Introduction to Quantitative Texture Analysis

L. Kestens

University of Gent, Laboratory for Iron and Steelmaking, Gent, Belgium

Introduction

Texture forming transformations in steels:

- 1. Solidification
- 2. Phase transformation from austenite to ferritic phase (during hot rolling or subsequent annealing).
- Deformation (during cold or warm rolling, deep drawing, stretching,...)
- Recrystallization and grain growth. (during annealing)

Introduction

Processing Conditions

- hot rolling
- cold rolling
- annealing
- chemistry

Material Properties

- mechanical properties (e.g.: yield strength, tensile strength, elongation, drawability,...)
- electrical properties
- magnetic properties

Physical Material Parameters:

- grain size
- second phase, inclusions, precipitates,...
- texture

Polycrystalline material = aggregate of single crystallites with individual orientation w.r.t. sample reference system.

Textured Material = Material in which the individual crystallites occupy preferrential orientations

>< Textureless or Random Textured material

Representation of single crystal orientations

Transformation from sample to crystal reference system = Three degrees of freedom

1. Orientation Matrices

$$[g] = \begin{bmatrix} RD & TD & ND \\ g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{33} \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \qquad \sum_{k} g_{ik} g_{jk} = \delta_{ij}$$

$$\sum_{k} g_{ki} g_{kj} = \delta_{ij}$$

Euler Angles:

Bunge notation: φ_1 , Φ , φ_2

Roe notation: Ψ , Ξ , Φ (2nd rotation around y')

The Orientation Distribution Function (ODF)

$$\frac{dV}{V} = f(g)dg$$

dV/V is the volume fraction of orientation in an infinitesimal environment of g ($g\pm dg$)

Iso-intensity surfaces (b) (c) (d)

Iso-intensity lines on equidistant sections

units = x random intensity

Crystal Symmetry

Definition of object symmetry Symmetry operators

"Object has not changed after being subjected to symmetry operators"

Symmetry axes: 2-fold, 3-fold, 4-fold,....

Crystal Symmetry

Cubic crystal (BCC, FCC, Primitive)

24 equivalent ways of attaching right-handed orthogonal reference system to a cube

24 symmetry elements in cubic symmetry group

24 symmetrical equivalent points to represent one single cubic orientation in Euler space

Crystal Symmetry

Cubic crystal (BCC, FCC, Primitive)

Total Euler Space

$$0 < \phi_1 < 2\pi$$

 $0 < \Phi < \pi$
 $0 < \phi_2 < 2\pi$

$$V = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\pi} \sin \phi d\phi_1 d\phi d\phi_2 = 8\pi^2$$

Fundamental Zone:

$$V' = \frac{V}{24}$$

No Linear Boundaries

Convenient Zone:

$$\begin{array}{l} 0 < \phi_1 < 2\pi \\ 0 < \Phi < \pi/2 \\ 0 < \phi_2 < \pi/2 \end{array}$$

Orthorombic Sample Symmetry = 4 symmetry elements

Further reduction in fundamental zone of Euler Space with factor 4

(Convenient) Fundamental zone for orthorombic sample and cubic crystal symmetry:

$$\begin{vmatrix} 0 < \varphi_1 < \pi/2 \\ 0 < \Phi < \pi/2 \\ 0 < \varphi_2 < \pi/2 \end{vmatrix}$$

Monoclinic Sample Symmetry = 2 symmetry elements

Reduction in fundamental zone of Euler Space with factor 2

(Convenient) Fundamental zone for monoclinic sample and cubic crystal symmetry:

$$\begin{vmatrix} -\pi/2 < \phi_1 < \pi/2 \\ 0 < \Phi < \pi/2 \\ 0 < \phi_2 < \pi/2 \end{vmatrix}$$

The Pole Figure

- Distribution of <hkl> crystallographic poles w.r.t. to sample reference system
- Sample reference system + crystal pole <hkl> must be represented in the pole figure
- Displays the sample symmetry (orthorombic vs. monoclinic symmetry)
- Cannot represent the complete texture

The Inverse Pole Figure

- Distribution of sample direction (e.g. RD, TD or ND) w.r.t to crystal reference system
- Crystal reference system + sample direction must be represented in the pole figure
- Displays the crystal symmetry
- Cannot represent the complete texture

The Texture Goniometer

Diffraction vector = fixed Sample rotates

Pole Figures Inversion

$$p_{(hkl)}(\chi,\varphi) = \frac{1}{2\pi} \int_{0}^{2\pi} f(\varphi_1, \varphi, \varphi_2) d\Gamma$$

 Γ denotes path through E.S corresponding to rotation about (hkl)

$$F_l^{\nu} = \frac{4\pi}{(2l+1)} \sum_{\mu=1}^{M(l)} C_l^{\mu\nu} \dot{k}_l^{*\mu}(\xi, \eta)$$

Pole Figures Inversion

(Harmonic Method)

$$f(\phi_1, \phi, \phi_2) = \sum_{l=0}^{\infty} \sum_{\mu=1}^{M(l)} \sum_{\nu=1}^{N(l)} C_l^{\mu\nu} \ddot{T}_l^{\mu\nu} (\phi_1, \phi, \phi_2)$$

$$p(\chi, \phi) = \sum_{l=0}^{\infty} \sum_{\nu=1}^{N(l)} F_l^n \dot{k}_l^n(\chi, \phi)$$

 $\ddot{T}_l^{\mu\nu}$ = generalized spherical harmonics

 \dot{k}_1^n = symmetrized spherical harmonics

F = pole figure coefficients (known)

Deformation texture of a low carbon steel

Taylor Theory

Basic Assumptions:

- macroscopic strain
 microscopic strain
- · dissipated plastic power is minimized

Imposed displacement tensor E accommodated by combination of 5 slip systems (out of 24)

Crystal rotation: initial orientation $g_i \longrightarrow$ final orientation g_f

Deformation texture of a low carbon steel

Dislocation Glide

Slip planes: $\{110\} + \{211\}$

Slip directions: <111>

24 slip systems

