Simulation and Kinetics of Grain-Boundary Nucleated Phase Transformations

E.A. Jägle¹, E.J. Mittemeijer^{1,2}

¹Max Planck Institute for Metals Research, Stuttgart, Germany ²Institute for Materials Science, University of Stuttgart, Germany

PTM 2010-06-11

The framework for JMAK-like kinetics

The framework for JMAK-like kinetics

example: Johnson-Mehl-Avrami-Kolmogorov equation:

$$f(t) = 1 - \exp(-kt^n)$$

$$\mathrm{d}f = (1-f)\,\mathrm{d}f^{\mathrm{ex}}$$

¹ Bruna et al., J. Appl. Phys. 100 (2006) 054907 / ² Godiksen et al., Scripta Mater. 58 (2008), 279

$$df = (1 - f) df^{\text{ex}}$$

hard impingement

violated e.g. if diffusion fields overlap

e.g. Phase-Field simulations¹

¹ Bruna et al., J. Appl. Phys. 100 (2006) 054907 / ² Godiksen et al., Scripta Mater. 58 (2008), 279

¹ Bruna et al., J. Appl. Phys. 100 (2006) 054907 / ² Godiksen et al., Scripta Mater. 58 (2008), 279

hard impingement equiaxed growth random nucleation violated e.g. if violated e.g. if product violated e.g. if nuclei diffusion fields overlap phase grows as platelets form at grain boundaries (GBN) e.g. Phase-Field e.g. Monte-Carlo simulations¹ simulations² or

¹ Bruna et al., J. Appl. Phys. 100 (2006) 054907 / ² Godiksen et al., Scripta Mater. 58 (2008), 279

Cellular Automata

Approaches for kinetics with grain-boundary nucleation

1. modified impingement correction⁴: $df = (1 - f)^{\xi} df^{ex}$

2. Cahn's treatment³:

- random nucleation on randomly distributed planes
- on plane: $dO = (1 f_O) dO^{ex}$
- between planes: $dV = (1 f_V) dV^{ex}$
- →Problem treatable by splitting one nonrandom process in two random processes

3. Geometrical Simulations

Geometrical simulations⁵

- use nucleation and growth rates, \dot{N} and v, as in kinetic model
- discretise time and space (3D)
- assume hard impingement and interface-controlled growth
- \rightarrow impingement automatically taken into account

 $t = t_n$

 \Rightarrow very efficient simulation method

typically 700^3 voxel, >50k grains, simulation time 5-10 min

Geometrical simulations⁵

- use nucleation and growth rates, \dot{N} and v, as in kinetic model
- discretise time and space (3D)
- assume hard impingement and interface-controlled growth
- \rightarrow impingement automatically taken into account

$$t = t_{n+1}$$

 \Rightarrow very efficient simulation method

typically 700^3 voxel, >50k grains, simulation time 5-10 min

1.6

microstructural path

0.12

radial distribution function (RDF)

Simulation results - Cahn's model (random planes)

random nucleation on randomly distributed planes:

- deviation from JMAK if S_V^{GB} small / if parent GS > product GS
- kinetics: slower than JMAK
- GSD: higher number of small grains, broader
- reason: nucleation sites are strongly correlated

Grain-Boundary Nucleated Phase Transformations / isothermal transformation, continuous nucleation 22

Simulation results - Cahn's model (random planes)

random nucleation on randomly distributed planes:

- deviation from JMAK if S_V^{GB} small / if parent GS > product GS
- kinetics: slower than JMAK
- GSD: higher number of small grains, broader
- reason: nucleation sites are strongly correlated

Grain-Boundary Nucleated Phase Transformations / isothermal transformation, continuous nucleation 23

Simulation results - Cahn's model (random planes)

random nucleation on randomly distributed planes:

- deviation from JMAK if S_V^{GB} small / if parent GS > product GS
- kinetics: slower than JMAK
- GSD: higher number of small grains, broader
- reason: nucleation sites are strongly correlated

Grain-Boundary Nucleated Phase Transformations / isothermal transformation, continuous nucleation 24

Grain-boundary nucleation: general approach

- 1. influence of the parent microstructure
- 2. influence of the parent \rightarrow product kinetics
- 3. kinetic models for GBN transformations

test various parent microstructures, keep all else identical:

- 1. random nucleation on random planar GBs (Cahn's model)
- 2. random nucleation on nonrandom GBs
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N}=0.01$
 - isothermal, continuous nucleation
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N} = 100$
 - pre-existing nuclei
 - result of grain growth simulation (MC)

test various parent microstructures, keep all else identical:

- 1. random nucleation on random planar GBs (Cahn's model)
- 2. random nucleation on nonrandom GBs
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N} = 0.01$
 - iso*thermal*, continuous nucleation
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N} = 100$
 - pre-existing nuclei
 - result of grain growth simulation (MC)

test various parent microstructures, keep all else identical:

- 1. random nucleation on random planar GBs (Cahn's model)
- 2. random nucleation on nonrandom GBs
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N}=0.01$
 - iso*thermal*, continuous nucleation
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N} = 100$
 - pre-existing nuclei
 - result of grain growth simulation (MC)

test various parent microstructures, keep all else identical:

- 1. random nucleation on random planar GBs (Cahn's model)
- 2. random nucleation on nonrandom GBs
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N}=0.01$
 - isothermal, continuous nucleation
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N} = 100$
 - pre-existing nuclei
 - result of grain growth simulation (MC)

test various parent microstructures, keep all else identical:

- 1. random nucleation on random planar GBs (Cahn's model)
- 2. random nucleation on nonrandom GBs
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N}=0.01$
 - isothermal, continuous nucleation
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N} = 100$
 - pre-existing nuclei
 - result of grain growth simulation (MC)

test various parent microstructures, keep all else identical:

- 1. random nucleation on random planar GBs (Cahn's model)
- 2. random nucleation on nonrandom GBs
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N}=0.01$
 - isothermal, continuous nucleation
 - iso*chronal*, cont. nucl., $Q_{\rm G}/Q_{\rm N} = 100$
 - pre-existing nuclei
 - result of grain growth simulation (MC)

transformed fraction: random planes < simulation < random, bulk</p>
strongest deviation from random, bulk nucleation kinetics if parent microstructure has a broad GSD with many small grains

transformed fraction: random planes < simulation < random, bulk
 strongest deviation from random, bulk nucleation kinetics if parent microstructure has a broad GSD with many small grains

2. Influence of the parent \rightarrow product kinetics

parent microstructure: random, bulk nucleation, pre-existing nuclei

simulations using various parent → product kinetics:

- pre-existing nuclei
- continuous nucleation, iso*thermal*
- cont. nucl., iso*chronal*, $Q_{\rm G}/Q_{\rm N} = 100$
- cont. nucl., iso*chronal*, $Q_{\rm G}/Q_{\rm N}=0.2$

strongest deviation from random, bulk nucleation if nucleation predominantly at the beginning of the transformation

fitting various models to simulated data (known inputs):

- 1. JMAK impingement: $df = (1 f) df^{ex}$
- 2. modified JMAK impingement: $df = (1 f)^{\xi} df^{ex}$
- 3. Cahn's model: $dO = (1 f_O) dO^{ex}$ and $dV = (1 f_V) dV^{ex}$
- 4. modified Cahn model: $dO = (1 f_O) dO^{ex}$ and $dV = (1 f_V)^{\xi} dV^{ex}$

fitting various models to simulated data (known inputs):

- 1. JMAK impingement
- 2. modified JMAK impingement
- 3. Cahn's model
- 4. modified Cahn model

fitting various models to simulated data (known inputs):

- **×** 1. JMAK impingement \rightarrow no fit using N and v
 - 2. modified JMAK impingement
 - 3. Cahn's model
 - 4. modified Cahn model

Grain-Boundary Nucleated Phase Transformations

fitting various models to simulated data (known inputs):

- ▶ 1. JMAK impingement \rightarrow no fit using \dot{N} and v
- ✓ 2. modified JMAK impingement \rightarrow good fit using ξ
 - 3. Cahn's model
 - 4. modified Cahn model

fitting various models to simulated data (known inputs):

- ▶ 1. JMAK impingement \rightarrow no fit using \dot{N} and v
- ✓ 2. modified JMAK impingement \rightarrow good fit using ξ
- ✗ 3. Cahn's model

 \rightarrow good fit, but incorrect results

4. modified Cahn model

Conclusions

- geometrical simulations are a useful tool to study phasetransformation kinetics and microstructure
- Grain-boundary nucleation kinetics:
 - random planes nucleation < simulation < random, bulk nucleation
- transformation most influenced by GB nucleation if
 - parent microstructure has broad GSD with many small grains
 - nucleation takes place predominantly at the beginning of the transformation
- modified impingement correction required to describe simulated kinetics