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Many studies monitoring the formation of martensite during the tensile deformation of austenite

report data which are, in principle, affected by both the applied stress and the resulting plastic

strain. It is not clear in these circumstances whether the transformation is stress induced (i.e. the

stress provides a mechanical driving force) or whether the generation of defects during

deformation helps nucleate martensite in a scenario better described as strain induced

transformation. The authors demonstrate in the present work that a large amount of published

data relating the fraction of martensite to plastic strain can in fact be described in terms of the

pure thermodynamic effect of applied stress.
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Introduction
It is well known that martensitic transformation can be
triggered above the martensite start temperature by
deformation of the austenite. When the applied stress is
below the yield strength of the austenite, the transfor-
mation is said to be stress assisted, and the influence of
the stress can be described in terms of a mechanical
driving force DGMECH, which adds to any chemical free
energy change due to transformation1

DGMECH~sNdzts (1)

where sN and t are the normal and shear stresses
resolved on the habit plane of martensite, and d and s
are the corresponding dilatational and shear strains
accompanying the formation of a plate of martensite.

The applied stress may be sufficiently large to
introduce defects such as dislocations and shear bands
in the austenite, which then contribute to the nucleation
of martensite. Theories for such strain induced trans-
formation are therefore based on the relationship
between the number density of nucleating defects as a
function of plastic strain in the austenite, for example,
Ref. 2. The thermodynamic effect via DGMECH is usually
not accounted for, or is incorporated using a non-linear
nucleation function in order to estimate the rate of
transformation.3–5

The problem is that, in most experiments, strain
induced transformation is studied by applying a
sufficiently large stress to the austenite as it transforms.
The influence of stress (through DGMECH) and strain

(via defects) cannot then be isolated. A more controlled
experiment would involve the plastic deformation of the
austenite at a temperature where martensitic transfor-
mation is impossible, followed by the cooling of the
austenite which is free from applied stress, to study
strain induced martensite. There are few ‘prestrain’
experiments of this kind.6,7

There is increasing evidence that in experiments where
deformation induced martensite is studied, the main factor
contributing to the formation of martensite is thermo-
dynamic, i.e. a mechanical driving force rather than an
enhanced heterogeneous nucleation rate due to defects
generated in the austenite. Indeed, the original case for
such an interpretation was made in 1982 by Tamura.8 In
more recent work, it has been demonstrated that the
crystallographic texture due to martensitic transformation
can be predicted for 18/8 austenitic stainless steel tested in
tension to a plastic strain of 10%, using the concept of
mechanical driving force alone, i.e. assuming stress
induced transformation.9 In the case of plastically
deformed transformation induced plasticity assisted steels
containing retained austenite, where the transformation is
usually said to be strain induced, it has been demonstrated
that the same experimental data can be reinterpreted in
terms of stress induced martensitic transformation.10 In a
particular study where the austenite in a stainless steel was
prestrained and then tested in tension at a temperature
where martensite was induced, no evidence could be found
to support the role of the prestrain on the kinetics of
transformation in the second stage of deformation:11 the
results could in fact be interpreted in terms of the
mechanical driving force. Further work on the same alloy
supported this conclusion.12

There are extensive data on the so called strain
induced transformation in austenitic stainless steels
where both stress and strain may play a role. The
purpose of the present work was to investigate whether
these results can be interpreted better in terms of the
thermodynamic effect of stress. Such an interpretation
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would be ‘better’ in that it would lead to an easy way of
estimating the amount of deformation induced marten-
site. In contrast, the theory of strain induced transfor-
mation requires assumptions, for example, about the
dependence of the number density of defects as a
function of plastic strain, the nature and potency of the
defects.

Method
Experimental data were collected from the published
literature on strain induced martensitic transformation
in a variety of austenitic stainless steels tested in
tension.13–27 The ranges of the various parameters in
the dataset are listed in Table 1; the martensite start
temperatures MS in the absence of deformation were in
each case calculated as a function of the chemical
composition, using an empirical relation published
specifically for stainless steels;28 however, the equation
does not include niobium, titanium and cobalt, which
therefore had to be neglected in the calculation of the
start temperature.

Stress versus plastic strain curves were used to convert
strain data in plots of volume fraction of martensite Va’

versus plastic strain, into a tensile stress that was then
used to estimate the mechanical driving force, which is
equal to 20?86 J mol21 MPa21.29 The stress–strain
curves were available in the published work on strain
induced martensite.13–27 The total driving force DGT is
the sum of the mechanical and chemical terms, where the
latter was calculated using the MTDATA thermody-
namic software in combination with the TCFE data-
base.30 Plots of the kind illustrated schematically in
Fig. 1 were then used to calculate the stress affected
martensite start temperature Ms

S .

The Koistinen and Marburger equation31 gives the
volume fraction of martensite as a function of under-
cooling below the martensite start temperature as

1{Va’~ exp {0:011(Ms
S{Tq)

� �
provided that

MSwTqw{800C
(2)

where Ms
S has been substituted for MS to deal with stress

induced transformation, and Tq refers to the lowest
temperature at which the martensite was generated. It
was thus possible to calculate the volume fraction of
martensite expected for any steel, applied stress and
temperature.

Results and discussion

Thermodynamic analysis
The results are illustrated in Fig. 2a; there is some
scatter about the line of perfect agreement between the
calculated and measured fractions, with a tendency for
the calculations to overestimate the amount of marten-
site for intermediate values of plastic strain. The most
accurate data are likely to be those measured using X-
ray diffraction, since this is a technique that, unlike
magnetic methods, does not require calibration. The
results using just X-ray determinations are illustrated in
Fig. 2b, where the same general trend is visible although
with somewhat reduced scatter.

The agreement with theory is best at low (,0?1) and
high (.0?7) values of strains. It is likely that the early
stages of transformation are dominated by stress effects,
since the defect density due to plastic strain will then be
small. At very large strains, workhardening allows
greater stresses to be applied, thus again emphasising
the role of stress. As an example, 304L stainless steel
workhardens from a true proof strength of ,360 MPa
to a true ultimate tensile strength of 1200 MPa
(corresponding to engineering stress values of 300 and
755 MPa respectively).26

The discrepancy at intermediate strains is interesting.
The calculation overestimates the fraction of martensite,
whereas if strain adds to the number density of
nucleation sites, then one might expect a theory based
on the mechanical driving force alone to underestimate
the fraction of martensite. Martensite grows by the
conservative displacement of a glissile interface. A
sufficiently large density of defects in the austenite can
hinder the progress of martensitic transformation

Table 1 Range of data obtained from published literature as described in text

Maximum Minimum Mean Standard deviation

Carbon, wt-% 0.10 0.02 0.06 0.03
Manganese, wt-% 6.46 0.42 1.32 0.43
Chromium, wt-% 18.58 16.19 18.05 0.37
Nickel, wt-% 11.84 4.12 8.17 0.61
Molybdenum, wt-% 2.03 0 0.18 0.17
Nitrogen, wt-% 0.17 0 0.04 0.03
Copper, wt-% 0.46 0 0.18 0.12
Strain rate, s21 200 0.0001 6.02 33
Tq, uC 100 280 21.25 37.7
Grain size, mm 180 5.9 28 22
True stress, MPa 1728 322 949 237
True strain 0.65 0.02 0.30 0.13
MS, uC 0.2 2175 279 36

V a’ 0.92 0.01 0.31 0.22

1 Martensite is triggered when free energy change

Ga’{Gc~DGC (Ms
S is therefore higher than MS)
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because of mechanical stabilisation.32–40 If mechanical
stabilisation does indeed contribute to the results, then
the calculated fraction of martensite will be an over-
estimate of that obtained in reality, as observed here for
intermediate values of strain.

It is possible in some austenitic steels for body centred
cubic a9 martensite to be preceded by the hexagonal
close packed e-martensite. This path has been neglected
here and could, in principle, complicate the interpreta-
tion. On the other hand, it has been shown recently that
the a9 transformation texture in such cases can never-
theless be predicted using variant selection based on the
mechanical driving force, without taking into account
any intermediate transformation.

Notice that the austenite grain size range listed in
Table 1 is likely to have an intrinsic influence on the MS

temperature by about 30uC,41 which is not accounted for
in the estimation of the martensite start temperature. As

will be seen later (Fig. 3b), given an average austenite
grain size of 29¡28 mm (Table 1), the error in the
predicted fraction of martensite resulting from this
neglect would be about ¡0?09. Nevertheless, the
method based on mechanical free energy, Ms

S and
equation (2) permits Va’ to be estimated to the accuracy
illustrated without the use of any fitting parameters.

Empirical analysis
The entire data were subjected to neural network
analysis as another method of deciphering the indepen-
dent roles of stress and strain in stimulating martensitic
transformation when both are applied simultaneously in
experiments. The method used here is in a Bayesian
framework and has been comprehensively described42,43

and reviewed44–46 so it is not introduced here. Suffice it
to say that it is the ultimate tool for non-linear
regression, and its predictions are associated not only

(a) (b)

2 a comparison between measured and calculated martensite fractions for 301, 304L, 304, 305 and 316L stainless steels

(experimental techniques used to measure Va’ included X-ray diffraction and magnetic methods) and b same but only

plotting data from X-ray determinations

(a) (b)

(c) (d)

a illustrating accuracy with which model replicates all of available measured martensite fractions; b isolated effect of true
plastic strain on calculated fraction of martensite for specific set of inputs; c isolated effect of true stress on calculated
fraction of martensite for same specific set of inputs

3 Neural network analysis for estimation of stress or strain induced martensite for data listed in Table 2: error bars

represent ¡1s modelling uncertainties
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with an average measure of scatter (reflecting uncon-
trolled variables) but, more importantly in the present
context, also a modelling uncertainty which describes
the ambiguity with which different empirical models can
express the same data.

The dataset used to create the model was more
extensive (,1600 rows)13–27,47–57 than in the thermo-
dynamic analysis. This is because many of the data do
not satisfy the condition listed in equation (2) that
MS.Tq.280uC. Since the calculated martensite start
temperature is not used in the neural network model, a
much larger set becomes available.

The neural network model was created as a function
of all the variables listed in Table 2, with the exception
of the volume fraction of martensite, which was its
output. Figure 3a shows that the model created is able
to reasonably estimate the martensite fraction for all the
available data.

Figure 3b and c shows predictions made for a specific
304 stainless steel. The remarkable result is that the role
of stress is convincingly revealed, whereas the indepen-
dent effect of strain is seen to be minor and more
uncertain. These results confirm the earlier conclusion
that in experiments where martensite is stimulated
during a tensile test, it is the mechanical driving force
which plays a dominant role rather than strain induced
transformation.

Conclusions
It appears that the major part of the variation in
martensite fraction during the tensile deformation of
austenitic stainless steels can be attributed to the fact
that the stress adds to the driving force for martensitic
transformation. An empirical analysis of a wide range of
data supports the predominant role of stress over plastic
strain.

A simple model based on classical theory1,31 can be used
to estimate quantitatively the fraction of martensite as
long as the stress versus plastic strain relationship, the MS

temperature and the dependence of chemical free energy
on temperature are known. This can be done without
using any fitting parameters. The influence of strain rate is
implicitly included through its effect on the stress–strain
relationship and provided that the temperature is main-
tained constant during the course of deformation.
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