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Restrictions of J[MAK-like kinetics

df = (1= fdf>
/4 g 9

hard impingement equiaxed growth random nucleation
violated e.g. 1f violated e.g. 1f product violated e.g. if nuclet

diffusion fields overlap phase grows as platelets  form at grain
boundaries (GBN)

| l l

e.g. Phase-Field e.g. Monte-Carlo S

1 2

simulations simulations® or

Cellular Automata

U Bruna et al., J. Appl. Phys. 100 (2006) 054907 / 2 Godiksen et al., Scripta Mater. 58 (2008), 279



Approaches for kinetics with grain-boundary nucleation

1. modified impingement correction*: df = (1 — £)* dfe

2. Cahn’s treatment>:

 random nucleation on randomly distributed
planes

» on plane: dO = (1 — fp) dO™

 between planes: dV = (1 — fy)dV*®*

— Problem treatable by splitting one non-

random process in two random processes

3. Geometrical Simulations

3]. W, Cahn, Acta Metall, 4 (1956) 449 / *Starink, |. Mater. Sci. 36 (2001) 4433



Geometrical simulations®

* use nucleation and growth rates, Nand v, as in kinetic model
* discretise time and space (3D)

* assume hard impingement and interface-controlled growth
—impingement automatically taken into account

—) very efficient simulation method

) typically 700° voxel, >50k grains,

simulation time 5-10 min
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Simulation results — random bulk nucleation
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Simulation results — random bulk nucleation
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Simulation results — random bulk nucleation
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Simulation results — random bulk nucleation
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Simulation results — random bulk nucleation
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Simulation results — random bulk nucleation
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Simulation results — Cahn’s model (random planes)

random nucleation on randomly distributed planes:
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* deviation from JMAK if SGB small / if parent GS > product GS

* kinetics: slower than JMAK
* GSD: higher number of small grains, broader

* reason: nucleation sites are strongly correlated
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Simulation results — Cahn’s model (random planes)
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Grain-boundary nucleation: general approach

~

random,
parent parent — product
bulk — > > -
, kinetics
nucleation

\j{ kinetics

parent product
microstructure microstructure

1. 1influence of the parent microstructure
2. influence of the parent- product kinetics
3. kinetic models for GBN transformations
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1. Intluence of the parent microstructure

test various parent microstructures, keep all else identical:

par¢nt GSDS | 1
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1. Intluence of the parent microstructure
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3. Kinetic models for GBN transformations
fitting various models to simulated data (known mnputs):
1. JMAK impingement: df = (1— f)df™
2. modified JMAK impingement: df = (1 — f )‘f dfex
3. Cahn’s model: dO = (1 - fo)dO*™ and dV = (1 - fy)dV
4. modified Cahn model: dO = (1 — fo)dO™ and dV = (1 — fy/)* dVe
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3. Kinetic models for GBN transformations
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3. Kinetic models for GBN transformations

fitting various models to simulated data (known mnputs):

X 1. JMAK impingement — no fit using N and v
2. modified JMAK impingement
3. Cahn’s model
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JMAK Kkinetics:
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O ;:':G:.:>:-t"_‘o! I | I I
0 : , 3 | |
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3. Kinetic models for GBN transformations

fitting various models to simulated data (known mnputs):
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3. Kinetic models for GBN transformations
fitting various models to simulated data (known mnputs):
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3. Kinetic models for GBN transformations

fitting various models to simulated data (known mnputs):
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Conclusions

* geometrical simulations are a useful tool to study phase-
transformation kinetics and microstructure

* Grain-boundary nucleation kinetics:

— random planes nucleation < simulation < random, bulk nucleation

* transformation most influenced by GB nucleation if

— parent microstructure has broad GSD with many small grains
— nucleation takes place predominantly at the beginning of the
transformation

* modified impingement correction required to describe

simulated kinetics
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