CHAPTER 3

THE CONTACT MECHANICS OF SOLID BODIES
SUCH AS WHEEL ON RAIL.

3.1 Nomenclature

A, B, C
a

a

a, b

a, b

3!, b'

Ciis Csy ele.

D(e), K(e)

Coefficients in equations 3.1 to 3.9.

Radius of a circular Hertzian area of contact.

Half the contact width of the Hertzian contact strip for cylindrical (line)
contact. (This contact can be regarded as a contact ellipse with a major
axis "a" of infinite length; i.e., one convention has half the contact width,
the ellipse minor axis, as "b". However when considering purely elliptical

contact, it is commonly taken as a".)

Major and minor semi-axes of the contact ellipse of two bodies loaded

against each other.
Half lengths of approximated contact rectangle (cf. Equ. 3.32).

Major and minor semi-axes of the elliptical contours of separation of two

bodies.
Non dimensional creep coefficients.
¢ = V(ab) where "a and b" are the contact ellipse semi-axes.

Complete integrals of argument, e = V(1-b%a?, a>b.
(Equations 3.8 to 3.13.)
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Nomenclature continued...

Fl? F2

The elastic modulus.

The "effective elastic modulus" where, 1/E" = (1-0,)/E, + (1-v,%)/E,

Force to overcome rolling resistance in free rolling.

Functions of the contact ellipse shape, related to D(e) and K(e).
(Equations 3.14 to 3.16.)

Modulus of rigidity.

Separation between two bodies just touching.

Hydrostatic component of stress for material in compression where,

h = Va.(c, + G, + ©3)

Yield stress in simple shear.

Initial yield stress of material in shear.

Length of cylindrical (line) contact.

Spin traction.

Cartesian coordinate system.

Normal load or force.
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Nomenclature continued .....

PS Proof stress.

P, Normal load for shakedown.
Py Normal load for first yield.
p Normal contact stress.

Pa Mean contact stress.

Ps Maximum contact stress.

p’, or (p,)  Maximum contact stress at a shakedown limit.

(Po)y Maximum contact stress to initiate yield.

Q Tangential load or force.

Q/P "Traction coefficient” where Q < pP, (i.e. where there is "static
friction").

q Tangential stress.

q. Maximum tangential stress.

R';, RY, Maximum principal radii of curvature for bodies 1 and 2.

R, R Minimum principal radii of curvature for bodies 1 and 2.
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Nomenclature continued ....

Rl, R"

L =

Vo

Principal "relative" maximum and minimum radii of curvature where,

1/R' = 1/R'; + 1/R'; and 1/R" = 1/R"; + 1/R",

The "equivalent relative radius of curvature" for bodies 1 and 2 in loaded

contact where, R, = Y(R'R").
Radius of railway wheel.
Surface point on body in contact.

Velocities of microslip between contacting points in steady rolling.

(Put dots above "s"? ask James)
Internal distance point of body in contact.
Elastic displacement of surface point on body in the z direction.

Components of tangential elastic displacement at a surface point.

(Put dots above "u"?)

Velocity of rolling body along the "x" axis. When E:onsidering creepage,
V = %.(V + Vo).

Circumferential velocity of wheel at its yawed angle.
Translational velocity of wheel along the rail.

Velocity due to yaw of wheel on rail.
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Nomenclature continued ....

Y Yield stress in simple tension.

Zys Z Surface profile functions for bodies 1 & 2 in contact.

(Equations 3.1a, 3.1b).

o (Bulk) approach of two bodies along the centre line 0,.
95, By Maximum elastic diplacements of bodies 1 and 2 along the centre line 0,.
Sy Creep velocities.

€y Relative rigid slip where " V" is "rigid slip".

S ey Creep ratios (longitudinal and lateral creepage).

0 Railway wheel cone angle (cf. Figure 3.8).

A Coefficient of rolling resistance (F/P).

A Angle between vertical axes of wheel and rail.

i Coefficient of (kinetic) friction.

v Poisson's ratio.

Oy, O3, O3 Principal direct stresses.

By Oy O Principal direct stresses acting along x, y, z axes.

335



Nomenclature continued ....

Tmn

(T

Shear stress.

Principal shear stress.

Maximum shear stress.

Orthogonal shear stress.

Residual shear stress.

Yaw angle of wheel on rail.

Spin parameter/creepage.

Angle between the principal planes of curvature of two bodies .
(Equations 3.2 to 3.5).

Angular velocity due to spin.
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3.2 Introduction

This chapter examines the mechanics of loaded contact between solid, non-conforming
bodies such as a wheel on a rail. Initially the stresses and deformations of static contact,
generated from a normal force, are considered. Then [urther consideration is given to
the effect of relative motions between the bodies and the effect of applying tangential

forces.

Even at the highest axle loads on the British Rail network (10 tonnes) the contact area
between the wheel and rail is approximately 1 cm? i.e. the system can be viewed as a
large bearing race and, as in bearing contact, very small, highly compressed regions are
constrained within a bulk of relatively unstrained material. This small area of contact,
with its relatively low frictional resistance, means that rail vehicles are highly efficient
movers of mass compared to road vehicles. In this work only the dry contact of the
wheel on rail is considered, whereas on Japanese and European rail networks there is
usually a light slurry of water, oil droplets, wear and chemically induced ferrous oxides
and biological products, i.e., a "boundary lubricant". This can slightly reduce friction.
Rain can further reduce friction and the consequent reduction in wear can accelerate

other problems such as rolling contact fatigue*. (* This has been separately studied by

the author[Gamhun & Beynon, 1990 (see Appendix II); Beynon et al, 1994]_)

The quoted mechanical properties of materials, as determined in laboratory tests
(including some fatigue and stress corrosion tests), are almost always based upon their
strength in uniaxial tension. Such testpieces are not constrained b}; adjacent material and
are free to thin in cross-sectional area whilst being stretched. The behaviour of small
areas of material under compressive loads, constrained within a relatively unstressed
matrix, differs. Loading above the tensile yield point is commonplace. As a general
guidelMliog 1975 - metals have compressive elastic behaviour up to mean contact pressures
of 1.5Y or 3k (where "Y" is the uniaxial tensile yield stress and "k" is the yield slrr?:ss
in shear). From 1.5Y to 3Y, or 3k to 6k, a sub-surface element of material behaves in a

plastic manner but it is constrained by surrounding elastic material. This zone increases
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in size with increasing load and it will finally spread to the surface of the body such
that, above 3Y or 6k, the material behaves in a fully plastic manner. This is akin to the
hardness test where, for metals, H = 3Y = 6k (with an assumption of zero
work-hardening). There is no accepted practice for determining the mechanical
properties of materials in compression due to the influence of friction on testpiece
holding and the variablity of testpiece geometry; test areas are not constrained within

an unloaded matrix.

For an initial analysis, estimations of contact areas and material deformations are still
based upon the theories of Hertz!"*¥. These covered the frictionless, elastic,
compressive contact of non-conforming solid bodies. His basic formulae are still used
for rapid determinations of contact stress, area and deformation in engineering contacts
including rail-wheel. More sophisticated computerised systems have recently been

[Kalker 1979.1990] These must account for the

developed to give more precise rail-wheel data
relative motion of the bodies (roll, slide and spin) in macro and micro movements with

respect to differing wheel-rail geometries and wheelset-rail alignments.

This chapter primarily addresses the "bulk" consequences of loaded contact between
solid bodies and the effects within the area of contact formed. For the most part, it will
assume that the bodies have perfectly smooth surfaces. However, al a microscopic level,
engineered metal surfaces are never smooth and hence real initial contact occurs
between the peaks of asperities. The loads are such that these will plastically deform
until the load can be supported by a network of semi-flattened asﬁerities; i.c. the real
area of contact. The effect of such surface profiles and the generation of high stresses at
a near-surface microscopic level is of significance with respect to static and sliding
friction and the generation of surface initiated micro-cracks. These factors are discussed

(cf. section 3.9).
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3.3 Normal loading of elastic, isotropic bodies without other movements.

This situation was investigated by Hertz!"™. His work has been described by

K.L. Johnson in various papers and in his comprehensive book on contact
mechanics'™®!, Some of Johnson's approach is summarised here. Two non-
conforming solid bodies approaching each other must initially touch at a point,
except in the case of aligned cylindrical contact, where initial contact is along a line.

The surfaces will elastically compress and form an area of contact.

Hertzian Theory makes the following assumptions:

" The surfaces are frictionless.

¥ The surfaces are continuous and non-conforming.

¥ The contact area is very small compared with the bulk volume of the two
bodies.

. The contact stresses are large compared with other stresses in the two bodies.

* Subsequent strains are small.

:§ Each body can be regarded as an elastic half-space bounded by the plane
7z = (.

The approach of two bodies.

For the initial treatment of this approach let two, curved, irregularly shaped objects
meet at a point O, approaching along a common coordinate z, such that they form a
contact area in a tangent plane described by the coordinates x and y, both of which
are at 90° to cach other and to z (Figure 3.1). Near to the point of contact, the shape

of the bodies can be approximately,

z, =AxX*+ By 4+ Cxy + ... (3.1a)

with a similar expression for z, when higher order terms have been neglected. The
"containing" shape of two unloaded bodies, 1 and 2, can be described by their
respective principal ("maximum and minimum") radii of curvature at the point of
contact, R';, R", and R', and R",. (Note, concave surfaces will be negative.) If the

orientation of the x and y axes are chosen such that the term in "C,," is zero, the
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surface profiles, z, and z,, can be expressed as,

- 1 2 yz
g A WY 1
O (3.16)
1 2 1 2 3.1
g =~ |l s 23 (3.10)
RIZ RH2 ]

If they just touch without deformation then the small separation between them, parallel
to the z axis, can be described by h, where h = z, - z,. Therefore for a common set of

suitably orientated x and y axes, from Equation 3.1,

1
L 2 - S o 2
h =Ax* + By (forw =0) — x° + e (3.2)

where "A" and "B" (with B > > A) are constants, whose value depends upon the
magnitude of the principal curvatures, and R'and R" arc defined as the principal relative

radii of curvature where 1/R' = 1/R'; + 1/R', and 1/R" = 1/R"; + 1/R",. Only where

the planes of principal curvature of the two bodies coincide (i.e. ® = 0) does,

>
n
L=
L}

1
R’ RV (3.3)

When the axes are not common (o # 0 as in Figure 3.1), it can be shown that!" '%%],

: .1 & i x s 1
Ril R”! RJZ R”z (34)

and
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2 2
L
Rl R 1 ‘RZ R 2 ‘Rl R 1 2 2

3.5)

The separation of the two bodies can be described by elliptical contours whose ratio
of semi-axes a'/b' = \f(B/A). Examples of the inter-relationships of the "R" terms,

with the contact of some regularly shaped objects, are given in Figure 3.2.

The compression of two bodies.

It is assumed here that the two bodies do not greatly differ in elasticity and that o is
zero; a situation applicable to most engineering contacts including wheel-rail contact.
Figure 3.3 shows the compressive contact of two bodies. A normal load has been
applied such that they have both elastically compressed and formed an area of
contact. Remote parts of the bodies (T,and T,) have approached each other by a
distance §. Points on the approaching contact surfaces (S;and S,) have been

elastically displaced by u,and u,,. Therefore, from Equation 3.2, inside the contact
area,

u, + u, =& - Ax? - By? (3.6)
and outside the contact area,

u, +u, > 8- Ax*- By’ 3.7)
At the contact centre (x,y = 0),

d = u,+u, = &+ &, (the maximum elastic displacements)

Hertz Theory of Elasticity explains the pressure distributions required to satisfy

Equations 3.6 and 3.7. Within the contact patch it shows that;
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2, B
A =2 2 1K@ - D) (3.8)
e 2 (3.9)
Bix 2= [%]D(e) - K(e)
5 = Lo b Kee)] 3.10
= (3.10)

where p, is the maximum contact stress; a and b are the respective major and minor

semi-axes of the contact ellipse and E* is the "effective elastic modulus" with E* given

by,

= +

Y
E° E F

where E;, E, and v,, v, are the respective Young's Moduli and Poisson's ratios for the

two bodies. K(e) and D(e) are complete integrals of argument, e = 1J[l-(b’/az)], a=>b.

The pressure distribution across the contact is semi-ellipsoidal therefore, for a total load
P, the mean contact stress, p,, is given by p,, = P/mab and the maximum contact

stress, p,, is given by,

i e

The pressure distribution within the contact ellipse will be given by,
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(3.11a)

From Equations 3.3, 3.8 and 3.9,

B _(R'Y _ (ab).Dee) - Ke)
A |\R” K(e) - D(e) (3.12)

and

V(AB) = % V(1/R'R") = %.R,

= Lo b \lamy. pe) - Ke)lIKe) - D)) (3.13)

E* a%?

where R, {i.e. Y(R'R™)} is called the "equivalent relative radius of curvature".

Substituting p, from Equations 3.11 into Equation 3.13,

ne

3PR
(a/by™ - [?].-f‘—i.wfa)m-\/[[(azbfn(e) - K(@)JIK(e) - D(@)]]

From this, (ab) can be expressed thus,

1/3

Fo(e) (.14)

3PR,
ﬁ ab) = [-IE-
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Po thus,

(3.15)
T T ‘ﬁef].[by(e)]-z
and displacement & (from Equations 3.10 and 3.11) thus,
, s
5 =~ nii L bKee) = T;ﬁ—me Fy(e)
(3.16)

where F, and F, are functions of ellipse shape, related to K(e) and D(e). The values of
these functions and the shape of the contact ellipse (b/a) are given against values of

\((R'R") in Figl.lfe 3 _4lfrom Johnson 1982, 1985]

Equations 3.14, 3.15 and 3.16 can be viewed in the manner of the first terms
representing a sphere of radius R, in contact with a plane (or the contact of spheres of
radii R,, R,, if R is substituted for R, and 1/R = 1/R; + 1/R;) whilst the sccond terms,
containing functions F, and F,, are the correction factors for elliptical contact. Apart
from Johnson's figure, in a different manner, other publications present charts of similar
elliptical functions to help the engineer. For example, ESDUM™ present the above
Herizian analysis and equations in a different manner for easier engineering reference.
Their function / coefficients can be read off charts against values of A/B. Dyson et
al'™ have also produced a simplified method for determining Hertzian elliptical contact

data.

If the ratio R'/R" is small (i.c. approaching spherical contact) then the correction factors

are close to unity, as seen in the top left corner of Figure 3.4.

Before contact, the contours of separation (b'/a') = JWA/B) = V(R"/R'). The ellipse
shape is changed by loaded contact. This shape of the contact ellipse (b/a) is part of
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Equation 3.12. This can be re-arranged to read:

b/a = Y(R"/R") . a function of (¢) = V(R"/R') . a function of (R'/R")

Therefore,

b/a . Y(R'/R") = a function of V(R'/R") (3.17)

This relationship has been plotted in Figure 3.4, hence the relationship (b/a) can be

determined. It can be seen from Figure 3.4 that a good approximation is,

b/a . Y(R'/R") =~ (R'/R")"®, i.e. b/a=~(R'/R")?? = (B/A)? (3.18)

Therefore the values of a and b can be determined from Equations 3.14 and 3.17, or

approximated from 3.14 and 3.18.

Spherical contact

As the two bodies approach spherical shapes so the functions of (¢), F, and F, (the right
hand terms in Equations 3.14, 3.15, 3.16 and 3.17) approach unity, as shown in Figure
3.4, At unity, R'= R", therefore these terms disappear and R replaces R, in the left
hand part of the equations, where 1/R = 1/R, + 1/R, (R,, R, now being the sphere

radii). Now P = ma’p, where "a" is the radius of the contact circle, therefore,

3. ——83p  EEESY
R e (3.19)
o _ TR (3.20)
aE* 2E" ‘
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5 -8 (50 Y - 105 (3.21)
16RE * 2

Cylindrical (line or rectangular) contact.
[NOTE: With elliptical contact, "2a" is taken as the length of the major axis and "2b"

as the length of the minor axis, therefore as the ellipse elongates towards line contact,
"a" tends towards infinity and, one convention has it, "2b" is the subsequent contact
width, for line contacts in cylindrical rolling movement in the "y" direction (eg, ESDU
publications). However, for the sake of simplicity, many authors, including KL Johnson,
use "2a" for the line contact width, with rolling and sliding in the "x" direction, and this

practice is followed in this text.]

Wide cylindrical contact was the form of contact for the test disc results reported in the

present work.

For the analysis of this condition, R', and R', are the respective cylinder radii with R",
and R", becoming infinite. Therefore 1/R = 1/R'; + 1/R';. (For a cylinder on a flat
plane R", = o {Figure 3.2}.) Here P' is the load per unit axial length such that p,, =

P'/2a where "a" is half the contact width. Now,

p o lts 2P |(PE (3.22)

= R :

2P _ |(4PR (3.23)
w, 20N

For the line contact of two steel cylinders, where v,= v, = 0.3, Timoshenko and

Goodier?™ *- 'l have expressed the above formulae thus,
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P"E] (3.24)

(3.25)

where 1/E = 1/E; + 1/E,. These formulae have been used throughout the
experimentation described in the present work and E, and E, have been taken as 210

GPa. (Measured values for R52 and W64 were 209 and 199 Gpa respectively.)

ESDU!"™ give the approach of cylinders of "infinite" length (8.) which have the

same values of "E" and "v" as,
o, = 2P'nE* . [2/3 + log(4R',/a) + log (4R',/a)] 3.27)

3.4 Stress distributions for the normal compression of two bodies.

Derivations of the distributions are explained in Johnson"; summaries are given
here.

Normal pressure distributions (i.e. in the "z" direction) across the contact areas for

the three forms of contact are shown in Figure 3.5.

The principal direct stresses acting along the z,x,y axes, at, or below, the contact
centre, are ¢,, 0, and o,. The shear stresses acting along these axes at, or below, the
contact centre are zero. The principal shear stresses act on the planes bisecting the

angle between the z,x,y planes. Their magnitude (by Tresca's criterion) is given by,

(o, - 0,)/2 in the zx plane (3.28a)
(o, - ©,)/2 In the xy plane (3.28b)
(o, - ©,)/2 in the yz plane (3.28¢)
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The distributions of the principal direct and shear stresses, at the centre of these types of
contact (i.e. along the z-axis, the axis of symmetry {x,y=0}), are shown in Figure 3.6;
i.e. the normalised stress magnitudes (divided by p,) have been plotted against
normalised sub-surface depth down the z axis (divided by the contact width "a"). Figure
3.6 shows that the overall maximum shear stress is sub-surface and lies between the zy
planes, whereas the highest shear stress at the surface lies between the zx planes.
(ESDU 78935!"" has a table showing the magnitude and location of maximum shear
stress for changes in contact ellipse shape and Poisson's ratio.) The top plot of Figure

3.13a shows the contours of principal shear stress beneath such a contact.

The depth [z/a] and value [1,,/p,] of maximum shear for the symmetric configurations,

with v = 0.3, are,

Z{a Tmnx/po
Spherical contact : 0.48 0.31
Cylindrical contact : 0.78 0.30

For elliptical contact the magnitude and depth of maximum shear are variable with

ellipse shape. An example (shown below) is given by Johnson!®®! for two similar steels

with v = 0.25:

b/a 0 0.2 0.4 0.6 0.8 1.0
z/b 0.785 0.745 0.665 0.590 0.530 0.480
e 1P 0300 0322 03258 0323 0317 0310

For elliptical contact, direct stresses along the principal planes/axes, at the centre of
contact SURFACE, are;
O, = Ps (3.29)

o, = 2v.p, + (1-2v).(b/{a + b}) (3.30)
o, = 2v.p, + (1-2v).(a/{a + b}) (3.31)
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3.5 The hertzian contact of wheel on rail.

In a simplified sense, wheel/rail contact can be represented by a conical surface (the
wheel) on a hemi-spherical cylindrical surface (the rail head) as shown in Figure 3.7.
The area of such a contact is elliptical. The true plane of loading (shown in Figure 3.8),
along the line UT, is not normal to the wheel axis and the section of the wheel cone

along that plane will be elliptical in shape.

With reference to Figure 3.8, from curvature theory it can be shown!FSPU 78035 1978] (hat
the relevant principle radius of curvature of the wheel, R",, is related to the ellipse by,
R", = a’/b, and from geometry, the ellipse semi-axes are given by,

a = r.sin(90 + 0)/sin(90 - 26) and b = r + n.tanBO, where n = a.sinB. R", is given
by the rail geometry, R'; and R', are both infinity and the angle between the principle
planes of curvature, m, is 90°. Therefore, from the approach described in Section 3.3,
the dimensions of the contact ellipse for a given load and wheel cone angle (6) can be

calculated.

The ESDU example shows that for a cone angle of 2.5° and a wheel load of 100kN (10
tons force), the ellipse semi-axes will be 7.38 and 5.24mm, thus the contact arca will be

1.2 em? and the maximum contact stress, 1.24 GPa.

More detailed aspects of the practical considerations of rail based transport, including
wheel/rail contact, can be found in Esveld's"™™ comprehensive book. For clliptical
contact, he shows that the maximum shear stress from hertzian contact, with a centred
wheelset, will lie at a depth of (.64a, where "a" is the contact ellipse semi-axis along
the rail (Figure 3.9). In tangent (i.c. straight) track this normally lies between 4 and
6mm beneath the rail head. The maximum shear stress occurs across the rail. In contrast
to the hertzian values of maximum shear stress given in Section 3.3, he states that the
Theory of Elasticity is not applicable for all cases, and that for practical considerations,
the maximum shear stress, T,,,, can be taken as = 0.3p,, rather than 0.3p,. (Note, p,

= 1.5p,, for elliptical contact.) He presents a simplified method [after Eisenmann!™""),
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of calculating wheel/rail contact stresses (Figure 3.9), where the contact is taken as
cylindrical with all principle radii infinitely large except the wheel radius. Thus the
contact can be approximated to a rectangle of dimensions 2a and 2b with a semi-

elliptical axial pressure distribution.

From Equ. 3.22, assuming the steel and rail have the same values of "E" and "v", it

can be shown that,

. \l[ nE P (3.32)
= 64(1-v?) rb

thus for a standard situation where E = 210 GPa, v = 0.3 and b = 6mm,

p. = 1374.N(P/r) MPa (P [kN], r [mm]) (3.33)
where 1, ~ 412.\(P/r).

Esveld qualifies these observations by saying that in tight curves, with rail lubrication,
the Herzian elliptical stress distribution should be used and here 1_,, will lie between 2
and 4mm beneath the rail head, with a value approximately 50%higher than that given
above. Note, Esveld's approximation is for elastic contact. Of parallel interest is the
work of Kapoor and Johnson'""? where they show that plastic material flow within an

elliptical contact will eventually alter the shape from elliptical to near-rectangular.,

In reality, wheel and rail profiles are more complex than single cones or cylinders. For
steady state curving, Cheesewright'*®! has calculated/computed contact patch
dimensions, shapes and maximum contact pressures for lateral displacements of various
types of wheel profile, using basic hertzian analysis and two other, more sophisticated
computer programs. Figure 3.10 shows the complex patterns generated by a high speed
locomotive wheel (on this figure, 36mm represents the lateral position for a
symmetrically aligned wheelset). Note the very high stresses with flange contact. Within
a few months of service, "running-in" wear of the wheel and rail will trim down the

highest stresses. Further complications are introduced by the yawing of rigid wheelsets
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and independent movements of non-rigid wheelsets; a numerical solution for this
problem has been devised by Duffek!"*, Kalker!”*! has developed a program to
simulate wheel wear, backed by track studies, and this has shown how wear effects

wheel-rail contact positions, and thus, the contact stresses.

For some wheel profiles on European rail networks, there is a non-herzian form of
contact with two separate elliptical contact zones. Pascal and Sauvage!"! have
developed a simplified method of calculating forces for such contacts by approximating
to a single ellipse. Their model also purports to explain the alignment of surface fatigue

cracks.

3.6 The effect of tangential loading in combination with normal loading.

Friction

If a force is applied to the two non-conforming bodies so as to generate a pressure for
one to slide against the other, this is opposed by a tangential force of friction "Q"
(Figure 3.11). If the force is increased until sliding across the complete contact just
occurs, then that is the point of "limiting friction" from where Amonton's Law applies,
i.e. Q represents the force of "kinetic friction" such that Q = pP, where "u" is the
coefficient of (kinetic) friction and P is the applied normal load. If the force is
insufficient to cause complete sliding (as in tractive propulsion of a locomotive for
example), the average value of Q for the complete contact patch is variable and it is less
than pP, i.e. a force of "static friction". Q/P (<p for sliding) is often termed the

"coefficient of traction".

Displacements:

The normal component of displacement, §,, due to the tangential force, is proportional
to the elastic constant (1-v)/G (where G is the Modulus of Rigidity / Bulk
Modulus)leh°e #8351 - Ag the tangential tractions at the contact are equal and opposite for
the two bodies, if they have similar elastic properties, displacements will be equal and

opposite, i.e. the shape of the contact will still be determined, from hertzian theory, by
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the normal force and the shape of the profiles. Such is the case in this work.

Stress distribution:

For simplicity the two dimensional case of cylindrical contact will be considered.

The principle applies to spherical and elliptical contact. Let the bodies shown in
Figure 3.11 represent a cylinder sliding on a plane perpendicular to its axis, where
2a is the width of the contact strip. The distribution of normal loading will then be
herzian as shown in Figure 3.12a. If q, = up, is the tangential traction at x = 0, it
can be shown thatUebeson, 19831 {he direct stress in the y direction reaches a maximum
of -2q, at the leading edge of the contact and a maximum tension of 2q, at the
trailing edge (Figure 3.12b). The combined effect of normal and tangential loading
on direct stress in the y direction is shown in Figure 3.12c. Representative values are

given for Q/P = 1/3.

The effect of tangential loading on the shape of the stress field are shown in Figures
3.13a and 3.13b for Tresca and Von Mises stress criterion, respectively. As the
coefficient of traction increases, the maximum shear stress moves nearer the surface
and increases in value. The start of plastic yielding will be determined by the
maximum value of this stress. For simple shear, this will equal the yield stress "k"
and, [rom the established yield criteria, the value of maximum contact pressure p,
for first yield can be found. As the principal shear stress in the plane of deformation
is 1, = (Q/P)p,, material throughout the width of the contact surface will begin to

yield when,

k = (Q/P)p, or pJk = 1/(Q/P) (3.34)

The contact pressures required for the onset of yield with tractive contact, as
determined by both the Tresca and Von Mises yield criteria, are shown in Figure

3. 14lster Johnson, 1985] Thig figure also shows the theoretical traction coefficient level at
which the principal yield stress should reach the surface. Practical guides on how to
estimate stresses with tangential loading are given in ESDU 84017("*! and ESDU
85007111,
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3.7 Contact effects during rolling.

Two non-conformal contacting bodies can move against each other in three ways:
rolling, sliding and spinning. Even with just "free rolling", where the initial tractive
force has been withdrawn, there is a resistance to the passing of the material through the
contact, i.e. "rolling resistance". This is obviously also present with tractive rolling.
The situation where there is a tractive force, but of insufficient magnitude to cause gross
sliding, is very common; for example, driving road and rail wheels, tightened bolts and
nuts, etc. Such contact situations can be complex, with areas of both "stick" and "slip"
across the contact. With wheel/rail contact, there is rolling, sliding and spin with
elements of micro-slippage, "creepage", generated in the longitudinal, transverse and
spin directions. A static situation, where micro-slippage can occur, is found in the
normal compressive contact of materials which have different elastic properties where
different deformation strains have to be accommodated. Contacting materials with

similar properties are assumed throughout the present work.

Rolling resistance.

The energy required to deform the material(s) constitutes a "rolling resistance" to the
movement in both tractive and free rolling. Rolling will be resisted by the work of
compression ahead of the contact and of tension behind the contact, with micro-slippage
accommodating the elastic material movements as the surfaces pass throught the contact.
There will be energy dissipation due to clastic hysteresis loss, €, as material is

compressed through the contact.

If "F" is the force to overcome this rolling resistance, then a coefficient of rolling

resistance can be termed A, where A = F/P, analogous to the friction coefficient, .

For example, it can be shown for cylindrical contact that™""e 175

A = F/P = 2ea/3uR (3.35)

where "a" is the half the contact width (Equ. 3.25) and "R" is the principle relative
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radius of curvature (Section 3.3). Similarly, for spherical contact,
= F/P = 3ea/l6R (3.36)

where "a" is the contact radius (Equ. 3.20) and for elliptical contact (with a small

rolling element moving over a large profiled surface),
A = F/P = 3ea/16R' (3.37)

Here "a" is the semi-axis in the direction of motion, as determined from Equations 3.14

and 3.17 / 3.18, and R' is the rolling radius of curvature of the rolling element.

Loads may be such that the sub-surface region of maximum stress exceeds the
(compressive) elastic limit, consequently material will pass through an elastic - plastic -
elastic cycle. With consequent work-hardening, rolling resistance is initially increased by

this plastic work dissipation.

In every case it is apparent that rolling resistance is reduced by minimising the contact
area; i.e. by the use of small contact radii and materials with high moduli of clasticity.
Such is the case with counterformal bearing type contacts, such as wheel/rail, and the
wear machine cylindrical disc contacts described in this work, particularly if these
contacts are dry. Under these conditions, rolling resistance is relatively insignificant

compared to frictional resistance.

Effect of static application of tangential force.

Where the overall level of friction is below the limiting level of friction (i.e. Q <pP),
part of the contact "sticks" and part "slips". Thus the distribution of shear stresses
shown in Figure 3.12b would be amended by an opposing distribution within the "stick”

mnr

region, as shown in Figure 3.15 (tangential stress is "T" in this figure; normal stresses

are not shown). Variations in the size of the "slip" regions, with oscillating or variable
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loads, can result the wear and fatigue phenomena known as "fretting" within bolted

assemblies, wire ropes, etc.Meline 19731,

Effect of tractive rolling: the concept of creepage.

Where there is a rolling movement, the distribution of shear stresses from tangential
traction (cf. Figure 3.12b), shown in Figure 3.15e, is amended; the area of "stick"
moves to the leading edge of the contact. The effect on the distribution of tangential
force and strain for the two bodies is shown in Figure 3.16. For tractive rolling, the
"stick" zone has to be situated at the leading edge of the contact otherwise a region of
"slip" at the leading edge would have traction in the same direction as slippage, as
shown in the "not possible" part of Figure 3.16. (Note, Figure 3.16 shows tangential

stress only, not combined normal and tangential stress as in Figure 3.12c.)

The concept that there must be some micro-slippage between the contact of rolling
objects, where there is traction, was first described in the last century with studies of
rubber rolling on steel’emen 19851 The conditions within the contact patch for the hertzian
contact of steel bodies, using wheel-rail contact as an example, were first addressed by
Carter'®®, He showed that zones of stick and slip must exist within the contact patch as
the velocity of the driving roller must be fractionally faster than that of the driven roller
in order to accommodate the tangential strains of the materials across the contact. The
difference in tangential strains within the "stick" part of the contact must be
accommodated by micro-slippage or "creep" in the balance of the contact area. The
"creep ratio" has been defined as the distance difference between one revolution of a
driving, or driven, roller and that of the unstrained circumference (positive for the
driving roller, negative for the driven roller). "Creepage" is defined as the difference in

the circumferential speeds, divided by the mean of the two speeds.

For "steady state rolling" (i.e. uniform motion under constant forces) it can be

shownVobmson 19851 that for the general case of elliptical contact:
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§/V = &y - Wy + (30,,/0x - 0B,/0%) (3.38)
§/V =&, - y/c + (9,/0x - 0f,,/0x) (3.39)

where:

* §, and §, are the velocities of micro-slip between contacting points in steady rolling.

* V is the rolling velocity along the x axis.

* g, =V, -8Vy)/V and &, = (8V,, - 8V,,) are the longitudinal and transverse

"creep ratios" where the "8V" expressions are the "creep velocities".

* y = (0, - ©,)c/V is the non-dimensional "spin parameter or spin creepage", where ©,,
and ©,, are the angular velocities due to spin.

* ¢ = Y(ab) where a and b are the contact ellipse semi-axes.

* @i, and i, are the components of tangential elastic displacement at a surface point.

It can be shown from the boundary conditions of these equationg!’etssos 1965, Halling 19951 that

the "stick" zone must be situated at the leading edge of the contact.

Carter!™® observed that, although new wheel/rail profiles contacted over an elliptical
area, once worn, the shape of the contact tended toward rectangular and he therefore
addressed creepage two dimensionally, as for cylindrical contact. For the contact of

similar elastic cylinders, using the hertzian determination for maximum contact stress,

Po. it can be shown!Certer. 1926: Johnson, 1965: Halling, 19751 (ha  the longitudinal creep ratio is given

by,

& = -pa/R.(1-N{1-Q/uP}) (3.40a)
and in non-dimensional terms,

E(R/pa) = -(1-V{1-Q, /uP}) (3.40b)

This relationship is known as a "creep curve" and it is shown in Figure 3.17. With

3.26



reference to this figure, and the "possible" traction curve shown in Figure 3.16, if any
tangential force is applied to a contact (Q/P < p) there will be an element of micro-slip
at the contact trailing edge to accommodate the elastic strains of the stressed material
surfaces. As the tractive force is increased, the proportional area of "stick" will
decrease and that of microslip will increase until it reaches the leading edge, at which
point Q/P = p and there is complete sliding over all the contact area (the "sliding" part
of the curve shown in Figure 3.17). With the initial condition of tractive rolling with
high friction (i.e. where Q/P < < ), the slip region at the trailing edge all but
disappears and the distribution of tangential traction approaches the limiting form known
as the "creep coefficient", given by the dashed line in Figure 3.17. Here the creep ratio

is given by,

& = aQ,/2RP (3.40c)

The situation for the contact of three dimensional bodies with longitudinal, transverse
and spin creepage is complex. Johnson!"* #* has shown that pure spin introduces an
additional element of transverse creepage due to the tangential elastic compliance of the
surface. For the situation where tangential tractions approach their limits, i.e. the slip
zone approaches zero, Kalker™® further developed Johnson's work into the "linear

creep theory" which could be summarised into three linear creep equations,

Q./Gab = Cy&, (3.41a)
Q,/Gab = Cpt, + Cppyl | (3.41b)
M,/G(ab)*? = CyE, + Cyuy (3.41¢)

where M, is the spin traction and C,;, C;;, Cys, Cy; and Cyy are non-dimensional creep
coefficients found from theory. Note that the creepage coeflicients rely solely on

material properties and contact areas.

For the opposite situation (with all three forms of creepage), where there is low friction
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such that the situation approaches complete slippage, and elastic displacement due to

tangential forces can be ignored, creepage relationships can be described by,

xj/a = £ |y and y/a = &,/y (3.42)

For this case, there is a point P(x,,y,), which does not necessarily have to be in the
contact, where there is no slip (see Figure 3.18). At any point A(x,y) the resultant
tangential traction q(x,y) has the magnitude pp(x,y) in a direction perpendicular to the
line PA.

The more realistic situation with partial slippage lies between the determinations
described above and is more complex. One form of analysis has been the "strip theory".
This was suggested by Haines and Ollerton!”®! for solely longitudinal creepage and then
developed by Kalker!"™ for all forms of creepage. It establishes conditions for
cylindrical (rectangular) contact and then this is transposed to elliptical and circular
contact by viewing those contact areas as a series of thin independent rectangular strips.
Results are summarised in Kalker!"®, However it had severe limitations!™* 71 Based
on this theory, Figure 3.19 shows how different combinations of creepage affect the

distribution of stick and slip arcas.

Figure 3.20 shows the wheel on rail situation*" ™otmen 19831 " Since wheels are coned,
longitudinal creepage can arise (for a rigid wheelset) when the two wheels run at
different radii, in addition to that generated by driving traction. Transverse creepage can
be generated when the wheels are yawed at an angle ¢ to the running direction (as in
curving) and spin creepage must be generated as the rail vertical axis is at an angle (A)
to the wheelset axis; the wheel has an angular velocity of spin (o, = wsin}) relative to

the rail.

In his examinations of wheel-rail contact, Kalker!"”- ** differentiates between the

creepages due to the accommodation of material strain ("elastic slip") and that due to
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driving/braking traction, when viewing the wheel and rail as rigid non-elastic bodies

with motion in their common tangent plane. The latter is termed "rigid slip" and is
gent p g p

defined by,

EV =G~ W& + WV (3.43)

where £, is termed "relative rigid slip", V is the rolling velocity {V = (V, + V,)/2, cf.
Figure 3.20} and spin creepage \ is defined, for this situation, by,

v = -V/V + (sinA)/R, i.e.,
v = (spin velocity due to yaw) + (spin velocity due to wheel conicity and/or camber)

Typical values for straight track rolling are &,, £, ~ 0.5% and y ~ 0.01 GplKatker, 1990,

Rigid slip of a driving wheel is usually around 0.1%of the vehicle velocity!Kalker 19791,

"True slip" consists of "rigid slip" plus "an accommodation of material elasticity with

respect to time".

Kalker also notes that his contact theories are "quasi-static” as inertial effects, requiring
a "dynamic" theory, would only become significant at speeds around 500 km/hr. In his
1990 paper, he lists the six theories in addition to Hertz, which are still of significance
to the European railway industry and he discusses their applicability, versus computing

time. for different contact situation, together with their inter-relationships.

Under actual track conditions creep coefficients are often observed to be less than
predicted due to the influence of surface (semi-lubricating) contaminants, surface

roughness and vibration™* 1.

Some laboratory testing of wheel-rail contact has involved full size contact testsMeEve s
Harvey, 1983] or scaled down contactst®iewk 1521 - Al] three modes of creepage would be

present and their distribution would be affected by wear of the wheel and rail profiles.
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For the present work, it was felt that material behaviour could be characterised simply
by testing cylindrical discs, i.e. with solely longitudinal creepage. Discs were made
equal in width to avoid the end effects described by Johnson!"**? (Figure 3.21) and of
sufficient width to give an even axial distribution of contact stress over most of the

contact.

Creepage considerations for such a contact have been described in the beginning of this
section. On passenger rail networks such as British Rail, during heavy steady state rail
curving without wheel flange contact, the overall creepage will be around 3%, most of
which consists of transverse creepage. Rail wear and fatigue problems are concentrated
at such areas, with failure reflecting the strain generated by transverse creepage. The
situation thus differs from twin disc laboratory tests in that the major creepage

component is not in the direction of rolling.

It should be noted that occasionally tractive contacts can change from "steady state"
contact conditions (with stick and slip zones in the contact) to evolving zones of
predominant stick and predominant slip, thus giving surface undulations ("corrugations
and facets"). Such a phenomenom has been observed on road and rail and they were

encountered during some of the tests described in this work (cf. Chapters 6 and 7).

3.8 Plastic deformation with the contact of solid bodies.

"Rail wear", as shown in Figure 1.1, includes not only wear by material removal as
debris, but also gradual plastic flow of material out of the contact zone to form a lip on
the flange. Such plastic flow would have been progressive over many rolling contact
cycles. Plastic deformation within the wheel/rail contact zones will "feed" the wear

mechanisms where particles are removed as debris.

Contact mechanicists view the plastic behaviour of material (i.e. "inelastic contact")
within certain behavioural modes. Initially, yielding within complex stress systems

where there is no tangential force, just normal contact, will be considered.
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Yield with normal contact.

In uniaxial tension the elastic behaviour of metals either ceases at a specific yield
point, or else the elastic-plastic transition is less obvious and a 0.2%proof stress is
taken as the transition point. With complex stress systems, the state of stress can
always be described in terms of the three principal stresses, o,, ¢, and o;. Yield
criteria then define conditions where plastic behaviour is initiated for any
combination of these stresses; only sudden initiation of yield is considered. Two
criteria are commonly used, Tresca and von Mises. The descriptions here are those
given by Parkins''®. Johnson!"*! mentions a third, the "maximum reduced stress

criterion”.

The Tresca criterion states that plastic behaviour occurs when the maximum shear
stresses reach a critical value. The shear stresses were given in equation 3.28. If
G,>0,> 05 then the maximum shear stress must be (5,-63)/2. For uniaxial tension,
o,=Y, the yield stress in simple tension, and 6,=0,=0, therefore the maximum
shear stress, 6,/2=Y/2. Thus the Tresca criterion is (c,-0;) = Y. For pure shear,
where k is the yield stress in simple shear, g,=0 and ¢,=-0,=k. Therefore,

k =Y/2 = 0.50Y (3.44)
and the Tresca criterion can thus be written,

{IUI-UZI! Ioz'osl . |03-U]|}m1x =2k =YX (3-45)

Von Mises' criterion takes into account the fact that metal cannot be compressed in
all directions and therefore the hydrostatic component "h", {where h =
(6,+6,+64)/3}, must be considered. Thus the effective principal stresses are (o-h),
(o,-h) and (o,=h). The criterion states that deformation occurs when these reach a
critical value, 1.e.,

(o-h)? + (oy-h)? + (o5-h)! = [(6,-0,)" + (0,03) + (0;-6,)°}/3 = a constant.
Again, considering the case of uniaxial tension, where 6,=Y and 6,=06,;=0, {rom
this the constant = %Y?, therefore now,

(0,-05)" + (0,-05)° + (0,:0))" = 2Y’ (3.46)
From the case of pure shear (o,=0, o,=-0;=k) this gives under von Mises,

k = Y3 = 0.58Y (3.47)
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This differs slightly in value from Tresca (Eq. 3.44). Although refined experiments
with ductile metals tend to support von Mises, as the difference is small and most

|Johnson,

metals are not fully isotropic, Tresca is usually used for algebraic simplicity

1085)

The "maximum reduced stress criterion" also considers the hydrostatic component,
{lo,-h|, |o-h|, |osh]}ae = k = %Y = 0.67Y (3.48)

Johnson!'*® states that, for a stable plastic material, this criterion and Tresca's

provide limits between which an acceptable yield criterion must lie. He has examined

the relationship of these criteria with respect to the normal contact of solids.

Cylindrical contact (two dimensional).

Here yield by Tresca is determined by the maximum shear stress, T, in just the
x-z plane. Contours of t, = (0,-0,)/2 are shown in Figure 3.13a where T,,, =

0.30p, at z = 0.78a sub-surface. Substituting Tresca gives,

0.60p, =2k =Y (3.49)
therefore yield begins at 0.78a below the surface when p, reaches the value,
(Pody = 4pa/% = 3.3k = 1.67Y (3.50)

The other criteria both involve the third principal stress and take account of
Poisson's Ratio v. If v = 0.3 then, by substituting into the von Mises equation
(3.46) it can be shown that yield begins at 0.70a below the surface when,

(p)y = 3.1k = 1.79Y (3.51)
and by the reduced stress criterion,

(po)y = 2.7k = 1.80Y (3.52)
Therefore the value of (p,)y is not greatly influenced by the stress criterion used.
Maximum shear stress profiles for normal contact, and for increasing traction, as
determined by Tresca and von Mises' criteria, are shown in Figures 3.13a & b,
respectively. The load for initial yield can be obtained by substituing (p,)y in

equation 3.22 or equation J.24,

Substituting into von Mises equation (3.51) the 0.2% proof stress values for the wear
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test materials described in this work (given in Table 2.3) gives,

------ Pearlite ------ ~mmmmmeeem--- Bainite -----e--eeemee-
MPa R52 W64 BO4 B20 B52
0.2% PS : 443 367 638 v 750 853
(Po)y : 793 646 1142 1343 1527

The value of (p,)y would be lower with the influence of surface friction, however these
figures do not account for the work-hardening of the materials nor for the directionality

of their work-hardening with respect to the predominant strain directions.

Spherical contact.

With spherical contact, Johnson!"**” similarly shows that, for v = 0.3, the maximum
shear stress at 0.48a below the surface is 0.62p,. Thus,

by Tresca, (P)y = 3(puy/2 = 3.2k = 1.60Y (3.53a)
by von Mises, (Po)y = 3(pu)y/2 = 2.8k = 1.60Y (3.53b)

The requisite loads can be caleulated from equation 3.19.

Elliptical contact.

As shown in the table at the end of Seetion 3.4, as the ratio of the semi-axes, b/a,
moves from zero (cylindrical) to unity (spherical) the maximum yield stress only slightly
increases as b/a approaches 0.5. Therefore (p,)y will not vary greatly from the values
given in Equations 3.50 and 3.53. Of more significance is the movement of the position

of maximum yield toward from 0.78 to 0.48(2z/b) as the ellipse becomes less eccentric.

From the typical p, values generated by new rail profiles (Figure 3.10) it can be
expected that a pearlitic rail will begin to yield under the higher contact stresses induced
by wheelset transverse movements during curving. As shown in Figure 3.13, the .

addition of tangential forces will increase this tendency.
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Yield with rolling contact and tractive force.

Just as hertzian analysis is valid for free rolling as well as normal static contact, so can

the onset of yield with free rolling be considered in the manner described above.

With tractive rolling, the magnitude of the traction coefficient influences the point of
first yield (Figure 3.13). When there is not complete sliding (i.e. Q <uP), the contact
has zones of stick and slip. Figure 3.22lsftr Johnson 1985] shows the stress distribution across
a cylindrical contact which has a fixed tangential tractive force (Q = 0.2P). As
increasing values of kinetic friction coefficient are applied to the contact, the tangential
surface shear stress (i.e. traction) increases and the size of the microslip zone decreases
(Figure 3.22a). The shape of the tangential surface traction curve becomes significant
when, as the friction coefficient is increased, shear stress increases in relation to
sub-surface shear stresses, i.e. the principal shear stress moves from sub-surface to
surface. Thus the location of first yield will be at the surface stress peak, i.e. at the

boundary of the stick and slip zones (Figure 3.22b).

For normal contact and free rolling, p/k values for first yield were given earlier in this
section. For tractive rolling, the relationship is shown in Figure 3.22¢. As the friction

coefficient increases, the value of p, required for first yield diminishes.

epeated rolling - w dening and shakedown.

Material response to repeated rolling contact loads has been categorised into the four

modes of behaviour shown in Figure 3,23rfter Johason 1959, ‘

* Perfectly elastic - where initial yield is not exceeded.

* "Llastic shakedown" - where the first load cycle exceeds the elastic limit but, due to
changes caused by the resultant plastic flow, the steady cyclic state lies within
the altered elastic limit.

* "Plastic shakedown" ("cyclic plasticity”) - where the steady state eventually attains. a
closed loop of plastic stress-strain with no net accumulation of uni-directional

plastic strain.
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* "Ratchetting" ("incremental collapse") - where, at steady state, there is an open cycle
of plastic stress and strain such that an increment of uni-directional strain is

generated with each cycle.

Three partially inter-linked mechanisms cause material to "shakedown":

* Residual stresses generated by the initial cycles of plastic deformation. These are
generally protective with hertzian type contacts, i.e. they act against further
deformation.

* Strain (or work) hardening of the material during the early loading cycles increasing
the yield strength and thus reducing the degree of plastic deformation.

* Surface movement of material due to the initial plastic deformation resulting in a more

conformal contact and thus a lowering of contact stresses.

The mechanism of shakedown can be examined with reference to Figure 3.24a & b,
which show the stress distribution and the effect of rolling, respectively. With reference
to Figure 3.24b, first yield will occur at element "C" by shear on planes at 45° to the
axes. Lateral expansion of the element will be stopped by the development of residual
stresses parallel to the surface, hence yield will cease. The alternating "orthogonal”
shear, 1., of the elements at "B" and "D" cannot be reduced by the introduction of
residual shear stress (1), and hence "orthogonal" shear at these locations controls the
shakedown limit and it is here that repeated plastic deformation will first occur when
the shakedown limit is exceeded!?ebesen sed Jetiries, 19631 - Variations in orthogonal shear stress
distribution and magnitude, with increasing traction coefficient, are shown in Figure
3.24¢. Around the levels found in the present work, maximum stresses would be at the

surface.
For the initial modelling of plastic contact, it is convenient to consider the material

behaviour as elastic and then perfeetly plastic, and to consider plane strain conditions,

1.e. line (cylindrical) contact.
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* "Iyee rolling" - cylindrical line contact.

It can be showntotsom 19851 that residual stresses will lie parallel to the surface and vary
with depth only. They will be compressive and restrict plastic deformation. Following
Melan's shakedown theorem for elastic-plastic materials™<** ****I " and based on both
Tresca and von Mises yield criteria, Johnson shows that the limiting condition for
shakedown is when the value of the shear stress, T, reaches k (the yield stress in
simple shear). This maximum value, which is found to be 0.25p, (by von Mises), is

located at +0.87a on the x axis and 0.5a on the z axis (where 2a is the contact width).
i.e. for shakedown, p, < 4k (3.54)
The requisite residual stresses at 0.5a for shakedown are,

(6,), = -0.134p, and (o,), = -0.213p, (3.55)

From Equ. 3.51, p, for first yield is 3.1k, therefore the ratio of loads required for
shakedown (P,) and first yield (P)) is,

P/P, = (p, for shakedown)® / (p, for yield)* = 1.66 (3.50)

i.e. the load must be 66% higher than the yield load to give continuous deformation
with cyclic loading. The modified stress state with residual stresses is shown in Figure

3.25.

* "Tractive rolling"” with cylindrical line contact.

For tractive rolling the analysis is similar. Although there is an asymmetric cycle of
shear stress, material response, as shown in Figure 3.26, is similar to that shown in
Figure 3.23. The shakedown limit is still determined by the maximum value of the shear
stress, T, Moo 1985 This Jies below the surface for Q/P < 0.367 and at the surface

above this. For tractive rolling (Q/P < ) with line contact, the shakedown limits for a
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perfectly plastic material (from Melan's theory!”**l) and those for a kinematically

hardening material (from Ponter's theory!””®!) are shown in Figure 3.27.

* "Free rolling” - three dimensional contact.

For elliptical and spherical contact, all components of residual stress have to be
considered, plus the reduction in contact stress due to plastic deformation. If the latter is
ignored, for spherical contact (eg, a ball rolling on a half space) it can be shown!*t=e™
19851 that shakedown is dependent on the maximum residual shear stress, (t,,), and that

this is 0.21p,. Therefore for shakedown,
P, < 4.7k (3.57)

From Equ. 3.53, p, for first yield (by von Mises) is 2.8k, therefore the ratio of the

requisite loads for shakedown and first yield is,
PP = (4728 = 4.7 (3.58)

A significant difference from the line contact case given in Equ. 3.56. Plastic
deformation will further increase the requisite load for shakedown with 3 dimensional

contact, however this is affected by strain hardening as shown below.

* "Tractive rolling" - three dimensional contact.

This situation has been addressed by Ponter et all™®, They produced a shakedown map
for spherical contact of elastic - perfectly plastic materials and, for elliptical contact, the
variations of shakedown limits, etc., for changes in the ellipse shape with two given

traction coefficients (Figure 3.28).

* Strain hardening
Steels, as with most metals, are not perfectly plastic and they strain harden under cyclic

loading; i.e. the value of "k" will increcase. Hardening can be expressed in three models
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(Figure 3.26). With isotropic hardening, material will shakedown to the elastic state
in one quarter cycle. Ponter!"” extended his shakedown theory to incorporate
"kinematic" hardening; here, material will shakedown under a closed cycle of plastic
strain under all conditions and a linear hardening law applies, where the hardening
rate is constant and independent of the direction of strain or mean stress!Po¥er o Jobason,
19901 Such is the case where the zone of plasticity is sub-surface and surrounded by

an elastic matrix. For such materials in two dimensional contact, Equ. 3.54 remains

valid, whereas Equ. 3.57 for the three dimensional case does not.

This can be viewed with reference to Figure 3.27, the shakedown map for tractive
rolling with cylindrical contact. Kinematic hardening raises the shakedown limit in
the area where yield is sub-surface; this closed loop of sub-surface plasticity results
finally in crack initiation by low cycle fatigue, whereas for a perfectly plastic
material or non-linear kinematic hardening, shear strain accumulation often leads to

ductile crack initiationtoheson 19831,

"Ratchetting"” - cumulative plastic flow and incremental collapse.

No incremental, directional plastic flow can occur with kinematic hardening and a
linear hardening law. Material must either exhibit elastic - perfectly plastic behaviour
or follow a "non-linear" hardening law, where the hardening rate can vary and is a
function of mean stress during the cyele. Rail steel exhibits such non-linear

behaviour and its ratchetting behaviour can be predicted!Power and lohnson, 19901

Dependent upon whether the traction coefficient is (theoretically) below or above
0.367, yield will be initiated sub-surface or at the surface, respectively. (The case
where loads are so high that sub-surface zones spread to the surface will not be
considered.) Where ratchetting can occur at the surface, the reduction in surrounding

material constraint results in comparatively higher strains.

In the sub-surface case, with reference to Figure 3.24b, once shakedown is exceeded
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orthogonal plastic shear will occur at elements "B" and "D". Although elastic stresses
and strains at these locations are equal, above shakedown, even with free rolling, there
will be an increment of permanent shear at the "exit" location "D". The equilibrium of

residual stresses is maintained?°tesen 19851,

Bower!"*®! and Bower and Johnson®® have modelled the ratchetting behaviour of hard
drawn copper and standard pearlitic (BS11) rail steel, for both sub-surface!** and
surface cases!™™ and they have supported the model experimentally. Non-proportional
cycles, such as occur with rolling-sliding contact, were tested using solid cylindrical
specimens in cyclic tension-compression tests, with non-zero mean stress. To represent
sliding contact, specimens were subjected to a cycle of tension, torque and then
compression. Ratchetting rates for copper (where the shakedown limit is not greatly
exceeded), as a function of load factor (applied p,/p, for shakedown) and traction
coefficient, are shown in Figure 3.29. The significant increases in strain per cycle when
the strain field moves to the surface, and when the load factor is increased, are clearly

evident.

Whereas copper ratchetted up (accumtl,llatcd strain) at an even rate per cycle (following a
cycle like that shown in Figure 3.23), with pearlitic rail steel the rate of strain decreases
with continuous cycling and eventually the material settles to a closed cycle of straint™**
19891 Bower and Johnson's model™™! accounts for this material behavioural

difference. Their comparison between the experimental response of pearlitic rail steel to
their non-linear hardening model is shown in Figure 3.30. Here the loading cycle
represents rolling and sliding contact; a similar correlation was oblained where the
loading cycle represents sliding contact. Further load cycles on the strained pearlitic

structure will eventually initiate fatigue failure of the strained clement,

Shakedown maps determined from their calculations are shown in Figure 3.31 for
conditions of full slip; in Figure 3.31a for linc and point contacts (p,/k against Q/P

where /P =p) and in Figure 3.31b for conditions of partial slip with line contacts
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(p./k against Q/P, where Q/P < p). In the latter figure, the reduction in the shakedown
limit with an increase in the friction coefficient (i) is shown. It can be seen from these
figures that, for a fixed traction (Q/P), plastic flow will occur more readily for partial
slip with a high friction coefficient than for full slip with a low friction coefficient. It
should be noted that with conditions of full slip for line contact, shown in Figure 3.31a,

at the shakedown limit, yield is reached across the entire contact width simultaneously.

On a rail, both longitudinal and lateral tractions are present and the continuous lateral
movement of the wheelsets across the track prevents a hertzian contact groove forming,
with the consequent contact stress reduction. Therefore, the four shakedown lines shown
in Figure 3.31a can be taken as valid. As will be seen in Chapter 5, rail material is
laterally strained out of the contact zone with rail-wheel contact and this plastic
movement does gradually effect the rail profile, consequently contact stresses are
reduced. Bhagava et al!’*®® have analysed rolling contact for rail steel and have derived
values of cyclic strain for perfectly plastic hardening and kinematic hardening; the latter
being an order of magnitude smaller. They mention that, for heavy haul rail, the p/k
values for new profiles are around 6, well above the shakedown limit. This infers that
such rails will rapidly "run-in" to a more conformal shape. Kapoor and Johnson!"**”!
have studied progressive ratchetting of elliptical contacts and have noted that the contact

deforms to a near-rectangular shape (discussed in Section 3.5).

No studies appear to have yet been made on the ratchetting response of bainitic and

martensitic steels (for rail track usage).

[t should be mentioned that some metals structures can kinematically soften, rather than
harden, under cyclic stressing. For example, heavily cold worked steel where the high
density of dislocations can gradually re-align ("untangle or self cancel") under repeated

eyelie loading, [Landgnt. 1969]
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3.9 Surface roughness.

All considerations so far have made the assumption that contacting surfaces are perfectly
smooth, however most engineering surfaces have both micro-roughness and some
degree of waviness. This results in asperity tip contact under load and the contact
mechanics situations described in this chapter are set up in a series of micro-scales. This
situation can also arise from the entrapment of debris particulates in the contact. It is a
common experience that rough surfaces have more resistance to rolling and sliding than
smooth surfaces. Even where bulk stress levels are below the elastic limit, there will be
plastic deformation of asperity tips; such deformation will progressively decrease as
asperity contact areas increase with every loading cycle; i.e. as the surfaces wear-in or

run-in.

The implications of surface roughness, particularly on lubricated contacts, has been
extensively studied recently by workers at Imperial College (London, UK). Poon and
Sayles!™! have classified contacts into three forms; plastic asperity contact, clastic
asperity contact and near-smooth elastic contact. The effects (with lubrication) on
friction, adhesion, wear and boundary lubrication have been examined. Bailey and
Sayles!™ have calculated contact stress levels on a micro-scale from asperity contacts
(Figure 3.32a). From their figure, it is clear that such contacts must plastically deform
and that local high shear stresses are generated near the surface. It should also be noted
that, once plastically deformed, the loaded asperities also clastically deform and the
"loaded" surface roughness, of significance [or lubricated contact, will be less than that
measured by profilometry. Snidle and Evans'™®® have recently produced similar results

from a different approach (Figure 3.32b).

The as-ground disc surfaces of the rolling-sliding dry contact tests described in this work
would have run-in, with respect to asperity flattening, within a few cycles. The decrease
in friction with such running-in was observed on the (torque monitoring) chart recorder.
However, accumulation of plastic strain (work-hardening) at the surface, and the

establishment of steady state wear, took far longer. Rails wear-in to a "worn -profile”
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relatively quickly (within a few months) particularly where there are high creepages as

on curved track.

Another effect of surface roughness is to increase friction due to the energy absorbed by
asperity impacts and the dynamic movements of contacting masses "riding over" surface
irregularitiest’™™ 1981 This resistance force is related to rolling speed. As will be seen
in Chapters 6 and 7, regular surface plastic deformations were slowly generated on

some test disc surfaces, under certain test conditions, well after running-in. This created

a form of "surface roughness" which generated its own friction oscillations.

3.10 Summary.

The highly loaded contact of solid non-conforming bodies, such as wheel/rail contact,
has been examined. The formulae generated from the theories of Hertz!"*! are still
widely used in engineering and they give a good first approximation for wheel/rail
contact forces. Where this contact is dry, the coefficient of traction normally exceeds
0.2 and is usually around 0.6, therefore stress maxima are usually at, or very near, the
contact surfaces. The coefficients of traction, with the dry twin disc tests described in
this work, ranged between 0.3 at high contact stresses to around (.8 at low contact
stresses, and maximum matrix deformation was observed to be at the surface. In later
work on the LEROS machine, with the same type of test discsl@erabam & Beynon, 1990, Beynon et al,
199 the introduction of water as a lubricant (for rolling contact fatigue tests) reduced
the traction coefficient to between 0,05 and 0.25 and zones of matrix plastic deformation
were observed primarily sub-surface, as predicted by theory, and also to a lesser degree

at the surface, due 1o surface roughness effects (see Section 3.9 above).

The wheel-rail contact area has been shown to be elliptical and the ellipse shape can
greatly vary with wheelset movements across the track (Figure 3.10), as can arise
during curving. For straight track, particularly when worn-in, contact can be
approximated to cylindrical (cf. Section 3.5, Esveld"™ and Section 3.8, Kapoor and

Johnson!"l)  Exact analyses of contact have been developed by Kalker in the form of
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computer programs of varying complexity (including Hertz). He has recently

comparatively reviewed these programs! ¥ 190,

The additional effect of tangential loading, in combination with normal loading, has
been shown not to affect normal compressive stress distributions and hence the shape of
the contact area, however it does affect the location and magnitude of shear stresses.
The maximum shear stress both increases and moves towards the surface with an
increase in the traction/friction coefficient. If the tangential force is sufficient to cause
complete sliding across the contact, there is kinetic friction, i.e. Q = pP. With a wheel
tractively driving on a rail, there is obviously not complete sliding and here Q is
variable and less than pP, a condition of static friction. With tractive rolling, there is
small creepage of one surface relative to the other and areas of stick and slip are present
in the contact, within which the local friction is static and kinetic, respectively. Where
possible, these local variations in tangential force should be taken into account when
considering the effects of tractive rolling on material behaviour, rather than the average

tractive force over the complete contact.

It has been shown that with tractive driving of a railway wheelset, the geometry of the
(conical) wheel on rail, together with wheelset yawing and transverse shift during
curving, generate contact creepages in the longitudinal, transverse and spin directions.
With heavy curving, there is significant wheelset shift which generates significant, extra
transverse creepages, particularly on t.hc high rail from the leading wheelset. This last
movement contributes most to the composite creepage of around 3% (for the British rail
system) which is generated during curving and thereby causes most wear. It is the
resistance of rail steel to these wear forces which this work primarily addresses. Such
multi-directional creepage strains are difficult to control and analyse with laboratory
tests, therefore uni-directional creepage, via twin disc eylindrical contact, was used for
this experimentation. This enabled the response of the various test materials to cyclic
rolling and sliding stresses to be more simply examined. Additionally, these test dises

could be simply directionally sectioned for micro-examination. One major difference
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from the rail situation was that here the primary creepage was in the direction of rolling
and across it. During the experimentation, test rails of similar steels were assessed on

track by British Rail and similar results were obtained, as will be described.

It has been mentioned that descriptions of "rail wear" often encompass the composite
loss of material from the loaded areas of the original rail cross-section; this consists of
loss by plastic flow from the contact area, in addition to loss via wear debris. Such bulk
plastic flow has not been considered in this work; the "mushrooming"of the cylindrical
test discs under heavy loads did not significantly affect the loaded contact width.
However the plastic flow at the contact surfaces, in the direction of creepage, was of
great importance as it was the wear and surface fatigue of these strained surface layers

that were actually being measured.

Plastic behaviour is governed by the yield stress in shear. The requisite values of
maximum contact stress to give yield with normal contact, by the various yield criteria,
have been shown to be similar. The movement of the location of maximum shear, from
sub-surface to surface, with an increase in the ratio of tangential force over normal
force (Q/P), has been shown. The concept of "shakedown" has been described, as has
the concept of incremental plasticity beyond shakedown. The effect of the Q/FP value on
shakedown has been mapped, thus for a given condition, the presence, severity and
location of plasticity can be predicted. For the dry wear tests described in this work,
first yield was always at the disc surfaces, and under most conditions, incremental

(cyclic) plasticity was present.

Finally, the differentiation has been mentioned, between bulk effects which determine
the general Hertzian analysis and smaller scale surface effects due to surface roughness,
which set up a series of smaller Hertzian contacts. This 1s more significant for the
analysis of lubricated contacts; with these dry wear tests, surfaces had conformed (i.e.
run-in) within a few cycles. However, during many of the dry wear tests, regular

surface plastic deformations (corrugations) were generated and these would have
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affected the stress distributions. Their effect is considered in later chapters.
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Figure 3.1 The contact of two non-conforming bodies. "Z" is the common normal.
"Xi, X3 Yiand Y," all lie in the tangent plane. R';and R', are the principal
curvature radii of bodies 1 and 2, respectively, in one principal plane of
curvature and R", and R", are the principal curvature radii in the other

principal planel®fter ESDU 78035, 1978]
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(a) (b) {e)

Sphere on sphere Sphare on plate Cylinder on cylindar
(non-conformal) {non=-conformal) (non-conformal)
L "
R';y = R" R', = R"™ R') = R%., R"; = -
1 2 z Pl
2 =R" = &

Contact shape is circular Contact shapa is circular Contact shape is circular when
w=90° and cylinders are of
equal diameter.

8
(d) (o) (f)
Cylinder on cylinder Cylinder on cylinder Cylinder on plate
(non-conformal) (non-conformal) {non-confarmai)
R"J. = 5“2 = @ ‘H"l - ‘R"2 - R".'I. = R'z - R“Z = o

Contact shape is ellipticat whan Contact shaps is an eliipss of Contact shape is an ellipse of

0°< w<90° ond infinita length (ie. rectanguiar) infinite langth (i.e. rectangular)

' t
Rrigom By when w = 0°

(9 (h) (i)
Sphare in socket Sphere in groove Cylinder in groove
(conformal) (conformal) (conformal)
R‘l - R".'L' R!1 - R”l' R.E -y lRll1 - ﬂ"z = W,
R's = R"5 (negative) R"s 15 negative R'5 1& negative

Contact shape is circulor Contoct shope is slliptical Contoct shape is an ellipse of
infinite langth (i.e. rectangular)

Figure 3.2 Various types of hertzian contact for solids of regular shape/*fier BSDU 78035, 1978]
Only in sketches ¢ and & are the principal planes of curvature not
coincident. Subseripts for infinite radii are denoted as R",, R", in sketch ¢
and R', in sketch /; they have been chosen thus to ensure B > A (cf.

Equations 3.2 to 3.5).
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Figure 3.3 The compressive elastic contact of two non-conforming bodies!om Jokason, 1985]
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Figure 3.4 The compressive contact of bodies with general profileglfom Jomson, 1985) -y,
shape of the contact ellipse b/a and the functions Fi,, Fand F,y (= F, %) in

terms of the ratio of relative curvatures, R'/R". (For use in Equations 3.14
to 3.18.)
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Pressure distribution
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Figure 3.5 Types of hertzian contacti*r ESDU 78035, 1978]
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Figure 3.6 Principle sub-surface stresses along the axis of symmetry for elliptical
hertzian contact[lﬂﬁt ESDU 78935, 1978;_
(a) Overview.

(b) Detail of near surface stresses.
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Figure 3.7 Hertzian wheel-rail contact; idealised cylindrical and conicular contacting

bodiesla{kr ESDU 78035, 1978]
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Whesl cone

Rail head

Section on X-X

R’1 - R‘zz @

From geometrical considerations it can be seen that

Fsin (90 + 6)

sin (90 —20)
and m = Fthtané,
where o= lsin#.

Figure 3.8 Contact geometry of idealised hertzian wheel-rail contact.
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Figure 3.9 Simplified wheel-rail contact stresses!aficr Esveld, 1959 and Eiseamann, i,

(a) Shear stress distribution in the rail head at the contact centre.

(b) Simplified wheel-rail contact distribution for straight track.
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Figure 3.10 Wheel-rail contact areas, with respective values of maximum contact
stress, calculated by three methods (including hertzian) for the steady state
(non-dynamic) contact of one type of high speed locomotive wheel on a

modern rail profilelfrom Cheesewright, 1981]
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Figure 3.11 Tangential loading and sliding contact!frem Jobason, 1985]
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Figure 3.12 Stress distributions for the sliding of a cylindrical contac(i™r ESDU 78035, 1978 and

Johnson, 1985]
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Figure 3.13 The effect of tangential loading on the size and distribution of shear stress
with cylindrical contact, using different yield criterjalfrom Cole, 1994]

(Note: p is the traction coefficient, rather than the kinetic friction coeffiiient, in these

figures.)
(a) Principal shear stress (T resca).
(b) Von Mises (shear stress) (overleaf......... )
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1 0 9 > Stress/p0 rangs
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Figure 3.13b Von Mises (shear) stress.
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Figure 3.14 The effect of (sliding) friction on the contact pressures required for first

yield and shakedown!from Johason, 1985]

Large dashed line : line contact, first yield (Tresca).

Chain line : line contact, first yield (von Mises).
Small dashed line * spherical contact, first yield (von Mises).
Solid line :line contact, shakedown (T resca).
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Figure 3.15 The distribution of tangential traction (T) and surface strains (,) for a
static contact where tangential force Q < pP. The distribution of traction
(T') and surface strain (g',) for sliding (cf. the direct stress at the surface
from tangential loading shown in Figure 3.12b) are shown here in "a" and
"b", respectively, These are opposed by traction (T") and strain (")) in
the central "stick region" of the contact, as shown in “e" and "d",
respectively. The sum of the strains, representative of the contact, are
shown in "e" and "f", respective]y!from Hling, 1975]
(Note: The additional effect of normal loading (as in Figure 3.12¢) is not

shown here.)
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Figure 3.16 The distribution of tangential tractions for cylinders 1 and 2 (T, T,), and
respective surface strains (g, €x), for a rolling contact where tangential
force Q < pP. With reference to Figure 3.15, the offset of the central
stick region with rolling must be located at the leading edge of the contact
(i.e. ¢ = a - ), as shown in sketches "h" to "k" of this figure. The
situation shown in sketches "d" to "g" is not possible, as the forward area

of slip would be in the same direction as traction(*fier Hallig, 1975]
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Figure 3.17 Creep curve for the tractive rolling of cylinderslfrom Jehason 1985]
Solid line : creep curveldlter Carer, 19261 o Eouations 3.40a & b.
Dashed line  : limiting curve for high friction with no slip,

cf. Equation 3.40c.

Figure 3.18 Tractive rolling with creep, spin and low friction; location of

"spin pole", Plirom Johasoa, 1985]
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Figure 3.19 Areas of slip and adhesion for different combinations of longitudinal
creepage, lateral creepage and spinifrom Kalker, 1979]
(a) Pure longitudinal creepage.
(b) Pure spin.
(¢) Lateral creepage with spin.
(d) Longitudinal creepage with spin.
(e) General mixed case.

(f) Large amount of pure spin.
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Figure 3.20 Creep motion of a railway whee]!!om Johnson. 1985)

Longitudinal creep ratio: & = (V-V)/IV,

Lateral creep ratio: £ = 8V,/V, = tand

Spin parameter: Vv = o@b)*/V, = {(ab)%/R}tan)
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(c)

Figure 3.21 Effect of roller edge on maximum contact stress (p,)
distribution!frem Johnson 1985]
(a) Two coincident sharp ends.
(b) One ("embedded") sharp end.
(c) One ("embedded") rounded end.
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Figure 3.22 Tractive rolling (i.e. Q < uP) of cylinders, moving from right to left,
with a tangential traction of Q, = (),2plfrom Johnson 1985]
(a) The change in tangential surface traction distribution for Increasing
values of friction coefficient u; the area of slip is decreased.
(b) The distribution of surface stresses, o, and 1,,, where p = 0.3.
(¢) The relationship between the p,/k values of first yield (dashed line) and

shakedown (solid line) with increasing friction coefficient L.
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(1) Perfectly elastic
(2) Elastic shakedown
(3) Cyclic plasticity (plastic shakedown)

(4) Incremental collapse (ratchetting)

Figure 3.23 Material response to cyclic boadingteos Jakacs 1588

F12



a
Z
P
' R
wR
p(x)
X

w ]

Figure 3.24 Sub-surface stress with cylindrical rolling contaet,
(a) Location of principal shear stress and maximum orthogonal stresg!from
Eshm ¢l al, 1974)
(b) A material element experiences a cycle of reversed shear and
compression, moving through A-B-C-D-Elfrom Johason, e

overleaf..  (c) Orthogonal shear stress change with tractive coefficienlfrom Cote, o
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-0.600 to +0.0109

Figure 3.24¢ Orthogonal shear stress change with traction coefficjentifrom Cole, e,

Note: p is the traction coefficient, rather than the kinetic friction coefficient, in this fi ure.
1 g
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Figure 3.25 Pure rolling contact of elastic-

__1‘0_]_

plastic cylinders:
Solid lines show elastic stresses:

stresses at depth z = ().5a.

dashed lines show the addition of residual

stresses (o), and (o,), for shakedown!from Johason, 1985].
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(a) Isotropic hardening — glastic
shakedown

Figure 3.26 Response of material to unsymmetric cycles of shear stress (1,
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(b) Linear kinematic hardening —
cyclic plasticity

in tractive rolling/from Johuon, 1988]
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Figure 3.27 Shakedown map for the tractive rolling of cylinders, showing the
relationship between the shakedown limits (for two types of materjal

behaviour) and the traction coefficient!from Johnson. 1988)
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Figure 3.28 Shakedown relationships for three dimensional rolling and sliding
contactlfrom Poute, Hearle and Johason, 1985]
(A = a load factor that affects the extent of the zone of alternating
plasticity.)
(a) Shakedown map for circular contact; solid lines show upper bounds for
material behaviour. (Dashed line - lower bound to elastic shakedown limit
from Hills and Sackfield!™®® and Hearle!!%84 )
(b) Variations in shakedown limits with the shape of a loaded ellipse (b>a)

for traction coefficients of 0.1 and 0.2.
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surface to surfacelrom Johnson 1988]
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is the shakedown

Note the change in rate when the mechanism changes from sub-
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Figure 3.30 Behaviour of a cylindrical specimen of BS11 raj] steel under cyclic load-

controlled tension-compression, with a mean tensile load!fom Bower and Johnson,
1990]

(a) Measured response.

(b) Response predicted by non-linear kinematic hardening law.
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Figure 3.31 Shakedown maps calculated for conditions of contact loading relevant to

railway practicelf® Bower and Johuson, 1990]
(a) Under conditions of full slip for line and circular contacts.
(b) Under conditions of partial slip for a line contact.
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Figure 3.32 Simulated elastic contact of a ground surface with a smootl; hard roller.
(a) The distribution of actual maximum contact stress, due to the contact of
discrete asperities, compared to the hertzian distribution. The elastic
deformation is also shownliem Baiey and Sayies, o
(b) Simulated contact between a run-in ground elastic cylinder and a rigid
flat. The top graph shows variation from hertzian in (normalised)

maximum contact stress!from Swidic asd Evans, 1994]
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