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‘ Introduction I

r i f i in st
1. Solidification

2. Phase transformation from austenite to ferritic phase
(during hot rolling or subsequent annealing).

3. Deformation
(during cold or warm rolling, deep drawing, stretching,...)

4. Recrystallization and grain growth.
(during annealing)
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‘ Introduction I

Material Properties

Processing

Conditions : :
» mechanical properties

(e.g.: yield strength, tensile strength,
elongation, drawability,...)

« electrical properties

e magnetic properties

e hot rolling
e cold rolling
« annealing

e chemistry

Physical Material Parameters:

e grain size
« second phase, inclusions, precipitates,...

A « texture
e ——
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Polycrystalline material = aggregate of single crystallites
with individual orientation w.r.t. sample reference system.
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Textured Material = Material in which the individual
crystallites occupy preferrential orientations

>< Textureless or Random Textured material
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| Crystallographic Orientation I ND A

Kc = crystal reference system
Ks = sample reference system D
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I Representation of single crystal orientations I

— > Transformation from sample to crystal reference system
= Three degrees of freedom

1. Orientation Matrices

e | s %gz’kgjkzaij

[g]: 821 822 833
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2. Miller Indices  (for sheet materials)

(hkDuv wj
(hkl)

|—> crystallographic plane (hkl) // rolling plane
[uvw]

|——> crystallographic direction [uvw] // rolling direction
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Axis Angle Pair

& N pX;
X
KS / Kc
| \ ‘)
X
X
[abc]®

Rodrigues-Frank representation
R=N. tan(w/2)

it
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Euler Angles:

Bunge notation: @,, @, ¢,

{cl

Roe notation: ¥, =, @
(2nd rotation around y’)

(d)
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| The Orientation Distribution Function (ODF) I

dv
v - f(g)dg

ﬁf\ dV/V is the volume fraction of orientation in an infinitesima

environment of g (g+dg)
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| Euler Space I

d Properties:
cyclic: 0<¢@,<2rn
= 0<P<nm

Ty 20,0.9) e

non-bijective
- ¢,
’ non-Euclidean:
dg = sin® do, d® do,

____________________
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Iso-intensity surfaces
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Iso-intensity lines on equidistant sections
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I Crystal Symmetry I

Definition of object symmetry
Symmetry operators

“Object has not changed after being subjected to
symmetry operators”

Symmetry axes: 2-fold, 3-fold, 4-fold,....
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| Crystal Symmetry I

Cubic crystal (BCC, FCC, Primitive)

Q:) 24 equivalent ways of attaching right-handed
orthogonal reference system to a cube

Q> 24 symmetry elements in cubic symmetry group

% 24 symmetrical equivalent points to represent one single
cubic orientation in Euler space

LA
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| Crystal Symmetry I

Cubic crystal (BCC, FCC, Primitive)

Total Euler Space Fundamental Zone:
0<@,<2m V= v
O0<db<nrm 24
0<@, <2m Qb No Linear Boundaries

2N T2T Q:) Convenient Zone:
V= [ | [sinodedode, = 8n
000 0<@,<2rm
0<d<m/2
0<@, <m/2
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| Sample Symmetry I
E.g. : rolled sample

after rolling
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Orthorombic Sample Symmetry = 4 symmetry elements

S
S

Further reduction in fundamental zone of Euler Space
with factor 4

(Convenient) Fundamental zone for orthorombic sample
and cubic crystal symmetry:

0<@,<m2
0<d<m2
0<@, <m/2
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For BCC materials (e.g. low carbon steels) :

All important rolling and recrystallization components
are represented in @, = 45° section (with boundaries 0-90°)

(001)[110] (001)[010] (001)[110]
. § = F 1 I’T 1 1 : | ’
o fibre g
(113)[110] ]
(1zpto;  Yfibre
(223)[110] B ;
aipfory (111Y112]
= 4 $
(I1DIT0]  (q1pp2y
(554][225]
(110)[170] (110)[001]
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| Sample Symmetry I ND

E.g. : rolled sample
near surface

(LT T T T T T

_.///—'

. =

before rolling

N

® > RD

after rolling

ﬁ 1 two-fold axes: TD === monoclinic sample symmetry
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Monoclinic Sample Symmetry = 2 symmetry elements

Q} Reduction in fundamental zone of Euler Space
with factor 2

% (Convenient) Fundamental zone for monoclinic sample
and cubic crystal symmetry:

-Tt/2 < @ <T/2
0<®<m?2
0<@, <m/2
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The Pole Figure I

NO

reference
sphere

crystal

sheel projection

plane

Stereographic projectior
of three <100> poles
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| The Pole Figure I

RD

\ pole density

o T

{d)  projecrion plane

/\
!
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| The Pole Figure I

+ Distribution of <hklI> crystallographic poles w.r.t.
to sample reference system

+ Sample reference system + crystal pole <hkl> must be
represented in the pole figure

+ Displays the sample symmetry
(orthorombic vs. monoclinic symmetry)

+ Cannot represent the complete texture

UNIVERSITY of GHENT

25



| The Inverse Pole Figure I

+ Distribution of sample direction (e.g. RD, TD or ND) w.r.t
to crystal reference system

+ Crystal reference system + sample direction must be
represented in the pole figure

+ Displays the crystal symmetry

+ Cannot represent the complete
texture

110
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| Measuring Pole Figures by X-ray Diffraction I

Bragg diffraction

, / ‘2dsin93=nkl
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The Texture Goniometer

Diffraction vector = fixed
Sample rotates
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Diffraction vector k describes concentric circles on
stereographic projection

(hkI)
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| Measured Pole Figure I (orthorombic symmetry)
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| Measured Pole Figure I

14 20 8 40 56

(monoclinic symmetry)
8 i 32 50
.1 k"
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| Pole Figures Inversion I
1 2T
Pty (0 ®) =5~ [ £(@1,0,92 T
0

I" denotes path through E.S corresponding to rotation about (hkl)
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| Pole Figures Inversion I (Harmonic Method)

oo M(1)N(1)
f(91,0,92)=2 2 X Cl 1 (901,0,9,)
1=0p=1 v=1
oo N(I)
PO, P) = X 2 k[ (6. 9)
1=0v=1
T1 = generalized spherical harmonics
kfl = symmetrized spherical harmonics
F = pole figure coefficients (known)

C = ODF coefficients (unknown)
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‘ Transformation texture of a low carbon steel I

FCC === PBCC

Bain
(001yy// (001)ax
[001]y// [001]cx

Gy

<001>45deg

Kurdjumow-Sachs
(111)y// (110)cc | 4mb| <112>90deg
[101]y// [111]e
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l Transformation texture of a low carbon steel '

Recrystallized i
Austenite
2 | e - |
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| Transformation texture of a low carbon steel I

| : O 0Ny

\/\\ //\’ \@ (i

Deformed - ) Ul . = |
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| Deformation texture of a low carbon steel I

Taylor Theory

Basic Assumptions:
e macroscopic strain = microscopic strain
« dissipated plastic power is minimized

———» Imposed displacement tensor E
accommodated by combination of 5 slip systems (out of 24)

Crystal rotation:
initial orientation g, —— final orientation g
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| Deformation texture of a low carbon steel I

[11-1]

/

Dislocation Glide
Slip planes: {110} + {211}

Slip directions: <111>

24 slip systems
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| Deformation texture of a low carbon steel I

simulate(

, measured
¥ 3

Hot Band Text. Cold Rolling Text.
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| Recrystallization texture of a low carbon steel I

60s
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