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Abstract 

  

An expression is proposed for the anisotropy of interfacial energy of cubic metals, based on 

the symmetry of the crystal structure. The associated coefficients can be determined 

experimentally or assessed using computational methods. Calculations demonstrate an 

average relative error of <3% in comparison with the embedded-atom data for face-centred 

cubic metals. For body-centred-cubic metals, the errors are around 7% due to discrepancies 

at {332} and {433} planes. The coefficients for {100}, {110}, {111} and {210} planes are 

well-behaved and can be used to simulate the consequences of interfacial anisotropy. The 

results have been applied in three-dimensional phase-field modelling of the evolution of 

crystal shapes, and the outcomes have been compared favourably with equilibrium shapes 

expected from Wulff’s theorem. 

  

1. Introduction 



  

Crystals are by their very nature anisotropic and interfaces between crystals similarly have 

energies and structures which are orientation dependent. Phase-field models used to 

simulate microstructural development have attempted to incorporate this interfacial 

anisotropy in a variety of ways. The free energy density for a heterogeneous system with 

contributions from the chemical free energy and interface energy is represented by: 

 ( ) ( ) 22
0 2

1,,,, ϕεϕϕ ∇+= TcgTcg    (1) 

where g is the system free energy density, g0 is the chemical free energy density, ϕ is 

phase-field order parameter, c is solute concentration, T is temperature and ε is the gradient 

energy coefficient. Interfacial anisotropy is generally introduced by making ε orientation-

dependent. For example, in the two-dimensional simulation of cubic crystals it is common 

to assume that [1] 

    ( )[ ]θγεε εε kcos1+=      (2) 

where ε  is the mean value of ε, θ is the polar angular coordinate of the interface normal, 

and γε and kε are anisotropy parameters. Eq. (2) has been modified into other formats to 

fulfil specific simulation targets [2, 3]. In three-dimensional phase-field models, the Cahn-

Hoffman ξ vector theory has been applied to describe the interface anisotropy [4, 5]. A 

suggestion made by Karma and Rappel for cubic crystals is [6] 

    ( )[ ]4441 zyx nnn +++= εγεε       (3) 

where nx, ny and nz are Cartesian coordinates of the interface normal. More recently, 

Haxhimali et al. suggested the gradient energy coefficient takes the following format to 

represent interface anisotropy in the context of phase-fields [7]: 

   ( ) ( )[ ]L+Φ+Φ+= ,,1 2211 θεθεεε KK     (4) 

where θ and Φ represent the orientation of the interface in spherical coordinates, ε1 and ε2 

are coefficients reflecting the extents of anisotropy, K1 and K2 are cubic harmonics that are 

combinations of standard spherical harmonics with cubic symmetry. The addition of the 

ε2K2 term in Eq. (4) (cf. Eq. (3)) is after reviewing molecular dynamics simulations for 

dendrite growth which suggest that this gives a better representation of anisotropy [8].  
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The motivation for the present work was to develop a generic expression for interface 

anisotropy of cubic metals, to specify coefficients in the resulting expression and to validate 

the concept against existing knowledge of crystal growth.  

2. Interface energy anisotropy 

  

In a cubic system, the normal to a plane with Miller indices (hkl) plane is the direction 

[hkl]. The unit normal n  has its Cartesian coordinates nˆ x, ny and nz. Fig. 1 illustrates how 

these can be represented in polar or spherical coordinates:  

222
cossin

lkh
hnx

++
== φθ    (5.1) 

222
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lkh
kny

++
== φθ    (5.2) 

 

 
Fig. 1. Relation between Miller indices, Cartesian and polar coordinates in a cubic system.  
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222
cos

lkh
lnz

++
== θ      (5.3) 

Anisotropy energy, in general, can be represented as expansions of nx, ny and nz in various 

orders. In discussing magnetocrystalline anisotropy [9], the interface anisotropy is 

represented by 

( ) L+++= ∑∑ wuji
wuji

ji
ji

nnnnknnkkn
,,,

1
,

10ˆσ   (6) 

where k0, k1, k2 and k3 are the defining coefficients. The subscripts of n represent the 

Cartesian coordinates. For cubic symmetry, this simplifies into [10] 

( ) ( ) ( ) L++++++++=
2222222

3
222

2
222222

10ˆ xzzyyxzyxxzzyyx nnnnnnknnnknnnnnnkknσ  (7) 

Ignoring the higher order terms and using Miller indices, Eqs. (5) and (7) give 
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+=σ       (8) 

For given anisotropy coefficients k0, k1, k2 and k3, Eq. (8) can express the interfacial energy 

as a function of orientation.  

 

Eq.(8) is different from the expansion based on cubic harmonics [6, 7]. An example is that 

the leading anisotropic term in Eq.(7) is not ( )444
zyx nnn ++  but ( )222222

xzzyyx nnnnnn ++ . 

Critical assessment of those two different expressions for representing crystal anisotropy is 

important but is beyond the scope of the present work. However, it is obviously that Eq. (8) 

is consistent with cubic symmetry. For example, the interfacial energy for all directions of 

the form <100> is k0. For <110> it is 310 kkk ++ , for <111> it is 9/9/3/ 3210 kkkk +++  

etc. So in conclusion, although the individual coefficients cannot be identified with 

symmetry elements the equation as a whole is consistent with cubic symmetry. 

  

It is required to validate the description inherent in Eq. (8) for cubic anisotropy. The 

method here was fitted to results from the embedded-atom method (EAM)  [11, 12]. Those 

EAM calculations are based on embedding atomic functions and electronic densities given 

by Baskes et al. [13-15]. The least squares method was used to fit the data with the 

following objective function 
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( ) ( )[ ]2,,,,∑ −=
i

EAM lkhlkh σσδ        (9) 

where i is the total number of EAM data, ( )lkh ,,σ  is from Eq. (8) and ( lkhEAM ,, )σ  from 

EAM data. The best values of k0, k1, k2 and k3 are obtained when δ achieves a minimum, 

i.e., at 0/ =∂∂ jkδ  with j=0, 1, 2 and 3. Fig. 2 demonstrates the efficacy of Eq. (8) for 10 

face-centred cubic (fcc) crystals, and the corresponding derived values of anisotropy 

coefficients together with the average relative errors (AvRE) are listed in table 1. AvRE is 

defined as ( ) ( ) ( )[ ]lkhlkhlkhAvRE EAMEAM ,,/|,,,,| σσσ −= . It can be seen that 9 out of ten 

fits have <2% average relative errors. In the case of aluminium, the error is < 2.9%. This 

shows that Eq. 8 gives a good description of interface anisotropy in fcc crystals.  

  

Fig. 2. Comparison of interface energy of face-centred cubic crystals calculated by Eq. (8) 

with data from the embedded-atom method.  

 

Table 1 Anisotropy coefficients k0, k1, k2, k3 and AvRE determined by least squares fitting 

of EAM data. The units for coefficients are in erg/cm2. AvRE4% is for the data plotted in 

Fig. 4. 
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Metal 0k  1k  2k  3k  AvRE (%) AvRE4(%) 

Cu 

Ag 

Au 

Ni 

Pd 

Pt 

Al 

Pb 

Rh 

Ir 

1666.87 

1287.51 

1101.41 

2462.4  

1685.19 

2197.7 

922.344 

430.362 

2934.53 

2943.61 

733.621 

110.57 

917.506 

723.47 

975.872 

926.172 

1363.19 

280.798 

1495.79 

2547.81 

-1873.19 

-642.8 

-2658.9 

-2970.25 

-2015.65 

-6581.9 

-5690.92 

-493.042 

-486.378 

1421.33 

-3260.43 

-1401.67 

-3358.65 

-4075.9 

-4055.37 

-4542.32 

-4478.54 

-1082.85 

-6338.95 

-8266 

1.959 

1.527 

1.850 

1.637 

1.782 

1.854 

2.856 

1.614 

1.671 

1.445 

2.802 

2.369 

2.586 

2.426 

2.478 

2.676 

3.568 

2.463 

2.357 

2.179 

  

 
Fig. 3. Comparison of interface energy of body-centred cubic crystals calculated by Eq. (8) 

with numerical results from embedded-atom method.  

 

The corresponding data for body-centred cubic crystals are in Fig. 3 and table 2, with most 

AvRE values at around 6%. Lithium has the largest AvRE at 8.7%. The discrepancies are 
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especially severe for the (332) and (433) planes for all the considered bcc metals. This 

suggests a potential problem with the EAM calculations and atomic potential and electronic 

densities for those two orientations. Without those two discrepancies, the fitness could be 

improved substantially.  

  

Table 2 Anisotropy coefficients k0, k1, k2, k3 and AvRE determined by least squares fitting 

of EAM data. The units for coefficients are in erg/cm2. AvRE4% is for the data plotted in 

Fig. 4. 

Metal 0k  1k  2k  3k  AvRE (%) AvRE4(%)

Li 

Na 

K 

V 

Nb 

Ta 

Cr 

Mo 

W 

Fe 

442.723 

295.162 

186.96 

2561.47 

2861.21 

3381.3 

1286.05 

2184.48 

2726.18 

2258.53 

-1163.95 

-578.775 

-347.872 

-3584.81 

-4256.08 

-5271.41 

-1306.83 

-343.473 

-1493.07 

-3291.47 

4554.7 

1914.79 

1021.95 

11986.8 

14414.2 

15268.7 

9485.12 

7098.62 

11203.9 

12959.9 

1123.37 

476.77 

281.641 

2134.02 

2764.52 

3735.67 

1917.94 

-1783.23 

-639.744 

1880.74 

8.713 

7.195 

7.038 

6.059 

6.202 

6.367 

6.909 

5.202 

5.427 

6.069 

9.640 

7.707 

7.543 

6.100 

6.291 

6.596 

6.623 

4.660 

5.083 

6.052 

  

It is worth pointing out that k0 in tables 1 and 2 does not equal the averaged interface 

energy. However, this can be easily done by a stepped least squares method of using 

( ) 0,, klkh =σ  to fit data and determine k0 first. Other parameters are determined 

subsequently. Despite the advantage that k0 reproduces the average interface energy 

exactly, it is found that the stepped least square method gives less accuracy in data-fitting. 

Application of the stepped least squares method for Cu, Ag and Au result AeRV values of 

4.043 %, 3.276% and 5.025%, respectively. 

  

There are in Eq. (8) only four unknown coefficients which can be fully determined by 

calculating or measuring the interfacial energy at just four different orientations. Fig. 4 

illustrates the comparison of all EAM calculations with the Eq. (8) where the anisotropy  
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Fig. 4. Comparison of Eq. (8) calculation where coefficients are determined by (100), 

(110), (111) and (210) with all available EAM data. (a) fcc crystal; (b) bcc crystal.    
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coefficients k0, k1, k2 and k3 are determined by only using the interface energies at (100), 

(110), (111) and (210). The corresponding AvRE values regarding to this calculation are 

listed in table 1 and table 2 with column entitled AvRE4. All data show that AvRE4 is less 

than 1% larger than AvRE. AvRE4 values for Cr, Mo, W and Fe are even smaller than the 

corresponding AvRE values. It is seen that the accuracy of this computation is comparable 

to the large data-fitting illustrated in Figs. 2 and 3. This suggests that there is redundant 

information in the EAM calculations, so that such computations could be done more 

economically by focusing just on the solution of the four coefficients of Eq. 8, and hence on 

the study of just four interface orientations. 

  

3. Phase-field model consideration 

  

Eqs. (7) and (8) are for the interfacial energy per unit area, σ, which in a phase field model 

is implicitly represented by the gradient energy coefficient ε. We now consider the 

relationship between these two quantities in the context of the simplest phase-field model 

(Eq. 1). For the system in which phase transition takes place from ϕ = 0 to ϕ =1, the 

chemical free energy density g0 can be described by a double-well potential function [16, 

17]. 

( ) ( ) ( 22
0 1

4
1,, ϕϕ
ω

ϕϕ −+= bgTcg )    (10) 

where gb is the chemical free energy of ϕ = 0 and ϕ =1 bulk phases, and ω is a coefficient 

reflecting the kinetic barrier between two minima. The governing equation for the evolution 

of the phase-field order parameter ϕ is [5] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
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∂
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∂
∂

ϕϕ
ϕ

φ
ggM

t
    (11) 

where Mϕ is the phase-field mobility and its value can be derived from interface kinetics [5, 

18-19]. Inserting Eqs. (1) and (10) into (11) leads to [6] 
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∂
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∇
∂
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⎦

⎤
⎢
⎣
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∂
∂

∇
∂
∂

=
∂
∂
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x

M
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εεϕ
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εεϕ

ϕ
εεϕϕ

ϕ
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( )[ ] ( )( )
⎭
⎬
⎫

∂
∂

−−−−∇∇+
ϕ

ϕϕϕ
ω

ϕε bg
n 211

2
1ˆ 2       (12) 

In the one-dimensional system where the interface is constant along the axis, Eq. (12) is 

reduced at equilibrium to 

( )( ) 0211
2
1

2

2
2 =−−− ϕϕϕ

ω
ϕε

dx
d      (13) 

The solution of the equation for the boundary conditions ϕ = 1 at x = -∞ and ϕ = 0 at x 

=+∞  is 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−=

εω
ϕ

22
tanh1

2
1 xx     (14) 

Let 

εωλ 22.2=       (15) 

Eqs. (14) and (15) give ( ) 90025.0=− λϕ  and ( ) 0975.0=− λϕ , which is a good 

approximation of interface thickness. λ is called the half-interface thickness because the 

interface starts from -λ and ends at λ.  Multiplying Eq. (13) with xdd /ϕ  and integrating 

leads to 

( 22
2

2 1
4
1

2
1 ϕϕ

ω
ϕε −=⎟
⎠
⎞

⎜
⎝
⎛

dx
d )      (16) 

The interface energy is all the excess energy at the interfacial region, which is 

( ) ∫∫
∞+

∞−

∞+

∞−
⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟

⎠
⎞

⎜
⎝
⎛= dx

dx
d

dx
d 2

222
2

2 1
4
1

2
1 ϕεϕϕ

ω
ϕεσ

 
  (17) 

Insulting Eq. (14) into Eq. (17) leads to 

ω
εσ

12
2

=        (18) 

Eqs. (15) and (18) give 

2

3
1.1 ε
λ

σ =       (19) 

A similar derivation is found in reference [17]. However, it is emphasized here that Eq. (19) 

is not only valid for a particular orientation but for any direction. This requires more 

rigorous mathematical derivation. In the suggestion, one has 
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( ) ( )2ˆ
3

1.1ˆ nn ε
λ

σ =      (20) 

Suppose the gradient energy coefficient has the following format 

( ) ( ) ( )2222222
3

222
2

222222
10ˆ xzzyyxzyxxzzyyx nnnnnnnnnnnnnnnn +++++++= εεεεε    (21) 

Bringing Eq. (21) into Eq. (20), ignoring the higher order terms and comparing the results 

with Eq. 7, it gives 

000 kλε =      (22.1) 

0

10
1 2 k

kλ
ε =      (22.2) 

0

20
2 2 k

kλ
ε =      (22.3) 

00

2
10

0

30
3 82 kk

k
k
k λλ

ε −=     (22.4) 

where 1.1/30 λλ = . Eq. (22) fully determines the coefficients of gradient energy 

coefficient function in terms of the coefficients in the anisotropic interface energy function. 

The theory is now closed. Table 3 lists some of the results obtained from data given in table 

1. 

  

Table 3. Coefficients in gradient energy equation 

Metal 01 / εε  02 /εε  03 /εε   

Cu 

Ag 

Au 

Ni 

Pd 

Pt 

Al 

Pb 

Rh 

0.22 

0.04 

0.42 

0.15 

0.29 

0.21 

0.74 

0.33 

0.25 

-0.56 

-0.25 

-1.21 

-0.60 

-0.60 

-1.50 

-3.09 

-0.57 

-0.08 

-1.00 

-0.55 

-1.61 

-0.84 

-1.25 

-1.06 

-2.70 

-1.31 

-1.11 
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Ir 0.43 0.24 -1.50 

  

The interface normal vector in the phase-field model is computed by 

ϕ
ϕ

∇
∇

=n̂       (23) 

This gives ∑=
j

jjjn 2/ ϕϕ , where j represents one of the axes in Cartesian coordinates 

and jj x∂∂= /ϕϕ . Other basic terms in the further expansion of Eq. (12) include 

3/// ϕϕϕϕϕϕ ∇−∇=∂∂ ∑ mk
m

mjjkkj xn , 3/// ϕϕϕϕδϕ ∇−∇=∂∂ kjjkkjn  etc. The 

computation of Eq. (12) also requires the definition of the format of ( )ϕbg .  In the 

isothermal and composition-invariant phase-transitions, it can be represented as [6] 

( ) ( )[ ] ( ) 101 ghghgb ϕϕϕ +−=     (24) 

where g0 and g1 are free energy densities of the bulk phases 0=ϕ  and 1=ϕ , respectively. 

( ) ( )10156 22 +−= ϕϕϕϕh  can be considered as the fraction of the phase 1=ϕ , so that 

( ) ( 10
22 130 gg

gb −−=
∂
∂

ϕϕ
ϕ

)        (25) 

There are other suggestions for dealing with different systems [20, 21]. The phase-field 

computation is solving Eq. (11) by discrete method under specified materials parameters.  

  

4. Numerical computation and discussion 

  

Phase-field computations were carried out for studying the effect of interface anisotropy on 

crystal morphology evolution. For reducing other effects it is supposed that all the 

parameters are fixed in the calculations except the interface anisotropy. Three sets of 

parameters are applied, as listed in table 4. The polar diagrams of Eq. (21) with those three 

sets of parameters are demonstrated in Fig. 5. 
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Fig.5. Polar diagram of Eq. (21) with various coefficients: (a) Case A, (b) Case B and (c) 

Case C. 

  

 
Fig.6. Crystal morphology at 5000 time steps as a function of interfacial anisotropy: (a) 

Case A, (b) Case B and (c) Case C. 

  

Table 4. Coefficients applied in phase-field calculation 

                 Case A        Case B       Case C 

01 / εε        -0.863        0.402        1.8655 

02 /εε         0.395        0.00144    0.2555 

03 /εε         0.0238      0.00066    0.0 
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It is chosen that , , 38
10 /106.3 mJgg ×=− 2

0 /8.0 mJk = 100=ϕM  and 3.14=λ  nm in 

the simulations.  and λ give m0k 9103547.1 −×=ω 3/J and 2
1

2
1

4
0 /10488.2 mJ−×=ε . Eq. 

(12) is solved by a 6-neighbour implicit finite difference method at three dimensional 

uniform 1283 grids. The grid size is chosen as Δx=0.5λ so that interface covers 4 elements 

[20, 22]. The initial condition is to put a spherical seed at the centre of the logistic frame 

with the phase-field order parameter configured to 

( )
( ) ( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

Δ≥==

Δ<<Δ
−+

==

Δ<==

xrfortr

xrxfor
r

tr

xrfortr

400,

4
1exp1

20,

10,

ϕ

ϕ

ϕ

  (26) 

The crystal morphologies at 5000 time steps for all three different interface anisotropy 

cases are demonstrated in Fig. 6. It can be seen clearly that the crystal morphologies are 

completely different for different interface anisotropy even when all other parameters are 

fixed. In other words, interfacial anisotropy can have an important impact on crystal 

morphological evolution. 

  

In the phase-field simulation of crystal growth, ϕ∂∂ /bg  plays the role of driving force for 

the phase transition. The phase-field simulation in the current work assumes a constant 

 without consideration of thermal and solute diffusion. This means that there is no 

equilibrium mechanism for the growing crystals to approach their equilibrium shape. It is 

observed, as is expected for the earlier consideration, that the shapes of crystals at different 

time steps are similar. The interface thickness maintains the 4-grid-distance value all way 

through the growth.   

( 10 gg − )

  

Although the crystal shapes obtained in the current work are not equilibrium, it is 

interesting to compare the non-equilibrium crystal shapes with the equilibrium ones. The 

equilibrium shape of crystal, according to Wulff’s theorem, takes the inner envelope of the 

polar interface energy diagram so that the crystal interface energy for a given volume is 

minimized [23]. Fig. 7 shows the polar interface energy diagram, phase-field model 

simulated non-equilibrium crystal shape, and the equilibrium crystal shape predicted by 
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Wulff’s theorem, for the three sets of anisotropic parameters listed in table 4. It is found 

that the non-equilibrium crystal shapes, especially the growing crystal tips, possess some 

favorable correlations with the equilibrium crystal shape. For example, Figs. 7(a) and 7(c) 

show the sharp crystal tip but Fig. 7(b) shows round corners. The evolution of crystal 

geometry from the non-equilibrium to equilibrium has been studied by phase-field 

modelling as well as other methods [24, 25].   

 

It is worth pointing out that although phase-field simulation can sometimes produce a 

crystal shape which is the same as that of the equilibrium shape predicted by Wulff’s 

theorem, the crystal is not at equilibrium. Equilibrium shape must correspond to an 

equilibrium state. For example, choosing ( )10 gg − =1.358×109 J/m3
 and retaining all the 

other parameters the same as the early definition, the Case A anisotropy will lead to 

missing orientations and cusps, which is exactly the equilibrium shape illustrated in Fig. 

7(a) but is non-equilibrium crystal.   
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Fig. 7. Two-dimensional sections of three-dimensional polar diagrams of interface energy, 

equilibrium crystal shape predicted by Wulff’s theorem, and phase-field simulated non-
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equilibrium crystal shape in X-Y plane where 2/πθ =  with interface anisotropy 

parameters defined by (a) Case A, (B) Case B and (C) Case C.   

  

5. Conclusions 

(1) Anisotropic interface energy of cubic crystals is analyzed and is suggested to be 

represented as ( ) ( ) 222
2

222222
10ˆ zyxxzzyyx nnnknnnnnnkkn ++++=σ  

. Using Miller indices it is represented as ( 2222222
3 xzzyyx nnnnnnk +++ )

( )
( ) ( )

( )
( )4222

2222222

33222

222

22222

222222

10,,
lkh

hllkkhk
lkh

lkhk
lkh

hllkkhkklkh
++

++
+

++
+

++

++
+=σ

. The coefficients of k0, k1, k2 and k3 can be determined by experimental 

measurements or atomistic computations. The fitting of data obtained by embedded-

atom method calculations of face-centred cubic and body-centred cubic metals show 

the good agreement. This proves that the suggested expression is reasonable. 

(2) The parameters k0, k1, k2 and k3 that are specified by just the interface energies at 

(100), (110), (111) and (210) give good predictions of other orientations of planes. 

This suggests that fewer measurement or computations are required in the 

determination of interface anisotropy. 

(3) The gradient energy coefficient in phase-field model should take the format 

( ) ( ) ( )2222222
3

222
2

222222
10ˆ xzzyyxzyxxzzyyx nnnnnnnnnnnnnnnn +++++++= εεεεε where the 

coefficients can be determined by 000 kλε = , 
0

10
1 2 k

kλ
ε = , 

0

20
2 2 k

kλ
ε =   and 

00

2
10

0

30
3 82 kk

k
k
k λλ

ε −= .  

(4) Phase-field simulations show that the interface anisotropy has a considerable impact 

on crystal morphological evolution. Just a small change of interface anisotropy 

while keeping all the other parameters unchanged, causes the crystal to grow into 

completely different shape. 
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(5) The effect of interface anisotropy on the equilibrium shape of crystal is determined 

by Wulff’s theorem. The non-equilibrium crystal shape can have some important 

characteristics when comparing with its equilibrium shape.   
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