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Abstract: Neural networks have pervaded all aspects of materials science resulting in the discovery of new phenomena and
have been used in quantitative design and control. At the same time, they have introduced a culture in which both noise and
modeling uncertainties are considered in order to realize the value of empirical modeling. This review deals with all of these
aspects using concrete examples to highlight the progress made, whilst at the same time emphasizing the limitations of the
method.  2009 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 1: 296–305, 2009

1. INTRODUCTION

Neural networks are wonderful tools, which permit the
development of quantitative expressions without compro-
mising the known complexity of the problem. This makes
them ideal in circumstances where simplification of the
problem, in order to make it mathematically tractable,
would lead to an unacceptable loss of information. As
pointed out by Ziman [1], there is a fine balance between
over-idealizing the initial hypothesis in order to make it
amenable to mathematical analysis, and abandoning reality.

Materials science involves many of the pure disciplines
[2,3] and the content is usually of technological interest.
There are two common strands in all of its subdivisions
(metals, ceramics, polymers . . .), experimental character-
ization and mathematical modeling, both of which cover
vast length and time scales in their applications. The exper-
iments collectively generate huge quantities of data, which
are used to infer the properties of matter, or to formulate and
validate theories. The mathematical models include combi-
nations of atomistic calculations, thermodynamics, kinetics,
finite element analysis, etc. Their functions may be catego-
rized as follows [4]:

• Those which lead to unexpected outcomes that can
be verified,

• Those which are created or used in hindsight to
explain diverse observations,
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• Existing models which are adapted or grouped to
design materials or processes,

• Models used to express data, reveal patterns, or for
implementation in control algorithms.

The successful application of the models depends to vary-
ing degrees on the existence of experimental data, simple
observations, insight and knowledge beyond the boundaries
of the pure mathematical framework. The purpose of this
paper is to show how neural networks when used in con-
text, are capable of achieving the goals of materials science
in all of the four functions outlined above.

2. ESSENCE OF THE METHOD

When dealing with difficult problems, it is useful to cor-
relate the results against chosen variables using regression
analysis in which the data are best-fitted to a specified rela-
tionship, which is usually linear. The result is an equation
in which each of the inputs xj is multiplied by a weight
wj ; the sum of all such products and a constant θ then
give an estimate of the output y = ∑

j wjxj + θ . Equations
like these are used widely, for example in the specification
of thermodynamic data during phase diagram calculation
methods. The heat capacity at constant pressure (CP ) is
expressed empirically as a function of the absolute temper-
ature T as follows:

CP = w1 + w2T + w3T
2 + w4

T 2
(1)
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where wi are the fitting constants or weights. The use of
the empirical equations in this case helps create generalized
methods of phase diagram calculations [5–7]. It is well
understood that there is risk in using the relationships
beyond the range of fitted data.

With neural networks, the input data xj are again multi-
plied by weights, but the sum of all these products forms
the argument of a flexible mathematical function, often a
hyperbolic tangent. The output y is therefore a nonlinear
function of xj . The exact shape of the hyperbolic tangent
can be varied by altering the weights (Fig. 1(a)). Further
degrees of nonlinearity can be introduced by combining
several of these hyperbolic tangents (Fig. 1(b)), so that the
neural network method is able to capture almost arbitrarily
nonlinear relationships.

Figure 2 illustrates the complexity of the surface that can
be produced when representing the output y (vertical axis)
as a function of two inputs x1, x2 using just four hyperbolic
tangents:

y = 0.8[tanh{8x1 − 2} + tanh{x2
1 − 8} + tanh{8x2 + 2}

+ tanh{x2
2 − n} + 1] (2)

To summarize, a neural network is an explicit combina-
tion of transfer functions (in our case hyperbolic tangents)
and weights. The number of hyperbolic tangents used is
said to be the number of hidden units. The function for a
network with i hidden units, connecting the inputs xj to
the output y is given by

y = ∑
i w

(2)
i hi + θ(2)

where hi = tanh

(∑
j w

(1)
ij xj + θ

(1)
i

)
(3)

where w represents weights and θ the constants as described
in the context of linear regression. Modeling techniques

Fig. 2 Variation in the output (vertical axis) as a function of
two input variables (horizontal axes), the whole surface being
generated using just four hyperbolic tangent functions.

are sometimes classified as white, gray or black boxes,
with the implication that the white-box model is completely
transparent and comprehensible in its construction, whereas,
the black box is simply a magical instrument which relates
a set of inputs to the output without giving insight into
how the conversion is achieved. Equation 3 is an explicit
statement of the network and it is wrong to call such a
network a black box [8] as is sometimes done [9].

The influence of the inputs on the output variable is,
together with the transfer functions, implicit in the values of
the weights. However, the weights may not always be easy
to interpret given that there may be high-order interactions
between the variables. For example, there may exist more

Fig. 1 (a) Three different hyperbolic tangent functions; the ‘strength’ of each depends on the weights. The diagram illustrates the flexibility
of a hyperbolic tangent. (b) A combination of two hyperbolic tangents to produce a more complex model. Such combinations can be
continued indefinitely to produce functions of ever greater complexity.
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than just pairwise interactions, in which case the problem
becomes difficult to visualize from an examination of the
weights. This visualization problem is a feature of all non-
linear methods, but is not a limitation because it is simple to
use the trained network to make predictions, plot them, and
to see how these depend on various combinations of inputs.

A potential difficulty with the ability to produce com-
plex, nonlinear functions is the possibility of overfitting of
data. To avoid this difficulty, the experimental data can be
divided into two sets, a training dataset and a test dataset.
The model is produced using only the training data. The
test data are then used to check that the model behaves
itself when presented with previously unseen data. This is
illustrated in Fig. 3 which shows three attempts at modeling
noisy data for a case where y should vary with x3. A linear
model (Fig. 3(a)) is too simple and does not capture the real
complexity in the data. An overcomplex function such as
that illustrated in Fig. 3(c) accurately models the training
data but generalizes badly. The optimum model is illus-
trated in Fig. 3(b). The training and test errors are shown
schematically in Fig. 3(d); not surprisingly, the training
error tends to decrease continuously as the model com-
plexity increases. It is the minimum in the test error, which

enables that model to be chosen which generalizes best to
unseen data. Additional methods for avoiding overfitting
by penalizing overly complicated functions are described
elsewhere [10–12].

3. UNCERTAINTIES

When conducting experiments, the noise results in a dif-
ferent output for the same set of inputs when the experiment
is repeated. This is because there are variables, which are
not controlled so their influence is not included in the analy-
sis. The second kind deals with the uncertainty of modeling;
there might exist many mathematical functions which ade-
quately represent the same set of empirical data, but which
behave differently in extrapolation.

The noise in the output can be assessed by comparing the
predicted values (yj ) of the output against those measured
(tj ), for example,

ED ∝
∑

j

(tj − yj )
2. (4)

Fig. 3 Variations in the test and training errors as a function of model complexity, for noisy data in a case where y should vary with x3.
The large, open points were used to create the models (i.e. they represent training data), and the black dots constitute the test data. (a) A
linear function which is too simple. (b) A cubic polynomial with optimum representation of both the training and test data. (c) A fifth
order polynomial which generalizes poorly. (d) Schematic illustration of the variation in the test and training errors as a function of the
model complexity.
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ED is expected to increase if important input variables have
been excluded from the analysis. An equivalent description
is the standard error σSE given by

σSE =
√√√√ n∑

j=1

(tj − yj )2

n2
(5)

Figure 4(a) shows this kind of noise where data have been
fitted to a straight line with a standard error of ±2 in the
estimation of the output y.

Whereas ED and σSE give an overall perceived level of
noise in the output parameter, they are not, on their own,
a satisfying description of the uncertainties of prediction.
By contrast, the uncertainty of modeling is illustrated in
Fig. 4(b), where a set of precise data (2, 4, 6) are fitted to
two different functions, one linear the other nonlinear [13]:

y = −x3

44
+ 3x2

11
+ 34

11
(6)

Both of the functions illustrated precisely reproduce these
data but behave quite differently when extrapolated (or
indeed, interpolated, for x = 3, y = 4.931, not y = 6
according to the linear function). The difference in the pre-
dictions of the two functions in domains where data do not
exist, is a measure of the uncertainty of modeling, since
both functions correctly represent the data x = 2, 4, 6 used
in creating the models. Notice also that unlike the noise,
the magnitude of the modeling uncertainty is not constant,
but varies as a function of the position in the input space.
The uncertainty becomes larger in domains of input space
where knowledge is sparse or nonexistent, Fig. 4(b).

One way of representing the uncertainty, is to create
a large variety of models, all of which reasonably repre-
sent the experimental data. The predictions made by these
models will not be identical; the standard deviation in the
predicted values then is a quantitative measure of the mod-
eling uncertainty.

Figure 5 illustrates the problem; the practice of using
the best-fit function (i.e. the most probable values of the

Fig. 5 Two different functions, each of which explains some
98% of the variation in the output y. And yet, they extrapolate
differently in regions where the data are sparse or noisy. The
difference between these functions is an indication of modeling
uncertainty.

weights) does not adequately describe the uncertainties in
regions of the input space where data are sparse (B), or
where the data are particularly noisy (A).

In MacKay’s method [10,11], the modeling uncertainty
is expressed by not having a unique set of weights, but
rather a probability distribution of sets of weights. This
recognizes the existence of many functions, which can be
fitted or extrapolated into uncertain regions of the input
space, without unduly compromising the fit in adjacent
regions which are rich in accurate data. The error bars
depicting the modeling uncertainty then become large when
data are sparse or locally noisy, as illustrated in Fig. 5.

This methodology has proved to be extremely useful in
materials science [8] where properties need to be estimated
as a function of a vast array of inputs. It is then most
unlikely that the inputs are uniformly distributed in the input
space.

There has been controversy recently about whether
published models are ‘mathematically logical and deter-
mined’, on the basis that inadequate quantities of data may
have been used in creating sophisticated models [14–17].

Fig. 4 (a) Noise. (b) Uncertainty.
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It is important to realize that with neural network mod-
els that indicate modeling uncertainty, the question about
how many data are needed to produce a satisfactory model
becomes less relevant. Insufficient data are associated with
large uncertainties, which the user must then assess to see
whether the prediction is useful or not. Furthermore, in the
Bayesian framework [10,11] there are other parameters
which penalize excessive complexity, resulting automati-
cally in models which are ‘as simple as possible, but not
simpler’.

The argument that there must be more data than fitting
points [14–17] needs qualification in the context of empiri-
cal analysis, i.e. where there are no principles which enable
the actual relationship to be justified. It is suggested that
with the two data, it would not be justified to fit anything
other than a straight line (two fitting parameters). However,
the relationship could equally well be a high-order polyno-
mial with many more fitting parameters than the number of
data. The fact that more than one relationship is possible is
simply a reflection of the modeling uncertainty rather than
a justification for using only two fitting parameters. Further
experiments would be needed to confirm the right form
but neither can be ruled out without access to additional
knowledge such as the underlying physics.

One example where a network in a Bayesian framework
has been used to model the transformation behavior of a
stainless steel using just six data points (some of which
could be regarded as being clustered) illustrates this discus-
sion regarding the quantity of data [18]. Martensite tends to
form when austenite in certain austenitic stainless steels is
plastically deformed, but at large strains the transformation
is suppressed by a phenomenon known as mechanical sta-
bilization [19–29]. Plastic strain therefore first accelerates
transformation and then retards it. Figure. 6 shows that with
just six data, a neural network in a Bayesian framework
with appropriate measures taken to avoid overfitting [18],
has been able to capture correctly the relationship between
martensite fraction and plastic strain. The form of the rela-
tionship is consistent with that expected from a dislocation-
based theory of mechanical stabilization [18,26], in spite
of the fact that the number of fitting parameters is very
large indeed [18].

It is obvious from the discussion above that a failure
to assess the modeling uncertainty and to test the trained
network for generalization may lead to neural networks
which overfit the data since the only measure available to
fix the complexity of the network is the residue between
the measured and calculated values. Mehta et al. [30] have
attempted to avoid overfitting by adding noise to each exist-
ing data vector, thus artificially creating a larger dataset
prior to training. The method requires an essentially sub-
jective assessment of the level of noise that is appropriate.

Fig. 6 Experimental data (points) and a neural network model
(solid curve). The bounding curves represent ±1σ modeling
uncertainties. For details see [[18]].

4. UNEXPECTED OUTCOMES

4.1. Welding Alloys

To discover something novel using a neural network is
particularly rewarding because the method has its back-
ground in empiricism.

It is now some 62 years since it was recognized that
ferritic steels have a ductile-brittle transition temperature
beyond which the mode of fracture changes from cleavage
to one capable of absorbing considerable energy during
fracture [31,32]. It is a long-standing view that the addition
of nickel to ferritic steel improves its toughness [33,34].
It has been suggested that nickel, in effect, enhances the
mobility of dislocations in ferrite, making it more amenable
to plastic deformation and hence avoiding cleavage [35].

The problem of ensuring adequate toughness is acute in
the case of welding alloys where the properties have to be
achieved in the cast-state. In spite of the perceived bene-
ficial influence of nickel, early attempts at making manual
metal arc weld metals containing large nickel concentra-
tions failed to achieve toughness and the reasons for this
were not understood [36].

However, research in high-nickel ferritic welds was stim-
ulated with Murugananth and coworkers [37,38] who dis-
covered, using a neural network model, that at large con-
centrations, nickel is only effective in increasing toughness
when the manganese concentration is small. This is illus-
trated in Fig. 7(a) for tests done at −60 ◦C. Since this rela-
tionship had not been recognized previously, weld metals A
(7Ni–2Mn), B (9Ni–2Mn) and C (7Ni–0.5Mn) were man-
ufactured and tested; the results are illustrated in Fig. 7(b)
and confirm the predictions.

The neural network does not of course indicate a mech-
anism for the degradation of toughness when both the
nickel and manganese concentrations are large. However,
characterization experiments revealed that a coarse phase
(Fig. 8), previously unknown in welds, is induced to form in
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Fig. 7 (a) Combined effect of solutes on the calculated toughness for −60 ◦C, of weld metal produced using arc welding with a heat input
of 1 kJ mm−1, with a base composition (wt%) 0.034 C, 0.25 Si, 0.008 S, 0.01 P, 0.5 Cr, 0.62 Mo, 0.011 V, 0.04 Cu, 0.038 O, 0.008 Ti,
0.025 N, and an interpass temperature of 250 ◦C. (b) Full results for welds A, B, and C.

Fig. 8 The coarse plates are coalesced bainite in a 7Ni-2Mn wt%
weld metal [39–41]. The coalescence process is visible in some
cases, for example the large plate in the top left hand corner of
the image.

these circumstances [39–42]. This coalesced bainite occurs
when the transformation temperatures are suppressed by
alloying such that there is only a small difference between
the bainite and martensite-start temperatures.

Coalesced bainite is the consequence of the merger of
crystallographically identical but adjacent platelets of bai-
nite to form a single, larger plate [43]. The coalescence can
only occur if there is sufficient driving force to sustain the
greater strain energy associated with the coarser plate, and
during the early stages of the transformation of austenite so
that impingement between different crystallographic vari-
ants is minimized [43]. The first condition is satisfied by the
large undercooling. The reason why the coalesced bainite
is detrimental to toughness is because it presents a crys-
tallographically homogeneous microstructure, which does
not deflect the propagation of cleavage cracks. To summa-
rize, the discovery of the coalesced bainite in weld metals

Fig. 9 The microstructure of δ-TRIP steel [45].

is a direct and unexpected consequence of neural network
modeling.

4.2. Case 2: δ-TRIP and Genetic Algorithms

A design problem becomes interesting when the desired
result can be achieved in many different ways. Genetic
algorithms [44] can be combined with neural networks to
search for domains of inputs which lead to a similar output.
The method has been used to pose the following question:
for a given set of properties, can a transformation-induced
plasticity (TRIP)-assisted steel be designed with a minimum
of silicon and a maximum of retained austenite?1

A combination of neural networks and genetic algorithms
has in this way been used to design a novel low-silicon

1 TRIP stands for transformation-induced plasticity. TRIP-
assisted steels are strong and yet have a large uniform ductility
because of the fact that retained austenite transforms into marten-
site during deformation.
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TRIP-assisted steel with a strange microstructure consisting
of δ-ferrite dendrites and a mixture of bainitic ferrite and
carbon-enriched retained austenite Fig. 9. The steel has
been manufactured and tested to reveal a tensile strength
of about 1 GPa and a uniform elongation of 23% [45].

5. EXPLANATION OF DIVERSE OBSERVATIONS

One of the major advantages of neural networks and
similar nonlinear methods is that they have the ability to
indicate the noise associated with the output when dealing
with complicated problems.

Dilatometric techniques are used widely in measuring
the onset of solid-state phase transformations in metals
when they lead to a change in density, for example,
[46–49]. When the transformation occurs during cooling,
the highest temperature at which it is detected is known
as the ‘start-temperature’. Such temperatures are frequently
quoted without error bars.

The analysis of dilatometric data is subjective when
precise measurements are necessary, for reasons discussed
elsewhere [50]. To resolve this problem, a method has
been developed which is fundamentally justified and is
reproducible, the so-called offset method. The details of
this are not relevant here, but in spite of the use of high-
precision instruments, the martensite-start (MS) temperature
was surprisingly found to vary in repeated experiments by
as much as σ = ±12 ◦C.

When this was compared with published neural net-
work models of the MS temperature, created using vast
experimental datasets [51–54], the perceived error was
σ = ±15 ◦C. Although somewhat larger than that associ-
ated with the offset method [50], a greater error is expected
in the neural models because the datasets they use have been
compiled for diverse sources.

These comparisons are valuable because they suggest that
the observed variations in the MS temperatures are not due
to instrumental problems or alloy homogeneity [50]. Pos-
sible explanations, which remain to be explored, include
nonuniform temperatures within the dilatometer samples
which are of finite size. More fundamentally, the early
stages of martensitic transformation are sensitive to the ini-
tial austenite grain structure [55–57]. There is no guarantee
that identical grain structures are generated in every sample.
Martensitic nucleation can occur from arrays of disloca-
tions associated with grain boundaries and therefore may
be sensitive to the nature of those boundaries [58].

6. HYBRID MODELS

There are many kinds of mathematical models devel-
oped in the context of materials science, including ab initio

electron theory, molecular dynamics, thermodynamics, fluid
dynamics, kinetics, finite element modeling, genetic algo-
rithms etc. It is possible that benefits accrue when neural
networks are combined with one or more of these methods.

There is sophisticated theory available for predicting the
steady-state shape of the pool of liquid metal that forms dur-
ing welding. Included in the calculations is heat and fluid
flow, Marangoni effects, gravitational and electromagnetic
effects; the transfer of mass from the welding electrode to
the pool may also be considered [59,60]. The calculations
are time-consuming but have been used to form the inputs
of a neural network model [61,62]. Apart from the prac-
tical advantage of economy in computation times, once a
trained set of networks is created, it is claimed that such a
network should be robust since it is based on computational
data, which satisfy the basic law of mass, momentum and
energy conservation. Whereas this might be an advantage,
it is probable that these basic laws provide an incomplete
description of weld pool phenomena. For example, it is
common practice when dealing with turbulence to simply
increase the viscosity and using this value in streamlined
fluid flow calculations. The effective viscosity is deter-
mined by matching with experimental data [63]. For these
reasons, it remains to be demonstrated whether a neural
network model based on the outputs of other models are
fundamentally better than directly training the network on
experimental data. In particular, it is not clear how a neural
network trained on the output of physical models actually
captures the principles of the physical models and more
tests need to be done to study the long-range extrapolation
behavior of such models.

Attempts have also been made to incorporate the outputs
of thermodynamic models as additional data in the creation
of neural networks on the basis of experimental datasets.
Examples include work in the context of creep deformation
[38,64] and phase transformation theory [65,66].

7. EXPRESSION OF DATA AND CONTROL
ALGORITHMS

Neural networks are a convenient way of quantitatively
representing complex data and the resulting mathematical
functions from a trained network can be evaluated very
rapidly, typically within milliseconds of computing time.
This makes trained networks extremely useful in control
algorithms. For example, the rolling process in the produc-
tion of steel plates involves a very large number of variables
including the chemical composition, the dimensions and
temperature of the slabs when they enter the mill, the rolling
reduction, the time between passes, the temperature at each
stage of the process and the final coiling conditions. In
one case, the neural network model created to calculate the
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Fig. 10 The yield to ultimate tensile strength ratio as a function
of the carbon and manganese concentrations of hot-rolled steels
[67].

tensile properties of the steel following hot-rolling included
108 variables [67]. It is an amazing achievement that mod-
els like these are now used for the on-line control and
automation of entire rolling mills [68–71].

Whereas the primary purpose of this particular kind of
work is in control engineering, the analysis is complex and
nonlinear, which means that unexpected and elegant rela-
tionships may emerge which are not obvious from limited
experiments. For example, Fig. 10 shows how the yield to
ultimate tensile strength ratio varies as a function of the key
solutes, carbon and manganese. A low ratio is essential in
safe design against calamities such as earthquakes, because
it is necessary then to sustain a lot of plasticity prior to
fracture during dynamical loading [72,73].

The trends illustrated in Fig. 10 have in hindsight been
metallurgically interpreted, in terms of the fraction of
pearlite in the microstructure [67].

8. SOME QUIRKS

8.1. Bounding the Output

A neural network like any other empirical method carries
the risk of making predictions, which are physically impos-
sible because neither its inputs nor its outputs are in general
bounded. The fraction ψ of a phase can only take contin-
uous values between 0 and 1; to cope with this, Yescas
et al. [74,75] used a a double logarithm function to ensure
0 ≥ ψ ≤ 1. This form is consistent with the theory of solid-
state transformations [76–78] with ψ = 1 − exp{−ktn}
where k and n are constants and t is the time. It follows that
ln{− ln(1 − ψ)} should vary with n ln t . It turns out that it
is only when ln t is used as an input and the double log-
arithm as the output, rather than the raw fraction, that the
variation in the latter can be correctly captured by the neu-
ral network [74,75]. In another context, Sourmail et al. in
their work on the elevated temperature properties of steels

modeled the logarithm of creep rupture life rather than the
life itself [79] on the grounds that in a plot of stress versus
life, the life extends dramatically as the stress is decreased
towards zero. The life should be infinite at zero stress, but
it clearly cannot be negative and this is consistent with the
use of a logarithm of the life.

It is unlikely, however, that such methods can be applied
generally when the logarithmic form is not physically jus-
tified. Consider the single logarithm which confines the
output y ′ to be greater than zero in the function ln{(y −
ymin)/(ymax − ymin)} where ymax and ymin are the maxi-
mum and minimum values of y. There arises a difficulty
in setting the value of ymax , which in principle can take
any value in excess of the maximum in the training set.
Figure 11 shows how two different choices for ymax give
dramatically different predictions of the Charpy properties
when the model is deliberately extrapolated over a long
range. The reason why, in the second case, the extrapolation
ends up at about zero for high temperatures (Fig. 11(b)) is
that the training of the neural network is confined to values
much less than ymax so the model perceives that most values
should be confined to the lower end of the scale. In contrast,
setting ymax to a value close to that in the experimental set
allows the curve to increase slowly towards ymax , but this

Fig. 11 Extrapolation of models in which the toughness (output)
was modeled as a single logarithmic function ln{(y − 0)/(ymax −
0)}, with (a) ymax = 357 J and (b) ymax = 3570 J, [80].
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increase cannot then be extrapolated indefinitely and hence
the saturation.

9. SIMPLIFICATION

The design of steels for the fusion reactor programme
requires predictions to be made well-beyond the range of
current knowledge and the experimental facilities needed to
validate the calculations will not be available for more than
a decade. There are therefore efforts to estimate the influ-
ence of large doses of energetic neutrons on the properties
of candidate steels [81–84]. Most of these efforts include
as many variables in the analysis as the availability of the
data will permit, on the grounds that Bayesian methods
are robust enough to minimize the influence of irrelevant
variables, thus avoiding the risk of preconceived bias.

A recent analysis [85] has taken a different approach
aimed at ‘dimensionality reduction’, i.e. simplification of
the problem prior to creating models. Steels contain a
myriad of solutes and an attempt was made to use linear
combinations of solutes to reduce the number of input
variables. The procedure involved keeping aside high dose-
per-atom data in order to assess the behavior of networks
created in this way. The residue between the calculated
values of these test data and actual measurements was used
as a measure of success.

The physical significance of the linear combination of
solute concentrations is not clear, and perhaps a better
assessment of the model would involve the study of a
large number of trends in the output as a function of the
inputs, including large extrapolations; a study of the residue
alone is not sufficient to decide whether the technique has
achieved better performance.
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