Crystal Structure and Formation Energy of ε-carbide Using First Principles Calculations

Jae Hoon Jang, In Gee Kim, Dong Woo Suh and H. K. D. H. Bhadeshia

Computational Metallurgy Laboratory Graduate Institute of Ferrous Technology Pohang University of Science and Technology

Introduction

- Martensite (α ') $\rightarrow \epsilon$ -carbide $\rightarrow \eta$ -carbide $\rightarrow \chi$ -carbide \rightarrow Cementite (θ)
 - Fe_{2.4}C Fe₂C Fe_{2.5}C Fe₃C
- Silicon promotes the formation of ε-carbide below 520 K.

S. S. Nayak et.al, Materials Science and Engineering A. 498, pp.442-456(2008)

• ε-carbide forms without redistribution of Si.

S. J. Barnard, G. D. W. Smith, Proceedings of the solid-solid phase transformation., pp.881(1981)

• No initial partitioning of Si between ϵ , θ and martensite

S. S. Babu, K. Hono, T. Sakurai, Metal Mater. Trans. 25A (1994) p. 499

FLAPW method

E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, *Phys. Rev. B* 28, 864 (1981) and references therein. M. Weinert, E. Wimmer, and A. J. Freeman, *Phys. Rev. B* 26, 4571 (1982).

Wave Function Expansion $\psi_{k,v}(\mathbf{r}) = \sum_{|\mathbf{k}+\mathbf{G}| \leq K_{max}} c^{\mathbf{G}}_{k,v} \varphi_{\mathbf{G}}(\mathbf{K},\mathbf{r})$

 $\varphi_{G}(\mathbf{k},\mathbf{r}) = \begin{cases} e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}} , \mathbf{r} \in \text{Interstitial} \\ \sum_{lm} [A_{lm}^{\nu} u_{l}(r) + B_{lm}^{\nu} \dot{u}_{l}(r)] \times Y_{lm}(\theta,\varphi), \mathbf{r} \in \text{MT sphere } v \end{cases}$

Calculation Parameters

E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, *Phys. Rev. B* 28, 864 (1981) and references therein.
M. Weinert, E. Wimmer, and A. J. Freeman, *Phys. Rev. B* 26, 4571 (1982).
Perdew, J. P., Burke, K., Ernzerhof, M., *Phys. Rev. Let.* 77,3865 (1996)

- All-electron Full-potential LAPW method
- Generalized Gradient Approximation for Exchange-Correlation Potential
- Plane-Wave Cutoff : 21 Ry
- Star-Function Cutoff : 340 Ry
- k-points : 88 Fe_{2.4}C, 365 (Fe₁₁M)C₅
- Muffin-tin Sphere : Fe, Si, Al , Mn (2.04 a.u.), C (1.30 a.u.)
- Mixing Method : Broyden

Epsilon Carbide

Formula Unit	Fe _{2.4} C(Fe ₂ C~Fe ₃ C)
Structure	hexagonal
Space group	P6 ₃ 22 or P6 ₃ /mmc
а	4.767 Å
С	4.354 Å
c/a	0.913

S. Nakagura, J. Phys. Soc. Jpn, 14 (1959) 186.

Fe₃C and Fe₂C (ε-carbide)

a	4.661 Å (-2.3%)	a	4.785 Å (+0.3%)
a	4.661 Å (−2.3%) 4.294 Å (−1.4%)	a c	4.785 Å (+0.3%) 4.321 Å (−0.8%)
a c c/a	4.661 Å (−2.3%) 4.294 Å (−1.4%) 0.9213	a c c/a	4.785 Å (+0.3%) 4.321 Å (−0.8%) 0.903

$$\Delta E = \frac{E(Fe_6C_2) - 6 \times E(Fe) - 2 \times E(C)}{8} = 5.09 \text{kJ/mol} \qquad \Delta E = \frac{E(Fe_6C_3) - 6 \times E(Fe) - 3 \times E(C)}{9} = 7.00 \text{kJ/mol}$$

Fe_{2.4}C (ε-carbide)

а	4.740 Å (−0.6%)
С	8.631 Å (−0.9%)

$$\Delta E = \frac{E(Fe_{12}C_5) - 12 \times E(Fe) - 5 \times E(C)}{17} = 6.24 \text{ kJ/mol}$$

Results

System	a (Å)	c (Å)	c _h /a _h	
Measured, ε	4.767	8.708	1.582	
Fe ₃ C	4.661(-2.3%)	8.588 (-1.4%)	1.596	
Fe _{2.4} C	4.740(-0.6%)	8.631(-0.9%)	1.577	
Fe ₂ C	4.785(+0.3%)	8.642(-0.8%)	1.564	

Si, Al and Mn Substitution

a 4.7303Å (−0.2%)	a 4.742Å (+0.0%)	a 4.738 Å (−0.1%)
c 8.5901 Å (−0.5%)	c 8.685 Å (+0.6%)	c 8.664 Å (+0.4%)
$\Delta E = 9.08$ kJ/mol	$\Delta E = 4.98$ kJ/mol	$\Delta E = 4.40$ kJ/mol

Results

∆E (kJ/mol)	ε-carbide	cementite	
pure-carbide	6.24	5.38	
Si substituted	9.08(+2.84)	7.70(+2.32)	
Al substituted	4.98(-1.26)	4.53(-0. 85)	
Mn substituted	4.40 (-1.84)	5.07(-0. 31)	

Orientation Relationship

H. K. D. H. Bhadeshia, Bainite (1992)

 $(101)_{\alpha'} \parallel (10\underline{1}1)_{\epsilon} (211)_{\alpha'} \parallel (10\underline{1}0)_{\epsilon} [011]_{\alpha'} \parallel [0001]_{\epsilon} (\underline{11}1)_{\alpha'} \parallel (1\underline{2}10)_{\epsilon}$

Summary

- First Principles Calculation can be applied for hypothetical crystal structure.
- Si addition increases the formation energy of θ and ϵ -carbide.
- The formation energy calculation : ε -carbide $\rightarrow \theta$
- The role of silicon in transition of carbide : Reducing the misfit
- Manganese addition : stable ε-carbide

Thank You !!

Equilibrium Calculation

Appendix A - DFT

• Hohenberg-Kohn Theorem : The ground state property is a functional of electron density.

$$E[n] = \int V_{ext}(\mathbf{r}) \cdot n(\mathbf{r}) d\mathbf{r} + \langle \psi | T + V_{ee} | \psi \rangle$$
$$E[n] \geq E_{GS}, E[n_{GS}] = E_{GS}$$

• Kohn-Sham Equation : Introducing the non-interacting fictitious particle.

$$E[n] = \int V_{ext}(\mathbf{r}) \cdot n(\mathbf{r}) d\mathbf{r} + T[n] + \frac{1}{2} \int V_{C}(\mathbf{r}) \cdot n(\mathbf{r}) d\mathbf{r} + E_{xc}[n]$$
$$\frac{\delta E[n]}{\delta n} = V_{ext}(\mathbf{r}) + \frac{\delta T[n]}{\delta n} + V_{C}(\mathbf{r}) + \frac{\delta E_{xc}[n]}{\delta n} = \mu$$
$$\frac{\delta E[n]}{\delta n} = \frac{\delta T[n]}{\delta n} + v_{eff}(\mathbf{r}) = \mu \qquad v_{eff}(\mathbf{r}) = V_{ext}(\mathbf{r}) + V_{C}(\mathbf{r}) + \frac{\delta E_{xc}[n]}{\delta n}$$
$$\left[-\frac{1}{2} \nabla^{2} + v_{eff}(\mathbf{r}) \right] \psi_{i}(\mathbf{r}) = \varepsilon_{i} \psi_{i}(\mathbf{r}) \qquad n(\mathbf{r}) = \sum_{i=1}^{N} |\psi_{i}(\mathbf{r})|^{2}$$

First-Principles Calculation

Formation Energy

Ternary Phase Diagram at 773K

Equilibrium Phase Diagram at 723K

Gibbs Free Energy of Al-carbide

Density Functional Theory

Blugel, S. Bihlmayer, G., Computational nanoscience: Do it yourself, 31:85-129 (2006)