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Abstract

A model has been created to allow the quantitative estimation of the fatigue crack growth rate in
steels as a function of mechanical properties, test–specimen characteristics, stress–intensity range
and test–frequency. With this design, the remarkable result is that the method which is based on
steels, can be used without modification, and without any prior fatigue test, to estimate the crack
growth rates in nickel, titanium and aluminium alloys. It appears therefore that a large proportion
of the differences in the fatigue crack growth rate of metallic alloys can be explained in terms of
the macroscopic tensile properties of the material rather than the details of the microstructure and
chemical composition.
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1 Introduction

It is understood that fatigue crack growth is a consequence of the accumulation of damage by
deformation in the plastic zone at the crack tip. At low loads the deformation is governed by the
cyclic variation in the stress–intensity range ∆K. The crack extension per cycle (da/dN) becomes
measurable at a threshold ∆Kth, followed by the slower extension rate in the Paris Law regime
[1–4] described by the proportionality

log∆K ∝ log

{

da

dN

}m

(1)

where da/dN is the average crack advance per cycle, and m is known as the Paris exponent. The
equation can be interpreted in terms of a variety of physical mechanisms [5, 6], in which case the
proportionality constant (C) becomes a function of the Young’s Modulus E, the Poisson’s ratio
ν, and the yield and ultimate tensile strengths σY and σU respectively. Based on the possible
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mechanisms consistent with the Paris Law, attempts have been made to generally interpret fatigue
crack growth data on the basis of just the mechanical properties of the material [5, 6].

Elber modified the relation with an effective stress intensity range ∆Keff to allow for variable
amplitude loading, arguing that cracks grow only when their tips are open [7]:

da

dN
= C0(∆Keff )

m with C0 = C/(0.7m) (2)

These equations do not explicitly contain material properties; Duggan [8] expressed the crack
growth rate in terms of the elastic modulus, toughness, and ductility:

da

dN
=

(

π

32
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where η and ε are the fatigue ductility exponent and coefficient respectively, E is the elastic modulus,
KIc is the critical stress intensity for fracture. Ramsamooj and Shugar have also accounted for
toughness, yield strength and modulus, but not for frequency and the analysis is presumably limited
to mode I loading [9]. Their model is interesting in that it generalises against iron, aluminium and
titanium alloys; it does however require a prior knowledge of the threshold stress intensity range
for fatigue crack growth.

The aim here was to exploit published fatigue crack growth data to create a model based on physical
variables which are readily measured in a tensile test, rather than rely on inputs which depend on
fatigue testing, and further, to include variables which account for test–specimen parameters. The
model uses neural network analysis; although there are physically based models available in the
literature, for example, [10], they require fitting parameters; a neural network is the most general
way of achieving fitting without making prior assumptions about the relationship to which the data
are fitted [11]. There have been other attempts to use neural networks for this purpose [12] but
they do not adequately treat the uncertainties of modelling so it is not possible to properly assess
the predictions made. The original intention here was to study steels, but as will be seen later, the
model was, without modification, found to generalise to other alloy systems.

2 Method

A versatile method for treating empirical data is the neural network in a Bayesian framework.
The theory behind practical Bayesian networks has been described in [13, 14] and the background
information theory is available in a seminal textbook on the subject [15]. In addition, this method
been reviewed thoroughly [11], as have been its applications [16]. Indeed, there have been diverse
applications which lead to useful and verifiable predictions in the context of low–cycle fatigue [17],
the estimation of bainite plate thickness [18], the calculation of ferrite number in stainless steels
[19], the estimation of tensile strength [20, 27], impact strength [21, 26], the effect of processing
parameters on marageing steels [22], the modelling of strain induced martensitic transformation
[23], and the reduction in steel varieties [28], to name but a few. There has even been an assessment
of procedures needed to design networks which are well–assessed in their performance [24]. Given
this plethora of literature, only specific points of relevance are introduced here.
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With neural networks, the input data xj are multiplied by weights, but the sum of all these products
forms the argument of a flexible mathematical function (known as the transfer function), here a
hyperbolic tangent. The output y is therefore a non–linear function of xj. The exact shape of
the hyperbolic tangent can be varied by altering the weights. Further degrees of non–linearity can
be introduced by combining several of these hyperbolic tangents, so that the network is able to
model highly non–linear relationships. The nature of the transfer functions and the weights define
a reproducible mathematical function which represents the empirical data.

The network just described is essentially a non–linear regression method which, because of its
flexibility, is able to capture complicated data, whilst at the same time avoiding overfitting. There
are a number of interesting outputs other than the coefficients which help recognise the significance
of each input. First, there is the noise in the output, associated with the fact the input set
is unlikely to be comprehensive – i.e., a different result is obtained from identical experiments.
Secondly, there is the uncertainty of modelling because many mathematical functions may be able
to adequately represent known data but which behave differently when extrapolated. A knowledge
of this uncertainty helps make the method less risky in extrapolation. This uncertainty can be
expected to be large in regions of the input domain where data are sparse or exceptionally noisy.

3 The Variables

Published [25] fatigue crack growth data for tests done in ordinary air, at room temperature, were
digitised, covering steels with chemical compositions in the range presented in Table 1. Traces
element concentrations (Ti, Al, V, S, P) together with the details of heat treatment can be found
in the original compilation [25]. The properties of a steel depend on the composition and heat
treatment, but fatigue crack propagation should depend to a large extent on macroscopic mechanical
properties. It was deliberately decided to focus on easily measured properties obtained from a tensile
test, rather than use inputs such as the threshold stress intensity which would defeat the purpose of
modelling since a fatigue test would be required before a prediction could be made. The dimensions
of the test specimens and the test conditions are also important in this respect and were included
in the analysis. The advantage of this approach also is that a large quantity of data are available
with each of the input variables listed in Table 1. Data for both axial mode I and an in-plane
bending mode II were incorporated; mode III data were not available.

The plots in Fig. 1 illustrate the distribution of data, but clearly cannot represent multidimensional
dependencies. However, the neural network method used here is based on a Bayesian framework [13,
15] so that the predictions are associated with a modelling uncertainty whose magnitude depends
on the position in the input domain where a calculation is done. . As pointed out previously, the
details of the neural network and Bayesian framework used have been fully described elsewhere so
only the essential points are included in this paper.
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3.1 Training the Model

The data were randomly and equally divided into the training and testing sets, and normalised [11].
One hundred networks were trained, with hidden units ranging from one to twenty and five seeds
in each case. This is in order to select a committee of models which gives the best generalisation
on unseen data [11, 13, 14, 29]. The performance of the optimum committee accompanies by ±1σ
modelling uncertainties is illustrated in Fig. 2. Of the total of 12807 data, only 158 can be classified
as mild outliers which are more than 3σ from the measured values. The noise in the output of the
committee model was found to be σ = ±4%, which is a constant additional error to the modelling
uncertainties plotted in subsequent graphs. The network perceived significances, which indicate
the ability of an input to explain the variation in the output (akin a partial correlation coefficient)
are shown in Fig. 3. The elongation, ultimate tensile strength and proof stress are significant in
influencing da/dN but it is natural that the stress intensity range ∆K should have the greatest
effect. Although it is expected in a valid test that specimen size should not influence da/dN [30], it
is likely that true plane strain conditions do not exist in all the cases studied, and hence a specimen
size effect is perceived in Fig. 3. Such behaviour has been reported previously, with the crack
growth rate increasing as plane–strain conditions are approached [31].

One way of assessing a model is by making predictions, in this case on a bearing steel of relevance
in our other research. The steel of interest is variously known as SUJ2, AISI 52100 and En31 in
different countries and has the approximate composition 1C, 0.3–1.1Mn, 1.2–1.4Cr, 0.2–0.4Si wt%.
The inputs required were obtained from [32]: 5% elongation, 2030 MPa 0.2% proof stress, 2240
MPa tensile strength, loading mode 2, specimen length 80 mm, specimen thickness 2 mm, pre-crack
size 3 mm, frequency 2 Hz and stress ratio 0.

Fig. 4 shows the outcome, with the model not only capturing the trend in the variation of da/dN
versus ∆K over several orders of magnitude, and both for the threshold and Paris regions of the
curve, but giving also a reasonable absolute prediction accuracy.

Although all of the data used to create the model were from experiments on steels [25], the inputs
include only mechanical and test parameters. It was imagined that the model should therefore
apply without modification to other alloys.

3.2 Ni, Ti and Al Alloys

Calculations for three nickel–base superalloys Udimet 700, Inconel 718 and Waspaloy; their detailed
compositions can be found in [33–37]. Fig. 5 compares the model and the experimental data using
the inputs listed in Table 2. The calculations are represented with the uncertainty range and the
reported measurements [33–37] as points. The results are fascinating since the model correctly
estimates the Paris slopes, although it marginally overestimates the fatigue behaviour (we have
checked that this overestimation is not explained by modulus variations between the different
materials). A similar level of agreement was found for titanium Ti-6Al-4V, 7075 aluminium alloy
were made and compared against published measurements [38, 39], Fig. 6. The model nicely
captured the slope for both the titanium and aluminium alloys, and it again slightly overestimates
the fatigue crack growth rates.
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In order to further test the model a colleague from industry supplied input data (last two columns,
Table 2) without revealing the alloy type for the purpose of making blind predictions, for which the
crack growth rates would be revealed after the calculations are made. Fig. 7 shows calculations, and
the subsequent experimental data on the same Ti6Al4V alloy with two different heat treatments.
The agreement obtained is good.

4 Conclusions

1. It has been possible to design a neural network model for fatigue crack growth in steels, which
relies on inputs that consist only of properties that can be obtained from a simple tensile test,
and using information about specimen geometry and testing parameters.

2. Given the nature of the inputs, it has been demonstrated that although the model is based
entirely on data from steels, it can be applied without modification to nickel, titanium and
aluminium alloys.

3. Given recent work where a similar approach has been used in modelling the hot–tensile
strength [40] and stretch flangeability [41], it becomes evident that the neural network method
has enormous potential for creating models for complex mechanical properties on the basis
of simple experiments, such as the data obtained during tensile testing.

The computer program associated with this work can be downloaded freely from:

http://www.msm.cam.ac.uk/map/mapmain.html
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.

Table 1: Chemical composition range (wt%) of the steels studied. The lower half of the table shows
the variables actually included in the analysis.

Element Range Element Range

Carbon 0.1–0.8 Copper 0–0.2

Chromium 0–5 Manganese 0–2

Molybdenum 0–2 Nickel 0–2

Silicon 0–2

Variable Range Variable Range

Elongation / % 0.2 –61.8 0.2% Proof stress / MPa 122–1735

Tensile strength / MPa 270–2206 Specimen length / mm 13–260

Specimen thickness / mm 1.2–134 Pre-crack length / mm 1–52

Stress ratio -1–1 Frequency / Hz 1–150

∆K / MPam1/2 2.5–142 da
dN / mm cycle−1 9.82×10−10–4.86×10−1
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Table 2: The inputs for the predictions in Figs 5, 6, 7 covering nickel, titanium and aluminium
alloys.

Variable Figure number

5a 5b 5c 5d 5e 5f 6a 6b 7a 7b

Elongation / % 5 15 20 20 27 33 14 8 20 14

0.2% Proof stress / MPa 1020 1172 1113 1113 1076 921 930 524 1172 940

Tensile strength / MPa 1520 1404 1373 1373 1441 1351 970 464 1440 998

Specimen length / mm 72.5 63.5 50.8 31.8 62.5 5 155 155 7 7

Specimen thickness / mm 12.5 25.4 12.7 8.89 25 3 40 40 7 7

Pre-crack length / mm 12.5 18.3 6.4 5.3 17.5 0.4 9 9 0.5 0.5

Stress ratio 0.1 0.1 0.05 0.05 0.5 0.5 -1 0.5 0.1 0.5

Frequency / Hz 40 20 0.667 0.667 20 100 20 20 0.25 100
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Figure 1: Distribution of data used to create the model.
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Figure 2: Performance of the committee of models on the entire dataset of 12807 experiments.

Figure 3: Perceived significance of the inputs in the committee model. Both the mean significance
and the upper and lower limits from the members of the committee are shown.
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Figure 4: Calculations for a bearing steel. The points represent experimental data from [32],
whereas the uncertainty range illustrated is calculated.
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Figure 5: Predictions represented by the uncertainty range, and experimental data presented as
points, for nickel based superalloys. (a) Udimet 700, data from [33]. (b) Inconel 718 with data dues
to [34]. (c,d) Inconel 718, data from [35]. (e) Waspaloy, data from [36]. (f) Waspaloy, data from
[37].
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Figure 6: Calculations (uncertainty ranges) for titanium and aluminium alloys compared with
measurements (points) due to [38, 39].
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Figure 7: Blind predictions for Ti 6/4 forging material.
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