 illustrates a syntax tree for the mathematical
expression x × ytimes1.3 − x.

The genetic operators alter the structure of the trees and modify the content of the nodes or termi-
nations with the help of the operators in an effort to discover individuals with improved fitness. The
simplest operator is duplication since it replicates an individual without modification. Crossover
is an operation for the probabilistic exchange of genetic information between two randomly picked
parents, facilitating a global search for the optimum in the process. Mutation in an operator in-
ducing a small probabilistic change in the genetic makeup, resulting in a local search. It begins by
selecting a point at random within the tree, and then the mutation operation replaces the function
or the terminal set with the same type of element.

The fitness provides a measure of how an individual matches to a particular environment, a criterion
to select individuals that participate in generating a new population [23]. Examples of fitness
functions include the mean square and root mean–square errors [24, 25]. Selection procedures may
take, for example, the following forms:

• roulette-wheel, where the probability that an individual is selected depends on its normalised
fitness value [26];

• ranking, which is based on the ranking of the fitness values of individuals [27];

• tournament, where n (≥ 2) individuals are sampled from the population and the one with
the greatest fitness is selected [28];
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Figure 4: Tree representation of x × ytimes1.3 − x.

• elitism involves the copying of the best few individuals in the next generation. It can increase
performance by avoiding the loss of fit individuals [29].

3 The Database

The database used has its origins in published data [30] on the hot-strength (0.2% proof strength)
of ferritic creep–resistant steels including the classical 21

4Cr1Mo, 5Cr, 9Cr1Mo and 12Cr1Mo type
steels. The hot–strength is a function of the microstructure and solid solution strengthening, both
of which depend on chemical composition and heat treatment; the relevant variables are listed in
Table 3.

4 Comparison of Methods

In making these comparisons the calculations are based on data used for creating the models. This
is because the neural network methods has already been shown to faithfully reproduce those data
[1] – the genetic programming should therefore at least replicate those outcomes or reveal new
structure within the generally verified trends.

The experimental data were in each case split randomly into equal parts to create the training and
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Variable Minimum Maximum

Aluminium / wt% 0.001 0.04

Carbon / wt% 0.09 0.48

Copper / wt% 0.0001 0.25

Chromium / wt% 0.0001 12.38

Manganese / wt% 0.38 1.44

Molybdenum / wt% 0.01 1.05

Nickel / wt% 0.0001 0.6

Nitrogen / wt% 0.001 0.04

Silicon / wt% 0.18 0.86

Austenitising time / min 10 5400

Tempering time / min 30 660

Austenitising temperature / K 1143.15 1243.15

Tempering temperature / K 898.15 1023.15

Test temperature / K 293.15 973.15

Hot strength / MPa 69 660

Table 1: Variables used to develop the models.

test datasets, the latter being used to assess the ability of the model to predict unseen data; the
test error is calculated as follows:

E =
∑

j

(tj − yj)
2 (3)

where yj is a predicted value and tj the target value; to calculate this error we normalised the output
to be in the range ±0.5. The neural network model used here is in a Bayesian framework and hence
gives a modelling uncertainty associated with each prediction [5–8]. This is extremely helpful avoid
the usual dangers of extrapolation. For the genetic programming, the modelling uncertainty was
improvised by plotting the standard deviation of three models within a committee of models. The
three component models were created simply by starting the training process three times; on each
occasion a different model is obtained because of the randomness–based components of the genetic
programming process.

The training process for the genetic programming begins by applying only the elementary (+ − ∗ /),
and if necessary after assessment, more complex models can be created by including other functions
such as (sin, cos, tan, tanh, log, exp...). In what follows, all functions refers to the case where
the elementary and other functions have all been made available to the genetic program, whereas
trigonometric functions is self–explanatory. The test errors for the different approaches are listed
in Table 2; it should be noted that in all cases the committee of models has smaller test errors
than any of the individual models. The genetic programs are seen from Table 2 to perform less
well when compared with the neural network.

The best way of assessing the performance of non–linear models is to use them to make predictions.
Figure 5 shows prediction for a 21

4Cr steel, and Figure 6 shows similar data for a prediction for a
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Table 2: Test errors for committees of models.

Model Test error

All functions genetic program, 3–member committee 0.611
Trigonometric functions genetic algorithm, 3–member committee 0.361
Neural network, 13–member committee 0.293

12Cr steel.

The predictions from the genetic program trained with arithmetic, elementary and trigonometric
functions, failed to capture the complexity of the data. The different temperature dependency of
stress on temperature on either side of TC is not captured – instead, a rather stiff model is produced
because the search for the final function was restricted to relatively simple formulae. With this
limitation removed, the genetic program based on just the trigonometric functions is able to capture
the stress–temperature behaviour correctly, probably because it includes hyperbolic tangents which
are know to be very flexible functions. Indeed, the neural network uses the hyperbolic tangent
transfer function as indicated in equation 2.

5 Summary

It may be concluded from this work that in the particular application considered, the two methods
are similar in being able to create sufficiently complex non–linear functions to represent real experi-
mental information in creep–rupture resistant steels. In many respects, both methods require trials
to find the optimum overall function, but the genetic programming was more computer intensive
and did not generalise as well as the highly–flexible neural network method.

From a metallurgical point of view, the clear, method–independent identification of two regimes in
the temperature dependence of strength is a useful confirmation which can in principle be exploited
in the design of steels for elevated temperature applications.
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(a) (b)

(c)

Figure 5: Calculations for steel containing 0.15C 0.25Si 0.61Mn 0.32Ni 2.35Cr 0.96Mo 0.03Cu 0.01Al 0.01N
wt%, 1193 K for 210 min, air cooled, tempered at 988 K for 300 min. (a) Genetic programming
using arithmetic, elementary and trigonometric functions. (b) Genetic programming using
trigonometric functions. (c) Corresponding outcome using the neural network.
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(a) (b)

(c)

Figure 6: Calculations for steel containing steel containing
0.21C 0.44Si 0.62Mn 0.85Ni 11.64Cr 0.97Mo 0.06Cu 0.03Al 0.02N wt%, 1323 K for 25 min,
air cooled, tempered at 913 K for 60 min. (a) Genetic programming using arithmetic, elementary
and trigonometric functions. (b) Genetic programming using trigonometric functions. (c)
Corresponding outcome using the neural network.
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