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Abstract 
 
This paper is an introduction to the mathematical estimation of the crystallographic 
texture and microstructure resulting from the displacive transformation of austenite in 
steels, under the influence of an externally applied system of stresses. It begins with an 
introduction to the problem, a description of the phenomenological theory of martensite 
crystallography, and the application of this theory along with a variant selection criterion 
to determine the texture due to solid-state, displacive transformation. It is demonstrated 
that there remain difficulties which make a complete closure between theory and 
experiment unlikely. Progress is needed in relating the chemical and mechanical driving 
forces for phase transformation to the evolution of overall volume fractions of different 
crystallographic variants. 
 
 
Introduction 
 
In general usage the term texture refers to the feel of a material or object, due to some 
sort of a pattern within the material. Crystallographic texture is said to exist in a 
polycrystalline material when the distribution of crystal orientations is not random 
relative to some frame of reference. An understanding of texture can help relate single-
crystal properties to those of aggregates of crystals [1,2]. The texture can also be used to 
engineer the properties of grain boundaries to optimise them for corrosion resistance, 
magnetic anisotropy etc. 
 
In a displacive transformation, the crystal structure of the parent is deformed into that of 
the product without the need for any diffusion. Since this involves the co-ordinated 
motion of atoms, the product phase is confined within the boundaries of the original 
austenite grain in which it nucleated; there is always therefore a fixed orientation 
relationship between the parent and the product phases. In this simplified scenario, it 
becomes possible in principle to rigorously calculate the transformation texture. To do 
this requires an understanding of the classical theory of martensite crystallography [3,4]. 
We begin therefore with an introduction to this theory. 
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Crystallographic Theory of Martensite 
 
Structure of the Interface 
 
Any process which contributes to the formation of  martensite cannot rely on assistance 
from thermal activation. There must therefore exist a high level of continuity across the 
interface, which must either be coherent or semi-coherent. A stress-free fully coherent 
interface is impossible for the austenite (γ) to martensite (α’) transformation since the 
lattice deformation BR is an invariant-line strain.  The semi-coherent interface must be 
such that the interfacial dislocations can glide as the interface moves (climb is not 
permitted). It follows that the Burgers vectors of the interface dislocations must not lie in 
the interface plane unless the dislocations are screw in character. 
 
There is an additional condition for a semi-coherent interface to be glissile. The line 
vectors of the interfacial dislocations must lie along an invariant-line, i.e., a line which 
joins the parent and product crystals without any rotation or distortion. Why is that? If 
there is any distortion along the dislocation line, then other dislocations are needed to 
accommodate that misfit. It will then be necessary to have more than one set of non-
parallel dislocations in the interface. These non-parallel dislocations can intersect to form 
jogs which render the interface sessile. 
 
It follows that for martensitic transformation to be possible,  the deformation which 
changes the parent into the product must leave one or more lines invariant (unrotated, 
undistorted). A deformation which leaves one line invariant is called an invariant-line 
strain. 
 
The Shape Deformation 
      
The passage of a slip dislocation through a crystal causes the formation of a step where 
the glide plane intersects the free surface (Fig. 1 a,b). The passage of many such 
dislocations on parallel slip planes causes macroscopic shear (Fig. 1 c,d). Slip causes a 
change in shape but not a change in the crystal structure, because the Burgers vectors of 
the dislocations are also lattice vectors. 
 
 During martensitic transformation, the pattern in which the atoms in the parent crystal 
are arranged is deformed into that appropriate for martensite,  there must be a 
corresponding   change in the macroscopic shape of the crystal undergoing 
transformation. The dislocations responsible for the deformation are in the α’/γ interface, 
with Burgers vectors such that in addition to deformation they also cause the change in 
crystal structure. The deformation is such that an initially flat surface   becomes 
uniformly tilted about the line formed by the intersection of the interface plane with the 
free surface. Any scratch traversing the transformed region is similarly deflected though 
the scratch remains connected at the α’/γ interface. These observations, and others, 
confirm that  the measured shape deformation is an invariant--plane strain (Fig.1 e-g) 
with a large shear component (≈ 0.22) and a small dilatational strain (≈ 0.03) directed 
normal to the habit plane.  



Microstructure and Texture in Steels and Other Materials, editors A. Hladar, S. Suwas 
and D. Bhattachargee, Springer (London), 2009, pages 19-31 

 

 
Fig. 1 (a, b) Step caused by the passage of a slip dislocation. (c, d) Many slip 
dislocations, causing a macroscopic shear. (e) An invariant-plane strain with a uniaxial 
dilatation. (f) An invariant--plane strain which is a simple shear. (g) An invariant--plane 
strain which is the combined effect of a uniaxial dilatation and a simple shear. 
 
 
The Bain Strain 
 
Consider the displacive transformation of austenite (cubic-close packed crystal structure) 
to martensite (body-centred cubic or body-centred tetragonal).  The change in crystal 
structure is achieved by a homogeneous deformation known as the Bain strain B, which 
although proposed in 1924 [5] has stood the test of time as the pure deformation which 
achieves the desired change with the smallest strains [6]. The diagonal terms of the 3×3 
matrix B are  given by aα’/aγ, √2aα’/aγ and  √2aα’/aγ, whereas the remaining terms are zero 
when B is defined relative to the principal axes. aα’ and aγ are the  lattice parameters of 
martensite and austenite, respectively. The Bain correspondence is illustrated in Fig. 2 
and implies the orientation relationship: 
 

 
[0 0 1]γ  ⏐⏐ [0 0 1]α’ 
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[1 -1 0]γ  ⏐⏐ 1 0 0]α’ 

 
[1 1 0]γ  ⏐⏐ 0 1 0]α’ 

 
This orientation is not observed experimentally because the strain energy associated with 
B would be too large, several kJ mol-1 [7], which is far in excess of the chemical driving 
force for transformation [8]. 
 
 
Furthermore, the Bain strain does not satisfy the minimum requirement of martensitic 
transformation, that the deformation must leave one line invariant in order to ensure 
sufficient coherency in the γ/α’ interface to enable it to move without diffusion [3,4,9-
11]. This can be seen in Figs.3a, b; the austenite is represented as a sphere which, as a 
result of the Bain strain  B, is deformed into an ellipsoid of revolution which represents 
the  martensite. There are no lines which are left  undistorted or  unrotated by  B. There 
are no lines in the (0 0 1)γ plane which are  undistorted. The lines ab and cd are 
undistorted but are rotated to the new positions a'b' and c'd'. Such  rotated lines are not 
invariant.  However, the combined effect of the Bain strain  B  and the rigid body  
rotation R is indeed an invariant-line strain (ILS) because it brings cd and c'd' into  
coincidence (Fig. 3c). This is the reason why the observed irrational orientation 
relationship  differs from that implied by the Bain strain. Indeed, the rotation required to 
convert  B into an invariant line strain precisely corrects the Bain orientation into that 
which is observed experimentally.  
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Figure 2: Two face-centred cubic unit cells of austenite, together with a body-centred 
tetragonal cell of austenite. The Bain strain (not illustrated here) involves a  compression 
of the body--centred tetragonal cell of austenite along z and a uniform expansion on the 
x-y plane. 
 
 
 

Fig. 3: (a) and (b) show the effect of the Bain strain on  austenite, which when 
undeformed is represented as a sphere  in three-dimensions. The strain transforms it to an 
ellipsoid of revolution. (c) shows the ILS obtained by combining the Bain strain with a 
rigid body rotation through an angle θ. 
 
It is now possible to reach some conclusions regarding orientation relationships in 
relation to transformation textures, whether these are for displacive or reconstructive 
phase change [12,13]. 
 

• The Bain orientation relationship does not exist. It is not appropriate to use this in 
calculating transformation texture. Any favourable conclusions reached based on 
the Bain orientation [14,15] must be regarded as fortuitous (Hutchinson 2005). 

 
• The Bain deformation is an incomplete description of the transformation strain 

and hence should not form the basis for variant selection [16]. 
 
As stated above, the combination BR predicts the exact orientation relationship which is 
irrational. However, it is often assumed   in texture analysis that the orientation 
relationship between the austenite and martensite is that due to Kurdjumov-Sachs (KS) or 
Nishiyama-Wasserman (NW) [13,17-19], but it has been known for some time that the 
true relation must be irrational [3,4,9,11]. Although the difference between this irrational 
and assumed orientation may seem less than a few degrees, it is vital because the 
assumed orientations do not in general lead to an invariant--line between the parent and 
product lattices. The existence of an invariant line is an essential requirement for 
martensitic transformation to occur. It is not surprising therefore, that Nolze [20] in his 
experimental study of several hundred thousand γ/α’ orientation relations, found detailed 
deviations from assumed Kurdjumov-Sachs  etc. orientations.  
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Much is often made of the fact that there are 24 variants of KS and only 12 of NW. 
However, if the actual irrational orientation is used then there will always be 24 variants.  
 
 
Phenomenological Solution 
 
We have seen that there is no  rotation which can make B into an invariant-plane strain 
since this would require two non-parallel invariant-lines. It follows that austenite cannot 
be transformed into martensite by a homogeneous strain which is an IPS. And yet, the 
observed shape deformation leaves the habit plane undistorted and unrotated, i.e., it is 
an invariant-plane strain.  
 
The phenomenological theory of martensite crystallography solves this remaining 
problem (Fig. 4). The Bain strain converts the structure of the parent phase into that of 
the product phase. When combined with an appropriate rigid body rotation, 
the net homogeneous lattice deformation RB is an invariant-line strain (step a to c in Fig. 
4). However, the observed shape deformation is an invariant-plane strain P1 
(step a to b in Fig. 4), but this gives the wrong crystal structure. If a second homogeneous 
shear P2 is combined with P1 (step b to c), then the correct structure is obtained but the 
wrong shape since  

P1 P2 = RB 
These discrepancies are all resolved if the shape changing effect of P2 is cancelled 
macroscopically by an inhomogeneous lattice-invariant deformation, which may be slip 
or twinning as illustrated in Fig. 4.  
 
The theory explains all the observed features of the martensite crystallography. The 
orientation relationship is predicted by deducing the rotation needed to change the Bain 
strain into  an invariant-line strain. The habit plane does not have rational indices because 
the amount of lattice-invariant deformation needed to recover the correct the macroscopic 
shape is not usually rational. The theory predicts a substructure in plates of martensite 
(either twins or slip steps) as is observed experimentally. The transformation goes to all 
the trouble of ensuring that the shape deformation is macroscopically an invariant-plane 
strain because this reduces the strain energy when compared with the case where the 
shape deformation might be an invariant-line strain.  
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Fig. 4: The phenomenological theory of martensite crystallography 
 
The Crystallographic Set 
 
In order to understand how to used the crystallographic theory of martensite in estimating 
texture, it is important to realise that the transformation is dominated by strain energy due 
to the shape deformation and hence many of the crystallographic variables cannot be 
varied independently. Fig. 5 illustrates two crystals separated by an interface. The relative 
orientation of the two crystals can be described in terms of an axis-angle pair so that there 
are three degrees of freedom associated with the orientation relationship. One of these is 
the right-handed angle of rotation and the other the two independent direction cosines of 
the rotation axis. The interface plane, which is identified by its normal,  itself can be 
varied whilst keeping the orientation relationship fixed. This adds another two degrees of 
freedom, making a total of five independent ways in which the properties of the bicrystal 
can be varied.  
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Fig. 5: The conventional degrees of freedom associated with a bicrystal containing an 
interface. Translations in the plane of the interface are neglected here. 
 
This conventional description of the degrees of freedom is severely constrained in the 
case of displacive transformations where the orientation relationship, interface plane 
(habit plane), lattice-invariant deformation and shape deformation are mathematically 
connected by the single equation of the crystallographic theory. Changing any one  of 
these necessarily alters all the others in this crystallographic set, an example of which is 
given in Fig. 6. It is not rigourous to assign an orientation and then use independent data 
for the shape deformation, as is sometimes done [12,19,21]. Similarly, the use of shears 
which are consistent with an assumed orientation relationship but not with the habit plane 
[22] contradicts the need for a self--consistent mathematical set. In recent work it has 
been incorrectly proposed that the amount of lattice-invariant shear (in the form of twin 
fraction) can be independently varied while keeping all the other characteristics constant 
[23]. 
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Fig. 6: An example of a complete crystallographic set describing a single plate of 
martensite, including the habit plane, the shape deformation and the orientation 
relationship (and implicitly the lattice-invariant deformation). All of these quantities are 
mathematically connected and cannot in general be varied independently. 
 
Variant Selection 
 
Displacive transformations are best regarded as deformation mechanisms which at the 
same time alter the crystal structure. The variant selection problem then reduces to issues 
similar to the selection of slip systems out of all the possibilities available during single--
crystal deformation [1]. A slip system consists of a slip plane and slip direction, for 
example, (1 1 1)[1 0 -1] is one of 12 crystallographically equivalent systems in  austenite.  
An applied stress is  resolved on to each of the slip systems, and that which has the 
highest resolved shear stress is said to be activated.  
 
By analogy, the deformation due to martensitic transformation  occurs on the habit plane 
(unit normal p) in a displacement direction (unit vector d). The latter will not lie precisely 
in the habit plane because the dilatational strain due to the volume change of 
transformation is directed normal to the habit plane. The dominating strain is the shear 
parallel to the habit plane at about 0.26. The total deformation is expressed as a 3×3 
matrix P: 

(γ P γ) = I+m[γ;d](p;γ*) 
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where m is the magnitude of the shape deformation and γ and γ* represent the real and 
reciprocal bases of the austenite. P thus completely defines the deformation system, and 
there will in general be 24 different variants. 
 
The shape deformation P is an invariant--plane strain and is the experimentally observed 
permanent shape change caused when martensite forms.  
 
When calculating the favoured system during slip deformation, it is the macroscopic 
shear on the slip plane and slip direction which determines selection through interaction 
with the applied stress. The detailed atomic motions (e.g. in surmounting Peierls barriers) 
or microscopic heterogeneities (due to the discrete nature of atoms) are irrelevant in the 
selection of the system. In a similar way, it is the interaction of the applied stress with P 
which determines variant selection.  B and R or other factorisations of the shape 
deformation are incomplete descriptions of the relevant strain. The interaction energy 
which provides the mechanical driving force for transformation [24]: 
 

U= σN δ + τ s 
 

where σN is the stress component normal to the  habit plane, τ is the shear stress resolved 
on the habit plane in the direction of shear and δ and s are the respective normal and 
shear strains associated with transformation. The energy U can be used as a rigourous 
variant selection criterion when the stresses applied are less than those required to cause 
plasticity in the austenite prior to its transformation or when the plastic strain is not the 
dominant effect in variant selection [25]. 
 
The conclusions that can be reached from the discussion in this section are: 
 

• In calculating transformation texture is is necessary to use a a self-consistent 
crystallographic set, rather than make independent assumptions about the 
orientation relationship and shape deformation as is sometimes done. The set must 
be such that the lattice deformation BR is an invariant--line strain; the analysis in 
[21] does not satisfy this criterion.  

 
• The deformation due to martensitic transformation is an invariant--plane strain P. 

It is this which should be used to calculate the interaction energy (variant 
selection) rather than, for example, the Bain strain [26].  

 
 
The Patel and Cohen derivation of the interaction energy U can be generalised to an 
arbitrary stress tensor as follows [27]. Assuming that the summation convention applies,  
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where σ t is the traction on the plane defined by the unit habit plane normal p 
(components p1, p2, p3), and e (components e1, e2, e3), is the unit direction on the habit 
plane along which the shear component of the shape deformation is directed; εij is 
 

 
 
As with Patel and Cohen, these equation recognise the fact that the transformation strain 
is plastic. 
 
Transformation Plasticity 
 
Consider an arbitrary vector u traversing a grain of austenite prior to transformation. This 
vector makes an intercept Δu with a domain of austenite that eventually ends up as a plate 
of the displacive transformation product. It follows that the new vector v is given by: 

 
v = P Δu + (u - Δu) 

 
This is generalised for a large number of plates in many austenite grains as follows: 

 
where j = 1…..24 represents the 24 crystallographic variants possible in each austenite 
grain, and k=1…..n represents the n austenite grains traversed by the vector u. In this 
scenario of a large number of plates, the various intercepts can be approximated by fj

ku 
where fj

k is the fraction of sample transformed by variant j in austenite grain k. 
 
The deformation caused by a particular  plate j in austenite grain k, i.e., (γk Pj γk)≡Pj

k. The 
remaining 23 such matrices for grain 1 of austenite can be deduced using symmetry 
operations and expressed in the reference frame of the sample using a similarity 
transformation. 
 
Some calculations illustrating the anisotropy of strains as a function of the number of 
crystallographic variants of martensite allowed are illustrated in Fig. 7 for uniaxial 
tension and compression. That displacive transformations produce highly anisotropic 
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strains when variant selection is significant has been demonstrated experimentally [28-
30]. 

 
 
Fig. 7: (a) Transformation strain along the sample axes when a polycrystalline sample is 
subjected to pure shear; (b) much small strains when subjected to hydrostatic 
compression. After Kundu et al. [25]. 
 
 
An important outcome of the fact that transformation strains can be calculated using the 
crystallographic set of martensite is that such strains can be exploited as an alternative 
or supplemental method of assessing texture.  
 
The Intensity of the Texture 
 
The analysis of texture as described above and in the published literature, leaves open the 
question of the degree of variant selection as a function of the magnitude of the applied 
stress.  
 
The total free energy available for transformation is the sum of chemical and mechanical 
components, the latter being zero in the absence of an applied stress during 
transformation [28]: 
 

ΔG=ΔGCHEM+ ΔGMECH 
where ΔGMECH≡U.  
 
It would be reasonable to assume that there is strong variant selection when the ratio of 
ΔGMECH/ΔG is large [29]. This turns out to be the case as illustrated in Fig. 8.  There is a 
strong, albeit empirical, linear correlation between the ratio ΔGMECH/ΔG and the number 
of most favoured variants allowed to form in each of the austenite grains [25]. This is an 
important observation in that it allows the extent of variant selection, and hence the 
transformation strains, to be calculated as a function of stress for any steel as long as the 
thermodynamic quantities can be estimated. Nevertheless, this clearly is an area where 
progress is needed from a fundamental point of view.  
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Figure 8: The ratio of the mechanical to total driving force for transformation as a 
function of the number of active variants for a variety of steels [25]. 
 
 
An additional point to emerge from this analysis is the way in which the energy U is 
calculated. Most publications treat the problem using elasticity but the strain due to 
transformation is plastic so the elastic calculations underestimate U by a factor of 2. This 
is important when calculating the ratio of mechanical to total driving force [27]. 
 
 
 
Summary 
 
We have seen that there are significant advantages in dealing with the crystallographic 
texture due to displacive transformations using the crystallographic theory of martensite 
along with a variant selection criterion based on the classical interaction of stress with the 
shape deformation. The calculation of texture at the same time leads to the estimation of 
the net transformation strain in any direction. This strain may be highly anisotropic 
depending both on the strength of the texture of the parent austenite and of the extent of 
variant selection. The latter in turn depends on the ratio of the mechanical driving force to 
the total driving force for transformation. Variant selection is minimised when the 
chemical driving force dominates the total. Further work is needed to develop a 
quantitative understanding of the intensity of the transformation texture as a function of 
the variant selection criterion. 
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