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Abstract

A kinetic theory for the diffusion–controlled growth of pearlite is presented, which
accounts simultaneously for diffusion through the austenite and via the transfor-
mation front. The simplified method abandons the need for mechanical equilibrium
at the phase junctions and yet is able to explain experimental data on the growth
rate of pearlite. Furthermore, unlike previous analyses, the deduced value for the
activation energy for the interfacial diffusion of carbon is found to be realistic when
compared with corresponding data for volume diffusion.

1. Introduction

A colony of pearlite when viewed in three dimensions consists of an interpenetrat-
ing bicrystal of ferrite and cementite (Graef et al., 2006; Hillert, 1962; Kral et al.,
2000). In planar sections the phases appear as lamellae which grow at a common
front with the austenite. Cementite (θ) is rich in carbon whereas ferrite (α) accom-
modates very little when it is in equilibrium with either cementite or austenite (γ).
It is therefore necessary for carbon to be redistributed at the transformation front.
This can happen either by diffusion in the austenite in a direction parallel to the
transformation front, or by the migration of solute atoms within the α/γ and θ/γ
interfaces. When the mobility of the interface is large, both of these mechanisms are
said to be diffusion–controlled, i.e., most of the available free energy is dissipated
in driving diffusion, (Bhadeshia, 1985).

For a given interlamellar spacing, it has long been possible to estimate the
growth rate of pearlite assuming volume diffusion–control (Hillert, 1957; Zener,
1946) and the work has been reviewed thoroughly in (Christian, 2003a,b; Hillert,
1970; Ridley, 1984). There have, on the other hand, been reports (Brown and Ridley,
1966; Frye et al., 1953; Pearson and Verhoeven, 1984) that the rates calculated
in this way significantly underestimate those measured, possibly because of mass
transport within the transformation interface (Hillert, 1972; Sundquist, 1968). Such
a mechanism has also been considered in the context of cellular precipitation where
the cell boundary provides an easy diffusion path, with an activation energy for the
boundary diffusion coefficient which was less than half that for volume diffusion
(Turnbull, 1955).
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There have been two further explanations proposed for the faster than expected
growth rate of pearlite. The first is that transformation strain enhances diffusion
(Pearson and Verhoeven, 1984), but this neglects the fact that pearlite forms by
reconstructive transformation in which case transformation strains should not be
significant; furthermore, it has not been necessary to invoke such an argument in the
case of other reconstructive transformations where the closure between experiment
and theory is satisfactory (Bhadeshia, 1985).

In recent work using phase–field modelling, it has been argued that the rate of
growth is enhanced by the diffusion of carbon through the ferrite, leading to a thick-
ening of cementite behind the transformation front (Nakajima et al., 2006). The
evidence for such thickening in micrographs of partially transformed specimens is
not strong (see for example, Fig. 4 of (Darken and Fisher, 1962)). It was also admit-
ted by the authors that there are uncertainties in the phase field method introduced
by adjustable parameters and compromises necessary to ensure numerical stabil-
ity. Their analysis also neglected to consider the flux through the transformation
front. It is worth noting that Nakajima et al. (2006) calculated growth rates which
were significantly smaller than experimental data, and hence speculated a role of
transformation strain in enhancing diffusion (Pearson and Verhoeven, 1984). We
will show later that this is unnecessary when the role of the inevitable flux through
the transformation front is taken into account.

This highlights a general problem, that most comparisons between experiment
and theory have been based on assumptions of either volume or interface–diffusion
control; in other words, mechanisms in isolation. Fluxes through both of these
processes must in practice contribute to diffusion and the relative contributions from
each of these mechanisms will vary with circumstances. An elegant and first attempt
at dealing simultaneously with interface and volume diffusion in Fe–C alloys is due
to Hashiguchi and Kirkaldy (1984). For diffusion–controlled growth they assumed
parallel mass transfer in the volume ahead of the interface and through the interface,
allowing for the Gibbs–Thompson effect at both the γ/θ and γ/α boundaries, and
for mechanical equilibrium at the various interfacial junctions. The result was a
rather complex theory which could not be implemented without making important
approximations:

• in spite of the requirement of mechanical equilibrium, the interfaces with
austenite were approximated as being flat except in the close proximity of the
three–phase junctions;

• the distribution coefficient describing the ratio of the composition in the
austenite in contact with ferrite or cementite, and in the transformation front
was assumed to be constant, even though the interfacial energies σγα and σγθ

are not expected to be identical;

• a simplification was made that σγα ∝ σαθ and σγθ ∝ σαθ .

Whilst these approximations are entirely understandable, some are clearly in-
consistent with the detailed theory and the whole problem might be simplified by
abandoning the need for mechanical equilibrium. Indeed, it is not strictly neces-
sary during growth when the rate of free energy dissipation is large, for equilibrium
configurations to be respected as long as the process leads to a net reduction in
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free energy. This can be seen during two–dimensional grain growth simulations as-
suming orientation–independent boundary energies, where the triple junctions do
not maintain 120◦ angles during the process of growth, as might be required by
mechanical equilibrium (Suwa and Saito, 1997). Another analogy is phase trans-
formation where the chemical potential of a particular solute can increase with the
passage of the interface as long as the overall free energy is reduced.

When the approximated model (Hashiguchi and Kirkaldy, 1984) was fitted to
experimental data, rather large σαθ interfacial energies were obtained, and the ac-
tivation energy for the boundary diffusion of carbon was deduced to be in the range
of 159920–169925J mol−1, which surprisingly is greater than for volume diffusion in
both ferrite and austenite. It is noteworthy that Sundquist (1968) reported an even
larger activation energy for the boundary diffusion of carbon, commenting that the
expected value should be much smaller; he attributed the discrepancy to a possible
role of substitutional solute impurities.

The goal in the present work was to derive a simplified theory which still deals
with diffusion simultaneously through both boundary and volume and to compare
the data against experiments. It will be seen that a number of difficulties, including
that associated with the activation energy described above, are resolved.

2. Model Formulation

(a) Assumptions

(i) To be consistent with diffusion–controlled growth, local equilibrium is assumed
to exist at the interfaces so that the chemical potentials µ of all elements are
uniform there:

µγ
Fe = µα

Fe and µγ
C

= µα
C

It follows that the compositions where the different phases are in contact
are given by tie–lines of the equilibrium Fe–C phase diagram, which was
calculated using MTDATA (NPL, 2006) and the TCFE database, Fig. 1.

(ii) Since the kinetic theory gives the growth rate as a function of interlamellar
spacing rather than a unique velocity, it is assumed that the actual spacing
adopted is that which leads to a maximum in the rate of entropy production
(Hashiguchi and Kirkaldy, 1984) although the maximum growth rate criterion
(Zener, 1946) is also considered for the sake of completeness.

(iii) The model is created for conditions in which fluxes from diffusion within the
austenite ahead of the transformation front, and that via transport through
the transformation front both contribute to growth.

(b) Diffusion Coefficients

The diffusion coefficient DV of carbon in austenite is strongly dependent on
concentration (Darken, 1949; Wells et al., 1950). A particular model which accounts
for the thermodynamics and carbon–carbon interactions whilst representing the
known data rather well is as follows (Bhadeshia, 1981; Siller and McLellan, 1970):

DV =
kT

h
exp

(

−∆Ga

kT

) (

λ2

3Γm

)

η (2.1)
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Figure 1. The extrapolated
phase boundaries for equilib-
rium between austenite and ce-
mentite, and austenite and fer-
rite, in the Fe–0.8C wt% sys-
tem.

k and h are the Boltzmann and Planck constants respectively and

η = aγ

[

1 +
z(1 + χ)

1 − (0.5z + 1)χ + [0.25z2 + 0.5z][1− φ]χ2
+ (1 + χ)

∂aγ

∂χ

]

(2.2)

where χ is the atom fraction of carbon, z is the number of octahedral interstices
around a single such interstice (z=12 for austenite), ∆Ga is the activation free
energy, Γm is the activity coefficient of the activated complex, λ is an interplanar
spacing in the austenite, and aγ is the activity of carbon in austenite. The activity
and its partial differential with respect to χ are determined using a quasichemical
thermodynamic solution model (Bhadeshia, 1980; Dunn and McLellan, 1970). The
term φ is given by

φ = 1 − exp

(

−ωγ

kT

)

(2.3)

where ωγ is the nearest neighbour carbon–carbon interaction energy of 8250 J mol−1

(Dunn and McLellan, 1970). Bhadeshia found ∆Ga/k = 21230 K and ln{Γm/λ2} =
31.84 (Bhadeshia, 1981).

Since the diffusion coefficient of carbon in austenite is strongly concentration
dependent, and given that concentration gradients drive the flux, it is necessary to
calculate a weighted average coefficient (Trivedi and Pound, 1967):

DV =

∫ cγα
e

c
γθ
e

D{cγ , T }

cγα
e − cγθ

e

dcγ (2.4)

where cγα
e and cγθ

e are the mole fractions of carbon in austenite which is in equilib-
rium with ferrite and cementite respectively.

(c) Combined Fluxes During Pearlite Growth

A model is developed here which accounts for fluxes through both the austenite
and within the transformation front, on average parallel to the front. For reasons
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described in the introduction, the model abandons the notion of interfacial tensions
being balanced at three–phase junctions. As in previous work, it is assumed that
diffusion within the interface can be described by a single coefficient, rather than
two separate values corresponding to the α/γ and θ/γ interfaces. Fig. 2 illustrates
the geometry of the pearlite colony.

Figure 2. Geometry of pearlite
colony. The dashed arrows in-
dicate the volume and interface
diffusion processes. The thick-
ness of the boundary is written
δ.

The flux JV away from the ferrite (equal to that towards the cementite), through
the volume of the austenite is given by:

JV = −
Aα

Vm

DV

dc

dx
=

DV b Sα

Vm

(cγα − cγθ)

Sα/2
(2.5)

where Vm is the molar volume of austenite (7.1×10−6 m3 mol−1) and to a good
approximation assumed to be the same for all the phases involved, and Aα is the
cross sectional area of the interface, which for a unit depth into the diagram (Fig. 2)
is equal to Sα, and the diffusion distance parallel to the interface, from the ferrite
to the cementite is on average Sα/2. An equation similar to the one above can be
written for the boundary–diffusion flux JB of carbon through the interface between
austenite and ferrite towards the cementite (Hillert, 1970):

JB = −
Aα

Vm

DB

dc

dx
=

12DBδ(cγα − cγθ)

Vm Si

(2.6)

Interfaces are created between cementite and ferrite during the growth of pearlite,
thus consuming some of the free energy ∆G of transformation. All of the available
free energy is consumed in this way when the spacing between lamellae reaches
a critical value Sc = 2σVm/∆G, where σ is the θ/α interfacial energy per unit
area. The growth rate then becomes zero but for Si > Sc the free energy change is
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reduced by a factor (1 − Sc/Si) and the concentration difference driving diffusion
becomes (cγα

e − cγθ
e ) (1 − Sc/Si) (Zener, 1946).

The total flux arriving at the θ/γ interface is a combination from transport
through the volume of austenite and via the boundary. It follows that for a growth
velocity v, the material balance at the transformation front is given by:

v Sα

Vm

(c̄ − cα) =
v Sθ

Vm

(cθ − c̄) =
v SαSθ

Si Vm

(cθ − cα) (2.7)

Combining equations 2.5, 2.6 and 2.7 yields:

v SαSθ

Si

(cθ − cα) = 2DV (cγα − cγθ) +
12 DB δ(cγα − cγθ)

Si

(2.8)

where c is the average concentration in the austenite. The growth velocity is now
isolated as follows:

v =

(

cγα
e − cγθ

e

cθ − cα

) (

2 DV +
12DB δ

Si

)

Si

Sα Sθ

(

1 −
Sc

Si

)

(2.9)

The problems associated with using a correct boundary diffusion coefficient have
already been emphasised. It was decided therefore to deduce this using measured
data on growth rate and interlamellar spacing, due to Brown and Ridley (1966),
based on the more reliable method of size distributions rather than the observation
of what might be the largest colony. Given that DV is well established, the only
unknown then becomes DB (Fig. 3), from which an activation energy for interfacial
diffusion during the pearlite reaction was derived to be QB ≈ 97 kJ mol−1, with

DB = 8.51 × 10−5 exp

(

−
96851

RT

)

m2 s−1 (2.10)

It is interesting that unlike previous work (Hashiguchi and Kirkaldy, 1984; Offerman
et al., 2003) where the activation energy for boundary diffusion was found to be
greater than for volume diffusion in both austenite and ferrite, here QB is bracketed
between Qα

V = 70 kJ mol−1 and Qγ
V = 135 kJ mol−1 (Honeycombe and Bhadeshia,

1995).
The ratio of boundary to volume diffusion flux is shown as a function of tem-

perature in Fig. 4; as might be expected, boundary diffusion dominates except at
the highest of transformation temperatures.

3. Spacing Criteria

There are two criteria common in fixing the interlamellar spacing of pearlite; one
involves the maximisation of growth rate (Zener, 1946), and the other, of the en-
tropy production rate (Kirkaldy and Sharma, 1980). For volume diffusion–controlled
growth, S/Sc is 2 and 3, and in the case of interfacial diffusion controlled growth
it is 1.5 and 2 for the maximum growth and entropy production criteria respec-
tively. We now consider how these numbers are modified for the mixed volume and
interface-diffusion modes.
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Figure 3. Arrhenius plot of
DB versus inverse of temper-
ature in Fe-0.8C wt% steel
for mixed mode diffusion con-
trolled pearlite growth

Figure 4. Relative contributions
of volume and boundary diffu-
sion fluxes during the formation
of pearlite in Fe-0.8C wt% steel.

During isothermal transformation, the rate of entropy production is (Cahn and
Hagel, 1962; Kirkaldy and Sharma, 1980)

Ṡ =
v(∆Gnet)

T
(3.1)

where ∆Gnet = ∆G − 2σ/Si is the free energy dissipated; ∆G is the total driving
force for the austenite to pearlite transformation. If it is assumed that for small
undercoolings below the eutectoid temperature TE the entropy change of transfor-
mation, ∆S is constant, then ∆G = ∆H(1−T/TE) where ∆H is the corresponding
enthalpy change, then this equation becomes

Ṡ = v
∆H ∆T

TE

(

1 −
Sc

Si

)

(3.2)

Using equation 2.9 this becomes:

Ṡ = β

(

2 DV Si + 12 DB δ

S2
i

)

∆H ∆T

TE

(

1 −
Sc

Si

)2

(3.3)
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where β contains the concentration terms. Ṡ is plotted as a function of Si/Sc in
Fig. 5a; the maximum in Ṡ is obtained when Si/Sc is between 2.01 to 2.17 depending
on the temperature of transformation, but independent of the interfacial energy σ.
The corresponding calculations for the maximum growth rate criterion are shown in
Fig. 5b; the values of Si/Sc vary from 1.36 to 1.53 as a function of temperature. It is
not surprising that the values are similar to those expected for the case where only
interface diffusion occurs, since this is the dominant process at all temperatures
(Fig. 4).

(a) (b)

Figure 5. (a) Variation in the entropy production rate as a function of the normalised
interlamellar spacing (b) Similar plot for the maximum growth rate.

(a) Interfacial energy

It is possible to derive from the kinetic data on pearlite growth, the interfacial
energy σ relating cementite and ferrite (Hashiguchi and Kirkaldy, 1984)

σ =
1

2
Sc ∆G ≈

Sc ∆T ∆H

2 TE

(3.4)

where as explained earlier, the approximation on the right hand side is based on
the assumption that the entropy of transformation in independent of temperature
(Capdevila et al., 2002; Offerman et al., 2003; Ridley, 1984). We have avoided
this by calculating both the enthalpy and entropy changes using MTDATA (NPL,
2006), Fig. 6. Values of Sc can be calculated using measured interlamellar spacings
from Brown and Ridley (1966) and the entropy production calculations illustrated
in Fig. 5a. The interfacial energy derived in this way is illustrated as a function
of temperature in Fig. 7. The interfacial energy values calculated here vary from
those of Hashiguchi and Kirkaldy (1984), though the spacing and velocity data are
in both cases from the same experimental measurements (Brown and Ridley, 1969).
This difference may be attributed to two factors:

(i) The σ calculated by Hashiguchi and Kirkaldy (1984) is based on the assumption
that the entropy change during the pearlite transformation is independent of
temperature, whereas we have avoided this approximation.

(ii) The computation of Si/Sc based on the maximum entropy production rate was
the range 2.18–2.4 (Hashiguchi and Kirkaldy, 1984), whereas in the present
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work it has been shown graphically that this ratio lies in the range of 2.03–
2.17 for the temperatures studied. This is attributed to the different growth
equations used in the two studies.

Figure 6. Free energy, enthalpy and entropy change as a function of temperature.

Figure 7. Comparison of calculated ferrite-cementite interfacial energy values and those
reported in previous work by Hashiguchi and Kirkaldy (1984).

Independent, published measurements of σ are presented in Table 1. Some are
estimated on the basis of studies of the coarsening of cementite in ferrite (Das et al.,
1993; Deb and Chaturvedi, 1982), from dihedral angle measurements (Martin and
Sellars, 1970), calorimetry (Kirchner et al., 1978; Kramer et al., 1958) and simu-
lation (Ruda et al., 2009). Fig. 7 compares the values of interfacial energy derived
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Table 1. Published values of the ferrite–cementite interfacial energy per unit area.

reference temperature (K) method σ(Jm−2)

(Das et al., 1993) 861 coarsening rate and data fitting 0.56

(Deb and Chaturvedi, 1982) 903-963 coarsening rate and data fitting 0.248-0.417

(Kramer et al., 1958) 1000 interfacial enthalpy measurement 0.7±0.3

(Martin and Sellars, 1970) 973 dihedral angle 0.52 ±0.13

(Ruda et al., 2009) - atomistic simulation 0.615

(Kirchner et al., 1978) - interfacial enthalpy measurement 0.5 ± 0.36

from pearlite growth rate measurements with the independently measured values.
The discrepancies are large for the lower transformation temperatures, relative to
the data based on coarsening reactions and dihedral angle measurements. These are
both techniques which are kinetically slow; it is possible therefore that the mea-
sured values are influenced by the segregation of solutes to the interface, which
would lead to a reduction in energy. In contrast, the cementite–ferrite interfaces in
pearlite are created fresh as a consequence of transformation. Entropy requires that
the extent of segregation should be reduced at high temperatures.

One further difficulty is that the diffusivity DB is likely to increase with inter-
facial energy since a high value of the latter implies a less coherent interface. We
are not able to account for this effect given the absence of relevant grain boundary
diffusion data.

Fig. 8 shows a comparison of pearlite growth rates calculated using the theory
developed in this paper, against published experimental data due to (Brown and
Ridley, 1969; Frye et al., 1953). There is a significant improvement, by a factor of
between 2–2.5, over the growth rates calculated by Puls and Kirkaldy (1972).

4. Conclusions

A simplified theory has been proposed which combines the contributions from vol-
ume and boundary diffusivities, to represent the pearlite growth mechanism in Fe–C
steels. The match with experimental data is better when compared with prior work,
in spite of the fact that considerations of equilibrium at junctions between inter-
faces are abandoned. As might be expected, the flux through the boundary between
pearlite and austenite dominates the transport of carbon at all but the highest of
transformation temperatures. The theory for the first time leads to a realistic value
for the activation energy for the grain boundary diffusion of carbon, less than that
for volume diffusion in austenite and greater than for volume diffusion in ferrite.

The maximum entropy and growth rate criteria have been derived in the context
of this mixed mode diffusion theory, with the result that Si/Sc is not constant but
becomes a function of the transformation temperature. The ferrite–cementite in-
terfacial energy has been deduced assuming that the pearlite interlamellar spacing
is determined by the need to maximise the entropy production rate. The energy
is lower than determined in previous work, but still much higher than reported in
independent experiments, possibly because the interfaces created during transfor-
mation are fresh.
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Figure 8. Temperature versus pearlite growth rate plot for Fe-0.8C wt% steel. Solid lines
are calculated. The data from Brown and Ridley (1969) based on particle size analysis are
regarded as the most reliable for reasons discussed in the text.

In is argued that this simplified theory avoids many of the approximations re-
quired to implement a more complex model in which the shape of the transformation
front is determined by equilibrium at interfacial junctions.

5. Appendix: diffusion in ferrite

As pointed our previously, Nakajima et al. (2006) used a phase field model to treat
the possibility that a flux in the ferrite, behind the pearlite/austenite transformation
front, also contributes to the growth rate of pearlite. Their model neglected the
flux within the transformation front itself. We present here an analytical treatment
which considers the contributions of all three fluxes, that through the volume of
the austenite, through the transformation front and within the ferrite. The flux
within the ferrite is supposed to lead to the thickening of cementite behind the
transformation front. Equation 2.8 then becomes:

v SαSθ

Si

(cθ − cα) = 2DV (cγα − cγθ)+
12 DB δ(cγα − cγθ)

Si

−
2Dα(cαγ

i − cαθ
i )

x
(5.1)

where the third term on the right represents the flux within the ferrite, towards
the cementite, in a region behind the transformation front. cαγ

i and cαθ
i repre-

sent the concentrations at the respective interfaces, which are not necessarily given
by equilibrium since as will be shown below, the thickening of the cementite is
interface–controlled, not diffusion–controlled. The average diffusion distance from
the ferrite at its interface with austenite, to its interface with cementite is written
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0.5xSα, with x assumed here to be given by the ratio v/vθ; this is because a rel-
atively large pearlite growth rate would lead to greater diffusion distances within
the ferrite. The sign of this flux is different from the other two terms because it
occurs in the product phase leading to a net reduction in the other two fluxes.

The diffusion coefficient of carbon in ferrite is known accurately (McLellan et al.,
1965). The diffusivity is very large and we have calculated that the cementite growth
cannot be controlled by the diffusion of carbon, but rather by interfacial mobility.
Since interface–controlled growth in this case is much smaller, by three orders of
magnitude, the gradient ∆cα of concentration within the ferrite will be much smaller
than by using the equilibrium concentrations cαγ and cαθ.

To deal with this, the thickening rate vθ of cementite is first calculated on the
basis of the θ/α interface mobility Mθα as follows:

vθ = Mθα∆Gθα/Vm (5.2)

where the driving force for cementite growth was calculated using MTDATA NPL
(2006). The uncertain value of mobility was taken to be 5 × 10−15 m4 J s−1 from
Nakajima et al. (2006); it should strictly be a function of temperature but was
assumed constant in the absence of appropriate data.

Using the mobility equation 5.2, the actual gradient within the ferrite is given
by a mass balance, that the flux must equal the rate at which the cementite absorbs
carbon as it grows:

Dα(cαγ
i − cαθ

i )

0.5xSα
= vθ(cθα − cαθ

i ) (5.3)

Fig. 9 shows the results of the three flux model against that involving only boundary
and volume diffusion in the austenite. They indicate that inclusion of the flux
through the ferrite would indeed lead to an increase in the growth rate, but the
model without the flux within the ferrite actually represents the experimental data
rather well (Fig. 8). The greatest uncertainty in the three–flux model arises in the
mobility of the cementite–ferrite interface for which there are no experimental data.
It was also pointed out earlier that evidence for the thickening of cementite behind
the transformation front is weak. To summarise, it does not at the moment seem
necessary or justified to include any flux within the ferrite to explain pearlite growth
data.
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