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1. Introduction

Crystallographic texture occurs when the distribution of
crystal orientations is not random relative to a macroscopic
frame of reference. An understanding of the subject can
help relate single-crystal properties to those of aggregates
of crystals1,2) and the design of grain boundaries.3–8) The
distribution of grain orientations can become biased as the
individual crystals rotate in compliance with the imposed
deformation; thus in hexagonal close-packed zirconium, the
basal planes of the grains tend to align with the rolling
plane during the production of sheet.9) Selective phenomena
during recovery, recrystallisation and grain growth can
change the character of the final texture.10,11) Epitaxy during
deposition obviously can lead to textures in coatings12,13) as
does heat-treatment in an electrical or magnetic field.14,15)

The goal of this paper is, however, to deal with only one of
these many mechanisms, the texture that develops when a
solid-state phase transformation occurs in steel under the
influence of external forces. As will be seen later, there are
parts of the subject which are particularly amenable to cal-
culation and others which are not.

2. Single Crystals, Imperfections and EBSD

Crystallography had little influence on the development
of practical materials until well into the last century.16) The
classification of crystals according to their equilibrium
shape and an understanding of symmetry laid the founda-
tions of the subject, with more progress when the interac-
tions between waves and crystals were expressed in the
form of the Bragg equation. The allotropic forms of iron
were thus resolved using X-rays in 1921,17,18) and proof
soon emerged that b-iron does not exist.19)

It is important to remind ourselves that the Bragg law is

formulated for a perfect crystal which is large. The size is
important in order to avoid diffracted intensity around the
exact Bragg angle. Perfection here implies long-range peri-
odicity; defects such as dislocations and disordered solu-
tions disrupt the periodicity; furthermore, high-entropy de-
fects such as vacancies can exist at equilibrium so it may be
impossible to produce sizeable crystals which present sharp
diffraction peaks. It is only possible to approximate perfec-
tion in small crystals20) and even there, the surface of the
crystals is likely to be reconstructed.21,22) Modern materials
rely on imperfections for their properties,23) and these will
cause the angular broadening of diffracted intensity.24)

Electron backscatter diffraction (EBSD) is now common
in the study of microtexture. The resulting information
however, has to be interpreted with caution with respect to
both the spatial and angular resolution, particularly when
interpreting orientation relationships and grain boundaries.

Problems in the Calculation of Transformation Texture in Steels

H. K. D. H. BHADESHIA

University of Cambridge, Materials Science and Metallurgy, Cambridge, U.K. and Graduate Institute of Ferrous Technology,
POSTECH, Republic of Korea.

(Based on Honorary Member Lecture held at Universiy of Tsukuba on March 28, 2010; manuscript 
received on June 21, 2010; accepted on July 22, 2010)

The solid-state decomposition of austenite can lead to a non-random distribution of product crystals.
Methods of the quantitative characterisation of this texture are extremely advanced, and there is a deep un-
derstanding of the relationship between the texture and macroscopic properties. There remain, however,
important barriers to the complete calculation of texture, some of which have not been documented in the
published literature. It is the purpose of this review to focus on the difficulties in order to set the scene for
further progress. The advent of electron back scatter diffraction has led to an explosion of papers on micro-
scopic aspects of crystal orientations; some of the issues relating to this technique are also described.

KEY WORDS: transformation texture; crystallography; steel; martensite; bainite.

1517 © 2010 ISIJ

Review

Fig. 1. Grain structure in a platinum film, resolved using EBSD.
With kind permission from Springer Science�Business
Media from “the use of electron backscatter diffraction
for the investigation of nano crystalline materials and the
move towards orientation imaging in the TEM”, Mi-
crochimica Acta, 147 (2004), 157, Fig. 4(b).



Consider first the spatial resolution. Using a step size of
2–4 nm might suggest a resolution of that order, but Fig. 1
illustrates the difficulties. The boundaries in this image ap-
pear convoluted whereas they are not in reality. The grain
marked with an arrow is suggested to have a size of about
8 nm24) but it is questionable whether this is a real grain or
an artefact given the size of the surrounding black regions
which are crystallographically unresolved pixels. The grain
boundaries themselves appear ragged, with a roughness
which is comparable to the suggested 8 nm grain. Such
roughness is not likely to be real since and thin film deposi-
tion does not normally lead to a bimodal distribution in
grain size.

Consider now the problem of angular resolution when
dealing with steels. The influence of imperfections in caus-
ing a spread in orientation well beyond the stated angular
resolution of the EBSD instrument is illustrated in Fig.
2(a). Instrumental resolution should be of the order of 0.5°
but the illustrated spread in the orientation of the single
grain of austenite is closer to 10°. There will then be a cor-
responding spread in the orientations of bainite, as illus-
trated in Fig. 2(b), even if there is a strictly fixed orientation
relationship between the parent (g) and product (a) phases.
Products which form by displacive transformations will
contain excess dislocations leading to a spread in diffracted
intensity. Furthermore, the contribution to the spread from
different crystals of bainite or martensite will not be identi-
cal given the nonuniform distribution of dislocations, plas-
tic accommodation and the fact that the stress state of the
austenite changes as more plates of martensite form.25)

There are many publications in the literature which suggest
that there is a spread in the g /a orientation relationship
rather than one established by the crystallography of the
phases. It is then reasonable to question whether there is a
true spread in orientation relationship or one which is
caused by a neglect of the fact that the austenite is not a
perfect crystal. The measurements implying spread have in
some cases been deduced from observations on meteorites,
which cool incredibly slowly as they evolve to their final
structure. In these circumstances, there must be orientation
changes due to the recovery of defect structures.

To summarise, it is not yet proven that EBSD measure-
ments which indicate a spread in diffracted intensity are
due to the variation in g /a orientation relationships. Texture
calculations can proceed on the basis of well-defined par-

ent-product orientation relationships. The focus should be
on understanding and predicting the expected spread in the
orientation of austenite due to plastic accommodation ef-
fects associated with displacive transformation mecha-
nisms.26)

3. Calculation of Texture due to Displacive Transfor-
mations

Displacive transformations are particularly simple be-
cause the product phase grows by a synchronised move-
ment of the atoms in the parent phase, leading to a well-de-
fined orientation relationship. Furthermore, this orientation
relation is dependent only on the parent crystal in which the
transformation occurs because the displacive transforma-
tion is confined within the grain in which it occurs, Fig. 3.
The crystallographic texture can therefore be estimated
from a knowledge of the orientations of the parent crystals
and their orientation relationship with the product phase.28)

The theory for displacive transformations29–34) is far more
developed than their reconstructive counterparts. It is possi-
ble for each plate of martensite, bainite or Widmanstätten
ferrite to uniquely define the indices of its habit plane, the
deformation caused by transformation and the orientation
relationship using the phenomenological theory of marten-
site crystallography which mathematically relates these
three parameters.

The full theory29–31) is beyond the scope of this paper; de-
tailed descriptions and reviews can be found else-
where.32,34–36) The theory predicts that the crystallographic
indices representing the orientation relationship and habit
plane are in general irrational; that means that the indices
cannot be expressed by the division of integers. This neces-
sarily means that there will be 24 variants of the transfor-
mation product per austenite grain. As a corollary, simpli-
fied descriptions of the orientation relation in terms of Kur-
djumov–Sachs37) and Nishiyama–Wasserman38,39) are im-
precise in detail; thus, the latter orientation would lead to
only twelve variants. As far as the author is aware, there has
never been experimental confirmation that only twelve vari-
ants of martensite can form in a given austenite grain.

If all 24 variants are allowed to form in each austenite
grain, then the transformation texture becomes essentially
random for any sizeable sample of material. However, cir-
cumstances may force variant selection, i.e., where certain
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Fig. 2. Pole figures from a single crystal of austenite which is partially transformed into bainite.27) (a) 1 0 0g pole figures,
(b) Corresponding 1 0 0a pole figure.



crystals which are more compliant to an external influence,
such as a macroscopic stress or magnetic force, tend to
form in preference. Magnetic fields are interesting but im-
practical, so it is much more interesting to examine the ef-
fect of stress.

Displacive transformations are typified both by a change
in crystal structure and a large deformation. The strain due
to martensitic transformation occurs on the habit plane
(unit normal p) in a displacement direction (unit vector d).
Unlike simple shear, d will not lie precisely in the habit
plane because the volume change of transformation is di-
rected normal to the habit plane. The dominating strain is
the shear parallel to the habit plane at about 0.26. The total
deformation is expressed as a 3�3 matrix P:

....................(1)

where m is the magnitude of the shape deformation and g
and g* represent the real and reciprocal bases of the austen-
ite. The matrix P thus completely defines the deformation
system, and there will in general be 24 different variants.

It is most important to realise that the Bain strain (B),
rigid body rotation (R), and the shape deformation (P) are
all mathematically related through the phenomenological
theory of martensite:

..............................(2)

where P� is a shear whose macroscopic consequence is can-
celled by the lattice-invariant deformation. Equation (2)
emphasises that the orientation relationship and shape de-
formation are mathematically related. It is not rigorous to
assign an orientation and then use independent data for the
shape deformation, as is sometimes done.40–42) Similarly,
the use of shears which are consistent with an assumed ori-
entation relationship but not with the habit plane43) contra-
dict the need for a self-consistent mathematical set.

It is the interaction of the applied stress with P which de-
termines variant selection. The interaction energy which
provides the mechanical driving force for transformation is
given by44):

...............................(3)

where sN is the stress component normal to the habit plane,
t is the shear stress resolved on the habit plane in the direc-
tion of shear and z and s are the respective normal and
shear strains associated with transformation. The energy U
can be used as a rigorous variant selection criterion when
the role of any plastic strain is unimportant.27) Note that it is
P which is the macroscopic deformation due to transforma-
tion and which must therefore be used to calculate the inter-
action energy (variant selection) rather than, for example,
the Bain strain which has sometimes been applied, e.g.45)

4.1. Transformation Plasticity

With displacive transformations it is possible to calculate
the macroscopic plastic-strains as a function of texture;
they can also be used to characterise the texture because
they are in general anisotropic.27,46,47) An arbitrary vector u
traversing a grain of austenite prior to transformation (Fig.
4(a)) makes an intercept Du with a domain of austenite that
eventually transforms, after which it becomes a new vector
v given by:

.........................(4)

When many plates form in many austenite grains, u trav-
erses a polycrystalline sample of austenite so this equation
is generalised as follows27):

..........(5)

where j�1 . . . 24 represents the 24 crystallographic variants
possible in each austenite grain, and k�1 … n represents
the n austenite grains traversed by the vector u. In this sce-
nario of a large number of bainite plates, the intercepts Duj

k

can be approximated by fj
ku where fj

k is the fraction of sam-
ple transformed by variant j in austenite grain k.

The deformation caused by a particular plate j in austen-
ite grain k, i.e., (g k Pj g k)�Pj

k. The remaining 23 such matri-
ces for grain 1 of austenite can be deduced from this using
symmetry operations. They can then be expressed in the
reference frame of the sample using a similarity transfor-
mation as follows:

.............(6)

where (S R g k) is the rotation matrix relating the basis vec-
tors of the kth austenite grain to the sample axes, and
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Fig. 3. An illustration of the fact that martensite, bainite and
Widmanstätten ferrite, all grow in the form of ‘plates’
which do not cross austenite grain boundaries because it
is not possible to sustain a disciplined motion of atoms
through a change in crystallographic orientation. In con-
trast, the growth of allotriomorphic ferrite or pearlite oc-
curs by a reconstructive mechanism involving long-range
diffusion so that the growing particle is not confined to
the grain in which it nucleates.

Fig. 4. The deformation of an initial vector u by the formation of
bainite. (a) An austenite grain prior to transformation,
with the ultimate location of a plate of bainite marked.
(b) Following displacive transformation.27)



(g k R S) is the inverse of that rotation matrix. In this way,
the calculation described in Eq. (4) can be conducted in the
sample frame of reference.

Some calculations illustrating the anisotropy of strains as
a function of the number of crystallographic variants of
martensite allowed are illustrated in Fig. 5(a) for uniaxial
tension when transformation occurs from a randomly ori-
ented set of austenite grains. That displacive transforma-
tions produce highly anisotropic strains when variant selec-
tion is significant has been demonstrated experimen-
tally.46–48)

Figure 5(b) shows that transformation texture is absent
when 24 variants form in each austenite grain, for typical
intensities of texture in the austenite; the only strain visible
in these circumstances is the an averaged isotropic volume
expansion. The strength of the transformation texture in-
creases as the number of variants per austenite grain de-
creases.

An important outcome of the fact that transformation
strains can be calculated using the crystallographic set of
martensite is that such strains can be exploited as an alter-
native or supplemental method of assessing texture. It is
also possible to estimate aspects of the ‘microstructure’
since the orientation of the habit plane of each plate is an
outcome of the analysis.

4. Description of the Polycrystalline State

We have seen that for displacive transformations, the
habit plane, orientation relationship and shape deformation
are mathematically linked. The habit cannot be changed in-
dependently of the other two characteristics. This is not
generally true for bicrystals, where the interface plane can
be changed independently of the crystal orientation. In this
section we consider the complexity that arises when we
abandon the restrictions imposed by the displacive transfor-
mation mechanism and permit greater degrees of freedom.

The manipulation of grain boundaries in order to achieve
specific properties was known originally as ‘grain boundary
design’3) and later as ‘grain boundary engineering’.4–8)

Since the field began, the focus has been on the correlation
of the orientations of the crystals against properties, not
specifically the structure of grain boundaries. Whereas it
may be reasonable to associate the character of boundaries
with the orientation relationship between the grains it con-
nects,49) this relationship is not straightforward.34,35,50) The
reason why the focus is not on grain boundaries per se can
be understood when the variables required to describe the
polycrystalline state are enumerated.

The formal description of a polycrystal is complicated
because additional variables are required when compared
with the single crystal. There are at least five degrees of
freedom needed to specify a bicrystal in which the two
components are joined at a single interface (Fig. 6); three
for the relative orientation of the two crystals and two in
order to represent the normal to the interface plane. Addi-
tional degrees of freedom may be needed if the interfacial
energy can be reduced by a translation of the two lattices by
a fraction of the repeat distance in a direction parallel to the
interface,51) although it is not clear how such a translation
can be accommodated in a three-dimensional polycrystal
where the surrounding material provides a constraint.

The problem is made severe by the amount of informa-
tion that must be handled in order to create a structure–
property relationship. The number of parameters required
to describe the locations of N crystals in an aggregate with
respect to a frame of reference is 3N. An equiaxed grain in
the form of a Kelvin tetrakaidecahedron will have fourteen
faces, so that the number of bicrystal orientations that must
be described per grain becomes (1/2)�14�3N�21N. Each
of these interfaces will have two degrees of freedom so the
parameters become 14�2�21N�588N. A typical grain
size is about 10 mm so a cubic centimetre of material will
contain N�1012 grains so that its full description requires
about 1015 parameters! If the volume of each grain also
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Fig. 5. These diagrams show the plastic strain that develops in a
sample of 500 austenite grains placed under tension
along the longitudinal axis. The differences in the orthog-
onal strains correlate with the intensity of transformation
texture, assuming that each variant that forms contributes
equally to the fraction of transformation. (a) Strains de-
veloped due to transformation along the [1 0 0]S direction
(labelled longitudinal, along the stress axis), and the
transverse directions [0 1 0]S and [0 0 1]S. (b) Tensile
stress, but transformation beginning from a variety of
starting austenite textures and illustrating only the longi-
tudinal stress.27)

Fig. 6. An illustration of the fact that the orientation relationship
between crystals can be independently varied without al-
tering the plane of the interface and vice-versa. If the two
crystals belong to same crystal class (of which there are
seven) then the orientation relation can be described by
an axis and an angle of rotation about that axis. The inter-
face plane is specified by an axis normal to the plane.
Since each axis can be written as a unit vector we need
specify only two of its components. Thus, the total de-
grees of freedom required to specify the bicrystal is five.



needs to be specified than the problem become intractable.
There is no experimental technique available which can

resolve all these parameters. Bulk measurements have for
many decades been able to correlate both the texture and its
intensity to a variety of properties. But in most cases these
measurements neglect the location of crystals and also the
interface planes; such neglect may not be important de-
pending on the property being modelled. However, the
EBSD technique offers more information in the sense that
the microstructure can be viewed at the same time as the
orientation of each crystal. Nevertheless, the observations
of microstructure are on two-dimensional sections and
hence do not give sufficient information about the orienta-
tions of interfaces. Serial sectioning methods help here but
the amount of work involved to get meaningful statistics or
accuracy in the context of engineering is impossibly large.

It is unlikely therefore, that engineering grain boundaries
per se, as opposed to creating favourable textures, can be
realised without (a) experimental methods to obtain large
quantities of accurate information on the crystallographic
indices of boundary planes and (b) methods for interpreting
the resulting vast quantities of information. At this stage, it
remains the case that most progress is made by manipulat-
ing orientations rather than boundaries. It is arguable
whether, if it becomes possible to readily collect all the nec-
essary information for grain ‘boundary’ engineering, we
have the capability to exploit the quantities of data that
emerge.52)

5. A Major Difficulty

Comparisons of calculated and measured textures as de-
scribed above and in the published literature are misleading
in the sense that ‘intensities’ are not calculated. It is only
the positions of the poles which are calculated, assuming
that each crystallographic variant contributes an exactly
identical intensity to the overall texture. For example, an
austenite grain containing two variants of martensite of
equal size will display the same calculated texture as that in
which one variant is a hundred times larger in volume than
the other (Fig. 7).

To do a proper calculation requires not only the crystal-
lography of each variant but also its volume, a problem
which requires thermodynamic and kinetic theory to be in-
corporated into the texture calculation. In the case of dis-
placive transformations, there has been one study of this
problem,27) based on the assumption that it is the total free
energy that a particular variant experiences which deter-
mines the extent of variant selection, although once the
number of variants in any given austenite grain is estab-
lished, they are all assumed to contribute equally.

The total free energy available for transformation is the
sum of the chemical and mechanical components, the latter
being zero in the absence of an applied stress during trans-
formation44,48):

......................(7)

where DGMECH�U. It may be reasonable to assume that
there is strong variant selection when the ratio of
DGMECH/DG is large.53) This turns out to be the case as il-
lustrated in Fig. 8. There is a strong, albeit empirical, linear

correlation between the ratio DGMECH/DG and the number
of most favoured variants allowed to form in each of the
austenite grains.27) Although limited in its rigour, this is a
useful observation in that it allows the extent of variant se-
lection, and hence the transformation strains, to be calcu-
lated as a function of stress for any steel as long as the ther-
modynamic quantities can be estimated. This is an area
where progress is needed from a fundamental point of view.
When using this method, it is important to realise that the
common assumption that U�(1/2)s ije ij is based on elastic-
ity theory, and is therefore inappropriate when using Eq.
(7).55) The strain due to transformation is plastic so the fac-
tor of 1/2 should not be there.

6. Reconstructive Transformations: Lack of Theory

The crystallographic theory of martensite29–31) is proba-
bly the most complete formulation in the field of materials
science, with its ability to describe every significant feature
of a displacive transformation. The calculation of transfor-
mation texture therefore has a firm foundation in science.
There is no equivalent model for reconstructive transforma-
tions, no established theory which allows the calculation of
an orientation relationship, variant selection or transforma-
tion strains. The calculations generally begin by assuming
an orientation relation but the product (a) is not confined to
the grain in which it nucleates so a single ferrite grain can
be in contact with many austenite crystals (Fig. 3).

Variant selection could be determined by any of the crite-
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Fig. 7. Schematic illustration of the difficulty in calculating pole
figures. (a) and (b) represent the pole figures calculated
without taking account of the volume of the diffracting
crystal, whereas (c) is meant to show intensity scaling
with the fraction of the contributing crystals.

Fig. 8. DGMECH/DG versus the number of most favoured variants
per grain (n), for a variety of steels.27) Data from.27,47,54)



ria listed below, all of which require much more informa-
tion about the local environment than is currently available
or possible to determine:
• When the a nucleates at a g grain boundary, edge or cor-

ner, it may adopt a variant of the assumed orientation re-
lationship which allows it to lattice match with the maxi-
mum number of austenite grains that it touches.

• The orientation of the austenite grain boundary plane
with respect to the specific variant of the assumed orien-
tation relationship may play a role in variant selection.

• External influence such as stress may be through its in-
teraction with the isotropic volume change accompany-
ing transformation (but is this more than a hydrostatic in-
teraction?) or due to defects introduced by the stress. In
the case of magnetic fields, particular variants may be
favoured which have their magnetic domains better
aligned to the field, as long as the transformation temper-
ature is below the Curie point.

• It may be the case that nucleation occurs via the same
atomic mechanism as displacive transformations, in
which case the same theory might be used to establish
orientation relationships. But this is not sufficient to de-
termine the selection of variants since growth does not
involve a shape deformation beyond the volume change,
and the role of long-range diffusion has yet to be ac-
counted for.

7. Summary

The most rigorous calculations of transformation texture
are based on the crystallographic theory of martensite,
which applies not only to martensite but also bainite and
Widmanstätten ferrite. Here it is also possible to estimate
variant selection and the resulting anisotropic transforma-
tion strains that develop on a macroscopic scale. It is em-
phasised, however, that although the methods allow the ori-
entations to be predicted, they do not permit the volume
fractions of particular variants to be estimated. The inten-
sity of texture is not therefore predicted, only the locations
of poles on a stereogram.

The situation regarding reconstructive transformations is
much less developed and even the principles of variant se-
lection are not yet established with confidence.
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