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1. Introduction

Polycrystalline materials such as steel and aluminium are
frequently thermomechanically processed to optimise prop-
erties and achieve the required shape. Of particular interest
is the consequential change in the amount of grain bound-
ary area per unit volume (SV) and grain edge length per unit
volume (LV), parameters which are important in the mathe-
matical modelling of phase transformations1–8) and recrys-
tallisation processes in general.9–12) Underwood expressed
these parameters as a function of the extent of deformation
using stereological methods, which have the advantage of
avoiding assumptions about grain shape as long as space is
filled.13) The method cannot however be adapted to complex
combinations of deformations.

Other approaches involve analytical equations or numer-
ical computations based on a variety of approximations 
of the three-dimensional shape of grains, for example,
spheres, cubes and tetrakaidecahedra.14–24) These methods
can be adapted to combinations of deformations24) but they
assume that all the grains are exactly identical in shape and
size. The purpose of the present work was to develop a cor-
responding model for a non-uniform grain structure. It
could be argued that if the normals of all surfaces and all
edges are uniformly distributed in space, calculations of the
new values after deformation only depend on the initial in-
clinations of each segment or edge and are unaffected by
their neighbours. In such cases, the initial topology should
not affect the result. However, as will be seen later, new
edges and inclinations are created when a non-uniform
grain structure is deformed so it remains relevant to study
this problem in detail.

2. Method

In previous work the tetrakaidecahedron was represented
by a set of vectors parallel to the edges of the shape.20,24)

The deformation is then implemented by multiplying each

of these vectors by an appropriate deformation matrix; the
resultant vectors then define the new surfaces and edges to
enable the calculation of SV and LV respectively. Only one
tetrakaidecahedron needs to be explicitly treated since all
others are identical. This simplification is no longer possi-
ble when the grain structure is not uniform. Every single
edge in the polycrystal would need to be treated separately,
a process which is computationally tedious.

A different approach is therefore adopted, in which a uni-
form array of identical tetrakaidecahedra is perturbed at all
the vertices using a stochastic process to generate a non-
uniform grain structure.

Consider a single tetrakaidecahedron grain which has 24
vertices, 8 hexagonal and six square faces, and 36 edges,
each of length a. Only six vectors are needed to completely
describe a single grain. The distance between opposing
square faces is designated L�2√2ā, Fig. 1. The orthogonal
coordinates x, y and z axes are defined normal to the square
faces. Uniformly sized tetrakaidecahedra are then stacked
on to a body-centred cubic lattice with lattice parameter L
as illustrated in Fig. 1. The volume considered in the calcu-
lations that follow has the dimensions 20L�20L�15L with
L�5 mm, enclosing a total of 12 000 grains.

Each surface is then shared by two grains, each edge by
three and each vertex by four grains. For this uniform array
of grains, the edges are henceforth referred to as the pri-
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Fig. 1. (a) The Kelvin tetrakaidecahedron. The x, y and z axes
are normal to the square faces. (b) Space-filling stack of
eight such tetrakaidecahedra of identical size.



mary grain edges.
A non-uniform but space-filling grain structure is then

generated by a topological transformation in which the ver-
tices are randomly perturbed to new positions. The result-
ing non-uniform grain still has 24 vertices, a maximum of
44 triangular surfaces and a maximum of 66 edges of vari-
ous lengths—66 vectors are therefore needed to describe
each grain. The additional edges are henceforth referred to
as the secondary and connect just two grains; they occur in
real grain structures, appearing as protrusions in two di-
mensional sections (Fig. 2). Note that the geometry of each
planar surface can be any polygon, not simply triangular.

There are two topological transformations created to
achieve the non-uniform grain structure. The first is desig-
nated the randomised vertex method (RVM), in which the
vertex position r0 is transformed into the new location r ac-
cording to

.........................(1)

where w�1 is a weight which defines the extent of the fluc-
tuation, and 0�x�1 is a random number.

Figure 2 shows a grain generated using the random per-
turbations Eq. (1) and the corresponding set of eight grains
similarly generated. The grain size distribution itself is nat-
urally affected by such a transformation; Fig. 3 shows how
the distribution of grains changes from a uniform grain vol-
ume of 62.5 mm3 as a function of the weight w. The method
clearly is successful in producing a three-dimensional dis-
tribution of grain sizes. The second topological transforma-
tion is the rescale randomised vertex method (RRVM) in
which the vertex is modified as follows:

|r�rref|�z |r0�rref|.............................(2)

where rref is a reference point inside the grain, 0�z�1 is a
weight factor which can be defined in a number of ways.
For the present purpose, four cases are considered:

Case 1: z�x
Case 2: z�√x
Case 2: z�x1/4 ............................................................(3)

Case 2: z�exp{�2(x�1)2}
In this, z is a fixed number which is taken from x where

the latter is equivalent to white noise which is evenly dis-
tributed between 0 and 1. The manipulations in Eq. (3)
change this into what is known as coloured noise, which
makes some values more probable than others. For 12 000
grains, z is chosen 12 000 times using x . The outcomes of
this process, beginning with a uniform array of tetrakaidec-
ahedra, each of volume 62.5 mm3, are shown in Fig. 4.
Some two-dimensional sections are illustrated in Fig. 5.

3. Deformation

Once the grain structure is defined, it is possible to ho-
mogeneously deform it by applying an appropriate mathe-
matical deformation matrix to each vertex. The details have
been described thoroughly in a previous paper24) and hence
are not repeated here. The matrix representations of a vari-
ety of common deformations are also listed there, and it is
emphasised that the method can be used for arbitrary ho-
mogeneous deformations. We now proceed to compare the
changes in grain surface and edge length for uniform24) and

r r
w
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Fig. 2. (a) A non-uniform grain generated using RVM with
w�0.5. Note the additional secondary edges on the faces
of the grain, some of which are identified by the arrows.
(b) A space-filling stack of eight non-uniform grains sim-
ilarly generated. Notice that each grain is different. (c) A
crystallographic orientation image of a non-uniform
grain structure in a steel, illustrating real secondary edges
(courtesy of Ms Lan Huifang, Northeastern University,
ShenYang, China).

Fig. 3. Grain volume distribution using the RVM and a variety of
weights. The total number of grains is 12 000. The num-
ber plotted on the vertical axis represents the value for
x�0.5 mm3.

Fig. 4. Grain volume distribution using the RRVM topological
transformation for the four cases corresponding to Eq. (3)
with 0�x�1. The total number of grains is 12 000. The
number plotted on the vertical axis represents the value
for x�3 mm3.



non-uniform grain structures.
In Fig. 6, SV/SV0

represents the amount of grain surface
per unit volume normalised by the quantity before deforma-

tion; LV/LV0
is the corresponding ratio for grain edges (in-

cluding both primary and secondary edges). Calculations
are shown for eight kinds of non-uniform grain structures
(cases 1–4, with two values of w at 0 and 0.5). The individ-
ual cases are not distinguished for the sake of clarity given
that they produce similar results, all of which reasonably
match the curve representing the analytical solution for a
uniform grain structure.24) It is evident that the difference
brought about by introducing a non-uniform grain structure
on the grain surface and edge-length ratios is not signifi-
cant.

The reason why the results do not change much when the
grain structure becomes non-uniform is evident from Fig.
7, where it is seen that SV0

and LP
V0

(primary edge length per
unit volume) do not change dramatically when there is a
distribution of grain sizes and shapes within the reasonable
limits considered here.

It is worth discussing the physical significance of the sec-
ondary edges LS

V0
. In our models, the grain faces are geo-

metrically constrained to be flat, for both uniform and non-
uniform grain structures. In order to accommodate non-uni-
formity whilst at the same time fill space, it is necessary
during the topological transformations to introduce these
secondary edges. As pointed out earlier, these can be real,
but many of them could be regarded simply as introducing
curvature in the grain faces of non-uniform structures. This
would, given the opportunity, drive grain growth.

Figure 8 shows the effects of axisymmetric deformations
(e.g., wire drawing, forging) on the surface and edge ratios.
The uniformity of grain structure again does not make
much of a difference to the results. For the axisymmetric
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Fig. 5. (a) Section (at x�57 mm) through a regular stack of uni-
form tetrakaidecahedra with L�5 mm. (b) Same section
after the stack was transformed by RVM with w�0.5. (c)
As (b) but with RRVM Case 2 transformation added.

Fig. 6. Calculations for plane strain deformation. (a) SV/SV0
, (b) LV/LV0

. The curves represent the analytical solutions for a
uniform set of space-filling tetrakaidecahedra. The points are from calculations for a non-uniform set of space-
filling grains. There are eight points per value of strain, representing cases 1–4 for two values of w at 0 and 0.5.

Fig. 7. Parameters describing the undeformed state. The super-
scripts P and S refer to primary and secondary respec-
tively. On the horizontal axis, 0 represents a uniform
grain structure, 1–4 correspond to cases 1–4 with w�0,
and 5–8 for cases 1–4 with w�0.5.

Fig. 8. (a) Axisymmetric tension. (b) Axisymmetric compres-
sion. The curves are calculations for uniform grain struc-
tures, and the points are data for the eight cases of non-
uniform grain structures.



compression case, the ratio LV/LV0
is smaller than expected

from uniform grains. This is because the non-uniform
grains are less isotropic. Edges can contract as well as ex-
pand during compression depending on their orientation
relative to the principal axes of the deformation. The effect
of orientation is far smaller for a regular tetrakaidecahedron
than for an object with large anisotropy (cf. Figs. 2, 824)).

4. Summary

We have verified that the same general behaviour occurs
as described above for simple shear, cross-rolling and com-
binations of plane-strain compression and simple shear. In
other words, the introduction of non-uniformity in the grain
structure does not sufficiently affect the calculated changes
in grain surface area and grain edge as a function of defor-
mation.

The computer programs associated with this work are
available on www.msm.cam.ac.uk/map/mapmain.html
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