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Abstract

This thesis deals with mechanisms of the precipitates nucleation and growth

which are not sufficiently understood in the multicomponent alloys. An

atomistic simulation package for computer experiments developed and im-

plemented here, enables study of the diffusive phase transformations at a

detailed atomistic spatial scale. A developed atomistic simulations package

enables both quantitative and 3D topographical simulations of evolution of

microstructure during precipitation in interstitial/substitutional alloys and

consequently a better understanding of the precipitation and kinetic path-

ways. Emphasis is on the formation and decomposition of subcritical nuclei

and their role on the nucleation growth, coarsening and coalescence. Within

the framework of the study detailed simulations were employed aiming to

predict the influence of temperature, chemical composition, asymmetry of

interatomic potentials, mixing energies and initial microstructure on evolu-

tions of precipitate fraction and density, volume fractions of chemical ele-

ments, precipitate size, shape (moments of inertia), concentration profiles,

short range order and pair correlations. First a simple model based on the

binary Fe-Cu alloy system with BCC crystal structure was studied in de-

tail. The simulated microstructures closely resemble typical microstructures

observed with 3D APT and HRTEM. It was found, that influence of the

mixing energy on evolutions of the short range order parameter and number

of clusters are similar to influence of the temperature, i.e. increased mix-

ing energy accelerates clustering and consequently the value of short range

order parameter. Furthermore, with higher mixing energy clear distinction

between growth and coarsening stages was observed. Simulations show that

precipitation and kinetic pathways are very sensitive to the asymmetry of

interatomic potentials, which was studied through definition of the asym-

metry parameters. In the present work new asymmetry model has been



proposed, which beside energies between atoms considers also ghost ener-

gies between vacancy and atoms. It was observed that for the negative

asymmetry parameters, coarsening by diffusion and direct coagulation of

clusters dominated over Ostwald ripening mechanism, while the opposite

holds for positive asymmetry parameters or symmetrical model. For long

times, the time exponent of the mean radius of clusters obtained from sim-

ulations were compared to the prediction of LSW theory. Deviations from

this theory were attributed to the influence of clusters mobilities. It was

also revealed that negative asymmetry results in increase of required com-

putation time to achieve the same real physical time. This was attributed to

the preferred environment where vacancy prefers to reside, i.e. the vacancy

trapping effect in Cu rich areas. In order to further elucidate cluster evo-

lution, computer experiments with seeded spherical clusters on the defined

positions and slightly supersaturated environment were conducted. The

aim was to study evolution of the shape and size of clusters, with different

initial sizes during growth stage of precipitation. It was recognized that

initial spherical shape changes dramatically over time, which was identified

visually as well as quantified by calculation of the moment of inertia tensors

for growing clusters. Since in all simulations full periodic boundary condi-

tions were employed, which can cause periodicity effects on the evolving

microstructure, influences of the simulation box size on precipitation were

assessed. It was found that reliable and repeatable results can be obtained

with box size of 403 BCC lattices. However, since number of formed precip-

itates is too small for adequate statistical post-processing, all simulations

were performed on larger box sizes.

The simulation package and underlying model parameters were then made

more complex by introduction of other substitutional elements to simulate

ternary and quaternary alloys with BCC crystal structure. Precipitation

and kinetic pathways of ternary Fe-Cu-Mn, Fe-Cu-Ni and quaternary Fe-

Cu-Ni-Mn alloys were compared to the binary Fe-Cu alloy. During these

simulations, evolution of the short range order parameters and mean cluster

sizes were monitored at temperature of 873 K. It was found that addition of

Ni and Mn increased incubation time for nucleation and have influence on



the growth rates. The highest and the lowest growth rates were observed

when only Ni and only Mn were added, respectively. For quaternary system

the growth rate lies between those obtained for ternary systems. In order

to study phase separation, the simulations package was upgraded to FCC

crystal structure and model for Ni-Cr-Al alloy system. At 873 K two types

of γ′ phases were recognized, i.e. Ni3Al and Ni3Cr, which is in agreement

with 3D APT experiments found in literature. Phases exhibit different frac-

tions and evolution kinetics. Fraction of the Ni3Al is increasing throughout

simulations, while fraction of Ni3Cr is increasing until it reaches maximum

and then starts to decrease. Two methods of detection of these two phases

were developed. The first is based on calculation of local concentrations

around given atoms, while the second searches for exact crystal structure.

It was found that these two methods yield different results, which suggest

that special care must be put when analysing obtained data either from

computer or atom probe experiments. The ability of developed simulation

package and underlying model parameters was also tested with coupled sub-

stitutional/interstitial diffusion in Fe-C alloy system. Although expected

realistic Fe3C phase cannot be reproduced with the rigid lattice approxi-

mation, much faster interstitial diffusion and slower substitutional diffusion

were correctly reproduced. Pair correlation functions for this example were

calculated for initial disordered and two later states. It identified that car-

bon pairs form bonds on the third nearest neighbour, which is an expected

results according to the selected interaction energies.

Keywords:

statistical mechanics, atomistic Monte Carlo methods, rigid lattice approx-

imation, diffusional phase transformations, precipitation

PACS numbers: 68.43.De, 05.10.Ln, 81.30.Mh, 66.30.Lw, 64.70.kd
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A fact is a simple statement

that everyone believes. It is in-

nocent, unless found guilty. A

hypothesis is a novel suggestion

that no one wants to believe. It

is guilty, until found effective.

Edward Teller (1908-2003) 1
Introduction

1.1 Definition of the research problem

Breakthroughs and advances in materials science are closely connected to the basic

research to interpret meso-, micro- and nano-scopic mechanisms. Basic research facil-

itates the prediction of results for proposed models, which are later validated through

experimental observations. Usually experimental validation becomes more complex

with decreased scale of observation. Many physical properties of metals depend on de-

fects and their concentration in the crystal. The simplest defects are point defects i.e.

self interstitials and vacancies. The formation energies of these types of defects are of

the order of electron volts and vacancies also have low equilibrium concentrations. The

movement of point defects is governed by diffusion; substitutional for vacancies and

interstitial for interstices. Additional properties of alloys can depend on precipitation

of various phases. For example, pure iron exhibits three transformations during cooling

from the melting point of 1538 ◦C. It transforms from liquid to solid δ-Fe with body

centred cubic (BCC) crystal structure at 1535 ◦C. At 1403 ◦C it undergoes solid-state

transformation to face centred cubic (FCC) crystal structure (γ-Fe). Pure iron then

finally transforms from γ-Fe to α-Fe with BCC crstal structure at 910 ◦C [1]. Alloy of

iron and carbon is known as steel. To obtain desired properties also other elements are

added to obtain special steels. Their strength and toughness varies with the changes

and constituents of the microstructure, i.e. size and shape of contained phases and

on the detailed arrangements of the atoms in them. Almost all steels rely on the

1



1. Introduction

transformation between austenite and ferrite for obtaining the desired microstructure.

Furthermore, the mechanical properties of steels can depend on carbides, nitrides, car-

bonitrides,. . . , precipitated from austenite at high temperatures and from ferrite at

lower temperatures. With addition of Nb, V or Ti in low carbon steels, e.g. like high

strength low alloy (HSLA) steels one can increase yield strength. With addition of these

elements kinetics of carbide precipitation and recrystallization can be altered. Alloys

where precipitation is also very important are aluminium alloys with addition of Cu

(series 2xxx) and with addition of Mg, Si and Zn (series 6xxx and 7xxx). These have

complex formation and decomposition of metastable phases dependent on temperature,

time and chemical composition. In the past these alloys were extensively studied ex-

perimentally and theoretically. Huge steps forward in understanding of precipitation

mechanisms accompanied the development of modern experimental techniques, such as

scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray

diffraction (XRD), 3D atom probe tomography (3DAPT), etc.

Study of precipitation and its kinetics from oversaturated metastable solid solution

can be divided in three regimes: (i) nucleation, (ii) diffusional controlled growth of

clusters and (iii) clusters coarsening (Ostwald ripening) and coalescence where larger

clusters grow on expense of smaller ones because of decrease of a system total surface

energy. In reality those three idealized regimes often overlap which consequentially

make it difficult to interpret obtained results. A better understanding of the precipi-

tation and its kinetics presents a real theoretical challenge. In particular, much more

remains to be done to gain a more accurate knowledge of precipitation and a better

understanding of the parameters governing the composition, size and density of precip-

itates. Phase transformations can be solved analytically for binary solutions up to 2D

square lattice by Ising model assuming only first nearest neighbours. It is known that

models based on classical nucleation theory with suitable parameter selection can sat-

isfactory describe time evolution of the number and size of the precipitates in regimes

where they grow and coarsen. These simplified models necessarily contain questionable

assumptions, for example, that the precipitates are spherical and stoichiometric, or

that surface energies are independent of temperature and size of the precipitates, etc.

Current models account only for the growth of the precipitates with size over a critical

threshold whilst ignoring unstable clusters with subcritical size. Even in unsaturated

solid solutions some kind of a stationary distribution exists and has influence on the
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kinetic pathways. At higher temperatures and/or low surface energies these unstable

subcritical clusters could significantly influence the concentration of solute atoms in

alloys and consequently have an influence on the nucleation, growth and coarsening

of the precipitates and kinetic pathways. On the other hand, computer aided atom-

istic simulations explicitly consider diffusion of particular atoms and do not need the

simplifications and assumptions mentioned above. Temperature, time and chemical

composition dependent atomistic simulations of the precipitation, contribute consider-

ably to a better comprehension of nucleation of the nuclei and their subsequent growth

and coarsening. High power computers have become more accessible as hardware costs

fall and computing power increases. That makes atomistic simulations an excellent

tool as their predictive capability is helpful with the design of alloys, especially for sys-

tems studied at extreme conditions (e.g. extreme pressures, temperatures, dangerous

elements, etc.) where experimental work is difficult and expensive or impossible.

1.2 Scope, aim and outline of the thesis

Mechanisms of the precipitate nucleation and growth are not sufficiently understood in

the multicomponent interstitial/substitutional alloys. Within the scope of the thesis, an

atomistic simulation package has been developed and implemented to enable studies at

a detailed atomistic, spatial scale of the diffusion processes. These processes lead to the

nucleation, growth, coarsening and coalescence of precipitates. A developed atomistic

simulation package enables a better understanding of the nucleation physics. Emphasis

is on formation and decomposition of subcritical nuclei and their role on the nucleation.

Furthermore, it enables more accurate forecasting of the nucleation kinetics, dependent

on the temperature, time and chemical composition.

Dynamic and kinetic development of molecular (atomic) systems using computa-

tional materials science is the main focus of the thesis. Atomistic modeling and sim-

ulations have their roots in molecular dynamics (MD) simulations developed within

theoretical physics in the late 1950s and early 1960s [2, 3]. In MD simulation, atoms

and molecules are allowed to interact for a period of time by approximations of classi-

cal physics (Newton’s laws of motion) and the simulation is totally deterministic. The

potential energy of all systems is calculated using force fields. MD is limited to small

time increments due to lattice thermal vibrations, as the method follows trajectories
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of all particles. This means integration step dt is very small, somewhere in the range

of approximately 10−15 s. On contemporary high performance computer clusters, MD

simulations can achieve time scales up to milliseconds in reasonable simulation times.

In the next development stage, electronic structure calculation methods were developed

to achieve an even more accurate result. They are based on solving an equation that

describes how the quantum state of a physical system changes in time, based on approx-

imation of the Schrödinger equation, formulated in 1926 [4]. Today many computer

methodologies exists which solve the Schrödinger equation. These are often called ab-

initio or first principles methods, with Density Functional Theory (DFT) being mostly

used in materials science since the 1970s. Conceptual roots of DFT are based on the

Thomas-Fermi model, which is a statistical model used to approximate the distribution

of electrons in an atom, [5, 6], but it was put on a firm theoretical foundation with the

Hohenberg-Kohn theorems, which reduce the many-body problem of N electrons with

3N spatial coordinates to 3 spatial coordinates with the electron density functionals and

defines an energy functional for the system and proves that the correct ground state

electron density minimizes energy functional, [7] and Kohn–Sham equations, where

intractable many-body problem of interacting electrons in a static external potential

is reduced to a tractable problem of non-interacting electrons moving in an effective

potential, [8]. Despite gaining in accuracy, due to electronic structure calculation the

biggest downside of first principles methods is their huge computational power demand.

In order to increase time scale, a combined approach using both first principles and MD

was proposed in 1985 [9], where electronic behaviour is obtained from first principles

and later used in MD to achieve greater sizes and times. To achieve even longer times

in order to study diffusional processes which are the scope of the thesis, more averaged

methods are needed. The atomistic simulation methods used to extend length and time

scales are the group of Monte Carlo (MC) methods used in materials science first in

late 1940s and early 1950s to solve thermodynamic state equations [10, 11]. Particular

MC method used in this thesis is the kinetic Monte Carlo method (kMC), where de-

velopment of the system can be simulated in real time. Atomistic kMC simulations are

much more appropriate for the study of nucleation and kinetic pathways, as the kMC

method does not follow exact thermal excitation trajectories but only diffusional hops

from state to state. This allows for greater simulation times which are important for

the study of nucleation and kinetic pathways in real alloys [12–38]. The main scope
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of the thesis is therefore the use of the kMC method for detailed study of nucleation,

growth, coarsening and coalescence of precipitates. Particular emphasis is put on the

formation and dissolution of unstable clusters with subcritical dimensions and their

effect on the nucleation and kinetic pathways, which can not be described by classical

nucleation theory.

A brief outline and organization of the thesis in chronological order is laid out in

the next chapter. In this second chapter a review of classical nucleation theory and

diffusion in crystals is presented. Chapter 3 provides an introduction to statistical

mechanics and a historical overview of Monte Carlo methods with emphasis on the

kinetic Monte Carlo method. In the fourth chapter, an atomistic kinetic Monte Carlo

model is constructed for rigid lattice substitutional/interstitial systems. This model

represents BCC and FCC crystal structures and is intended to describe the thermody-

namical behaviour and kinetics of the simulated system. Chapter 4 also reviews various

possible parametrizations for kinetic Monte Carlo simulations. In Chapter 5, the Fe-

Cu alloy system is addressed and its parametrization is described. The Fe-Cu alloy

system is simple binary model and serves as starting point. It was extensively studied

theoretically, experimentally and by computer simulations which enables comparison

of obtained results and addressing issues that were not given any attention previously.

Correct representation of intra-atomic and inter-atomic interactions are required for

accurate simulations. In this chapter results of few simulations, performed at different

conditions, which focuses on the precipitation kinetics are shown together with a com-

parison and assessment of experimental data from literature. Also a detailed analysis

of obtained results is presented. In chapter 6 the simple binary model is made more

complex and focuses on the ternary Fe-Cu-Ni and Fe-Cu-Mn, and quaternary Fe-Cu-

Ni-Mn alloys. Similar to the chapter 5, first focus is placed on the parametrization

of the fore mentioned systems and then to the detailed analysis of obtained results.

Chapters 7 and 8 provide kMC simulations of a Ni-Cr-Al alloy with FCC structure

and Fe-C alloy with BCC structure and octahedral interstitials, respectively. Chapter

9 summarizes the thesis by discussing the overall contribution of the research. Addi-

tionally, limitations of the approach and general ideas to the future research directions

are discussed. Finally, Appendix A provides an overview of kMC simulation package,

whilst Appendix B provides extended summary in the Slovene.
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A scientific truth does not tri-

umph by convincing its oppo-

nents and making them see the

light, but rather because its op-

ponents eventually die and a

new generation grows up that

is familiar with it.

Max Planck (1858-1947) 2
Nucleation theory

Phase transformations play an important role in a wide variety of physical process oc-

curring in nature. Their better understanding helps us to predict behaviour and kinetic

development of materials especially in solid state conditions. In 1876, J. W. Gibbs pub-

lished On the Equilibrium of Heterogeneous Substances, [39] where he proposed that

growth of a new phase from an existing phase is commenced by a formation of a small-

est stable cluster of the new phase, which then spontaneously grows. The formation

of these smallest stable cluster or critical nuclei is known as nucleation. Phase transi-

tion from an initial system in thermodynamic equilibrium is destabilized by change in

state variables like temperature, pressure, magnetic field, . . . The system rather than

becoming unstable stays metastable if that perturbation is small enough. In the nucle-

ation theory there is distinguish between homogeneous and heterogeneous nucleation.

Homogeneous nucleation is the spontaneous formation of critical nuclei from individual

atoms of the parent phase. Heterogeneous nucleation is the formation of nuclei of the

new phase on impurities or other pre-existing surfaces in order to reduce the free energy

barrier. The Gibbs free energy of a solution is a function of temperature T , pressure p

and molar quantities of solutes ni. In the differential form it is defined as

dG =

(
∂G

∂T

)
p,ni

dT +

(
∂G

∂p

)
T,ni

dp+
∑
i

(
∂G

∂ni

)
T,p,nj 6=i

dni (2.1)
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2. Nucleation theory

If T and p are constant, the equation 2.1 can be written as

dG =
∑
i

(
∂G

∂ni

)
T,p,nj 6=i

dni (2.2)

where the partial molar quantity
(
∂G
∂ni

)
T,p,nj 6=i

is known as a chemical potential µi.

2.1 Classical Nucleation Theory

Under the framework of the classical nucleation theory (CNT) one is able to yield

the incubation time and the nucleation rate of precipitates. Combined with diffusion

equations, modeling of the concentration time evolution and field of various components

of the alloy is possible.

In diffusive transformations a second phase occurs either by nucleation or spinodal

decomposition, followed by growth and coarsening. Observations and theoretical in-

terpretation of experimental results on the phase transformations are despite number

of modern developments, [40] still carried out widely based on the classical nucleation

theory, formulated in 1926, [41, 42] and its extensions and modifications in 1935, [43],

1942, [44] and 1984, [45]. The idea behind classical nucleation theory is very simple

and is based on the properties of the critical cluster. It was first formulated for the

condensation of a vapour to form liquid, which is the simplest nucleation process. Later

theory became convenient for more complex problems of nucleation in liquid and solid

phases. In an ordinary nucleation process, within another phase a small amount of

new phase is formed. The main driving force behind that is the difference in the free

energies of initial and final configurations. Furthermore, when a small amount of new

phase is formed, the free energy rises initially. With the creation of an embryo of the

new phase, the associated event is formation of boundary, which separates two phases.

Observation and defining of the boundary is very difficult when there are only few

particles in the embryo. However, there is a critical particle size when these clusters

become stable. Before particle clusters reach critical size they are called embryos, and

above it they are known as nuclei. The embryos or small clusters are unstable initially

due to their high surface-to-volume ratio. After they grow beyond the critical size they

are biased toward further growth. It is important to note, that formation of a solid

crystal from a vapour or liquid is much more complicated compared to the formation

8



2.1 Classical Nucleation Theory

of a liquid droplet from a vapour. Complexity increases due to the shape of crystal

when it is growing, since its surface energy is function of the orientation. Considering

this, the crystal nucleus of a minimum surface energy can have very complicated shape.

Furthermore, in a solid crystals, atoms need to fit into the fixed pattern of the crys-

tal lattice, [46]. Under the nucleation theory two basic ways of nucleation are known.

New phase can form on pre-existing interface (particle, grain boundary, dislocation,...),

which is known as heterogeneous nucleation and occurs more easily. The other way of

forming a new phase is know as homogeneous nucleation, where new phase is result of a

concentration fluctuation of atoms. In figure 2.1, nucleation of β phase precipitate in α

A B

L

a b

a+b

L+a L+b

T / K

ca c0 cb

Figure 2.1: Phase diagram for binary AB alloy and nucleation of β phase inside α
matrix.

matrix is depicted in phase diagram of binary alloy. Nucleation of β in α matrix occurs

after sufficient amount of B-atoms diffuse through it together to form small volume.

After the nucleation, the growth of new phase can commence. From an atomistic point

of view that happens by two successive processes, [47]. First, long range transport by

diffusion over distances of many atomic spacings, known as diffusion process. Secondly,

atomic transport across the interface i.e. normally a thermally activated short range

diffusional process, known as interface process.

The nucleation and growth depends on some important characteristics. The veloc-

ity of nucleation and growth is dependent on rate at which stable nuclei form, and on

9



2. Nucleation theory

their subsequent growth rate. While in some transformations only important and lim-

iting factor for nucleation is an activation energy for nucleation, in condensed phases

equally important is the activation energy for atom migration or diffusion. The general

characteristics of the nucleation can be summarized as follows:

• dependence on time

• dependence on temperature

• effect of stresses

• composition, atomic volume, and shape of the new phase

• orientation relations

• and stabilization, [46].

The basic kinetic mechanism assumed under the framework of CNT is that small

clusters grow and decay by the absorption or emission of single atoms. In this theory

the clusters are treated as spherical droplets, due to simplification of theory derivation.

2.1.1 Homogeneous Nucleation

Homogeneous nucleation happens in the interior of a uniform phase. When nuclei of

the new phase (β) is formed, the interface at the boundaries (α/β) is created. The free

energy change (∆G) associated with the homogeneous nucleation process have several

contributions and is given as

∆G = −V∆GV +Aγ + V∆Gs (2.3)

where V∆GV is reduction of volume free energy due to the creation of a volume V

of new phase β, Aγ is increase of the free energy due to the creation of an area A on

interface α/β with specific interfacial energy γ, and V∆Gs is rise of the strain energy

as newly created volume does not fit perfectly into the space previously occupied by

the matrix. If we assume that the nucleus is spherical with radius r, the equation (2.3)

becomes

∆G (r) = −4

3
πr3 (∆GV −∆Gs) + 4πr2γαβ (2.4)

10



2.1 Classical Nucleation Theory

The main difference between nucleation in solids and nucleation in vapours or liq-

uids (solidification) is the role of an elastic energy, estimated as ∆Gs = 6µαUε
2,

[48], where ε is misfit strain arising from the difference in lattice parameters and

U ≡ 3Eβ/(3Eβ + 4µα). Eβ is the bulk modulus and µα is shear modulus, denoted

for the corresponding phase. Precipitated new solid phases from supersaturated solid

a) b) c) d)

Figure 2.2: Schematic representation of solid-solid precipitates; a) an incoherent pre-
cipitate, b) a semicoherent precipitate, c) a coherent particle, and c) a fully coherent
particle, [49].

solution are classified either as coherent, incoherent or something in-between (semi

coherent). Figure 2.2 depicts all possible types of precipitates, [49]. An incoherent

precipitate is shown in figure 2.2a, where crystal structure of precipitating β-phase has

different crystal structure than parent phase. Figure 2.2b shows semicoherent precipi-

tate, where dislocations array acts as relief of the elastic strain due to lattice mismatch.

This type of interference is intermediate between coherent and incoherent. Figure 2.2c

ilustrates coherent precipitate, where its lattice planes are continuous with the matrix.

No structural discontinuity is between two phases, although they have different compo-

sition and lattice parameters. Figure 2.2d depicts fully coherent precipitate with same

lattice parameters and different composition.

The free energy change as a function of radius is depicted in figure 2.3, [50]. The

critical nucleus size is determined from the first derivative of the function in equation

(2.4). This criterion yields the critical nucleus radius

d∆G

dr

∣∣∣∣
r=r∗

= 0 ⇒ r∗ =
2γαβ

(∆GV −∆Gs)
(2.5)

Nuclei smaller than the critical size tend to decay because the free energy hill goes

down toward smaller cluster sizes. However, after clusters reach critical size they tend
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2. Nucleation theory
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Figure 2.3: The activation energy barrier ∆G* and the critical nucleus size r* according
to classical nucleation theory based on heterophase fluctuations, [50].

to grow since downhill is now toward larger sizes. After nuclei reaches critical point

their growth is afterwards governed by diffusion or by reaction kinetics. The free energy

needed to form critical nucleus is

∆G∗ =
16πγ3

αβ

3 (∆GV −∆Gs)
2 (2.6)

The formation of critical clusters is nucleation and the formation rate is the nucleation

rate, which describes how many clusters per unit time and volume grow over the hill

top.

2.1.2 Heterogeneous Nucleation

Heterogeneous nucleation can occur on imperfections when nucleating particle effec-

tively “replaces” some energetic feature of the original configuration. For instance,

nucleation on a grain boundary removes grain boundary area, and replaces it with an

interphase boundary area, that would have been created anyway by formation of the

new phase. Thus, pre existing imperfections effectively “catalyze” nucleation process.

Compared to the homogeneous nucleation, the heterogeneous nucleation is usually
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2.1 Classical Nucleation Theory

favoured. However, it is believed that homogeneous nucleation of Guinier-Preston

zones is possible, as long as vacancy concentration exists, [49]. Nucleation in solids is

preferentially heterogeneous. It occurs on pre-existing imperfections, which are suitable

nucleation sites and are non-equilibrium defects, e.g. vacancies, dislocations, grain

boundaries, inclusions, stacking faults or free surfaces. At these preferential sites, the

effective surface energy is lower. Therefore, the free energy barrier is diminished and

facilitates nucleation process. The free energy change (∆Ghet) associated with the

heterogeneous nucleation is given as

∆Ghet = −V (∆GV −∆Gs) +Aγαβ −∆Gd (2.7)

where ∆Gd is reduction of the free energy due to destruction of defect where nucleation

occurs. Preferential sites are favoured because of wetting, cf. figure 2.4, where contact

Figure 2.4: The critical nucleus size for heterogeneous nucleation.

or wetting angle θ is given by

cos θ =
γαα
2γαβ

(2.8)

if we assume that γαβ is isotropic.

The free energy change for heterogeneous nucleation is then

∆Ghet = −V (∆GV −∆Gs) +Aαβγαβ −Aααγαα (2.9)

where V is the volume of nucleus, Aαβ is the area of the α/β interface with interfacial

energy γαβ and Aαα the area of α/α interface which is annihilated during process.

The heterogeneous nucleation free energy is equal to the homogeneous nucleation free

13



2. Nucleation theory

energy scaled with a function of the wetting angle

∆Ghet = ∆Ghomf(θ) (2.10)

where f(θ) is given by

f(θ) =
1

2
(2 + cos θ)(1− cos θ)2 (2.11)

Equation 2.10 also holds for free energy needed for critical nucleus.

Function of wetting angle is not dependant on the radius, meaning that critical size

radius is the same for both types of nucleation, only change is the difference in the

free energy, needed for nucleation. In figure 2.5 difference in the free energies needed

r*0

DGhom     *

DGhet

r / m

G / J

DGhom

DGhet     *

Figure 2.5: The free energy change needed for homogeneous (∆Ghom) and heteroge-
neous (∆Ghet) nucleation, [50].

for both types of nucleation is shown. Heterogeneous nucleation can occur on various

heterogeneous sites, such as grain boundaries, grain edges or grain corners. In figure

2.6, the effect of ∆Ghom/∆Ghet on the cos θ for various nucleation sites is depicted,

[51]. It is clearly shown that nucleation on the grain corners is preferred site, since the

activation energy for nucleation here is reduced.
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Figure 2.6: Dependence of ∆Ghom/∆Ghet on cos θ for various heterogeneous nucleation
sites, [51].

2.1.3 Rate of Nucleation

In previous sections, the critical values needed for an embryo to become a nucleus

were derived. The key insight into the nucleation process was presented. However,

the very important feature not addressed, was the rate at which nuclei of a new phase

appear in the system. The nucleation rate is critical in the prediction of the phase

transformation behaviour. Hereafter, critical nuclei and clusters will be described by

the number of particles (atoms or molecules) in them and not by their radii. In the

monomer dimer trimer cluster of size n

1 2 3 n n+1n-1 ......
fn-1

gn

fn

gn+1

Figure 2.7: Flow of monomers to form dimers, trimers, tetramers, pentamers and finally
critical sized clusters consisting of n particles, where fn is attachment frequency and
gn is detachment frequency of monomers to n sized cluster.

figure 2.7, atomistic view of formation of the critical cluster is depicted. Basic idea for
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2. Nucleation theory

cluster formation was given by L. Szilard, as a series of consecutive attachments and

detachments of single atoms, [40, 42, 52, 53]. Clusters consisting of n atoms are formed

by the growth of clusters consisting of n − 1 atoms and the decay of clusters of n + 1

atoms and disappear by the growth and decay into clusters of n+ 1 and n− 1 atoms,

respectively. The change with time of the concentration Xn(t) of clusters consisting of

n atoms is given by

dXn(t)

dt
= Jn(t)− Jn+1(t) (2.12)

where Jn(t) is the net flux of clusters through the size n given by

Jn(t) = fn−1Xn−1(t) + gn+1Xn+1(t)− fnXn(t)− gnXn(t) (2.13)

where, fn is attachment frequency or rate and gn is detachment frequency of monomers

from the cluster of the size n. Attachment and detachment rates are connected with

gn+1 = fn
Xn

Xn+1
(2.14)

where, the cluster concentration Xn is concentration that would develop when equilib-

rium between these cluster concentrations would be achieved. When attachment and

detachment rates are equal, a steady-state concentration of the clusters in the system

can be assumed, and holds

Jn(t) = Jn+1(t) = J0 (2.15)

where J0 is the time averaged frequency of formation of clusters of any size. Hence, J0

is equal to the frequency of formation of the clusters with the critical size n∗ and thus

is equal to the steady-state nucleation rate. After employing some simple mathematics

on the Szilard scheme for J0 we obtain, [52]

J0 = X1

N−1∑
n=1

(
1 g2 g3 · · · gn

fn f1 f2 · · · fn−1

)−1

(2.16)

Attachment and detachment rates are connected to the cluster formation energy by

g2 g3 · · · gn
f1 f2 · · · fn−1

= exp

(
∆G(n)

kBT

)
(2.17)
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2.1 Classical Nucleation Theory

where, ∆G(n) is the energy associated to form a cluster consisting of n atoms. Com-

parison of equations (2.16) and (2.17) leads to the expression for nucleation rate. A

long time ago, Volmer and Weber proposed the celebrated expression for nucleation

rate, [41] given with

J ∝ exp

(
−∆G∗

kBT

)
(2.18)

where, ∆G∗ is the free energy required to form critical nucleus. To estimate the nucle-

ation rate, population density of the critical nuclei is needed. According to the Volmer

and Weber, the density of critical sized nuclei N is given by the Boltzmann distribution

as

N = N0 exp

(
−∆G∗

kBT

)
(2.19)

where, N is the number of critical sized nuclei containing n atoms per unit volume

that exist in the system, N0 is the total number of nucleation sites (monomers) per

unit volume of the system. Under Volmer and Weber theory, formation of clusters

is governed by monomer fluctuations. The problem arises here due to possibility of

critical sized cluster to lose monomers and thus be reduced to subcritical. Important

improvement of equation (2.18), especially insight into the kinetic prefactor was studied

by Becker and Döring [43] and Zeldovich [44]. They expressed nucleation rate as

J = β∗N0Z exp

(
−∆G∗

kBT

)
(2.20)

where, β∗ is the rate of the reaction of solute atoms to form a critical cluster (n−1→ n∗)

and Z is the Zeldovich factor, given by

Z =

√
− 1

2πkBT

∂2G

∂n2

∣∣∣∣
n=n∗

(2.21)

Zeldovich factor accounts for the possibility that critical cluster nucleus with n∗ parti-

cles, can with equal probability either grow or shrink. It also accounts that larger nuclei

have probability of shrinking. Further improvement of previous approaches was then

by Kampmann and Wagner, [45] introduction of the incubation time τ . The incubation

time is approximately the time, elapsing from the moment of supersaturating the old
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phase until the moment of appearance of a detectable amount of the new phase, or

simply put the amount of time before particles begin reaching the critical size. After

r*0

DG     *

r / m

G / J

rk T*
B

k TB

Figure 2.8: Schematic representation of the radius r∗kBT , at which stable precipitates
nucleate in the graph of the free energy change needed associated with nucleation.

introduction of τ , the following expression for the nucleation rate was given

dN

dt

∣∣∣∣
nuc.

= N0Zβ
∗ exp

(
−∆G∗

kBT

)
exp

(
−τ
t

)
(2.22)

where, τ = 4/2πβ∗Z2. Here the critical nuclei size is given with equation (2.23) and is

show in Figure 2.8

r∗kBT = r∗ +
1√
πZ

(2.23)

2.2 Atomic Jumps and Diffusion

Phenomena of diffusion can be introduced in two ways. A phenomenological approach

starting with Fick’s laws and their mathematical consequences, or an atomistic one by

considering the random walk of the diffusing particles or atoms, [54]. A knowledge of

solid state diffusion is essential for understanding of countless microstructural changes

occurring at elevated temperatures. For example, solid state diffusion is fundamental
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2.2 Atomic Jumps and Diffusion

for processes like diffusional phase transformations, precipitation, dissolution of second

phase, recrystallization, oxidation, creep, annealing and others. The atomistic mecha-

nisms for solid state diffusion rely on defects in crystals e.g. point defects like vacancies,

divacancies and interstitials, [55]. Diffusion is also important to study how atoms move

in solids. Movements of atoms in matter are thermally activated and results in the net

transport of atoms. The jumps are assumed to be entirely random and the probability

of jumping depends on the surrounding atom configurations. Furthermore, diffusion

can be represented by random walks of particles, [56]. Experimental work has shown

a) b) c) d)

Figure 2.9: Proposed solid-state diffusion mechanisms; a) direct interchange mecha-
nism, b) Zener ring mechanism, c) vacancy diffusion mechanism and d) interstitial
diffusion.

that atomic diffusion in the solid-state occurs by vacancy mechanism, [57]. The vacan-

cies are voids on the substitutional lattice sites. Their movements are associated with

distortion of the lattice and are linked to a energy barrier which needs to be overcome.

Historically, various diffusion mechanisms were proposed and are schematically shown

in figure 2.9. Direct interchange mechanism (figure 2.9a) and Zener ring mechanism

(figure 2.9b) are associated with high strain energies, and thus probability of their oc-

currence is very low, especially at lower temperatures. On the other hand, the vacancy

diffusion mechanism (figure 2.9c) proposed by H. B. Huntington and F. Seitz in 1942,

[58] is associated with much lower energy barrier, [58, 59]. Vacancy diffusion mecha-

nism is associated with vacancy concentration. The equilibrium vacancy concentration

given by

ceqV = exp

(
−

∆GforV

kBT

)
(2.24)

is very small, typically about 10−1 − 10−2 at.% for most metals at their melting point,

and it decreases with decreasing temperature. In equation (2.24), ∆GforV is vacancy
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formation energy, sometimes denoted as EforV , which can be split into enthalpy and

entropy terms which yields

ceqV = exp

(
∆SforV

kB

)
exp

(
−

∆Hfor
V

kBT

)
(2.25)

Existence of the the vacancy diffusion mechanism was disputable, because of the low

vacancy concentrations at temperature interesting for diffusional phase transformations.

The theory was generally accepted after a diffusion seminar in 1950 where validity of

E. Kirkendall seminal experiment conducted in 1947, [57] was approved.

Net diffusion rate of atoms across area perpendicular to flux vector is described by

Fick’s first law, written in general form as

~J = −D∇c (2.26)

where, ~J is the total atomic flux vector, D is a symmetric second rank tensor denoted

as the diffusion coefficient tensor and c is the concentration of the same atoms, [60, 61].

However, if concentration is time dependent, use of continuity equation

∇ ~J = −∂c
∂t

(2.27)

with equation (2.26) yields the diffusion equation (Fick’s second law), [60]

∇ (−D∇c) = −D
(
∇2c

)
− (∇c) (∇c) =

∂c

∂t
(2.28)

for the case without sources and sinks. Since diffusion is thermally activated process,

jumps of vacancies and interstitials are also thermally activated and they occur at rate

Γ = ν exp

(
− E

m

kBT

)
(2.29)

where, ν is an attempt frequency and Em is activation energy for the jump, [62]. There-

fore, due to the vacancy jumps, atoms change their positions on the crystal lattice with

frequency, that depends on the local configuration, attempt frequencies, temperature,

. . . For example, in alloy where clustering is favoured, same atoms tend to have more

energetically favourable bonds, and same pair bonds are easily formed.

In figure 2.10 jump of atom from an initial configuration i to final configuration j
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through saddle point is depicted. Whenever an atom jumps from one site to another,

DH  i j

1

3

2

i jsaddlepoint

Figure 2.10: An atom jump in a crystalline solid from an initial configuration i (1) to
a final configuration j (3), through a saddle point position (2).

configuration of the alloy changes from configuration i to j (cf. figure 2.10). Transition

probability for occurrence of this event, at temperature T is given by

Γi→j = νij exp

(
−∆Hij

kBT

)
(2.30)

where, ∆Hij is the activation barrier for the transition from configuration i in the point

1, to j in the point 3, through saddle position in the point 2. Transition i→ j results in

change of interatomic potential i.e. change in alloys atomic arrangement. In equation

(2.30), νij represent attempt frequency for event i→ j. The attempt frequency νij , are

usually obtained using the rate theory for solids, [63–65], which offers a conceptually

straightforward approximation to the attempt frequencies, and is reviewed in detail

in [66]. The attempt frequency νij is for crystal with N atoms in a quasi harmonic

approximation given as

νij =

∏3N
k=1 νi∏3N−1
k=1 ν

′
ij

(2.31)

where, νi and ν
′
ij are 3N normal mode vibrational frequencies at the minimum or initial

state i and 3N − 1 nonimaginary normal mode vibrational frequencies at the saddle
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point, respectively. In a 3D periodic system where all atoms are moving, discarding the

translational modes leaves 3N−3 and 3N−4 real normal mode vibrational frequencies

at the minimum and saddle point, respectively. If the system is free to rotate, there

are 6N − 6 and 6N − 7 relevant modes, [67].

Under the framework of the quasi harmonic approximation it is assumed that the

anharmonicity is restricted to thermal expansion, so that the temperature dependence

of the phonon frequencies arises only from dependence on the crystal structure and

volume, [68]. The quasi harmonic approximation is used in the lattice dynamics theory

to obtain the thermodynamic properties of crystals. In the system with N atoms, the

total potential energy is expanded in the atomic displacements using Taylor series, and

then in the quasi harmonic approximation the terms with order higher than two are

neglected.

2.2.1 Vacancy diffusion

Atoms in solids usually diffuse by the motion of vacant lattice sites. Diffusion in the

solids is relatively simple and happens via vacancy mechanism, illustrated in figure

2.9c. A substitutional atom either foreign or self, diffuses by jumping into adjacent

vacancy. The motion of the atoms in solids is much slower than the motion of the

vacancies, because motion of the atoms depends on having neighbouring vacancy, with

which it can exchange positions. In the solid-state the motion of an atom depends on

the probability, that it is adjacent to the vacancy, multiplied with the atom-vacancy

exchange rate. The atom-vacancy exchange rate is dependent on the energy barrier

for jump of atom to vacant site. Furthermore, higher the vacancy concentration, the

more exchanges occur. Equilibrium vacancy concentration in an alloy given by equation

(2.24), depends on the temperature, pressure and chemical potential between atoms,

constituting the alloy. For the system with NV vacancies and N atoms, the vacancy

concentration can be written as

ceqV =
NV

N +NV
(2.32)

In alloys, vacancies are formed and annihilated on free surfaces, dislocations and other

defects in order to maintain their equilibrium concentration.
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2.2.2 Interstitial diffusion

As depicted in the figure 2.9d, some elements have ability to move in the spaces between

the atoms, as they can fit into the interstitial spaces in the lattice of other elements.

This allows them to move through the lattice much faster, since they do not require the

presence of a vacancy as is the case with substitutional atoms, since most of interstitial

sites is unoccupied. Typical examples where interstitial diffusion takes place are Si in

Cu, H in Pt, C and N in Fe, [69].

2.2.3 Tracer diffusion and Self-diffusion

Diffusion processes described above are called also chemical diffusion, which results in

net transport of mass and occurs because of a gradient of chemical potential. Result

is increase of the system entropy and system evolves towards equilibrium. Beside the

chemical diffusion there also tracer diffusion and self-diffusion. This type of the diffu-

sion, takes place in the absence of the gradient of chemical potential. Name tracer dif-

fusion comes from using isotopic tracers to observe evolution and measure self-diffusion

coefficients. The diffusion coefficient D∗i for tracer diffusion is related to the chemical

diffusion coefficient Di as

D∗i = Di
∂ ln ci
∂ ln ai

(2.33)

where, ci is concentration and ai is activity of atoms i, [70]. As already noted diffu-

sion can be represented by random walks of particles. The time-dependent diffusion

coefficient is given by Einstein expression, [71, 72] as

D(t) =
1

2d

δ

δt

〈
R2(t)

〉
(2.34)

where, d is the system dimensionality (d = 1, 2, 3) and
〈
R2(t)

〉
is the average of particles

displacement in time t, [73]. This equation provides very useful method to calculate the

diffusion coefficient in the framework of diffusivity models from random walks. Einstein

equation is very useful for providing the basic theory that describes diffusion of particles

in solid state, where atoms are jumping from one lattice site to another and is given as

Dx =

〈
X2
〉

2t
(2.35)
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2. Nucleation theory

For isotropic crystals the diffusion coefficient is the same in every direction

D =

〈
S2
〉

6t
(2.36)

where S is the vector displacement of an atom in time t. In the terms of transition

probability, the traced diffusion coefficient in 3D is given as

D =
ns2f

6t
=

Γfs2

6
(2.37)

where, s is the transition or jump distance and f is correlation factor, connected to the

direction of the jumps [56] and is given as

f = lim
n→∞

〈
S2
〉

ns2
(2.38)

The correlation factor can be expressed as the ratio of the actual displacement vector〈
S2
〉

and the resulting displacement vector of a complete random walk, [74]. For

example, if each jump in the random walk is completely independent of previous, then

f = 1. For the vacancy diffusion mechanism the correlation factor f is approximately

f ≈ 1− 2

Z
(2.39)

where, Z is the local coordination number.

2.3 Growth and Coarsening

In the phase transformations an initial stage of nucleation is followed by growth of the

new phase. During growth stage, new atoms are added to an existing cluster. In figure

2.11, energy curve associated with the free energy of an atom as it passes through the

boundary from the α matrix into the β phase precipitate is depicted, [46].

In general, two various growth models are distinguished. One is for diffusion-

controlled growth which occurs in phase transformations with long range compositional

changes. Other growth model is known as interface controlled growth where growth is

determined by the kinetics of atomic processes in vicinity of the interface, e.g. γ → α

transformation during cooling in binary Fe-Mn alloys, [75]. The interface controlled

growth does not involve a composition change as growth proceeds with the interface

motion. The boundary migration kinetics involve local atomic rearrangements, where
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Figure 2.11: The energy barrier associated with the growth of a precipitate in the solid
state.

atoms jump from one side of the interface to the other side. Usually in the interface-

controlled growth processes, the interface motion occurs at constant velocity hence

the particle size increases linearly in time (r ∝ t). In the diffusion-controlled growth

processes, the particle size often increases parabolic in time (r ∝
√
t). Typical concen-
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Figure 2.12: Schematic representation of concentration profile at an α/β interface for; a)
diffusion–controlled interface, b) interface–controlled interface and c) mixed interface.

tration profiles for various growth processes are depicted in Figure 2.12.

The growth of clusters causes drain of solutes in the surrounding matrix. Growth

ceases when concentration of solutes in the matrix reaches its equilibrium value. From

this point on, size increase of clusters is governed by coarsening. Coarsening is thermo-

dynamically driven spontaneous process, known also as Ostwald ripening or competitive

growth. It occurs because larger particles are energetically more favoured compared to

small particles, Gibbs-Thomson effect. In the coarsening stage, large particles grow at

the expense of small particles, [76, 77].

Growth and coarsening are common features of all structural transformations in

multi-phase mixtures. Their principles will be discussed next.
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2. Nucleation theory

2.3.1 Diffusion-Controlled Growth

After nuclei becomes large enough, further growth factor controlling mechanism if the

interface mobility is sufficiently high, becomes the volume diffusion and growth rate

is from this point limited by the diffusion rate. Growth of clusters with monomer

addition, must satisfy the diffusion equation

∂c(r, t)

∂t
=

3∑
i=1

3∑
j=1

∂

∂xi

[
Dij(c, r)

∂c(r, t)

∂xj

]
(2.40)

where, Dij is the diffusion coefficient which dependant on the local concentration c(r, t)

and consequently on position r.

2.3.1.1 Zener model for diffusion controlled growth

This section describes Zener model for the growth, [78]. Solute concentration profile as

a function of the distance is schematically illustrated in figure 2.13a. Zener assumed

0 r / m
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c(r)

c
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Figure 2.13: Schematic representation of the; a) concentration field in the matrix sur-
rounding a precipitate with radius R, b) simplification of the same concentration field
profile.

linear gradient, shown schematically in figure 2.13b, and that the phases at the interface

have equilibrium composition. At the interface, the diffusion equation (2.40) must be

satisfied. For sake of simplicity, the diffusion coefficient Dij from equation (2.40) is

assumed constant, which yields diffusion equation as

∂c(r, t)

∂t
= D∇2c(r, t) (2.41)
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2.3 Growth and Coarsening

where, first boundary condition at the time t = 0, is c(r, 0) = c̄. c̄ is average solute

concentration in the matrix (cf. Figure 2.13). However, in order to get the solute

distribution from the diffusion equation, additional boundary conditions have to be

specified.

In figure 2.13, cβα is solute concentration in the precipitate β which is in equilibrium

with α, cαβ is solute concentration in the matrix which is in equilibrium with β and

c̄ is mean solute concentration in the alloy. In incrementally small amount of time dt,

the boundary of the precipitate moves into the matrix for a distance dx. The flux at

the interface r = R is from Fick’s first law given as

−Jr=R = −D∂c

∂r

∣∣∣∣
r=R

= −Dc̄− c
αβ

L
(2.42)

and must be equal to the rate, at which the solute is partitioned. L can be estimated

by mass conservation equation at the interface

R(cαβ) =
1

2
L(c̄− cβα) (2.43)

Velocity at interface is given by

dR

dt
=
D

2
Ω
c̄− cαβ

cβα − c̄
1

R
(2.44)

where, Ω is dimensionless supersaturation defined as

Ω =
c̄− cαβ

cβα − cαβ
(2.45)

In the most cases it can be assumed (cαβ − c̄)(cβα − cαβ), then velocity is

dR

dt
=
D

2
Ω2 1

R
(2.46)

Integration of equation (2.46) leads to the relation for position of the boundary as

function of time

R = Ω
√
Dt (2.47)

The precipitate size changes with the square root of time, yielding parabolic growth

law for one dimensional growth (thickening of a plate) in binary system.

The solution of the diffusion equation (equation 2.41), for the spherical precipitate

growth was derived by C. Zener in 1949, [78] and F. S. Frank in 1950, [79]. For more
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2. Nucleation theory

general shaped particles, treatment of diffusion problem was solved by F. S. Ham in

1959, [80] and G. Horvay and J. W. Gahn in 1961, [81]. All mentioned solutions assume

smooth interfaces with constant diffusion flux over a planar interface. By considering

an origin in the moving boundary in the direction of growth and normal to the plane

of the precipitate, M. Hilert, [82] improved solution derived by C. Zener.

2.3.1.2 Gibbs-Thomson effect

In diffusion controlled growth described in previous section, the interface compositions

are given by the equilibrium phase diagram which are calculated with assumption that

phases extends indefinitely, i.e. without surfaces. This assumption is often not true,

and influence of the surface energy needs to be considered. For the curved interfaces,

additional surface energy terms is present, and results in a modification of the expected

composition. This is the so called Gibbs-Thomson effect or capillary effect which causes

modification of the solubility limits. In the case of nucleation, growth or coarsening,

the capillary effect must be included into the solubility limits, [83]. In figure 2.14 effect

bX X

G

XrXĄ

aG

bGGĄ

bGGr

Figure 2.14: Gibbs-Thomson effect shown in free energy curves at temperature T , [50].

of the interface curvature on the solubility of small particles is presented in the free

energy curve at temperature T . In the binary alloy, correct solubility limit Xeq, of B

atoms in α matrix in the equilibrium with β phase spherical particle with the radius r,

is given as a function of the radius, [50, 83] by

Xα
r = Xα

∞ exp

(
2γVm
rRT

)
(2.48)

where, Vm is molar volume, γ is the surface energy, R is the molar gas constant and T

is temperature.
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2.3 Growth and Coarsening

2.3.2 Coarsening

The theory of coarsening or Ostwald ripening in alloys, describes the late stages of

the formation and growth of a new phase particles, from a supersaturated solution.

In the coarsening the dissolution of small particles proceeds and they than redeposit

on the surfaces of larger particles, [76]. Furthermore, W. Ostwald discovered that

driving force for the process is Gibbs-Thomson effect. The process occurs as smaller

particles have a higher surface energy and therefore higher total Gibbs energy than

larger particles, giving rise to an apparent higher solubility. During these stage, no new

grains can form, and governing process for the growth of the particles is diffusional mass

exchange, [84, 85]. In figure 2.15 is a schematic display of coarsening in two dimensions

a) b) c)

Figure 2.15: Schematic presentation of the coarsening or Ostwald ripening on droplets
in two dimensions.

in time. As time evolves from a) to c) total number of droplets decreases, with increase

of average radius. However, volume fraction of droplets is constant.

Theories of particle coarsening must be statistical in nature since experimental data

are essentially statistical samples. In the theory three fundamental equations which

require solution arise:

• a kinetic equation, describing the growth or shrinkage rate of an individual particle

of given size,

• a continuity equation, describing the temporal evolution of a particle size distri-

bution function,

• a mass conservation equation, which the solutions to the first two must satisfy to

be acceptable.
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2. Nucleation theory

The major progress in the theory of coarsening was done 1961 by I. M. Lifshitz and

V. V. Slyozov, [84] and independently C. Wagner [85]. They quantitatively analysed

asymptotic behaviour of the particle-size distribution in three dimensions. Their theory

will be discussed in detail in the next section.

2.3.2.1 The Lifshitz-Slyozov-Wagner theory

The Lifshitz-Slyozov-Wagner theory of coarsening is used for description of the late

stages of the growth by diffusional mass transfer in the supersaturated solution. Theory

was discussed in 1961 by I. M. Lifshitz and V. V. Slyozov, [84] and independently C.

Wagner [85]. They derived exact results, assuming that the minority phase occupies

a negligible volume fraction. They showed that the characteristic size of the minority

phase particles increases as r ∝ t1/3, and their number decreases as N ∝ t−1, [86].

Theory became known as the Lifshitz-Slyozov-Wagner (LSW) theory in 1975, when M.

Kahlweit discovered that theories in papers from I. M. Lifshitz and V. V. Slyozov, [84]

and C. Wagner, [85] are identical, [87].

All systems, where dispersed particles have certain solubility and are statistically

distributed in a medium, are due to a large interface area, thermodynamically unstable.

Interface surface decrease is described by the Gibbs-Thomson equation, when particles

are approaching equilibrium through coarsening. Starting point of the LSW theory is

diffusion equation for concentration c in the steady-state limit, given as

∇2c(r) = 0 (2.49)

where, ∂c/∂t can be neglected. This determines the flow of material between parti-

cles, subjected to the Gibbs-Thomson boundary condition at the interface surface of a

particle with radius r′

c(r)|r=r′ = c∞

(
1 +

ν

r′

)
(2.50)

lim
r→∞

c(r) = c̄ (2.51)

where, ν = 2γΩc∞/RT is the capillary length and c̄ is mean concentration in the bulk.

Ω is the mean molar volume of the particle. The mass balance

d

dt

(
4π

3
r′

3
)

= 4πr′
2
D

dc(r)

dr

∣∣∣∣
r=r′

(2.52)

satisfies criterion that volume change of the spherical particles is due to change in
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2.3 Growth and Coarsening

concentration. The evolution of the second phase is characterized by the particle-

radius distribution N(r′, t), where N(r′, t)dr is the number of particles per unit volume

at time t with radius between r′ and r′+ dr. The particle distribution function f(r′, t)

determines averages

(· · · ) =

∫
dr′f(r′, t)(· · · )∫

dr′f(r′, t)
(2.53)

and with normalization, the total number of particles is given by∫
dr′f(r′, t) = N(t) (2.54)

Distribution function satisfies the continuity equation (equation 2.55), as nucleation of

new particles can be neglected, since nuclei are so small that they disappear immedi-

ately. Creation of new particles by fusion of two existing can be neglected due to large

distances between particles.

∂f(r′, t)

∂t
+

∂

∂r′
(ṙ′f(r′, t)) = 0 (2.55)

where, ṙ′ is a time derivative. Furthermore, the distribution function must satisfy the

conservation equation, thus

∆(t) +
4π

3

∫ ∞
0

r′
3
f(r′, t)dr′ = φV ′ (2.56)

where, ∆(t) = c̄ − c∞ is the supersaturation of the solution and vanishes as t → ∞,

φV ′ is the initial concentration, and V ′ is the volume of the system. In the limit, where

φ→ 0, solution of the steady-state diffusion equation in equation (2.49), is given as

c(r) = c̄− (c̄− c(r′))r′

r
(2.57)

and only one droplet needs to be considered. The growth law in this limit is with

equation for mass balance given as

dr′

dt
=
D

r′

(
∆− ν

r′

)
(2.58)

shows clearly, that droplets larger than time dependant critical radius ν/∆(t) grow and

vice versa. Theory was derived for asymptotic behaviour of the particle-size distribu-

tion in three dimensions. Many particles in the system were assumed, with distances
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2. Nucleation theory

between particles grater than the size of the particles. Asymptotic solution of equation

(2.58) yields average particle radius as

r̄(t) =

(
4Dνt

9

)1/3

(2.59)

where, factor 4/9 is dimensionless coarsening rate. Obtained was also analytical form

of the particle size distribution function for very long times, given by

f(r′, t) ∝ g(r′/r̄)

r̄4
(2.60)

The explicit form of the scaled normalized distribution function is given by

g(z) =


(

34e

25/3
z2

)
exp

(
− 1

1− 2/3z

)
(z + 3)7/3(3/2− z)11/3

if 0 < z < 3/2

0 otherwise

(2.61)

where, z ≡ r′/r̄′.
It is worth to mention that in the case of heterogeneous precipitation, the coars-

ening is affected by short range diffusion on the grain boundaries and dislocations. If

coarsening is controlled entirely by the grain boundary diffusion, the other phase par-

ticles size increases as r ∝ t1/4, [88]. However, if coarsening is controlled entirely by

the pipe diffusion, the other phase particle size increases as r ∝ t1/5, [89, 90].

2.4 Clusters

A cluster is term to describe an assembly which lacks the well defined composition,

geometric structure and chemical bonds, typical for molecules and lack in properties of

typical bulk material, [91]. The main reason for their research is understanding their

influence on the alloy kinetics. Interesting is to observe their changes in properties when

they grow from monomers into various groups made of different number of particles.

Sometimes, the property change is so minimal when clusters grow, that it can not be

distinguished from a solid. All these properties needs to be thoroughly analysed from

data sets from experiments or simulations.

Clusters form from atoms during nucleation process and subsequent growth and

coarsening phases. They are found in various sizes, from very small to macroscopic.

The cluster is defined as a set of identical atoms or molecules, occupying crystal sites
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2.4 Clusters

and connected by at least one nearest neighbour bond, [92, 93]. Particular cluster of

n atoms, changes its size as a result, of a series of attachments and detachments from

it. The critical cluster with n∗ atoms is also known as the critical nucleus. Atoms

attach and detach to the critical cluster with equal frequency, [94]. As it was already

explained previously, a subnuclei (n < n∗) tends to decay into monomers, because in

the unit of time, more atoms are detached than attached to them. On the other hand,

a supernuclei (n > n∗) tends to grow, because more atoms are attached to them than

detached. Since atomic attachments and detachments are random events, any cluster

of the size n, can either decay or grow into cluster with macroscopic size. This is

happening with certain probability P (n). Critical clusters have growth probability of

P (n = n∗) = 1/2, whereas subnuclei and supernuclei evolve with the growth probability

of P (n < n∗) < 1/2 and P (n > n∗) > 1/2, respectively.

It was shown, that between thermodynamically defined critical nucleus size (r∗) and

kinetically defined critical size (n∗) exists difference, [95]. Kinetically defined clusters

are polyhedrons with N solute atoms. Radii of the cluster in the BCC lattice, without

interstitial atoms can be obtained with calculation of the sphere having the same volume

as cluster. The BCC lattice cell have two atoms and volume of Vsub = a3. If the number

of atoms N in the cluster is known, and spherical shape of the cluster is assumed, the

volume is given as

Vcluster =
4

3
πr3 =

N

2
a3 (2.62)

which holds for N > 20, and is basis for calculation of the cluster radius, [20] given as

r =

(
3a3

8π
N

)1/3

(2.63)

Similar procedure can also be done for FCC crystal lattice.

2.4.1 Cluster analysis

Huge amount of data is obtained after the experiment or simulation is finished. This

data configurations must be analysed in a way that informations contained in wast

amount of raw data are retained, but are represented more simply. This is usually done

with various averages and correlation functions.
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2.4.1.1 Cluster size distribution

Determination of the size distributions is very important in cluster analysis, as the

size distribution determines many bulk properties and provides detailed information

about the mechanisms governing both, the kinetics and the thermodynamics of the

nucleation, growth and coarsening of a new phase. Another important feature of the

size distribution is that it can be compared between the classical nucleation theory and

measured size distributions obtained from simulations and experiments. In the latter,

the size distribution is given with a counts of the number of clusters with a given size

defined, either with number of particles, n(i) or radius of clusters, n(r). Alternatively,

the cluster size distribution can be defined in time t, as n(t). Furthermore, obtained

function obeys power law and is frequently normalized to get volume independent

function, [96].

2.4.1.2 Mean cluster size

As alloys evolves in time, so the mean cluster size evolves. The mean cluster size

enables description of the evolution kinetics. The mean cluster sizes L(t) and L2(t)

as a functions of time t, can be defined as first or second moment of the cluster size

distribution, normalized by the cluster size distribution or by the first moment of the

cluster size distribution, respectively. The first moment of the cluster size distribution

is given as

L(t) =

∑∞
l=lc

lnl(t)∑∞
l=lc

nl(t)
(2.64)

whereas the second moment of the cluster size distribution is given as

L2(t) =

∑∞
l=lc

l2nl(t)∑∞
l=lc

lnl(t)
(2.65)

where, nl(t) is the number of clusters what have l atoms at time t, and lc is the cut off

criterion, [17, 92, 96, 97].

2.4.1.3 Pair Correlation Function

The particle correlation functions, measure the extent to which the structure of a

matter deviates from the complete randomness, [98]. The spatial correlation functions

characterize structure of the system, and gives more detailed informations than thermo-

dynamic quantities. Therefore, it is very important to be able to do their comparison,
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2.4 Clusters

to the experimental data from various scattering techniques. The particle densities.

and the closely related equilibrium particle correlation functions, provide a complete

description of the structure of a matter, [98, 99] In general, the n-particle correlation

function g
(n)
N (rn), defined in terms of the particle densities is given as

g
(n)
N (rn) =

ρ
(n)
N (r1, . . . , rn)∏n
i=1 ρ

(1)
N (ri)

(2.66)

where, ρ
(1)
N (r) is the single particle density and ρ

(n)
N (rn) is the n-particle density, [100].

The pair correlation or radial distribution function g
(2)
N (r1, r2), is the second order par-

ticle correlation function, and is the simplest of the correlation functions. For the

homogeneous and isotropic systems, the pair correlation function g
(2)
N (r1, r2), is a func-

tion only of the distance r12 = |r2 − r1|, and is written as g(r). It provides a measure

r

Figure 2.16: Schematic presentation of pair correlation function in binary solution.

of local spatial ordering in the matter, and describes the probability of finding a pair of

the particles at a distance r from each other, relative to the probability for a complete

random distribution at the same density, cf. figure (2.16), [100]. The particle densities

in equation (2.66) can be expressed with δ functions of position. The single particle

density expressed with Dirac δ functions of position is given as

ρ
(1)
N (r) =

〈
N∑
i=1

δ(r − ri)

〉
(2.67)

and represents the ensemble average of a microscopic particle density ρ(r). Similar

notation can be used for second order particle density, which then gives pair correlation
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function g(r) as

g(r) = ρ−2

〈∑
i

∑
j 6=i

δ(ri)δ(rj − r)

〉
=

V

4πr2N2

〈∑
i

∑
j 6=i

δ(r − rij)

〉
(2.68)

where, ρ is average number density of particles, [100]. By definition of the g(r), on

average the number of particles at a distance between r and r+ dr, from the reference

particle is 4πr2ρg(r)dr and the peaks in g(r) represents neighbouring shells from the

reference particle, [100]. Furthermore, for totally disordered state, a value of the pair

correlation function is g(r) = 1.

2.4.1.4 Short Range Order

A short range order (SRO) parameter is directly related to the pair correlation func-

tions. In the binary AB alloys, the most used short range order parameter αnAB is known

as Warren-Cowley parameter, [101], which is for the n-th neighbour shell defined as

αnAB = 1−
pnBA

cA
(2.69)

where, pnBA is the probability of finding an atom A in the neighbourhood of an atom B,

cA is the concentration of A atoms, and it must hold cA+cB = 1. In the fully disordered

systems it is by definition αnAB = 0, whereas in the perfectly ordered systems it reaches

its absolute value, which is dependent on the system. If the system has tendency toward

clustering αnAB > 0, and αnAB < 0 when system has tendency of forming unlike pairs.

More convenient definition of the short range order parameter, used to analyse local

atomic arrangement in the lattice computer simulations is given as

αnAB =
Nn

AB

NAZn
(2.70)

where, Nn
AB is the number of AB atom pairs in the n-th neighbour shell, NA is the

number of A atoms, and Zn is the n-th neighbour coordination number, [102]. The

short range order parameter from equation (2.70) is similar to the original Warren-

Cowley parameter (cf. equation (2.69)), and characterizes tendency of the A atoms, to

form bonds with the B atoms on the desired distance or neighbouring shell.
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2.4.1.5 Moment of inertia

The moment of inertia of an object is a measure which describes how difficult it is to

change rotation of an object. It is connected to the objects mass and distance of each

bit of mass from the centre of the mass. The moment of inertia can be applied to the

clusters as a sum of mass points at a distance from axis as

J =
∑
i

mir
2
i (2.71)

where, ri is the distance of an atom i from the mass centre, and mi is mass of the atom

i. The moment of inertia defined above depends on the orientation of the axis relative

to the cluster. For clearness of presentation is it sometimes necessary to express J as

a tensor. In the Cartesian coordinate system, components of the moment of inertia

tensor are given as

Jxx =
∑

imi(y
2
i + z2

i )

Jyy =
∑

imi(z
2
i + x2

i )

Jzz =
∑

imi(x
2
i + y2

i )

Jxy = Jyx = −
∑

imixiyi

Jyz = Jzy = −
∑

imiyizi

Jzx = Jxz = −
∑

imiziyi

(2.72)

and are then used as components of the moment of inertia tensor as

J =

 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (2.73)

Tensor J permits the calculation of the moment of inertia about any axis relative to

the orientation of the cluster.

2.5 Beyond classical theories

Materials that surround us are frequently found in nonequilibrium states. They are

produced in this states because designer wanted to exploit and achieve some particular

useful properties. However, when alloys are subjected to some energy input, its config-

uration adapts to the environment. Energy inputs can vary, and are usually imposed

chemical gradient, high temperature, flow of high energy particles, mechanical strains,
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etc. For example, materials in the energy reactors are subjected to the high tempera-

tures, and/or to the flow of high energy particles. Whenever, alloys in nonequilibrium

are subjected to these energy inputs, they tend to evolve toward equilibrium state over

time. When designers are choosing alloys for applications they must know great deal

on the kinetic pathways on which materials in question will try to evolve. In the past,

a lot of physical experiments were conducted before alloy was allowed to be used in

these kind applications. With increasing costs of physical experiments and increased

difficulty even to conduct them, designers need different tools to test alloy behaviour

under driven environment. The modeling of alloys under certain types of energy inputs

need to be based on the real kinetics, and must preserve classical thermodynamics.

2.5.1 Computational metallurgy

Atomistic modeling has its roots in molecular dynamics (MD) simulations [2, 9]. In

MD simulation atoms and molecules are allowed to interact for a period of time by

approximations of classical physics (Newton’s laws of motion) and is totally determin-

istic. MD follows all events and is for materials science limited to small time increments

due to the atomic vibrations. On contemporary computer clusters MD simulations can

Figure 2.17: Time and dimension scales achieved using various atomistic methods

achieve time scales up to milliseconds in reasonable simulation times. This downside

of MD was successfully solved using Monte Carlo (MC) methods. This is also called a

second principles approach due to use of results from first principles methods i.e. MD,

density functional theory (DFT) and ab initio methods to extend the time scale (cf.
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2.5 Beyond classical theories

figure 2.17).

2.5.1.1 Monte Carlo methods

Nucleation of coherent precipitates in an isothermal or anisothermal environment is

governed by diffusion. Atoms change sites on the crystal lattice with some frequency

due to the vacancy jumps. Frequency at which jumps occur depend on the local con-

figuration. For example, in the alloy where clustering is favoured, same atoms tend

to have more energetically favourable bonds, and same pair bonds are easily formed.

Atom jumps are easily simulated with a Monte Carlo (MC) simulations, where input

parameters depend only on jump frequencies as functions of the local atom configura-

tion. The set of jump frequencies defines the thermodynamics for the alloy. However,

reverse is not true, as several kinetic pathways are possible for a given thermodynam-

ics. If we define the equilibrium probability pe(i) of configuration i, and the transition

probability per unit time W (i → j) from configuration i to j, detailed balance gives

next equation

pe(i)W (i→ j) = pe(j)W (j → i) (2.74)

The atomic jumps in solids are thermally activated processes, [48], therefore it holds

W (i→ j) =

∏
α ω

α
i∏

α′ ω
α′
ij

exp
(
−β(Esp

ij − E(i))
)

(2.75)

where Esp
ij is the saddle point energy, for which holds Esp

ij = Esp
ji and ωi and ωij are

stable eigen vibrational frequencies of configuration i and at the saddle point between

configurations i and j, respectively. Putting equation (2.75) in the equation (2.74) one

yields

pe(i)

pe(j)
= exp (−β(E(i)− E(j))) (2.76)

where E(i) is configurational energy of state i.

More detailed explanation of the Monte Carlo methods used for simulations in the

isothermal or anisothermal environment will be given in next chapter.

2.5.1.2 Cluster Dynamics

For description of the kinetic pathways several tools are available. One of them is Clus-

ter Dynamics (CD), where the output is a time-dependent size distribution of clusters.

39



2. Nucleation theory

Cluster Dynamics is very efficient way to describe the fluctuations in the alloy at equi-

librium and also relaxation towards the equilibrium. CD implies a thermodynamic

model for the alloy which is viewed as a lattice gas of solute clusters, [48, 103–105].

Cluster is characterized by the number of solute atoms, vacancies or self interstitial

atoms, from which it is made. Therefore, it is a set of n solute atoms, where each has

at least one nearest neighbour belonging to the cluster. Each cluster with n atoms, can

be arranged into several configurations. From most simple, with n atoms in a row, to

the most compact. Therefore, each cluster has its own free energy. Furthermore, at the

equilibrium the gas of clusters has a free energy with two distinct contributions. One

is the sum of free energies of the each cluster with n atoms, and other is the mixing

entropy of the same clusters on the lattice. The evolution of the number density of each

type of clusters with particular number of particles n is treated under the framework

of the chemical rate theory. Evolution is described by differential equations for cluster

density, given by

dCn
dt

=
∑
m

Jm→n −
∑
q

Jn→q +Gn −KnCn (2.77)

where Cn is cluster density of size n, Jm→n is the cluster flux from class of size m to

class of the size n, given with

Jm→n =
∑
m

wm→nCm (2.78)

where wm→n is the transition rate per unit from the class size m to the class size n.

Gn is the production rate of clusters of size n and Kn is loss of the clusters of the

size n at for example surfaces, dislocations or grain boundaries. Kn is accounted only

in simulations with vacancies or self interstitials. When equation (2.78) is applied in

equation (2.77), the evolution of the number density is then

dCn
dt

= Gn +
∑
m

wm→nCm −
∑
q

wn→qCn −KnCn (2.79)

Cluster distributions can be solved numerically in short computation time, when num-

ber of the differential equations in the set is considered. Equation (2.79) gives a detailed

description, which is important for small clusters, while for larger clusters an approxi-

mated description can be used, [104, 105].
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2.5 Beyond classical theories

2.5.2 Phase Field Models

Kinetics in the evolution of alloys to the equilibrium often leads through non-equilibrium

states. Well known fact is that non-equilibrium states provides different physical prop-

erties of alloys which are often in advantage for engineering use. Therefore, the opti-

mization at the mesoscopic level concentrates on the control and prediction of kinetics.

Utilization of the non-equilibrium effects associated with phase transformations largely

relayed on the empirical model in the past. Nowadays, high power computers allows

numerical solutions for theoretical approaches that have been know for a long time,

for various phase transformations, with spatial and temporal changes in the structural,

chemical and crystallographic fields. These state variable are often called phase field

variables.

In terms of field changes, Fick’s first law can be written as

J = −M ∂

∂x

∂f

∂c
(2.80)

where, f is free energy density and M is Onsager mobility matrix. Using equation

(2.80) and continuity equation

∂c

∂t
+
∂J

∂x
= 0 (2.81)

the Fick’s second law can be written as

∂c

∂t
=

∂

∂x

(
M

∂

∂x

∂f

∂c

)
(2.82)

which, can be interpreted as a diffusional form of more general Onsager or Ginzburg–Landau

equation given as

∂ψi
∂t

= −M̂ij
δF̃

δψj
(2.83)

where F̃ is the free energy functional of the functions ψj , t is time, δF̃ /δψj is the

thermodynamic driving force, M̂ is the symmetric Onsager kinetic operator matrix,

and i = 1, 2, . . . , ϑ is the variable of the ϑ dynamic fields and the Einstein summation

rule is implied. Equation (2.83) provides a fundamental means of describing the kinetic

equations of dynamic fields as a function of the thermodynamic driving force. Although,

equation (2.83) is linear with respect to the driving force, it can be nonlinear with

respect to the fields ψi, and therefore its solution is very sensitive on the starting
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2. Nucleation theory

conditions, [106].

Mostly exploited phase field models are Chan-Hilliard, [107] and Allen–Cahn, [108]

kinetic models. Both models are based on the theories of Onsager, [109, 110] and

Ginzburg–Landau, [111, 112] adapted to the materials science. The Cahn–Hilliard

model describes the kinetics of transformation phenomena with conserved field variables

(e.g. chemical concentration). The Allen–Cahn model describes transformations with

nonconserved variables (e.g. crystal orientation, long-range order, crystal structure).

The original Ginzburg–Landau approach was directed at calculating electromagnetic

second-order phase transition phenomena, advanced metallurgical variants are capable

of addressing a variety of transformations in metals, ceramics, and polymers, such as

spinodal decomposition, competitive particle ripening, non-isostructural precipitation

and growth phenomena, grain growth, solidification, and dendrite formation in terms

of corresponding chemical and structural phase field variables, [106].
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Anyone who attempts to gen-

erate random numbers by de-

terministic means is, of course,

living in a state of sin.

John von Neumann

(1903-1957) 3
Statistical Mechanics and Monte Carlo

methods

3.1 Statistical mechanics

Statistical mechanics was initiated by Ludwig Eduard Boltzmann in 1870, [113] and

deals with interpretation of the measurable macroscopic properties of matter, in terms

of the properties of their constituent particles and interactions between them. In the

middle of the 19th century a question of burning importance was the proposed existence

of the atom. This was related to use of the steam power, which was rapidly changing the

world. Steam powered the factories, trains and ships of the Industrial Revolution. How

to use it more effectively was of crucial significance and became the key question of the

19th century science. The demand to build more powerful and efficient steam engines,

in turn created an urgent need to understand and predict the behaviour of water and

steam at high temperatures and pressures. Physicists believed that matter can not

be infinitely divisible into ever smaller pieces and argued that ultimately everything is

made of the basic building blocks - atoms. Boltzmann showed that if you imagined

steam as being made of millions of tiny rigid spheres or atoms, then you could create

some powerful mathematical equations.

Statistical mechanics provides a connection between the microscopic properties

of individual atoms and bulk macroscopic properties of matter. Properties of every

atomic/molecular system can be described at two levels, either by classical thermody-

namics which is in macroscopic quantities e.g. p, V , n, cV , H, G, etc., or at microscopic

level. At microscopic level, the state of each atom/molecule is specified by using clas-
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3. Statistical Mechanics and Monte Carlo methods

sical or quantum mechanics and is therefore very detailed. For example, in classical

mechanics descriptions, 1 mole of matter contains approximately 1023 particles and

their positions have to be updated every 10−15 s. This shows that both approaches are

impractical. When we are performing computer simulations at an atomistic or molecu-

lar level in materials science, the bridge is needed between the microscopic properties of

individual particles and the macroscopic properties of simulated material. Bridge be-

tween the over elaborate details of mechanics, and obscure generalities of the thermody-

namics is statistical mechanics, which describes macroscopic quantities in the statistical

terms. These statistical terms are averages or the most probable results. The name

’statistical mechanics’ comes from dealing with the probabilities of the systems being in

one or another state, instead of calculating exact solutions. Statistical mechanics pro-

vides an atomistic or molecular level interpretation of the macroscopic thermodynamics

quantities, e.g. entropy, free energy, work and heat. It’s main advantage compared to

the classical thermodynamics is ability to predict macroscopic quantities based on the

microscopic properties. Furthermore, entropy is a distribution function of the systems

micro state in statistical mechanics, whereas in the classical thermodynamics is known

only empirically, as a function of the state of a system associated with the second law of

thermodynamics [114–116]. In the late 19th century L. Boltzmann initiated the kinetic

theory of gases [113], following earlier work by D. Bernoulli, J. Herapath, J. P. Joule,

A. K. Krönig, R. Clausius, and J. C. Maxwell. In the early 20th century this was turned

into what is known today as ’statistical mechanics’ through the work of J. W. Gibbs

[117].

Due to an inherently probabilistic description of the system in the statistical me-

chanics, where the probabilities play central role of importance, the following conditions

must be satisfied:

• The probability p(A) of event A, must be positive p(A) ≥ 0.

• If we have two independent events A and B, with probabilities p(A) and p(B),

they must satisfy law of additivity p(A+B) = p(A) + p(B), respectively.

• Normalization of the probabilities, where sum of all probabilities is equal to 1,

(
∑

i pi = 1).

The key concept of the statistical mechanics is an ensemble, which is a collection

of all microstates of the system (atoms or molecules) subject to at least one extensive

constraint. The ensemble defines a probability pi, which describes the likelihood of

observing each state. For example, if we have very large collection of time evolving
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3.1 Statistical mechanics

systems, the ensemble is formed by a snapshot of the state of each of these systems at

some time instant. This key concept requires some important notions. A macrostate

is defined by controllable macroscopic parameters. For example, macroscopic param-

eters for a thermal and mechanical system are the number of particles N , volume of

the system V and total energy E. If the particles that compose the system are non

interacting, the total energy E is sum of the energies εi of all individual particles

E =
∑
i

niεi (3.1)

where, ni is i-th particle with energy εi. Evidently, the number of particles in the

system is

N =
∑
i

ni (3.2)

Quantities are differentiated between extensive, which scale linearly with V on N , and

intensive which do not scale. The quantity Ω(N,V,E) is the number of microstates in

a particular macrostate, and is function of N , V and E. A microstate is a particular

state of the system which is consistent with the macrostate of that system. For an

thermally isolated system, possible macrostate of the system have the same energy and

the same probability to be in any given microstate. Any microstate will include all

atom/molecule positions and momenta, consistent with N , V and E, where uncon-

strained extensive quantities are represented by full range of possible values. This is

called a microcanonical or NVE ensemble.

Statistical mechanics rest on two fundamental postulates. The first postulate states

that given isolated system in equilibrium is found with equal probability in each of its

accessible microstates. This is known as the equal a priori probability postulate and it

denotes that for possible states with the same number of particles N , the same volume

V and the same energy E, all states are equally likely. The second postulate is known as

the postulate of ergodicity and this declares that the time averaged properties of a ther-

modynamic system, i.e. the properties manifested by the collection of atoms/molecules

as they proceed through their natural dynamics, are equal to the properties obtained

by weighted averaging over all microstates in the ensemble and we obtain measurable

macroscopic quantities. The second postulate has a practical use, since we do not ex-

actly know in which one of the Ω microstates the system is in, at the time of interest,

we simply average equally over all microstates.

Another important statistical mechanics notion is the principle of detailed balance,

cf. equation (3.3), which is saying that the transition rate from one microstate to
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3. Statistical Mechanics and Monte Carlo methods

another must be equal to the rate of the reverse process

πiPij = πjPji (3.3)

where πi and πj are the equilibrium probabilities of being in states i and j, respectively.

Pij is transition probability from the state i to j and Pji is transition probability of

reverse process.

3.1.1 Entropy

Classical thermodynamic definition of entropy was introduced by R. Clausius in 1865,

and is defined as the amount of heat reversibly exchanged at a temperature T , cf.

equations (3.4) and (3.5). For reversible processes entropy is;

dS =
∂Qrev
T

(3.4)

For an arbitrary transformation, entropy is

S1 − S0 ≥
1∫

0

∂Q

T
(3.5)

where the equality is valid, if the transformation is reversible. If a system is thermally

isolated the entropy never decreases S1−S0 ≥ 0, where the equality holds if transforma-

tion is reversible [118]. As it was already mentioned, entropy in classical thermodynam-

ics is known empirically. Besides this classical definition which do not make reference to

the microscopic nature of the system, also exists statistical mechanics definition. Latter

was developed from analysis of the statistical behaviour of the microscopic constituents

of the system by L. Boltzmann in the late 19th century [113]. Boltzmann showed that

the thermodynamic entropy is identical to the statistical, scaled by constant number

kB, now known as Boltzmann’s constant (8.617343(15) × 10−5 eV K−1). The entropy

in the statistical mechanics is essentially a measure of the number of states in which

the system can be arranged. In the statistical mechanics the entropy is governed by

the probability, and therefore allows for a disorder decrease even in the closed systems.

More specifically the entropy

S = −kB ln Ω (3.6)

is logarithmic measure of the total number of microstates consistent with the given

macrostate, Ω. Equation (3.6) is famous Boltzmann equation of entropy, where all
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3.1 Statistical mechanics

probabilities are the same. If we treat probabilities individually the entropy, is called

Gibbs entropy

S = −kB
∑
i

pi ln pi (3.7)

and is logarithmic measure of the density of states, summed over all the microstates

the system can be in, multiplied with the probability distribution pi that the system is

in a particular microstate i with energy Ei. By functional optimisation from the Gibbs

entropy, the probability distribution pi for the system can be derived. Contrary to the

classical thermodynamics definition of entropy in the statistical mechanical description,

the temperature or heat does not appear in the definition.

3.1.2 Statistical ensembles and partition function

A system with given macrostate (N,V,E), is equally likely to be in any one of the

distinct microstates, at any time t. As time advances, the system evolves from one

mircrostate to the another. Each considered microstate is represented in its phase

space as a representative point (qi, pi). In an ensemble of systems, as time passes,

every member of the ensemble undergoes a change of microstates. This means that the

representative points move along their trajectories.

Now we need to define a density function ρ(q, p, t) in a way that, at any time t,

the number of representative points in the volume element (d3Nqd3Np) around the

point (q, p) of the phase space is given with ρ(q, p, t)d3Nqd3Np. This density function

represents how the members of the ensemble are distributed over all possible microstates

at particular time. At an equilibrium, the ensemble is stationary if the density function

ρ, does not depend on the time explicitly

∂ρ

∂t
= 0 (3.8)

According to the Liouville’s theorem which states; the distribution function is constant

along any trajectory in phase space in terms of the Poisson brackets, it holds

dρ

dt
=
∂ρ

∂t
+ ρ,H = 0 (3.9)

This means that the local density of the representative points, according to an observer

moving with a representative point, stays constant in time. For the system in the

equilibrium, it states

ρ,H =
3N∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
= 0 (3.10)
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and demonstrates the conservation of the density in the phase space.

3.1.2.1 General statistical ensembles

In the statistical mechanics three general types of ensembles are usually applied, ordered

by increased complexity:

• Microcanonical ensemble - fixed N , V and E, corresponds to an isolated

system. With constant energy E the system can not exchange energy or mass

with its surroundings.

• Canonical ensemble - fixed N , V and T describes a system in thermal equi-

librium with environment. This system is allowed to exchange heat with the

surroundings.

• Grand canonical ensemble - fixed V , T and µ corresponds to an open system.

The system as such is able to exchange energy and mass with the outside.

Table 3.1: Summary of microcanonical, canonical and grand canonical ensembles

Microcanonical Canonical Grand canonical

Constant variables N,V,E N, V, T V, T, µ

Microscopic features

Number of Canonical Grand canonical

microstates partition function partition function

Ω Z =
∑
k

e−βEk Ξ =
∑
k

e−β(Ek−µNk)

Macroscopic function S = kB ln Ω F = −kBT lnZ F −G = −pV = −kBT ln Ξ

In Table 3.1 summary of properties for these three mostly used ensembles in sta-

tistical mechanics is presented. Although, only three basic statistical ensembles are

presented, the number of various ensemble types is unlimited. When somebody is

constructing specific ensemble, they just need to follow rules for good ensembles.

3.1.2.2 Canonical ensemble

Since all simulations herein were performed under the canonical ensemble, this ensemble

is described in more detail. The macrostate of the canonical ensemble is characterized

by N,V, T . The number of particles N , a volume V and a temperature T , are fixed

for all systems in the same ensemble. The fixed temperature T of the system is easily

controllable by keeping the system in contact with a heat reservoir or heath bath. The
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energy E of the system is in the canonical ensemble a variable and can in principle

have values on interval [0,∞]. The probability pi of finding the system in a particular

microscopic state, with an energy Ei at any time t, is given by Boltzmann distribution.

If we consider a system A with the energy E in a very large heat bath A′ with an energy

E′ and E(0) = E′ + E. E(0) is constant, since the combined system is isolated. Note

that heat bath is very large, thus E′i is almost constant and have number of microstates

Ω′(E′i). The probability pi, of the system A being in the i-th state is proportional to

the corresponding number of microstates

pi ∝ Ω′(E′i) ≡ (E(0) − Ei) (3.11)

Probability pi can be written as

pi = C ′Ω′(E′i) (3.12)

where C ′ is constant. The logarithm then gives

ln pi = lnC ′ ln Ω′(E′i) = lnC ′ ln Ω′(E(0) − Ei) (3.13)

Since Ei is small compared to E(0), it can be expanded in a Taylor series around the

energy E(0), which yields

ln Ω′(E′i) =
∞∑
k=0

(Ei
′ − E(0))

k

k!

∂k ln Ω′(E(0))

∂E′k

= ln Ω′(E(0))− ∂

∂Ei
′ ln Ω′(E(0))Ei + · · · (3.14)

= const− β′Ei.

where,

β =
∂ ln Ω′(E(0))

∂E′
=
∂ ln Ω′(E′)

∂E′

∣∣∣∣
E′=E(0)

(3.15)

Note that, in equilibrium, β′ = β = a/kT . So,

pi ∝ exp(−βEi) (3.16)

and finally,

pi =
exp(−βEi)∑
r exp(−βEi)

(3.17)
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It also holds

pi = C exp(−βEi) (3.18)

which is useful to obtain a partition function of the canonical ensemble. Therefore,

normalization of the probabilities is required and gives∑
i

pi = 1 = C
∑
i

exp(−βEi) ⇔ C =
1∑

i
exp(−βEi)

≡ 1

Z(β)
(3.19)

where Z is the partition function of the canonical ensemble.

In relation to the other ensembles, a generalization of the canonical ensemble is a

grand canonical ensemble, where the system can exchange particles and energy.

3.1.2.3 Partition function

It was already stated, that description of the physical system is based in statistical

mechanics on the ensemble which represents all possible configurations of the system

in question and the probabilities when each configuration is possible. Each ensemble

is connected to the macroscopic properties of the system. Macroscopic quantities can

be obtained by suitable averaging of the properties of the microscopic states in the

ensemble, rather than as a time average over a dynamic trajectory. The key is to

average with the correct weights. These weights are known as a partition function and

have very descriptive name in German language (zustandssumme), meaning ”sum over

states”. Due to the fact, that they normalize the weights, thus representing a sum

over all microstates of the ensemble. Other important equations are bridge equations,

which relate partition functions to their thermodynamic potentials. General form of

the partition function for the classical system is

Z =
∑

all states

exp(β H) (3.20)

where H is the Hamiltonian of the system and β = 1
kBT

. The sum in equation (3.20)

goes over all possible states of the system, [116]. The partition function also determines

the probability of any particular state of the system. The probability that the system

is in i-th state is

pi = exp

(
β H(i)

Z

)
(3.21)

where, H(i) is the Hamiltonian of the i-th state.
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There exist several different types of the partition functions, each corresponding to

their own statistical ensemble. For example, the canonical partition function applies to

the canonical ensemble.

3.1.3 Ising Model

The Ising model is very simple statistical mechanics model used to imitate interaction

of the individual elements with others in their neighbourhood. It was invented in 1920

by W. Lenz and solved in one dimension, where no phase change is permitted, in 1925

by his student E. Ising [119], after whom it is named. Model was originally invented as

a mathematical model of a ferromagnetism, which is why it consists of discrete variables

that can be in one of the two states e.g. 1 and 1̄. These variables are called spins and are

arranged in a lattice where they can interact with its neighbours. Although the model

was originally intended as a model of ferromagnetism it was soon discovered that it can

be used for description of the condensation phenomena in the two dimensional systems,

formed by adsorption of gases on the surfaces. The detailed analytic solution of the

2D square lattice Ising model was proposed in 1944 by L. Onsager, [120]. After that

more simple and elegant methods involving a transformation matrix were proposed,

[121, 122].

The 2D Ising model can be used for the phase transformations study. Furthermore,

it is one of the simplest statistical models, which exhibits phase transformation. Ising

model has been extensively used for modeling phase separation in the binary alloys.

In the square lattice Ising model configuration with dimensions L, the total number of

spins is equal to N = L × L. In the simplest form, the interaction range is restricted

to immediately adjacent sites with Hamiltonian for a specific spin site i given by

Hi = −Jij
∑
ij

σiσj −H
∑
i

σi (3.22)

where, the sum ij runs over the nearest neighbours of i. J is the coupling constant

between the nearest neighbours, and σi and σj are respective nearest neighbour spins

with value either 1 or 1̄. H represents external influence on the model. When Ising

model is adapted for crystalline systems, Jij represents bond strength, σ represents

either atom (1) or vacancy (1̄), and H is equal to the chemical potential µ.
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3.2 Boundary Conditions

Computer simulations are usually performed on a finite lattice systems with 103 to

108 atoms. These systems have boundaries or edges, and important question is how

to treat boundaries of the lattice. The boundary condition problems can be avoided

by employing a periodic boundary conditions, [123]. System in a box is replicated

throughout the space to form infinite lattice. During simulation, when atom or molecule

moves in the original box, its periodic image in each of the neighbouring boxes moves

exactly the same. When atom leaves original box, one of its periodic images enters in,

B A
D H

F GE

C

L

L

Figure 3.1: Two dimensional periodic conditions system.

through the opposite face. If same condition is used on all free edges of the simulated

system, full periodic boundary conditions are used. In figure 3.1, a 2D full periodic

system is shown. Atoms can enter and leave each box, across each of the four edges.

With the periodic boundary conditions (PBC), simulation box of a finite size acts

like a system of an infinite one. However, special care need to be put to recognize

possible periodicity effects i.e. the simulation box must be large enough to avoid any

such effects.

3.3 Monte Carlo methods

Modern use of the Monte Carlo methods began in Los Alamos laboratories during late

1940s and early 1950s [10, 11]. Name of these methods comes after casino in Monte
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Carlo, due to use of the random numbers (true or pseudo random numbers) to accept

or reject events. Nowadays, all methods based on the use of random numbers are called

MC. Simulations based on the MC methods are used widely in science, [98, 99, 116, 124].

In molecular modeling these methods represent alternative to less averaged Molecular

Dynamics. MC methods are distinguished from other deterministic algorithms by be-

ing stochastic, i.e. non deterministic due to use of the random numbers. In physical

sciences, the Monte Carlo methods are useful for studying systems with a large num-

ber of coupled degrees of freedom, e.g. gases, liquids, disordered materials, strongly

coupled solids, cellular structures, etc. They are also broadly used in mathematics for

calculation of the definite integrals, especially complicated boundary conditions mul-

tidimensional integrals and in economics and business for risk modeling. Although,

credit for invention of the Monte Carlo method is often given to Stanislav Ulam, the

first sampling method was used long before, during the 18th century (Georges-Louis

Leclerc, Comte de Buffon, 1777) and is known as Buffon’s needle experiment. In Buf-

fon’s experiment a needle of lenght L was dropped many times onto a surface marked

with equidistant parallel lines with distance between them d. If d is greater than L

(d > L) the probability of the needle intersecting a line is

p =
2L

πd
(3.23)

Laplace, pointed out years later that this experiment could be used as a crude tool for

estimation of the value of π.

3.3.1 Monte Carlo integration

As already mentioned, the Monte Carlo methods were initially developed as a method

for approximate calculation of complex definite integrals, usually multidimensional in-

tegrals, which could not be solved analytically. If we consider one dimensional integral

on a closed interval [a, b] given by equation

I =

b∫
a

f(x)dx (3.24)

Figure 3.2 depicts function for which we want to obtain definite integral (grey area).

To calculate an integral estimate, the simplest method to use is the use of acceptance-

rejection method, named also hit-and-miss method. First, bounding box is needed,

extending from [a, b] and [0, y0], where y0 needs to exceed maximum value of the function
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a b x

y

y0

0

f(x)

Figure 3.2: Schematic representation of MC integration method to determine grey area.

on the interval. From use of the uniformly distributed random numbers, we hit our

box with N hits, and count the number of hits N0, which fall below the curve f(x), for

each value x on our interval. The integral estimate is

I ≈ IE =
N0

N
× (y0(b− a)) (3.25)

given by the fraction of points which fall below the curve, multiplied by the area of the

bounding box. The integral estimate converge to the exact value of integral as N →∞.

This method for solving integrals is an example of the simple sampling Monte Carlo

method. Simple problem often attacked using this method is numerical calculation of

π.

Integral estimate can also be obtained by the mean value theorem following next

equation

IE =
(b− a)

N

N∑
i=1

f(xi) = (b− a)f̄ (3.26)

where, xi needs to cover range of the integration fully, and f̄ is the mean value of f

over the set of the sampled points. In the limit where N → ∞, estimate converge to

the exact value. Standard deviation of the integral estimate is given by

σ =

√
(b−a)
N

∑N
i=1 f

2(xi)− I2
E

N − 1
(3.27)

Integration error decreases as 1/
√
N and is independent of the integral dimensionality.
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3.3.2 Importance sampling

Simple Monte Carlo integration scheme uniformly sample points, and due to this can

have low efficiency. Many functions have a significant weight only in a few regions. Low

efficiency of the uniform sampling for such functions is overcome with an importance

sampling. In statistics, importance sampling is a general technique for estimating

properties of a particular distribution, while only having samples generated from a

different distribution rather than the distribution of interest. For example, normal

probability distribution function (Gaussian) have most of contributions to the integral

near the central peak, while tails do not contribute much. Integration of Gaussian

is much more efficient using importance sampling, where points are sampled with a

non-uniform always positive distribution w(x).

The integral I, is evaluated by selecting points from the probability distribution

p(x), given by

I =

∫ b

a
g(x)p(x)dx ≈ 1

N

N∑
i=1

g(xi) (3.28)

where, g(x) = f(x)/p(x). Sampling points xi, are generated from the probability

distribution p(x), given by

p(x) =
w(x)∫ b

a w(x)dx
(3.29)

Standard deviation defined in equation (3.27) is greatly reduced, if f(x) is well described

by w(x) and integration procedure is much more efficient. Similar to uniform sampling

method, integration error also decreases as 1/
√
N .

3.4 Markov Master Equation

The system is evolved according to a stochastic algorithm in a way that the entire

simulation space or all possible accessible states are explored. These stochastic attempts

in order to change the system state are not connected to the underlying energy barriers.

The MC methods follow a Markov process to evolve a given system towards equilibrium.

Time evolution of the probability density is given by a Markov Master Equation, which

is for evolution of the dynamical process, given by

∂P (σf , t)

∂t
=
∑
σi

P (σi, t)W (σi → σf )−
∑
σi

P (σf , t)W (σf → σi) (3.30)
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where, σi and σf are initial and final, successive states of the system. P (σ, t) is proba-

bility that the system is in the state σ at time t. W (σf → σi) is transition probability

per unit time, where system undergoes transition from σi to σf . The strength of the

Monte Carlo methods is in freedom of choosing allowed moves form i → f . Due to

this freedom, MC methods can be used to bridge various levels of description in the

statistical mechanics, [125].

In steady-state, where ∂P (σf , t)/∂t = 0, the system must ensure phenomenological

argument of detailed balance, i.e. that sum of all transitions into the state σ, equals

sum of all transitions out of the state. The detailed balance criterion given by equation

(3.3), and must be obeyed, can be for this case written as

P (σi, t =∞)W (σi → σf ) = P (σf , t =∞)W (σf → σi) (3.31)

The probability of a system in steady-state is given with P (σf , t =∞) = Pss(σf ). The

detailed balance criterion can be applied to any probability distribution. However, if

the Boltzmann distribution is chosen, the transition probabilities are sensitive to an

energy barrier H(σ) scaled by thermodynamic factor β (cf. Nomenclature) and can be

expressed as

P (σ, t =∞) =
1

Z
exp (−βH(σ)) (3.32)

where, H(σ) is the Hamiltonian of the system and Z is the partition function. Prob-

ability in equation (3.32) is usually not exactly known due to the partition function

Z. This difficulty can be overcomed by generating a Markov chain of states, that is to

generate new state from preceding. Furthermore, transition probability depends only

on the difference of Hamiltonians of the initial and final states, therefore

W (σi → σf )

W (σf → σi)
=
P (σf , t =∞)

P (σi, t =∞)
=

1
Z exp (−βH(σf ))
1
Z exp (−βH(σi))

= exp (−β∆E) (3.33)

3.5 Monte Carlo methods in statistical physics

Monte Carlo (MC) methods are employed in many areas of statistical physics as a

methods to solve master equation (3.30). They have been largely used to obtain equi-

librium properties of the modeled systems, but in recent years they were also utilised

for studying of the kinetic properties of the systems, [126].

Monte Carlo (MC) simulations are appropriate for the description of the precipita-

tion on the atomic level, as they do not need assumptions about shape and composition
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of the nuclei. Usage of the method started in the fifties of the last century to calculate

the thermodynamic quantities, [11]. Development of the system using the Metropolis

Monte Carlo method is based on probabilities of possible events. Mayor step forward

was development of the residence time algorithm, [127–129], which enabled a detailed

study of kinetic decomposition and ordering in alloys, with comparison between the

simulation time and the real time. From this point on, MC methods which describe

time development of the system are called kinetic Monte Carlo (kMC). Progress was

then introduction of vacancies in the systems, which in turn allowed simulation of the

substitutional diffusion, [130, 131]. Introduction of equilibrium concentration of va-

cancies in the system, [12, 13], allowed the description of the actual kinetic pathways

and comparison with experiments. This was first used for phase transformations in the

binary alloys, [12, 17, 20, 22, 23], ternary alloys, [15, 16, 19, 26, 31, 38], quaternary

alloys, [24, 132] and in alloys with even more substitutional elements, [14]. A further

improvement was introduction of interstitials in the Fe-Nb-C alloy, [28], in the Fe-Y-O

alloy, [36] and in the Fe-Ti-O alloy, [37], to study homogeneous precipitation. Next

development step was introduction of dislocation and grain boundaries to study pre-

cipitation kinetics in the Fe-Nb-C alloy, [32, 33], in the Fe-C alloy, [34], and in the Ni-Al

alloy, [35].

3.5.1 Metropolis Monte Carlo algorithm

There are many possible choices of the transition rate which satisfies the detailed bal-

ance criterion. Each of them, provides a dynamic method of generating an arbitrary

probability distribution. The first transition rate choice used in statistical physics was

proposed by Metropolis [11]. In his algorithm, configurations are generated from a

previous state, using transitional probabilities dependant on the initial and final state

energies. Metropolis MC can not be regarded as process that simulates real time, and

evolution of the system is described using Monte Carlo Steps (MCS) and is non de-

terministic. Nevertheless, Metropolis MC (MMC) is useful as it generates correlated

states due to the sequential Markov chain process. In brief, the Metropolis MC is an

algorithm which determines whether a process will happen or not. In the Metropilis

MC transition or walk from state σi to state σf , accompanied by an energy change

∆E = H(σf )−H(σi) is executed if ∆E ≤ 0. If ∆E > 0 then random number ρ ∈ [0, 1)

decides if transition is executed or not based on

ρ < e−β∆E (3.34)

57



3. Statistical Mechanics and Monte Carlo methods

to accept and

ρ > e−β∆E

to reject the transition. If one translates this to a diffusion process, the transition rates

depend sensitively on the energy barrier ∆E scaled by thermodynamic β. Note, the

fact that all transitions where ∆E ≤ 0 are accepted, the Metropolis algorithm does not

express the real dynamics of the system.

In the Metropolis Monte Carlo method configurations are generated with Markov

chain from previous state and depends solely on the energy difference between states.

The sequence of states produced, follows a time ordered path. However, this time is

non-deterministic and known as Monte Carlo time, [116]. All transition probabilities

which satisfies detailed balance (equation (3.3)) are acceptable. Metropolis suggested

following form of equations for the transition probabilities, [11]

W (σi → σf ) = τ−1 exp (−β∆E) −→ ∆E > 0

W (σi → σf ) = τ−1 −→ ∆E ≤ 0
(3.35)

where ∆E = H(σf ) − H(σi) and τ is the time required for transition. τ is often set

equal to unity and is hence suppressed in the equations. If H(σf ) > H(σi) then it holds

W (σi → σf )

W (σf → σi)
=

exp (−β(H(σf )−H(σi)))

1
= exp (−β(H(σf )−H(σi))) (3.36)

else if H(σf ) < H(σi) then it holds

W (σi → σf )

W (σf → σi)
=

1

exp (−β(H(σi)−H(σf )))
= exp (−β(H(σf )−H(σi))) (3.37)

This shows that Metropolis Monte Carlo algorithm generates a new configuration σf

from a previous configuration σi so that the transition probability W (σi → σf ) satis-

fies the detailed balance condition. Simulations in which the Metropolis Monte Carlo

algorithm is implemented follows next general scheme, [116]:

1. Choose an initial state,

2. Choose a event i,

3. Calculate the energy change ∆E associated with event i,

4. Generate random number ρ, which satisfies 0 < ρ ≤ 1,

5. If ρ < exp(−β∆E), execute event,
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6. Go to the next event and repeat from 3.

3.5.2 Glauber and Kawasaki Dynamics

Other choices for determining the transition probabilities are Glauber and Kawasaki

dynamics. The Glauber dynamics, [133] is a birth and death process, known also as

spin-flip, where particles are constantly created and they also constantly disappear.

The transition probability from initial to final state is given by

W (σi → σf ) =
exp (−β∆E)

1 + exp (−β∆E)
(3.38)

Although, algorithm ensure convergence to the equilibrium, it does not always include

sufficient accuracy of the kinetics compared to the real system. In the kinetic Ising

model, Glauber transition probability is given as

W (σi → σf ) =
1

2
[1− σi tanh (βEi)] (3.39)

where Ei = J
∑

i,f σf . In general, the probability of an event depends on the configu-

ration of all other spins and the heat bath temperature.

On the contrary in Kawasaki dynamics, [134] interacting particles are allowed to at-

tempt simultaneous position exchange, so that the particle or spin number is conserved.

Kawasaki model is also called spin-exchange. Exchange happens if the transition prob-

ability, given by

W (σi → σf ) =
exp

(
−∆E

2T

)
exp

(
∆E
2T

)
+ exp

(
−∆E

2T

) (3.40)

is larger than a random number ρ ∈ [0, 1).

3.5.3 Thermally activated processes

Thermally activated processes are barrier controlled, where barrier depends on initial

and final positions. The transition probability for thermally excited process is given as

W (σi → σf ) =
ω(σi → σf )

τ
= exp(−βE(σi, σf )) (3.41)

where, ω(σi → σf ) is the probability of success, for thermally activate barrier crossing

in average time τ .
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3.6 Kinetic Monte Carlo method

Kinetic properties of the system requires establishment of definite relationship between

Monte Carlo step and time. It will be shown that Poisson process addresses this

relationship through the transition probabilities with physical background. Therefore,

a kinetic Monte Carlo (kMC) or in chemistry dynamic Monte Carlo, addresses physical

problems where outcome is governed by the local configuration of the system or energy

barriers between possible states. Dynamics or evolution of the system is controlled

by these transition rates. The kMC simulations have direct correlation to the real

time, compared to Monte Carlo Steps (MCS) in Metropolis Monte Carlo simulations.

Furthermore, kinetics of an individual atoms or molecules is modeled, but only in a

coarse grained way representing average which could be obtained by the Molecular

Dynamics simulations.

Compared to the Metropolis algorithm, the key element of kMC algorithm is the n-

fold way algorithm or residence time algorithm [127–129]. The residence time algorithm

enabled a detailed study of kinetic decomposition and ordering in alloys and utilizes

deterministic time. From this point forward MC methods which describes time evolu-

tion of the system are called kinetic Monte Carlo (kMC). In the algorithm, an event

i can be characterized by the transition probability or transition rate Γi. If the input

transition probabilities are correct, the physical processes associated with states are

stochastic, where events occur continuously and independent of one another (Poisson

process). Associated times of the events must be constructed from the appropriately

weighted probability distributions of all possible outcomes. Furthermore, this coarse

graining of events and time, assumes that each event i, can be characterised with an

average transition probability Γi. Considering this, any transition possible at time t is

also possible at any later time t + ∆t with the uniform probability and independent

of previous events. By the definition, this is a Poisson process, consistent with Master

equation (3.30) and is given by the Poisson distribution

P (ni) =
(Γit)

ni

ni!
e−Γi t (3.42)

where, n is a random variable counting number of the event i, occurred within time t.

Useful feature of the Poisson process is that an ensemble of the independent processes

will behave as one large process. That enables a formulation of the statistical properties

of the ensemble in terms of the dynamics of the individual processes. For example,

if there are k types of possible events with rates Γ1,Γ2,Γ3, . . . ,Γi, . . . ,Γk then total

number of all events (n =
∑k

i=1 ni) which occur in time t, is a Poisson distribution
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with the total rate Γ =
∑k

i=1 Γi. Thus, ensemble given by the Poisson distribution is

following

P (n) =
(Γt)n

n!
e−Γt (3.43)

Events with larger transition probabilities will dominate, while possible events with

lower transition probabilities will be rare. Simulation of thermodynamic equilibrium

is possible, if transitions follow detailed balance, described earlier. Additional impor-

tant attribute of the Poisson process is that the probability density of time t between

successive event is

P (t) = Γe−Γt (3.44)

which, enables correlation between time and MC steps for evolution of the system.

From the probability density can be shown, that mean time between successive events

is t̄ = 1/R. Equation (3.44) gives an exponential distribution of time between the

events, which can then be sampled to determine required time for the event to happen.

This time T (τ), needed for the event to occur is obtained by integrating equation (3.44)

over time

T (τ) =

τ∫
0

dt′ Γe−Γt′ = 1− e−Γτ (3.45)

where, a random variable U = e−Γτ is uniformly distributed between [0, 1] and allows

us to obtain the MC time τ between successive events

τ =
− lnU

Γ
(3.46)

This random sampling of the Poisson time distribution for each executed event, ensures

establishment of a direct and unambiguous relationship between MC steps and MC

time.

In the simulations, the following expression

∆t = − ln ρ2

Γ
(3.47)

yields residence time, where ρ2 ∈ (0, 1] is random number. The residence time is

amount of time waited before the event occurs. Total time is sum of the all residence

time increments of each step. Generated random numbers must never have value 0 as

if ρ1 = 0, there is no event to be executed. If ρ2 = 0 we can not calculate time addition

due to the nature of logarithmic function, which is not defined for argument 0. Special

care is required toward generation of the random numbers, which need to satisfy several
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conditions:

• They need to be random or at least pseudo random.

• In order to reproduce results they need to be reproducible.

• In order to avoid interdependence of the results they need to be long periodic.

Although some might argue that by including the random number, the stochastic

nature of the process can better be described, this is due to to the fact that the calcula-

tion of random numbers using some sort of the numerical algorithm, is time consuming

and demanding, the same results can also be obtained using

∆t =
1

Γ
(3.48)

For the thermally activated processes, studied in the framework of this thesis, the

probability per unit time for transition to occur, depends sensitively on the energy

barrier ∆E, scaled by temperature kBT , cf. section 3.5.3. The transition probabilities

for each possible event i, at temperature T are given by

Γi = νij exp

(
−∆Eij
kBT

)
(3.49)

where, ∆Eij is energy barrier, needed to get from the stable position i, through the

saddle point to the stable position j, cf. figure 2.10. νij is an attempt frequency for

possible event i, (cf. equation (2.31)). Figure 3.3 shows schematic representation of

energies needed to calculate barrier energy ∆Eij .

In the framework of kMC simulations of diffusion models for calculation of the

transition probabilities it is important to distinguish between the energy difference

between an initial and a final configuration ∆E = Ei − Ef , and the migration bar-

rier between the two configurations depending on direction ∆Emig = ESP − Ei or

∆Emig = ESP − Ef , [135]. With the energy difference between an initial and a final

configuration only equilibrium probabilities of the configurations are controlled. In the

second case the migration barrier controls the equilibrium and kinetic properties of the

configurations. Equation (3.49) is derived from the theory of thermally activated pro-

cesses and can be used justifiable, if thermal fluctuations are smaller than the barrier

energies (kBT � ∆Eij). The transition probabilities required as input data in the resi-

dence time kMC algorithm depends on the thermodynamic (Ei and Ef ) and kinetic (ν

an ESP) parameters. The thermodynamic parameter is an interaction energy or an in-

teratomic potential of the states needed to obtain an energy barrier between two states.
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Figure 3.3: Schematic representation of migration barrier energy for broken bond
model.

Estimation of the interaction energies can be done with help of the phase diagrams for

various temperatures using mean field approximation. More accurate pairwise energies

are calculated with the quantum methods like density functional theory (DFT) or tem-

perature accelerated molecular dynamics (TAD). Other option include readings from

the potential energy surfaces (PES).

Kinetic adjustment of the model can be achieved through the attempt frequencies

νij , and saddle point energies ESp, through evaluation of the diffusion coefficients.

The kMC method is appropriate for studying diffusion processes at the atomic scale

in the material science. The residence time algorithm (cf. Fig. 3.4), essential for the

kinetic Monte Carlo simulations of the real system dynamics, can be summarized as

follows:

1. Set the time to zero; t = 0.

2. Form a list of all possible events and probability rates.

3. Calculate cumulative distribution rate Γ =
k∑
i=1

Γi for k = 1, . . . , N , where N is

total number of possible events in one transitions.
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Determine all possible 
processes i for given 

configuration of system and 
build a processes list.

Calculate all transition 
probabilities G .i

START

END

Update time
 t = t  + 1/G .i-1 i

Calculate cumulative transition 
probability  G = ĺ G .i i

and find process k:
ĺ G  <  r G Ł ĺ Gii 1 

Execute pocess k, 
i.e. update configuration

Random number generation  r Î (0, 1]1  

r G1 k

0

i

Figure 3.4: Flow chart of kinetic Monte Carlo simulation

4. Get two uniform random numbers ρ1, ρ2 ∈ (0, 1].

5. Find the event k to execute that satisfies Γi−1 < ρ1Γ ≤ Γi. Detailed representa-

tion of this step is depicted in Fig. 3.5 for process with eight possible events or

transitions.

6. Execute event k.

7. Update the time with t = t+ ∆t.

8. Recalculate all probability rates Γi for changed system.

9. Iterate from step 2 until desired time is reached or finish simulation.

G1 G2 G3 G4 G5 G8G7G6

r G1
0 SGi

Figure 3.5: Schematic representation of step 5 for process with 8 possible events, e.g.
diffusion in BCC lattice.
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And now here is my secret, a

very simple secret; it is only

with the heart that one can see

rightly, what is essential is in-

visible to the eye.

Antoine de Saint-Exupéry

(1900-1944) 4
Diffusion kinetic Monte Carlo model

4.1 Crystal lattice

An atomistic kinetic Monte Carlo simulations via vacancy mechanism consists from

jumps on a lattice. Used lattice need to correctly describe crystal lattice of the real

alloy. Since in this work only alloys exhibiting BCC or FCC crystal structure with or

without interstitials will be simulated, the lattices used in simulations were build to

correctly reproduce these two crystal structures. As a basic building blocks, simple

cubes with the size of half a lattice parameter were used. A BCC or FCC lattice cell is

then build with eight of this simple cubes. That enables introduction of an interstitial

a) b)

Figure 4.1: Simple cubic crystal structure with substitutional and interstitial atoms; a)
body centred cubic (BCC) crystal and b) face centred cubic (FCC) crystal.

atoms on the octahedral positions if needed. The BCC and FCC crystal lattice cells,
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made with eight simple cubes and populated with atoms on all substitutional and

interstitial positions are depicted in figure (4.1). The unit vectors used to locate the

Table 4.1: Unit vectors of the first nearest substitutional neighbours in the BCC and
FCC lattices.

Lattice First nearest neighbour vectors

BCC (1, 1, 1), (1, 1,−1), (−1, 1, 1), (−1, 1,−1)
(1,−1, 1), (1,−1,−1), (−1,−1, 1), (−1,−1,−1)

FCC (1, 1, 0), (1,−1, 0), (−1, 1, 0), (−1, 1, 0)
(1, 0, 1), (1, 0,−1), (−1, 0, 1), (−1, 0,−1)
(0, 1, 1), (0, 1,−1), (0,−1, 1), (0,−1,−1)

first and second substitutional neighbouring sites for BCC and FCC lattices built from

simple cubic building blocks are summarized in Table 4.1 and Table 4.2, respectively.

Table 4.2: Unit vectors of the second nearest substitutional neighbours in the BCC and
FCC lattices.

Lattice Second nearest neighbour vectors

BCC (2, 0, 0), (−2, 0, 0), (0, 2, 0)
(0,−2, 0), (0, 0, 2), (0, 0,−2)

FCC (2, 0, 0), (−2, 0, 0), (0, 2, 0)
(0,−2, 0), (0, 0, 2), (0, 0,−2)

Developed lattice can be broken into two sublattices, one accommodating substitu-

tional atoms and vacancies and other accommodating interstitials which is in practice

nearly empty.

The number of possible interactions between the vacancy and atoms, must satisfy set

of the system boundary conditions, as it is impossible to have more possible interactions

than there is neighbouring sites. For example, on the substitutional sublattice with first

and second neighbour interactions, following boundary conditions given by

n
(1)
XX + n

(1)
XY = z1 − 1

n
(2)
XX + n

(2)
XY = z2 (4.1)

nXV + nYV = z1

are applied, where n
(i)
XX is number of the nearest neighbours between the same type
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of atoms at i-th position, n
(i)
XY is number of the nearest neighbour between the X

and Y atom types at i-th position, nXV and nYV are numbers of the X and Y atom

types around the vacancy on its first neighbours shell. z1 and z2 quantify number of the

possible nearest neighbour interactions between the first and second nearest neighbours,

respectively. It holds z1 = 8, z2 = 6 for BBC lattice and z1 = 12, z2 = 6 for FCC

lattice.

4.1.1 Rigid lattice

Ideally simulations should be executed on a fully relaxed lattice using position depen-

dent interatomic energies. After system is relaxed, the positions of atoms will not be

locked on the lattice points, in particular positions of atoms near defects (vacancies,

grain boundaries, dislocations, . . . ) will fluctuate more. Position fluctuations of the

atoms, causes change in their interatomic energies, which then needs to be computed for

the every atom-vacancy exchange. This is computationally very demanding and time

consuming. To avoid calculation of the position specific interatomic energies, a rigid

lattice is usually used, where atoms are mapped onto a specific lattice positions. Con-

sequently, constant interatomic energies can be used, and simulation time is severely

reduced. The rigid lattice allows only exchanges on the lattice positions, for example

movements of vacancies and substitutional atoms on the substitutional sublattice and

jumps of interstitials on empty positions on the interstitial sublattice. However, since

relaxations are dependent on the environment around exchanging atom, they can be

to some extent introduced to the rigid lattice system with the use of environment de-

pendant saddle point energies, [136, 137]. In this case, the atom-vacancy transition

probability is dependant on the number of specific atom types around vacancy.

4.1.2 Lattice size

Simulations are performed with a finite size lattice, usually with L3 basic BCC or

FCC lattice cells and various boundary conditions. All simulations in this work were

performed with the periodic boundary conditions described in detail in section 3.2. Fur-

thermore, lattice also needs to allow relevant processes to happen, e.g. phase separation

or phase ordering based on the thermodynamics of the simulated alloy. Time evolution

of the alloy is based on the vacancy mechanism diffusion as thermally activated process,

with the appurtenant transition probability.

It must be noted, that in simulations one Monte Carlo step (MCS) is completed after

exchanges are repeated as many times as there is number of atoms in the simulation box.
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Simulation is finished, after desired number of MCS is iterated, usually few thousand

(103-107) iterations. Furthermore, with large simulation boxes, the computing time can

become unreasonably long and compromise is needed, between computation time and

size of the simulation box.

4.2 Transition probabilities models

In the previous chapter basics of the kinetic Monte Carlo method were laid out, where

order of the event selection depends purely on the randomly selected transition proba-

bilities Γi of possible events. In order to practically employ kMC method, a model for

the transition probabilities is needed. Theoretically all quantities needed for transition

probabilities from equations (3.49) and (2.10) can be computed using quantum chemi-

cal calculations for any given configuration. However, the computational cost with this

approach is high. Another approach often used is to use the simplified models based

on the experimental data, [138, 139]. Parametrization of the model is based on fitting

appropriate quantities to the fore mentioned data, e.g. vacancy formation energies, dif-

fusion coefficients, phase diagram data, etc. Furthermore, both approaches have their

advantages and disadvantages. The most used method to obtain parameters with the

quantum calculations is DFT, [7]. Main issue here is accuracy of the calculated pa-

rameters. However, errors in the energetics have smaller effect at higher temperature.

Another important aspect of the quantum calculation of parameters, is that it can be

used to obtain transition probabilities of systems that are hard or even impossible to

experimentally asses. In the experiments, macroscopic properties are measured. In or-

der to obtain transition probabilities from the experiments, one needs to know relation

between the transition probabilities and macroscopic properties. When the system is

well defined, the computation of the macroscopic features is quite straight forward.

There exists several approaches to estimate the barrier energies

• On-the-fly interaction energies with full atomic relaxations, where the

migration barrier energies are calculated for the specific local atomic configura-

tion, using interatomic potentials with the lattice relaxation, [140–142]. Several

methods exist for relaxation of the atom positions e.g. conjugate gradient, molec-

ular statics or Monte Carlo, [135, 143]. There are also several algorithms for

obtaining the migration energy barriers, with most widespread used beeing the

drag, the nudged elastic band and the dimer methods, [142, 144, 145]. The ad-

vantage of the on-the-fly calculation of the migration energies, is that beside the

chemical interactions also long range elastic interactions are accounted for, and
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4.2 Transition probabilities models

their effects are included in the formation of precipitates. However, these meth-

ods are computationally very demanding and are used only in studies of simple

diffusion properties and not widely applied for the microstructure evolution.

• Advanced regression models, where direct barrier calculations are substituted

with regression of appropriate number of examples. An artificial intelligence based

on the neural networks was successfully used for the regression of the migration

barrier energies, [146–149]. Regression method produces formula, that describes

complex relations between the barrier energy and the local atomic configuration.

Lattice relaxation is accounted in the obtained barrier energy that depends on the

chemical configuration and strain fields. In order to use the regression method, a

number of the specific local configuration barrier energies is needed, [149].

• Rigid lattice approximation with interaction energies, where the total

system energy is obtained as a sum of constant pair interaction energies (ε
(n)
ij ) on

the rigid lattice with no relaxation. The vacancy formation and vacancy binding

energies are obtained with the use of vacancy-atom interaction energies (ε
(n)
iV ).

Moreover, using this approach, several broken bond models can be used.

Model i An energy of possible configuration depends on a finite range (nearest,

second or farther neighbours) of pair interactions εiXY, where i is the range.

The pair interaction energy is also known as chemical binding energy. Energy

of any configuration is a sum of appurtenant pair interactions, where the

migration energy has contributions of the two types of bonds. First bond

type is modified by the jump while the second type is not. The energy of the

bonds created in the saddle point configuration is designated as eSP, and is

taken as a constant. In the simplest version of this model it is assumed that

eSP does not depend on the composition in the surrounding of the saddle

point and also does not depend on the atom type undergoing the exchange.

This model is also called a Saddle Point Energy model, [150]. The migration

barrier for X-V exchange is given as

∆EXmig = eSP − Ei = eSP −
∑
i

εXi −
∑
j

εVj (4.2)

The migration barrier has two contributions; the energy associated with

saddle point binding energy which is taken as a constant, and the cohesive

energy described as sum of the pair wise interactions of all the broken bonds

associated with the vacancy-atom exchange.
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Figure 4.2: Schematic representation of migration barrier energy for broken bond
model.

Model ii Transition probabilities are calculated in the same way as in the pre-

vious model. The only difference between the two is, that here eSP depends

on the atom type at the saddle point doing exchange. Through the saddle

point energies, kinetics of the model can be influenced. Dependence of the

saddle point energies on the atom type also causes some asymmetry effects,

which will be explained later. Furthermore, dependence of the saddle point

energies on the exchanging atom type, addresses contrasts in the diffusion

of various chemical elements in the alloy, e.g. Ni-Cr-Al and mimics diffusion

of real alloy better. This model was also used for coupling vacancy substitu-

tional exchange and direct interstitial exchange mechanisms simultaneously

in Fe-Nb-C alloy, [27, 28, 32, 33] and Fe-Y-O, [36] and Fe-Ti-O alloy, [37].

Equation for the migration barrier is similar to the previous model and is

given as

∆EXmig = eXSP − Ei = eXSP −
∑
i

εXi −
∑
j

εVj (4.3)

In figure 4.2, the barrier energy for this model is schematically presented.

This model is also suitable for simulations of interstitial atoms, if the empty
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4.2 Transition probabilities models

spaces on the interstitial sublattice are treated as interstitial vacancies on

the first nearest neighbour positions and will be addressed from now on as

the Saddle Point Energy Model 2 (SPEM2).

Model iii This model is similar to the previous, with distinction that the eSP is

defined as a sum of the pair interactions. This model was used in kMC sim-

ulation of fully relaxed Fe-Cu alloy, based on the EAM potential, [136, 137]

where contribution to the energy of the Fe atom at the saddle point, depends

on the number of the Fe atoms at the nearest neighbour positions. The con-

tribution of the Cu atom at the saddle point was independent of number of

the Cu atoms at the nearest neighbour positions. Models described so far

are variants of the Saddle Point Energy models.

E
 /

eV

Q

Saddle Point
position

Ei

Ef

(E )/2f+Ei

Figure 4.3: Schematic representation of migration barrier energy for kinetic Ising barrier
energy model.

Model iv In the Final-Initial System Energy model, the saddle point energy and

the migration barrier energy are given as

ESP =
Ei − Ef

2
+Q (4.4)

∆EXmig =
Ef − Ei

2
+Q (4.5)

where, Ef −Ei is the balance of the created and broken bonds at the stable

lattice positions during exchange andQ is a constant parameter, independent
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4. Diffusion kinetic Monte Carlo model

of the initial configuration and the saddle point, [22, 24, 151]. However it

depends on the exchanging atom type and is obtained from the diffusion

coefficients in pure metals. Time scale is influenced by both, Q and ν. The

energies of the final and initial state dependant on the position are given by

E =
∑
i

N
(i)
XXε

(i)
XX +

∑
i

N
(i)
XV ε

(i)
XV (4.6)

where, i corresponds to the nearest neighbour interaction number, NXX is

the number of bonds at the i-th neighbour position between X-X atom types,

and NXV is the number of bonds between vacancy and X atom type, εXX

and εXV are the pair interaction energies between X-X and X-V species,

respectively. This model is also referred as to kinetic Ising model, [135, 151].

Figure 4.3 shows migration barrier energy used in this model.

Model v The configurational energies, the saddle point energies and the vibra-

tional frequencies are calculated using a many body interaction potential,

[138]. The vibrational frequencies are in the range between 1012 s−1 and

1016 s−1, and are often approximated with a fixed value in this range to save

computational work of computing normal modes for every saddle point (cf.

equation 2.31). For their estimation, the Einstein model or Debye approxi-

mation can be used, [20, 132]. Furthermore, the vibrational frequencies can

also be calculated from the diffusion coefficients in an alloy as

ν =
D0

f0a2
(4.7)

where, f0 is self diffusion correlation factor, D0 is diffusion coefficient and a

is lattice parameter, [28, 32, 33].

These listed models are computationally very efficient because of their simplicity.

Furthermore, they are simple enough to be compared to the other analytical

models. However, their biggest limitations are rigid lattice approximation and

the extrapolation of various systems to one another is very limited and depends

on the considered system. Some experiments on the relaxed lattices were done

with the EAM potentials, [136].

Description of the models used in performed simulations, together with their de-

tailed parametrization will be given for each alloy system simulated in the next chapters.
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4.3 Vacancy concentration and time adjustment

4.3 Vacancy concentration and time adjustment

4.3.1 Vacancy concentration

Vacancies are naturally present in all crystalline materials. Vacancies are generated and

disappear on various discontinuities in crystals. Their concentration is very important

variable and has large influence on many processes occurring in crystalline materials.

The processes affected are among others diffusion and phase transformations. The

total free energy of the material is dependent on the vacancy concentration, cV . At any

given temperature, an equilibrium vacancy concentration is defined. The equilibrium

vacancy concentration cV eq is temperature dependent and results in the lowest free

energy. Furthermore, assuming the equilibrium vacancy concentration is very small

(cV eq � 1), it can be calculated with minimisation of the free enthalpy as

cV eq = exp

(
SV
kB

)
exp

(
−EV
kBT

)(
1− pVV

kBT

)
(4.8)

where, since T > 100K and p < 108Pa, it holds pVV /kBT � 1. In equation (4.8),

EV is vacancy formation energy, SV is formation entropy and VV is formation volume

from difference in energy, entropy and volume between a crystal with one vacancy

and an ideal crystal with the same number of atoms, [132]. The equilibrium vacancy

concentration is alternatively given as

cV eq = A exp

(
−EVfor

kBT

)
(4.9)

which is simplified version of equation (4.8), where A is constant, and EVfor
is vacancy

formation energy. Value of the constant A varies between 1 and 280, [20, 136]. How-

ever, the equilibrium vacancy concentration can change dramatically in the real system

undergoing phase transformation if the vacancy formation energies in various phases

differ a lot. This has effect on time adjustment factor and the simplest solution is to

assume some reference phase, where the vacancy formation energy is known, i.e. use

of the equilibrium vacancy concentration of the base pure element. For example, in Fe

based alloys, the time is adjusted according to the equilibrium vacancy concentration

in the Fe.

In kMC simulations of the phase transformations, the diffusion and precipitation

kinetics depends on the attempt frequencies and vacancy concentration. The vacancy

concentration in simulations is usually kept constant, frequently only one vacancy is

used. Depending on the simulation box size the corresponding vacancy concentration is
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4. Diffusion kinetic Monte Carlo model

much higher than equilibrium vacancy concentration in the real alloy. The difference in

vacancy concentrations between the simulation and real alloys needs to be adjusted in

order to obtain correct relation between the Monte Carlo time and real physical time.

Time rescaling is based on the assumption, that kinetics is sufficiently slow and vacancy

concentration is always at its equilibrium concentration, [20, 28, 33, 35, 36, 136].

4.3.2 Physical time

Time obtained from kMC simulations is Monte Carlo time tMC , calculated with equa-

tions (3.47) or (3.48) and corresponds to the physical time of the simulated system. For

example, at 873 K, the equilibrium vacancy concentration in iron, is cVeq = 8.64×10−10.

In order to perform simulations at 873 K, with size of the simulation box where equilib-

rium vacancy concentration is always maintained, one would need approximately 109

atom sites, which means that the simulation box need would be around 8353 BCC lat-

tice constants. This is unrealistically large box size, therefore much smaller simulation

box sizes are used. The diffusion is accelerated if the vacancy concentration is higher

than equilibrium value. In order to get real physical time treal with smaller simulation

boxes, time rescaling factors are needed. These factors account for the difference in va-

cancy concentrations in the simulation boxes and in real alloys. Expression connecting

the Monte Carlo time tMC and real physical time treal is

treal =

(
cVsim

cVeq

)
tMC (4.10)

where, cVsim is vacancy concentration in the simulation box, and cVeq is equilibrium

vacancy concentration in the real alloy, [20, 136].

Since kinetics of the diffusion in alloy is governed by attempt frequencies, the real

physical time can be obtained by adjusting the diffusion coefficients of the substitutional

elements to account for difference in the diffusion rate. This is done through adjustment

of the attempt frequencies, [28, 33, 35]. Furthermore, the simulation time (tMC) then

becomes equal to the real physical time. Adjustment of the diffusion coefficient through

the attempt frequency is as follows

ν = ν0
cVeq

cVsim
(4.11)

where, ν0 is original attempt frequency.

Previously described time rescaling techniques rely on the fixed number of vacan-

cies in the simulations box. However, in the real alloys vacancies can be trapped inside
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4.4 Random number generator

precipitates and various vacancy sources, like grain boundaries or dislocations, then

maintain vacancy concentration in the matrix close to the equilibrium value, [136, 152].

This effect, can also be used to rescale time, where vacancy source/sink is introduced

on a given site in the simulation box, [28]. Vacancy is created on the vacancy source

and placed in one of the neighbouring lattice sites with the vacancy creation prob-

ability. During diffusion through the simulation box, vacancy can reach one of the

source/sink neighbouring lattice sites and can disappear with annihilation probabil-

ity. This technique was mainly used in simulations of the heterogeneous precipitation,

[28, 33, 35, 36].

4.4 Random number generator

As it was already mentioned, all Monte Carlo methods depend on the random numbers

to choose occurring events. In the kinetic Monte Carlo simulations, the random number

is needed to determine event with appurtenant transition probability, and calculate time

needed for this event to happen, cf. section 3.6.

In the computer simulations, random numbers can be generated in several ways.

Ideal would be use of the external generator based on the radioactive isotopes. However,

such external devices are quite expensive. The random numbers, needed for the com-

puter simulations are usually generated with deterministic algorithms, which generate

sequence of the numbers with sufficient randomness. The random numbers generated

with the deterministic algorithms are called pseudorandom numbers. Random num-

bers in all simulations presented here, were generated using a deterministic algorithm

from the Numerical Recipes in C++ [153]. This algorithm is first initialized with seed

number, obtained from the computer time. The seed number sets the initial state of

the random number generator.

The random number generator needs to fulfil several essential properties to be good

random generator. These properties are:

• Repeatability, where the same seed number needs to give same random number

sequence.

• Randomness, meaning generated numbers should form uniform distribution and

needs to be independent of each other.

• Long period. After some period, the sequence starts to repeat itself. This period

should be number characteristically longer than the amount of numbers needed

for the simulation.
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4. Diffusion kinetic Monte Carlo model

• Portability. Algorithm should give same sequence on different computers if seed

is the same.

• Fast. During the simulations, amount of generated random numbers is huge.

Therefore, the deterministic algorithm should not slow down progress of the sim-

ulation a lot.

• Insensitive to seeds, where randomness and the period should not depend on the

initial seed.

4.5 Complexity of the model used in this work

All processes that naturally occur in the real materials are impossible to be included

into the computational model because of the computational time constraints. The

generally accepted procedure when building computational models is first to define and

simulate simple model with a few processes and parameters. Generalizations of the

model are then made only after these initial steps. This protects model from becoming

too complex and complicated from the beginning. Too complex and complicated models

are very hard to handle, and make understanding and selection of the most important

processes, occurring in the model too difficult.

The models built and used in this thesis, follow previously described model design

guidelines. At first, a simple binary system based on the Fe-Cu alloy system was build.

The choice of the Fe-Cu alloy system was deliberate, as this system was extensively

studied experimentally and with various computer simulations. This enabled compari-

son of results from the literature, with new findings and orientation on the issues that

were not given any attention. The simple binary model served as starting point and

was afterwards made more complex by introduction of other substitutional elements.

After substitutional diffusion processes were examined in detail, focus was turned to

introduction of competing interstitial diffusion in the model.
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Give me a lever long enough

and a fulcrum on which to place

it, and I shall move the world.

Archimedes (287 BC-212 BC)

5
Clustering in binary Fe-Cu alloy

This chapter deals with the kinetic Monte Carlo simulations of the binary Fe-Cu alloy

system. After short review of previous experimental studies on this alloy system, de-

tailed approach to the parametrization, based on the thermodynamic materials data is

described. Extensive atomistic simulations were performed, first to address simulations

box size issues. Then influence of various physical properties is analysed and described.
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Figure 5.1: Equilibrium phase diagram of Fe-Cu alloys, [1]. Dashed line represents
metastable miscibility gap of liquids.

Binary alloys are very interesting in the modeling and simulations as they offer com-
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5. Clustering in binary Fe-Cu alloy

positional simplicity, which allows observation of physical phenomena where only one

variable is changed, e.g. concentration, temperature and stress field. This chapter will

present simulations performed on the binary Fe-Cu alloy with various compositions.

Furthermore, this type of binary alloy has been extensively studied experimentally,

[154–164] and by modeling, [12–14, 18, 20, 132, 135, 137, 147, 151, 165–167]. Alloying

of steels with Cu is used in various classes of steel, from low-carbon to maraging and

corrosion-resistant, as addition of Cu, improves steel strength and corrosion resistance,

[168]. Understanding of the phase changes in the Fe-Cu alloys is therefore very impor-

tant. Figure 5.1 shows equilibrium phase diagram of the Fe-Cu alloy, which exhibits

eutectoid reaction at 2.8 at.% Cu and temperature at 1117 K, [1]. The solubility of

Cu in iron based solid solution is limited. The precipitation of Cu clusters was first

reported in 1933, [154]. First detailed study of copper precipitatates was performed

with replicas of the thermaly aged Fe-1.23Cu alloy at 773 K, 873 K and 973 K for times

up to 1000 h, [155]. Further studies have shown that Cu clusters precipitate with a

metastable BCC structure coherent with the matrix and have spherical shape, [156].

Later studies showed that crystall structure of Cu precipitates is accompanied by a

more compex crystall lattice rearangement from the initial coherent BCC → 9R → 3R

→ FCC structure, dependant on the prepipitate size, [158–164]. Initial Cu precipitates

with radius up to 2 nm have BBC crystal structure, fully coherent with α-Fe matrix,

[158–160]. Upon further growth, precipitates with radius between 2 nm and 9 nm un-

dergo martensitic transformation from BCC to twinned 9R crystall structure, depicted

in Figure 5.2a, [158, 162]. Precipitates larger than 9 nm possess a 3R structure, a dis-

torted FCC structure which continually changes to ε-Cu FCC crystal structure, [161].

Figure 5.2: HREM micrograph of Cu precipitate; a) twinned 9R structure, [158] and
b) structure partially transformed to FCC structure, [161].
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Available published experimental data, can be used as confirmation of results ob-

tained from the kinetic Monte Carlo simulations. The Fe-Cu alloy system is frequently

used as a benchmark to test validity of the phase transformation models due to its

relative simplicity to model. This system has large and almost symmetrical miscibility

gap and differences in the atom sizes are small. Furthermore, experimentally obtained

data confirmed that Cu clusters with sizes up to 2 nm are fully coherent with the α-iron

matrix. The full coherency of Cu clusters and small atom size difference between Fe

and Cu, justifies use of the rigid lattice in kMC simulations.

5.1 Parametrization of the simulation model

To calculate interatomic interaction energies needed for the transition probabilities, a

thermodynamic materials properties were used. In Table 5.1, experimental data used

for calculation of the interaction parameters is presented. Due to relatively symmetrical

Table 5.1: Material properties of Fe and Cu used for calculation of interaction energies
and kinetic parameters.

Lattice constant of α-Fe a 0.287 nm, [169]
Number of first neighbours z1 8
Number of second neighbours z2 6
Cohesive energy of Fe EcohFe −4.28 eV, [169]
Cohesive energy of Cu EcohCu −3.49 eV, [169]
Mixing energy of Fe−Cu EmixFeCu −0.515 eV, [170]
Vacancy formation energy of Fe EVforFe 1.60 eV, [152]
Vacancy formation energy of Cu EVforCu 1.28 eV, [152]
Vacancy migration energy of Fe EVmigFe 0.90 eV, [152]
Vacancy migration energy of Cu in Fe EVmigCu 0.70 eV, [152]
Diffusion constant of Fe D0 Fe 2.01 10−4 m2 s−1, [171]
Diffusion constant of Cu D0 Cu 2.16 10−4 m2 s−1, [171]
Attempt frequency of Fe νFe 8.70× 1012 s−1, [169]
Attempt frequency of Cu νCu 6.67× 1012 s−1, [169]

tracer diffusion properties of Fe and Cu in Fe, [172], symmetrical model can be used.

In the symmetrical model, the binding energy of Cu is set equal to the binding energy

of Fe. The interaction energies ε
(i)
FeFe and ε

(i)
CuCu, where i ∈ 1, 2 were calculated from the

cohesive energies in the pure metals

EcohX =
z1

2
ε
(1)
XX +

z2

2
ε
(2)
XX (5.1)
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where X is either Fe or Cu, z1 and z2 are number of first and second neighbours,

respectively, [102]. Interaction energy of the second nearest neighbours is evaluated

from interaction energy of first nearest neighbours as

ε
(2)
XX = dε

(1)
XX (5.2)

where X is either Fe or Cu and d is constant. Simulations presented here were performed

with constant d = 0.5 in equation (5.2).

In figure 5.3, interaction energies between possible atom types and vacancy in the

BCC crystal lattice on the first and second nearest neighbours shells are displayed.
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Figure 5.3: Schematic representation of the interaction energies in BCC crystal lattice;

a) only X atoms on first ε
(1)
XX and second ε

(2)
XX nearest neighbour shells and b) mixed X

and Y atoms on first and second nearest neighbour shells.

For the binary alloy systems, the mixing energy tells whether the system has ten-

dency to precipitate when EmixXY < 0 or if the system has tendency to order. Het-

eroatomic interaction energies ε
(i)
XY are associated with the mixing energy as

EmixXY =
z1

2

(
ε
(1)
XX + ε

(1)
YY − 2ε

(1)
XY

)
+
z2

2

(
ε
(2)
XX + ε

(2)
YY − 2ε

(2)
XY

)
(5.3)

which is estimated from the solubility limit csY of element Y in X. For low solubilities

holds

csY ∝ exp

(
EmixXY

kBT

)
(5.4)
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For simulations of Cu clustering in α-Fe, equations (5.3) and (5.4) can be written as

EmixFeCu =
z1

2

(
ε
(1)
FeFe + ε

(1)
CuCu − 2ε

(1)
FeCu

)
+
z2

2

(
ε
(2)
FeFe + ε

(2)
CuCu − 2ε

(2)
FeCu

)
(5.5)

csCu ∝ exp

(
EmixFeCu

kBT

)
(5.6)

To account for strengthening of the chemical bonds of less coordinated atoms, ghost

interaction energies were introduced to the model. Athènes et. al., [172] argued that

ghost interactions does not change kinetic pathways of the vacancy, but has influence

only the time spent at each configurations. This is not completely true since ghost

interactions influences on the barrier energy, calculated with equation (4.3) and conse-

quently changes transition probabilities (equation (3.49)), which has direct influence on

the kinetic pathways of the vacancy. To calculate the ghost interaction energy between

the atom X and vacancy εXV (c.f. figure 5.3, the vacancy formation energy was used.

Method reflects the modification in the atomic bonding of atom X, due to absence of

one atom, [173]. Formation energy of the vacancy in the pure X environment is then

given as

EVforX = z1ε
(1)
XV − EcohX (5.7)

The diffusion coefficients follows Arrhenius equation and are calculated as

DX = D0X exp

(
−QX
kBT

)
(5.8)

where, Q is activation energy given as QX = EVforX +EVmigX, and D0X is diffusion con-

stant. The kinetic parameters were adjusted to the diffusion parameters, to accurately

simulate diffusion processes, since diffusion coefficients obtained from the simulations

must be equal to the experimental ones.

The saddle point energy ESpX, is the total energy of the system at a saddle point. It

was determined from the vacancy migration energy in pure phase X. At low solubility,

thr saddle point energy can be assumed constant and independent of the nature of the

jumping atom and local atomic arrangement. The saddle point energy was calculated

from interactions between first and second nearest neighbours using following equation

ESpX = EVmigX + z1εXV + cX

[
(z1 − 1)ε

(1)
XX + z2ε

(2)
XX

]
+ cY

[
(z1 − 1)ε

(1)
XY + z2ε

(2)
XY

]
(5.9)

where, cX and cY are concentrations of X and Y atoms, respectively. EVmigX is the
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vacancy migration energy of X, and εij are pair interaction energies. The saddle point

energies used in all simulations were kept the same and concentration of Y used, was 1

at.%.

The attempt frequencies act as prefactor in equation (3.49) and were estimated

from the Debye frequencies νD in the pure metals, [169]. Attempt frequencies were

assumed to be equal and same to the highest Debye frequency of the elements in sim-

ulation, i.e. νFe = νCu = νDFe
. The attempt frequencies are in the range between

1012 s−1 and 1016 s−1. If differences of the prefactor is small, transition probabilities

obtained with this assumption are not large and ratios between the transition prob-

abilities are not changed. Influence of this assumption is only on the residence time,

and consequently on the the kinetics and not on the kinetic pathways. Furthermore,

self diffusion properties of Fe are used to obtain real time. If chemical concentration of

Cu is low and vacancy does not have preferred environment, which is the case for the

symmetric model, then obtained time is sufficiently accurate to justify assumption to

use equal attempt frequencies. Rigorously, totally accurate attempt frequencies would

be calculated from the phonon spectra in the particular environment. Almost always

approximation with constant frequencies (Debye of Einstein) is used due to the high

computational cost of the phonon spectra calculations.

From the experimental data summarized in Table 5.1, using procedure described

above, the simulations parameters were calculated. They are presented in Table 5.2.

The Cu-Cu interaction energies for first and second nearest neighbours obtained from

Table 5.2: Calculated interaction energies and kinetic parameters for binary FeCu alloy
used in kMC simulations.

ε
(1)
FeFe = −0.778 eV ε

(2)
FeFe = −0.389 eV

ε
(1)
CuCu = −0.778 eV ε

(2)
CuCu = −0.389 eV

ε
(1)
FeCu = −0.731 eV ε

(2)
FeCu = −0.366 eV

ε
(1)
FeV = −0.335 eV ε

(1)
CuV = −0.335 eV

ESpFe = −9.557 eV ESpCu = −9.098 eV
νFe = 8.70× 1012 s−1 νCu = 8.70× 1012 s−1

the cohesive energy of Cu given in Table 5.1 are for pure FCC phase and yields, ε
(1)
CuCu =

−0.635 eV and ε
(2)
CuCu = −0.318 eV, respectively. However, in simulations rigid lattice is

used and expected precipitates have BCC crystal structure. Homointeraction energies

of Cu were then adjusted according to the iron ones and this yields symmetrical model.

Use of the symmetrical model is justified, since similar values of the εiCuCu are obtained
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5.1 Parametrization of the simulation model

from the experimental precipitation kinetics, [12]. Used values of the Cu-Cu interaction

energies at the corresponding nearest neighbour εiCuCu were set equal to the interaction

energy of iron at the same neighbour shell, i.e. ε
(1)
CuCu = ε

(1)
FeFe = −0.778 eV and

ε
(2)
CuCu = ε

(2)
FeFe = −0.389 eV. As already mentioned, equal attempt frequencies νFe = νCu

were used with Debye frequency in iron being used for both elements in simulations,

which can be justified with low concentrations of Cu in simulated alloys which has

negligent influence on the value of diffusion coefficient of Cu.

Migration barrier in the binary solid solution from all parameters given in Table

5.2 can be calculated with following equation

∆EX = ESpX −
k∑
i=1

n
(i)
XXε

(i)
XX −

k∑
i=1

n
(i)
XYε

(i)
XY − nXVεXV − nYVεYV (5.10)

where, X is the exchanging atom, n
(i)
XX, X ∈ {A, B} is number of the XX bonds (AA,

BB or AB) at i-th nearest neighbour shell up to k. nYV, Y ∈ {A, B} is number of AV

and BV bonds at the first neighbour shell of the vacancy. The number of bonds must

satisfy boundary conditions of the system, as it is impossible to have more bonds than

there is neighbouring sites (c.f. equation (4.1).

5.1.1 Model Asymmetry

Although the tracer diffusion properties are almost equal in the used FeCu model, small

difference still exists. This difference has influence on the model parametrization as can

be seen from the saddle point energies which are diffusion dependant. The obtained

values (cf. Table 5.2) are not equal, and asymmetry parameter

c∗ = ESpX − ESpY (5.11)

can be defined. When the saddle point energies are set to be equal, the model asym-

metry must be introduced through the atom-atom and atom-vacancy interaction pa-

rameters. In the second case the asymmetry parameter, dependant on the interatomic

energies is defined as

a∗ =

k∑
i=1

εiXX − εiYY

εiXX + εiYY − 2εiXY

(5.12)

The model asymmetry is very important property of the kMC model and has big

influence on the kinetic pathways, [18]. Various sets of interatomic parameters εiXX,

εiYY, εiXY, ESpX, ESpY, νX, νY can lead to the same mixing energy or give the same
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5. Clustering in binary Fe-Cu alloy

equilibrium phase diagrams and diffusivities of Y atoms in X. The diffusion mechanism

of Y atoms can be different, meaning that alloy will exhibit different kinetic pathways.

This happens because of the asymmetry effects, which are reflected with which type of

the atom (X or Y) vacancy has preference to exchange. Several studies showed that

asymmetry parameters have influence on the relative mobility of Y monomers and small

clusters (dimers, trimers, . . . ), [18, 172, 174].

5.2 Analysis of obtained atomic configurations

5.2.1 Identification and analysis of the clusters

Alloys exhibit various phase transformations when they are subjected to the thermal

field variations. The phase transformations usually starts with precipitation. This

process has influence on the mechanical properties of the alloys as precipitates acts

as obstacles for dislocation motion. To predict changes of the mechanical properties,

formed clusters need to be identified, characterized and analysed in terms of their

chemical composition, shape, mean size, number density, . . . Trend of the solute atoms

to form clusters, can be identified by measuring the short range order (SRO) parameter

or atom pair correlations, cf. section 2.4.1. From the SRO parameter, time when

clusters begin to grow can be easily identified. However, detailed informations regarding

to the cluster chemical concentrations, size and their shape cannot be determined from

it. In order to be able to determine the chemical concentration, size and shape of

precipitates two mechanisms were used for post processing of obtained results.

After all clusters are identified, the procedures to obtain various size distributions

are quite straightforward.

5.2.1.1 Identification with average concentrations

Method for the cluster identification with average concentrations can quickly character-

izes non-pure precipitates which is very useful especially in alloys with other impurities,

for example in the ternary or quaternary alloys. Concentration profiles of the solute

atoms were defined by estimation of the average concentration of solutes over a certain

volume for every lattice site in the matrix. The value for the 3D concentration of the

solute atoms was obtained by using average concentration of an individual atom species

in the sphere, centred at the lattice position with some radius up to the i-th nearest

neighbour distance. After the local concentration at each lattice site is obtained, each

of the clusters is defined by a given threshold concentration of the quested solute atoms
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5.3 Results of the kMC simulations in the binary Fe-Cu system

in the cluster and belonging lattice sites are then attributed to the cluster. This is then

basis for analysis of the shape, size and number density of the clusters from the spatial

distribution of accepted lattice sites.

5.2.1.2 Identification with neighbouring atoms

In the binary alloys with strong tendency to element ordering, different approach based

on the percolation theory, can be used, [93, 175, 176]. Instead of tracing local concen-

tration within the i-th shell around the given lattice site, clusters are identified based

on the occupation of the neighbouring sites. All lattice sites occupied by the searched

solute atoms are looked for up to the i-th neighbour of the same atom type. Several

algorithms exist which enable identification of the clusters, where the most known is

Hoshen-Kopelman algorithm,[93], which is specialized application of the Union-Find

algorithm, a simple method for a computation of equivalence classes.

The identification of clusters in this chapter were carried out for the first nearest

neighbours only, since high resolution electron microscope and atom probe studies

confirmed pure Cu precipitates, [161–164]. However, the desired boundary conditions

can be easily changed, to include also atoms on sites beyond first neighbouring shell,

as was the case for Ni-Cr-Al alloy sytem.

5.3 Results of the kMC simulations in the binary Fe-Cu

system

The kMC simulations were performed according to the residence time procedure de-

scribed in previous chapter using the developed algorithm presented in Appendix A

and broken bond model SPEM2 (cf. section 4.2) with simulation parameters given in

Table 5.2. Repeatability of the obtained results was confirmed with several simulation

runs with the same starting conditions.

5.3.1 Influence of the simulation box size

In the previous chapter it was explained that computer simulations are performed on

the finite simulation box size. The effect of the simulation box will be investigated in

this section. Several simulations, with the same concentration and temperature, and

various sizes of the simulation boxes were performed to determine its effect. Simulation

box sizes, used to study influence of the box size on the clustering kinetics are given

in Table 5.3. In the same table, number of all atom sites in the simulation box and
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5. Clustering in binary Fe-Cu alloy

number of Cu atoms used are given. All simulations were performed with 1 at.% Cu

at 873 K and one vacancy.

Table 5.3: Various simulation box sizes used to investigate size effects.

No. of BCC lattice sites Box size /nm No. of all sites No. of Cu atoms

203 5.743 16000 161
403 11.483 128000 1281
603 17.223 432000 4321
803 22.963 1024000 10241
1003 28.703 2000000 20001
1203 34.443 3456000 34561

The evolution of the number density of clusters larger than n > 2 is shown in

figure 5.4. The number density evolution reveals that the smallest box is too small

and contains far too few Cu atoms to be able to produce satisfactory results. Small

number of atoms in the simulation box greatly accelerates simulations. However, since

simulation box is small and number density of clusters should be the same in all box

sizes, the monomer attachment and detachment causes large fluctuations of the number

density of clusters. These fluctuations, seen in figure 5.4 for the smallest box size can

Figure 5.4: Influence of the simulation box size on the evolution of number density of
clusters larger than n > 2.

be avoided with larger box sizes. Simulation box with 403 BCC lattice sites gives much
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better results. Some fluctuations of the number density can still be seen, especially

towards the end of simulation. Larger box size offers with same the number density

more formed clusters, which is better for the statistical analysis of obtained results.

Larger the simulation box, the more smooth is the number density curve. However,

this increases computational time needed for simulations and compromise between the

simulation box size and computational time is needed.

The clustering kinetics of the system under investigation was investigated through

time evolution of the short range parameter and average cluster size. Results obtained

for all box sizes were carefully analysed and influence of the simulation box size on the

clustering kinetics is discussed next.

Figure 5.5: Evolution of the short range order parameter α1
CuCu at various simulation

box sizes.

The clustering of Cu atoms in the iron matrix can be analysed with evolution of

the short range parameter α1
CuCu in time, where Cu-Cu corresponds to the atom pairs

under investigation and number one in superscript designates neighbouring shell. In

the case of α1
CuCu, the Cu-Cu pairs on the first neighbouring shell are considered. Time

evolution of the SRO parameter for various simulation box sizes is depicted in figure

5.5. α1
CuCu curves confirm that the smallest tested box size is not suitable for the

cluster precipitation study. All essential features of the system under consideration

were captured with box sizes 403 BCC lattice sites and above. However, toward the

end of the simulation run, the SRO parameter α1
CuCu still slightly fluctuates for box
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size 403 lattice sites, since number of clusters is relatively small.

In figure 5.6, influence of the simulation box size on the time evolution of the av-

erage cluster size is presented. In the same graph curves for the classical growth law

(t3/2) and LSW regime (t) are displayed. Figure 5.6 confirms previous findings, that

Figure 5.6: Influence of the simulation box size on the time evolution of the average
cluster size.

box size 603 lattices describes essential features of the nucleation, growth and coarsen-

ing with sufficient accuracy. This box size also gives great compromise regarding the

needed computation time for simulation run. Although, box with 603 lattice constants

is sufficient for studied diffusion processes, majority of simulations presented in the the-

sis, were performed on the simulation box with 803 lattice constants to obtain higher

number of clusters and improve subsequent statistical analysis, unless stated otherwise.

5.3.2 Influence of the temperature and chemical composition

Influence of the temperature and chemical composition on the precipitation kinetics was

investigated next. The kMC simulation runs were performed on the simulation box with

803 BCC lattices, which is equal to 233 nm. Full periodic boundary conditions were

used. Total number of available atom position for the BCC crystal structure amounts

to 10240000 positions. Simulations with 1 at.% Cu had 1 vacancy, 10241 Cu atoms and

1013759 Fe atoms. Simulations with 1.5 at.% Cu had 1 vacancy, 15361 Cu atoms and

1008639 Fe atoms. The temperature for each run was kept constant. The snapshots of
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5.3 Results of the kMC simulations in the binary Fe-Cu system

obtained results, whith only Cu atoms shown, are presented in figures 5.7 - 5.11.

Results of obtained clusters for simulations with 1 at.% Cu are shown in figures

5.7, 5.8, 5.10 and 5.11 at temperatures 923 K, 874 K, 773 K and 673 K, respectively.

In figure 5.9 results obtained with 1.5 at.% Cu at 873 K are depicted. Snapshot of

the atom positions obtained from simulations were depicted and rendered with VMD

- Visual Molecular Dynamics, molecular graphics software, [177]. Simulations started

with totally disordered configuration where Cu atoms are randomly distributed in the

Fe matrix. With evolution of the time, Cu atoms start to form clusters which then

evolve through the growth and coarsening.

Formation of the Cu clusters causes depletion of the Cu in the matrix. In time,

concentration of the Cu atoms in the matrix decreases and after very long times reaches

equilibrium concentration ceqCu defined as,

ceqCu(t→∞) ∼= exp

(
∆S

kB

)
exp

(
EmixFeCu

kBT

)
(5.13)

where, ∆S is the nonconfigurational entropy and was set according to the suggestions

from literature, [167] as ∆S = 0.8kB . The equilibrium matrix concentrations calculated

with equation (5.13) for temperatures used in the kMC simulations are given in Table

5.4 for three mixing energies. Mixing energy value EmixFeCu = −0.52 eV was used

Table 5.4: The equilibrium matrix concentrations at various temperatures for different
mixing energies.

T /K ceqCu /at.%
EmixFeCu = −0.52 eV EmixFeCu = −0.56 eV EmixFeCu = −0.60 eV

673 K 0.028 0.014 0.007

773 K 0.091 0.050 0.027
873 K 0.222 0.130 0.077
923 K 0.322 0.195 0.118

and was for temperatures investigated obtained from the solubility of Cu in Fe, [170].

Different value (EmixFeCu = −0.60 eV) was also proposed, [151] and used in the kMC

simulations. For these two mixing energies, complete simulation runs were performed

to evaluate influence of the mixing energy on the clustering kinetics. For illustrative

reasons, the equilibrium matrix concentrations at various temperatures were calculated

for values of the mixing energy used in simulations and for middle value between those

two.
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5. Clustering in binary Fe-Cu alloy

Figure 5.7: Snapshots of Fe-Cu alloy with 1 at.% Cu, obtained from kMC simulations
during annealing at 923 K. Size of the simulation box is 803 BCC lattices (233 nm) and
only Cu atoms are displayed due to visibility reasons; a) initial disordered configuration,
b) at 4.5 s, c) at 15 s, d) at 30 s, e) at 90 s, f) at 227 s.
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Figure 5.8: Snapshots of Fe-Cu alloy with 1 at.% Cu, obtained from kMC simulations
during annealing at 873 K. Size of the simulation box is 803 BCC lattices (233 nm) and
only Cu atoms are displayed due to visibility reasons; a) initial disordered configuration,
b) at 9 s, c) at 26 s, d) at 44 s, e) at 87 s, f) at 850 s.
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5. Clustering in binary Fe-Cu alloy

Figure 5.9: Snapshots of Fe-Cu alloy with 1.5 at.% Cu, obtained from kMC simulations
during annealing at 873 K. Size of the simulation box is 803 BCC lattices (233 nm) and
only Cu atoms are displayed due to visibility reasons; a) initial disordered configuration,
b) at 8 s, c) at 24 s, d) at 40 s, e) at 79 s, f) at 790 s.
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Figure 5.10: Snapshots of Fe-Cu alloy with 1 at.% Cu, obtained from kMC simulations
during annealing at 773 K. Size of the simulation box is 803 BCC lattices (233 nm) and
only Cu atoms are displayed due to visibility reasons; a) initial disordered configuration,
b) at 181 s, c) at 596 s, d) at 2780 s, e) at 5431 s, f) at 53092 s.
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5. Clustering in binary Fe-Cu alloy

Figure 5.11: Snapshots of Fe-Cu alloy with 1 at.% Cu, obtained from kMC simulations
during annealing at 673 K. Size of the simulation box is 803 BCC lattices (233 nm) and
only Cu atoms are displayed due to visibility reasons; a) initial disordered configuration,
b) at 28345 s, c) at 358598 s, d) at 1.1×106 s, e) at 2.2×106 s, f) at 9.6×106 s.
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5.3 Results of the kMC simulations in the binary Fe-Cu system

In figure 5.12, the short range order parameter α1
CuCu calculated with equation

(2.70) for the substitutional first nearest neighbours in Fe-Cu alloys isothermally aged

at different temperatures and with various chemical compositions is presented. Clear

influence of the temperature and composition on the precipitation kinetics is displayed.

Incubation time is present in all starting conditions before α1
CuCu starts to increase.

The incubation time is influenced by the temperature and chemical composition as can

Figure 5.12: Evolution of the short range order parameter in Fe-Cu alloys at different
temperatures and various chemical compositions.

be seen in figure 5.12. When stable nuclei start to form Cu clusters, the matrix becomes

depleted with Cu atoms and SRO parameters starts to slowly rise i.e. the number of

Cu-Cu bonds is increased. Subsequent growth of the nuclei causes sharp increase in

α1
CuCu, since more and more Cu atoms belong to the clusters. In figure 5.12 coars-

ening stage can be identified from the SRO parameter slope change. In this stage of

the alloy evolution, the SRO parameter rises linearly and more moderate in time com-

pared to the previous stage. In figure 5.13 time evolution of Cu concentration in the

matrix XCu(t), at different temperatures and chemical compositions is shown. Graph

exhibits mirrored properties compared to the time evolution of the SRO. Concentration

of atoms in the matrix is decreasing very quickly, and at the end of simulations similar

values, than those for equilibrium concentrations presented in Table 5.4 are reached.

Growth rate of Cu clusters can be estimated from time evolution of Cu concentration

in the matrix, where with higher initial concentration and temperature, growth rate
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Figure 5.13: Time evolution of Cu concentration in the matrix at different temperatures
and various chemical compositions.

increases. Characterization of the clustering process during simulations was also anal-

ysed through evolution of the number and size of formed clusters. In figure 5.14, the

Figure 5.14: Number of clusters, including dimers in Fe-Cu alloys at different conditions.
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number of clusters in time is displayed where all possible cluster sizes were included. At

the beginning of the simulation, number of clusters strongly depends on the chemical

composition. Number of clusters at the beginning of the simulations is presented in

Table 5.5 and together with figure 5.14 confirms initial rise in the number of clusters

after simulations are commenced. After certain period of time (100 MSC), number

of the clusters sharply decrease as stable nuclei start to grow and stable cluster radii

increases. The number of clusters toward the end of simulations is still decreasing, but

with lower rate. Change in the slope of the number of precipitates is connected to the

LSW regime of coarsening.

Table 5.5: Number of cluster at the initial disordered state (t = 0 s) for various tem-
perature and chemical compositions.

Condition Dimers Trimer Tetramers Pentamers Total

673 K, 1 at.% Cu 376 33 3 - 403
773 K, 1 at.% Cu 349 18 2 - 369
873 K, 1 at.% Cu 385 25 3 - 413
873 K, 1.5 at.% Cu 764 80 2 1 848
923 K, 1 at.% Cu 375 30 2 1 408

Beside following evolution of the number of clusters in time another important fea-

ture in the cluster microstructure evolution is change of its mean size. The average

cluster size L2(t) is defined as a second moment of the cluster size distribution nor-

malized by the first moment of the cluster size distribution (cf. section 2.4.1.2). Its

evolution is followed in time and is shown in figure 5.15 for simulated Fe-Cu alloys,

where cluster size is measured as dimensionless volume. In the same graph, also lines

for the classical growth law and LSW regime are shown, where growth law is propor-

tional to t3/2 and curve for the LSW regime is proportional to t, due to use of volumes

and not radii. If cube root is used on these expressions one yields well known power

law coefficients for the growth (t1/2) and coarsening (t1/3) stages. At the beginning,

nuclei are needed before growth can start. After initial clusters reach critical size they

exhibit increased average size. In this stage for higher temperatures and 1 at.% Cu

supersaturation, curves follow classical growth law quite well before plateau is reached

and size becomes constant. Simulations at lower temperatures or higher superatura-

tions exhibit change in the curve slope, coresonding to alternating growth and LSW

regime. Toward the end of simulations these curves then exhibit clear LSW regime.
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Figure 5.15: Evolution of the average cluster size in time for simulated conditions in
Fe-Cu alloys.

5.3.3 Influence of the mixing energy

As already explained, the mixing energy has influence on the equilibrium matrix con-

centrations; cf. Table 5.4. Effects of temperature and chemical composition on the

clustering were studied with the mixing energy EmixFeCu = −0.52 eV, obtained from

solubility of Cu in Fe, [170]. Different value (EmixFeCu = −0.60 eV) was also proposed,

[151] and used in kMC simulations. Since mixing energy EmixFeCu is connected to the

Table 5.6: Simulation parameters with mixing energy EmixFeCu = −0.60 eV.

ε
(1)
FeFe = −0.778 eV ε

(2)
FeFe = −0.389 eV

ε
(1)
CuCu = −0.778 eV ε

(2)
CuCu = −0.389 eV

ε
(1)
FeCu = −0.7235 eV ε

(2)
FeCu = −0.3617 eV

ε
(1)
FeV = −0.335 eV ε

(1)
CuV = −0.335 eV

ESpFe = −9.557 eV ESpCu = −9.098 eV
νFe = 8.70× 1012 s−1 νCu = 8.70× 1012 s−1

shape of the alloy phase diagrams, its effect on the clustering kinetics was analysed and

compared. Simulations parameters for first set are given in Table 5.2. Second set of

the simulation parameters were calculated with equations (5.1), (5.2), (5.1) and (5.5),
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Figure 5.16: Snapshots of Fe-Cu alloy with 1 at.% Cu, obtained from kMC simulations
during annealing at 873 K and increased mixing energy. Size of the simulation box is
803 BCC lattices (233 nm) and only Cu atoms are displayed due to visibility reasons;
a) initial disordered configuration, b) at 1.7 s, c) at 7.9 s, d) at 73 s, e) at 289 s, f) at
724 s.
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with value for the mixing energy taken as EmixFeCu = −0.60 eV and other material

properties needed for calculation given in Table 5.1. This yields simulation parameters

presented in Table 5.6. Influence of the mixing energy on the clustering process was

analysed through comparison of the SRO parameter, the number of precipitates and

average cluster size. 5.6. Two simulations with different set of parameters were exe-

cuted. In the first simulation run, simulation parameters given in Table 5.2 were used,

and then compared to the results obtained with run using simulation parameters in

Table The same starting conditions were used, in Fe-Cu alloy with 1. at% Cu atoms

isothermally aged at 873 K. Size of the simulation boxes for both runs was 803 BCC

lattices.

Figure 5.17: Influence of mixing energy on the evolution of the short range order
parameter.

In figure 5.17 evolution of the short range parameter for both simulations is depicted.

Similarity can be detected at the beginning of the simulations if the time difference is

ignored. The clustering is quicker and incubation time shortens if the mixing energy is

higher. With lower mixing energy, SRO parameter reaches plateau, where it remains

constant, while for the higher mixing energy it still has tendency to increase. Figure

5.18 depicts number of clusters, including dimers for both mixing energies. Number

of clusters is almost the same at the beginning and at the end. Higher mixing energy

causes number of clusters to decrease faster in time, similar than in evolution of the

short range order parameter.
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Figure 5.18: Influence of mixing energy on number of clusters in time.

In figure 5.19 comparison of average cluster sizes for two mixing energies is shown.

With higher mixing energy, clear distinction between growth and coarsening stages

can be identified. Furthermore, growth and coarsening is taking place according to

the classical growth and LWS, respectively. When first simulation parameters set is

Figure 5.19: Influence of mixing energy on evolution of the average cluster size in time.
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used, where mixing energy is lower, there is no clear distinction between growth and

coarsening. Also growth is taking place much longer, compared to previous simulation

set.

5.3.4 Influence of the model asymmetry

The literature review on the subject revealed strong influence of the asymmetry param-

eter on the nucleation and growth kinetics in various binary alloys, [17, 96, 172, 174].

The energetic model used in those studies was based on the kinetic Ising model, the

ghost energies between vacancy and its first nearest neighbours were not considered

and only nearest neighbour interaction were used. The adjusted SPEM2 broken bond

model was used in another study with simulation parameters which exhibit asymmetry,

however the influence of the model asymmetry parameter a∗, was not investigated in

this study, [167]. One of the findings of the aforementioned studies was that negative

asymmetry parameter a∗, influences vacancy trapping in the Cu clusters, which results

in agglomeration or coagulation of clusters. This section addresses vacancy trapping

effects in the Fe-Cu alloys system and its influence on the physical time, which were

not studied before. When vacancy becomes trapped in the Cu rich cluster it causes

mobility of this cluster even when cluster is large in its size. These moving Cu rich

cluster can on its way meet another Cu rich cluster which causes agglomeration or

coagulation of two clusters into single cluster. The single cluster shape then changes

due to surface energy minimization into near spherical shape.

Table 5.7: Simulation parameters with asymmetry parameter a∗ = 45.27.

ε
(1)
FeFe = −0.778 eV ε

(2)
FeFe = −0.389 eV

ε
(1)
CuCu = −0.635 eV ε

(2)
CuCu = −0.317 eV

ε
(1)
FeCu = −0.683 eV ε

(2)
FeCu = −0.342 eV

ε
(1)
FeV = −0.335 eV ε

(1)
CuV = −0.276 eV

ESpFe = −9.250 eV ESpCu = −9.250 eV
νFe = 8.70× 1012 s−1 νCu = 8.70× 1012 s−1

In the previous section symmetric model was used, where interatomic binding en-

ergies between Fe and Cu are assumed the same. No vacancy trapping was observed

in the simulation where symmetrical model was employed. In order to investigate in-

fluence of the model asymmetry parameter a∗, the cohesive energy of Cu was used

as adjusting parameter. The asymmetry parameter c∗ was set to zero in order not
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to overcomplicate model and parameter interdependencies. The saddle point energies

used for Fe and Cu were set equal ESpFe = ESpCu = −9.250 eV. As explained before,

small difference in the tracer diffusivity of Fe and Cu in Fe was addressed through the

saddle point energies in the symmetrical model. When asymmetry parameter a∗ take

account of differences in the tracer diffusivity through the interatomic energies, the

saddle point energy adjustments are not needed any more. Connection between the

asymmetry parameter a∗, the homoatomic interaction energies and mixing energy is

given as

ε
(1)
CuCu =

2EmixFeCu

33
a ∗ −ε(1)

FeFe (5.14)

Equation (5.14) was obtained with reordering of equations (5.1), (5.2), (5.5) and (5.12).

The homoatomic energies of Fe were calculated from the cohesive energy; cf. section

5.1. The mixing energy used, was EmixFeCu = −0.52 eV, same as simulations where

influences of temperature and chemical composition were analysed. For example, in

Table 5.7 simulation parameters for Fe-Cu alloy system, if homoatomic energies of Cu

are calculated from the cohesive energy of Cu in the pure FCC phase are given. With

equation (5.12) and simulation parameters in Table 5.7, asymmetry parameter yields

a∗ = 45.27, which is unrealistic asymmetry for Cu in BCC Fe.

To investigate influence of the asymmetry parameter a∗, several simulations were

performed on simulation box with 643 BCC lattices and varying a∗. The chosen values

of a∗ were -2.5, -1, 0.25 and 0.5 and equation (5.14) was used to obtain simulation

parameters with those predefined asymmetry values. The simulation parameters for

the asymmetry values -2.5, -1, 0.25 and 0.5 are given in Tables 5.8, 5.9, 5.10 and

5.11, respectively. As control set, the simulation run was executed also with both

asymmetry parameters (a∗ and c∗) set as zero. In simulations where influence of

asymmetry on the phase ordering was studied, random alloy with 3 at.% Cu atoms was

quenched from infinite temperature to a temperature T = 873 K. In order to increase

statistics of the cluster properties in the focused regimes of growth and coarsening,

higher number density of precipitates is desired. Therefore, to increase the number

density of precipitates larger supersaturation was used (3 at.% Cu).

The asymmetry parameter a∗, has large effect on simulations of the diffusion process

and consequently influences cluster mobility. When a∗ is negative, the vacancy spends

more time in the Fe matrix. However, if the asymmetry parameter a∗ is positive,

vacancy prefers being near Cu atoms which leads to the vacancy trapping in Cu clusters.

The vacancy trapping in Cu rich area influences the real time because the residence

time algorithm still returns time increment, although microstucture is in not developing

while vacancy is trapped in the Cu cluster. To reasonably adjust real time in simulations
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Table 5.8: Simulation parameters with asymmetry parameter a∗ = −2.5.

ε
(1)
FeFe = −0.778 eV ε

(2)
FeFe = −0.389 eV

ε
(1)
CuCu = −0.700 eV ε

(2)
CuCu = −0.350 eV

ε
(1)
FeCu = −0.653 eV ε

(2)
FeCu = −0.327 eV

ε
(1)
FeV = −0.335 eV ε

(1)
CuV = −0.281 eV

ESpFe = −9.250 eV ESpCu = −9.250 eV
νFe = 8.70× 1012 s−1 νCu = 8.70× 1012 s−1

Table 5.9: Simulation parameters with asymmetry parameter a∗ = −1.

ε
(1)
FeFe = −0.778 eV ε

(2)
FeFe = −0.389 eV

ε
(1)
CuCu = −0.747 eV ε

(2)
CuCu = −0.373 eV

ε
(1)
FeCu = −0.700 eV ε

(2)
FeCu = −0.350 eV

ε
(1)
FeV = −0.335 eV ε

(1)
CuV = −0.313 eV

ESpFe = −9.250 eV ESpCu = −9.250 eV
νFe = 8.70× 1012 s−1 νCu = 8.70× 1012 s−1

Table 5.10: Simulation parameters with asymmetry parameter a∗ = 0.25.

ε
(1)
FeFe = −0.778 eV ε

(2)
FeFe = −0.389 eV

ε
(1)
CuCu = −0.786 eV ε

(2)
CuCu = −0.393 eV

ε
(1)
FeCu = −0.739 eV ε

(2)
FeCu = −0.370 eV

ε
(1)
FeV = −0.335 eV ε

(1)
CuV = −0.340 eV

ESpFe = −9.250 eV ESpCu = −9.250 eV
νFe = 8.70× 1012 s−1 νCu = 8.70× 1012 s−1

Table 5.11: Simulation parameters with asymmetry parameter a∗ = 0.5.

ε
(1)
FeFe = −0.778 eV ε

(2)
FeFe = −0.389 eV

ε
(1)
CuCu = −0.794 eV ε

(2)
CuCu = −0.397 eV

ε
(1)
FeCu = −0.747 eV ε

(2)
FeCu = −0.373 eV

ε
(1)
FeV = −0.335 eV ε

(1)
CuV = −0.346 eV

ESpFe = −9.250 eV ESpCu = −9.250 eV
νFe = 8.70× 1012 s−1 νCu = 8.70× 1012 s−1
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5.3 Results of the kMC simulations in the binary Fe-Cu system

where vacancy prefers Cu rich areas, and to maintain equilibrium vacancy concentration

in Fe at its equilibrium value, time was corrected with the fraction of time, when vacancy

resides in the Fe matrix. Time was advanced only when there were no Cu among its 8

nearest neighbours. For the asymmetry parameter a∗ = −1 effect of the time correction

if time is advanced only when vacancy resides in the Fe matrix is shown in figure 5.20.

The difference between adjusted time and time without adjustment, is increasing with

Figure 5.20: Influence on the real time for asymmetry parameter a∗ = −1, with and
without vacancy trapping adjustment.

number of the MCS. This happens due to the size of Cu clusters, which are larger

toward the end of the simulation. As the clusters are larger time when vacancy is near

them or trapped inside them increases.

The diffusion of copper clusters, even large ones was observed at simulations with

the negative asymmetry parameter. This is attributed to the vacancy trapping in Cu

clusters which causes rearrangement of atoms in the cluster and consequently causes

diffusion of the whole clusters. In figure 5.21 influence of the asymmetry parameter a∗,
on time evolution of the SRO parameter α1

CuCu is shown. Figure 5.21 confirms influence

of the asymmetry parameter on time before clustering commences. Also simulations

with large a∗, need to be run much longer to reach times where all relevant processes

are sufficiently described. Although, simulation with a∗ = −2.5 was run approximately

3 times longer than the one with a∗ = 0, reached physical time was still very short. This

happens due to influence of the model asymmetry, on where vacancy spends most of
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5. Clustering in binary Fe-Cu alloy

Figure 5.21: Influence of the asymmetry parameter a∗ on the evolution of the SRO
parameter α1

CuCu.

its time. When a∗ < 0, the vacancy prefers Fe and this increases time before clustering

of Cu atoms occurs.

Figure 5.22: Influence of the asymmetry parameter a∗ on the average cluster size
evolution in time.
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5.3 Results of the kMC simulations in the binary Fe-Cu system

Figure 5.22, depicts influence of the asymmetry parameter a∗ on evolution of the

average cluster size. In figure 5.22, lines representing the classical growth (t3/2) and the

LSW regime (t) are also shown. If a∗ ≥ 0, growth phase proceeds as predicted by the

classical growth law. After the growth stage, growth rate of the clusters severely slows

down and curves changes according to the L2(t) ∝ tx, with values for the exponent

x ≈ 0.2, before coarsening starts obeying LSW law. However, clusters obtained with

asymmetry a∗ = −1, experience growth according to the L2(t) ∝ tx with values for

the exponent x ≈ 0.38, before direct agglomeration or coagulation of formed clusters

is observed. This is more clear for asymmetry a∗ = −2.5 where clusters starts to

agglomerate as soon as they are stable enough. The agglomeration of clusters follows

L2(t) ∝ tx, with x ≈ 0.25 and x ≈ 0.18 for a∗ = −1 and a∗ = −2.5, respectively. The

Figure 5.23: Influence the asymmetry parameter a∗ on the number of clusters larger
than pentamers.

agglomeration of clusters was confirmed by following the number of atoms in clusters

through time. The LSW regime where larger clusters grow on expense of the smaller,

causes dissolution of smaller clusters. This is evident from figure 5.23, where influence

of the asymmetry parameter a∗ on the number of clusters larger than pentamers in

time is shown. If agglomeration happens two clusters are simply joined and this causes

instant reduction of one cluster in the simulation box. Contrary when following LSW

regime clusters grow on the expense of smaller ones. Although, smaller clusters are

dissolving, they are still present when results are analysed. Furthermore, they are
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5. Clustering in binary Fe-Cu alloy

beeing detected until their size becomes smaller than setted threshold, which was in

this case at n ≥ 5. This causes diminished decrease in the number of detected clusters

as depicted in figure 5.23 for a ≥ 0.

5.3.5 Evolution of seeded clusters

In previous sections quenching of the disordered distributions from infinite tempera-

ture to the predefined temperature caused random formation of clusters with broad

distributions. In order, to study concentration profiles around clusters and to quantify

their evolution and local environment, spherical clusters with the same dimension were

seeded in mildly supersaturated solid solution. Isothermal evolution of the seeded Cu

clusters with various sizes was performed with the kMC simulations using parameters in

Table 5.2, and at temperature 873 K, simulations box size 503 BCC lattices (14.353 nm)

and background concentration of 0.5 at.% Cu. At temperature 873 K and simulation

parameters used, equlibrium concentration is approximately 0.22 at.%, which means

that simulations were performed at slightly supersaturated conditions. However, used

backgrund concentration causes small enough supersaturation such that no new clusters

were percieved to nucleate. Eight clusters were seeded, each with distance 25 lattice

constants (7.175 nm) from another in all directions. Radius of clusters was variable

and all simulations were performed to 50×103 MCS. Radii of seeded clusters were 1.5,

2, 2.5, 3 and 3.5 lattice constants, yielding 0.4305 nm, 0.574 nm, 0.7175 nm, 0.861 nm

and 1.0045 nm, respectively. Snapshots of initial, intermediate state at 10×103 MCS

and final state (50×103 MCS) are depicted in figure 5.24. Seeded clusters with the

Table 5.12: Coordinates of seeded clusters centre in lattice constants, used for subse-
quent analysis.

P1 P2 P3 P4
(12.5, 12.5, 12.5) (12.5, 12.5, 37.5) (12.5, 37.5, 12.5) (12.5, 37.5, 37.5)

P5 P6 P7 P8
(37.5, 12.5, 12.5) (37.5, 12.5, 37.5) (37.5, 37.5, 12.5) (37.5, 37.5, 37.5)

smallest radius completely dissolve and no new clusters are found to nucleate. When

radius is enlarged some clusters tend to dissolve, whereas some grow and become much

larger than their initial size. Seeded clusters with radii 3.5 and 5 lattice sites only grow

until equilibrium background concentration is reached. If simulation would be let run

further, coarsening should be observed. Evolution of the average cluster size in time
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5.3 Results of the kMC simulations in the binary Fe-Cu system

Figure 5.24: Snapshots of cluster evolution with seeded clusters of various dimensions
in Fe-Cu alloy, obtained during annealing at 873 K. Size of the simulation box is 503

BCC lattices (14.353 nm) and only Cu atoms are displayed due to visibility reasons;
a) initial configuration R=2, b) at 88.3 s, c) at 439 s, d) initial configuration R=2.5,
e) at 84.6 s, f) at 423 s, g) initial configuration R=3, h) at 80 s, i) at 400 s, j) initial
configuration R=3.5, k) at 77.8 s, l) at 388 s.
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5. Clustering in binary Fe-Cu alloy

is depicted in figure 5.25 for all sizes of seeded clusters. All clusters dissolved in simu-

Figure 5.25: Evolution of the average cluster size for various initial sizes of seeded
clusters.

lations where size of the seeded clusters radius was 1.5 lattice sites. This can be seen

in figure 5.25 with sharp decline in detected cluster size for R=1.5 at approximately

10 s. The largest detected clusters are pentamers after seeded clusters dissolve. The

average size of clusters does not increase much in time for size of the seeded clusters

radii 3.5 and 5 lattice sites. The most interesting for further analysis are simulations

where cluster seed radii were 2, 2.5 and 3 lattice sites, where growth, dissolution and

coarsening can be seen. Evolution of clusters in time was analysed through change in

the number of atoms used to build particular cluster. Clusters were marked depending

on its seed position with P1-P8, with details about their coordinates given in Table

5.12.

In figure 5.26 size evolution of seeded clusters in time is presented for initial seed

radius R=2 lattice sites. The seeded clusters are near critical size as most of them starts

to grow. It is expected that the critical cluster radius will increase with depletion of

background concentration. This was confirmed for Fe-Cu alloy system by Bombac and

Kugler, with comparison of results obtained from the mean field and kinetic Monte

Carlo simulations, [178]. Clusters which can follow this increase are growing, while

others start to dissolve. At the end of the simulations only three clusters are present

which are much larger than at the beginning. Two of those already started to dissolve
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5.3 Results of the kMC simulations in the binary Fe-Cu system

Figure 5.26: Size of clusters in time for seeded clusters with starting radius size R=2
lattice sites.

and would disappear if simulation would be let run further. Clusters moment of inertia

for axis through their centre of the mass, calculated with equation (2.71) are displayed

in figure 5.27a. This figure is very similar to time evolution of the number of Cu atoms

in clusters, since only one type of atoms is presented and distance between the particular

atoms and cluster centre of mass is connected to the size of the cluster. In figure 5.27b

Figure 5.27: a) Moment of inertia evolution in time, b) clusters centre of mass deviation
from seed position in time; for seeded clusters with starting radius size 2 lattice sites.

displacement of the clusters centre of mass from seed position in time is shown. This

distance can be used to calculate diffusion of clusters with square displacements of the
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5. Clustering in binary Fe-Cu alloy

cluster centre of mass,
〈
∆r2

〉
, according to Dcluster =

〈
∆r2

〉
/6t. The clusters number

of atoms and its moments of inertia are good indicator which cluster is growing and

which is dissolving. Moment of inertia around cluster mass centre or cluster number,

offers no additional information about evolution of clusters shapes in time. However,

changes of the cluster shape can be addressed with moment of inertia tensor, where

moments of inertia for all possible directions are included. To obtain direction x, y or

Figure 5.28: Evolution of seeded cluster P2 with initial radius 2 lattice sites and its
components of moment of inertia tensor in time at a) initial configuration with 66 Cu
atoms and eigenvalues (2213.87, 2196.79, 2097.23), b) at 176.2 s with 404 Cu atoms and
eigenvalues (52008.3, 47038.2, 42883.1), c) at 439 s with 583 Cu atoms and eigenvalues
(96062.6, 90184.7, 75491).

z in which cluster is growing, moment of inertia tensor can be diagonalized to obtain

eigenvector values. The snapshots in figure 5.25 reveal some strange cluster shapes and

confirms that they cannot be assumed spherical throughout their growth stage. Better

indicator of the cluster shape is its moment of inertia tensor, represented in figure

5.28 for initial configuration and two later times along the snapshot of the cluster.
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5.3 Results of the kMC simulations in the binary Fe-Cu system

At the beginning, as expected diagonal moments have almost same values, while non

diagonal are practically zero. The shape then dramatically changes, with values of the

nondiagonal elements being far from zero. Another proof of the nonspherical shapes

was obtained with diagonalization of the moment of inertia tensor. Eigenvector values

revealed large deviation between components and confirmed cluster flatness in x, y or

z direction.

Figure 5.29: Size of clusters in time for seeded clusters with starting radius size R=2.5
lattice sites.

Similar was observed in simulations where radii of the seeded clusters were 2.5 and

3 lattice sites. In figure 5.29 evolution of the number of atoms in time, for particular

cluster is depicted for seed radius 2.5 lattice sites. Initial radius is larger than critical

since all clusters start to grow. Some of them then dissolve and at the end of simulation

4 clusters are observed, but two of them are already starting to dissolve. The moments

of inertia and displacement of cluster centre of mass from seed position are shown in

figure 5.30. Figure 5.31 depicts representation of the moment of inertia tensor at initial

configuration and two later times. The non diagonal elements are not near zero from the

beginning. This is due to an atom from background which was captured during cluster

identification. Initial almost spherical shape then changes to the multifaceted shaped

cluster far from the spherical shape. Figure 5.32 shows snapshots of the cluster P8, with

initial radius R=2.5 lattice sites at various time increments. All individual snapshots are

collected, each with different colour in figure 5.32a. The initial configuration exhibits
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5. Clustering in binary Fe-Cu alloy

Figure 5.30: a) Moment of inertia evolution in time, b) clusters centre of mass deviation
from seed position in time; for seeded clusters with starting radius size 2.5 lattice sites.

Figure 5.31: Evolution of seeded cluster P3 with initial radius 2.5 lattice sites and its
components of the moment of inertia tensor in time at a) initial configuration with
140 Cu atoms and eigenvalues (7921.07, 7801.8, 7479.45), b) at 169 s with 428 Cu
atoms and eigenvalues (54891.2, 52377.6, 47256.1), c) at 423 s with 762 Cu atoms and
eigenvalues (145193, 134421, 122176).
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5.3 Results of the kMC simulations in the binary Fe-Cu system

Figure 5.32: Snapshots seeded cluster P8 with initial radius R=2.5 lattice sites a)
differently coloured superposition b)-k), b) initial configuration (137 atoms), c) at 42.2
s (182 atoms), d) at 84.6 s (187 atoms), e) at 126.8 s (216 atoms), f) at 169 s (217
atoms), g) at 211.2 s (214 atoms), h) at 253.5 s (263 atoms), i) at 296 s (287 atoms),
j) at 338.2 s (323 atoms), k) at 380.5 s (294 atoms), l) at 423 s (287 atoms).

spherical cluster, composed from 137 Cu atoms. As diffusion causes movement of atoms

through random motion, shape of the cluster changes in time. This particular cluster

reaches largest size at 338.2 s, where it is composed from 323 Cu atoms. After 338.2 s

cluster does not further grow or maintain its size, but starts slowly to dissolve. In figure

5.33, concentration profiles around seeded clusters P1-P8 at various time increments

are shown. Concentration of Cu decreases with distance from the cluster centre of mass,

as clusters are made only from Cu atoms. Local concentrations reach equilibrium value

at distances much larger than the cluster sizes. The effect of clusters on the local

concentration is diminished between 2.5 nm and 4 nm, confirming that chosen initial

value between clusters was large enough.

In figure 5.34 time evolutions of the cluster sizes in number of Cu atoms are shown.
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5. Clustering in binary Fe-Cu alloy

Figure 5.33: Concentration around seeded clusters with starting radius size 2.5 lattice
sites at various times and following initial seed center coordinates; a) P1, b) P2, c) P3,
d) P4, e) P5, f) P6, g) P7, h) P8.
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5.3 Results of the kMC simulations in the binary Fe-Cu system

Similar than in previous case, initial seed radius exceed critical radius and all clusters

are observed to initialy enlarge. Although seven clusters were counted at the end of

simulation, only five are larger than initial seed size, and three of them are already

dissolving and would disappear if simulation would be let run further. Clusters

Figure 5.34: Size of clusters in time for seeded clusters with starting radius size R=3
lattice sites.

Figure 5.35: a) Moment of inertia evolution in time, b) clusters centre of mass deviation
from seed position in time; for seeded clusters with starting radius size 3 lattice sites.

without tendency to dissolve, have approximately at least two times more atoms at the

end of the simulations than their initial seed size. Figure 5.35a shows evolution of the

moment of inertia in time which is again very similar to the evolution of the cluster size
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5. Clustering in binary Fe-Cu alloy

in time. Time evolution of the cluster centre of mass displacement from the initial seed

positions given in Table 5.12, are depicted in figure 5.35b. Elements of the moment

of inertia tensors are for the cluster P7 with starting size R=3 lattice sites, for initial

and two subsequent configurations, along cluster snapshots shown in figure 5.36. At

the beginning of the simulations the cluster is spherical, composed of 259 Cu atoms.

The nondiagonal moments are zero and the diagonal moments of inertia are equal. Its

shape is near spherical at 159.9 s, however it changes to faceted ellipsoid at 400.2 s.

Figure 5.36: Evolution of seeded cluster P7 with initial radius 3 lattice sites and its
components of moment of inertia tensor in time at a) initial configuration with 259 Cu
atoms and eigenvalues (21355.6, 21355.6, 21355.6), b) at 159.9 s with 459 Cu atoms and
eigenvalues (60567.4, 56659.7, 54812.8), c) at 400.2 s with 670 Cu atoms and eigenvalues
(122955, 110917, 94401.7).

In this section clusters seeded to the predefined positions in slightly supersaturated

medium in the Fe-Cu alloy system were isothermally annealed at 873 K. Their evolution

is governed by attachment and detachment of Cu monomers. It was show that clusters

initially grow before their dissolution commences. Largest clusters observed, are at the

end of the simulation runs much larger than their initial seed size. Growth strongly

118



5.3 Results of the kMC simulations in the binary Fe-Cu system

influences their shapes, which changes from initial spherical shape into the compressed

shape either in x, y or z directions.

5.3.6 Evolution of microstructure with initial conditions previously

annealed at high temperature

Starting microstucture was obtained in simulations by random populating lattice sites

with desired atoms. To study influence of unstable clusters on nucleation, simulations

with different starting microstucture were performed. First random solid solution with

Table 5.13: Number of cluster obtained from isothermal annealing at 1123 K.

Dimers Trimer Tetramers Pentamers Hexamers Total

621 151 32 6 4 817

1 at.% Cu was isothermally annealed at 1123 K and then used as input microstucture

for precipitation study at 873 K. In table 5.13 number of subcritical clusters obtained at

the end of isothermal annealing at 1123 K is presented. If starting conditions used here,

are compared to randomly distributed atoms used previously (cf. table 5.5), increased

Figure 5.37: Evolution of the SRO parameter for random and previously annealed
initial conditions in Fe-Cu alloys with 1 at.% Cu isothermally treated at 873 K.
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5. Clustering in binary Fe-Cu alloy

number of subcritical clusters (dimmers, trimers, tetramers, . . . ) is noticed. Enlarged

number of subcritical clusters is noticed in dimmers, trimers, tetramers, pentamers,

hexamers and also in total number compared to random initial conditions.

In figure 5.37 comparison of evolution of the SRO parameters αCuCu for random

initial conditions and previously annealed solid solution at 1123 K is depicted. Small

difference in the curves can be seen. After incubation time, Cu-Cu clustering rate is

higher for previously annealed initial conditions. However, approximately at the middle

of the growth stage clustering rate for random solid solution becomes greater.

Figure 5.38: Evolution of the average cluster size for random and previously annealed
initial conditions in Fe-Cu alloys with 1 at.% Cu isothermally treated at 873 K.

In figure 5.38 comparison of evolution of average cluster sizes for random initial

conditions and previously annealed solid solution at 1123 K is shown. Simulations were

performed with 1 at.% Cu and at 873 K. When solid solution is previously annealed

incubation time for nucleation is shorter. Furthermore, growth rate is lower compared

to the randomly distributed solid solution. Shorter incubation time is attributed to

increased number of subcritical clusters in previously annealed microstucture. Fur-

thermore, distinction between nucleation and growth stages is for previously annealed

starting conditions diminished. In the second part of the growth stage and for coars-

ening stage, curves are almost identical. This shows that unstable clusters influences

kinetic pathways at the beginning of precipitation (nucleation and growth commence-

ment) while average sizes of particles are at the end are almost identical.
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Let the future tell the truth,

and evaluate each one accord-

ing to his work and accomplish-

ments. The present is theirs;

the future, for which I have re-

ally worked, is mine.

Nikola Tesla (1856-1943) 6
Clustering in the ternary Fe-Cu-Ni and

Fe-Cu-Mn and in the quaternary

Fe-Cu-Ni-Mn alloys

Extension of the binary model to simulate Cu precipitation, described in previous

chapter are a ternary Fe-Cu-Ni or Fe-Cu-Mn and a quaternary Fe-Cu-Ni-Mn simulations

models.

6.1 Model parametrization

The ternary and quaternary model systems can be treated as an appropriate number

of binary models. The parametrization of separate binary models is then performed

as described in previous chapter. The thermodynamic material properties used in

parametrization are presented in Table 6.1. Symmetrical model was used, where binding

energies of Cu, Ni and Mn were set equal to the binding energy of Fe, which was

calculated from the cohesive energy in the pure metal.

Heteroatomic interaction energies ε
(i)
XY, associated with mixing energy as EmixXY

(cf. equation (5.3)) were obtained from separate binary systems, in the ternary systems

from three and in the quaternary system from six. For example, in the Fe-Cu-Ni, het-

eroatomic interaction energies were calculated from mixing energies of Fe−Cu, Fe−Ni

and Cu−Ni. The saddle point energies were determined from the vacancy migration

energy in pure phases and the same values were used in the ternary and quaternary
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Table 6.1: Material properties of Fe, Cu, Ni and Mn used for calculation of interaction
energies and kinetic parameters.

Lattice constant of α-Fe a 0.287 nm, [169]
Number of first neighbours z1 8
Number of second neighbours z2 6
Cohesive energy of Fe EcohFe −4.28 eV, [169]
Cohesive energy of Cu EcohCu −3.49 eV, [169]
Cohesive energy of Ni EcohNi −2.92 eV, [169]
Cohesive energy of Mn EcohMn −4.44 eV, [169]
Mixing energy of Fe−Cu EmixFeCu −0.52 eV, [170]
Mixing energy of Fe−Ni EmixFeNi −0.02 eV, [132]
Mixing energy of Fe−Mn EmixFeMn −0.17 eV, [132]
Mixing energy of Cu−Ni EmixCuNi −0.05 eV, [132]
Mixing energy of Cu−Mn EmixCuMn 0.0 eV, [132]
Mixing energy of Ni−Mn EmixNiMn 0.32 eV, [132]
Vacancy formation energy of Fe EVforFe 1.60 eV, [152]
Vacancy formation energy of Cu EVforCu 1.28 eV, [152]
Vacancy formation energy of Ni EVforNi 1.79 eV, [152]
Vacancy formation energy of Mn EVforMn 1.60 eV, [152]
Vacancy migration energy of Fe EVmigFe 0.90 eV, [152]
Vacancy migration energy of Cu in Fe EVmigCu 0.70 eV, [152]
Vacancy migration energy of Ni in Fe EVmigNi 1.04 eV, [152]
Vacancy migration energy of Mn in Fe EVmigMn 0.90 eV, [152]
Diffusion constant of Fe D0 Fe 2.01 10−4 m2 s−1, [171]
Diffusion constant of Cu D0 Cu 2.16 10−4 m2 s−1, [171]
Diffusion constant of Fe D0 Fe 1.40 10−4 m2 s−1, [171]
Diffusion constant of Cu D0 Cu 1.49 10−4 m2 s−1, [171]
Attempt frequency of Fe νFe 8.70× 1012 s−1, [169]
Attempt frequency of Cu νCu 6.67× 1012 s−1, [169]
Attempt frequency of Ni νFe 8.02× 1012 s−1, [169]
Attempt frequency of Mn νCu 8.54× 1012 s−1, [169]

systems. The saddle point energy is in quaternary system given as

ESpX = EVmigX + z1εXV + cX

[
(z1 − 1)ε

(1)
XX + z2ε

(2)
XX

]
+ cY

[
(z1 − 1)ε

(1)
XY + z2ε

(2)
XY

]
+ cW

[
(z1 − 1)ε

(1)
XW + z2ε

(2)
XW

]
(6.1)

+ cZ

[
(z1 − 1)ε

(1)
XZ + z2ε

(2)
XZ

]

122



6.1 Model parametrization

where cX, cY, cW and cZ are concentrations of X, Y, W and Z atoms, respectively.

EVmigX is a vacancy migration energy of X and εij are pair interaction energies. The

saddle point energies were calculated with concentrations of Y, W and Z at 1 at.% for

all species. Attempt frequencies were assumed to be equal and Debye frequency of iron

was used in the simulations, i.e. νFe = νCu = νNi = νMn = νDFe
. These assumption does

not change the kinetic pathways and influences only on the kinetics and consequently

the obtained time. Calculated simulations parameters (interaction energies and kinetic

parameters) are presented in Table 6.2.

Table 6.2: Calculated simulations parameters used in ternary and quaternary alloy
systems.

ε
(1)
FeFe = −0.778 eV ε

(2)
FeFe = −0.389 eV

ε
(1)
CuCu = −0.778 eV ε

(2)
CuCu = −0.389 eV

ε
(1)
NiNi = −0.778 eV ε

(2)
NiNi = −0.389 eV

ε
(1)
MnMn = −0.778 eV ε

(2)
MnMn = −0.389 eV

ε
(1)
FeCu = −0.731 eV ε

(2)
FeCu = −0.366 eV

ε
(1)
FeNi = −0.776 eV ε

(2)
FeNi = −0.388 eV

ε
(1)
FeMn = −0.763 eV ε

(2)
FeMn = −0.381 eV

ε
(1)
CuNi = −0.774 eV ε

(2)
CuNi = −0.387 eV

ε
(1)
CuMn = −0.778 eV ε

(2)
CuMn = −0.389 eV

ε
(1)
NiMn = −0.807 eV ε

(2)
NiMn = −0.404 eV

ε
(1)
FeV = −0.335 eV ε

(1)
CuV = −0.335 eV

ε
(1)
NiV = −0.335 eV ε

(1)
MnV = −0.335 eV

ESpFe = −9.556 eV ESpCu = −9.129 eV
ESpNi = −9.547 eV ESpMn = −9.415 eV
νFe = 8.70× 1012 s−1 νCu = 8.70× 1012 s−1

νNi = 8.70× 1012 s−1 νMn = 8.70× 1012 s−1

The migration barriers were from appropriate parameters given in Table 6.2 calcu-

lated with equation (5.10) adapted to the ternary or quaternary systems.

As in the case of binary system, also here two asymmetry parameters can be de-

fined, a∗ and c∗ with equations (5.12) and (5.11), respectively. However, since ternary

and quaternary models can be build from simple binary, the number of asymmetry

parameters depends on the number of simple binary models used for particular ternary

or quaternary model system. Simulations were performed with a∗ = 0, and asymmetry

was introduced through the saddle point energies. Table 6.3 represents all asymmetry
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parameter c∗ introduced into simulations with ternary and quaternary models.

Table 6.3: Possible asymmetry parameters c∗ for simulated alloy systems.

Fe-Cu-Ni Fe-Cu-Mn Fe-Cu-Ni-Mn

c∗FeCu c∗FeCu c∗FeCu
c∗FeNi c∗FeMn c∗FeMn

c∗CuNi c∗CuMn c∗FeMn

c∗CuNi
c∗CuMn

c∗NiMn

6.2 Results

In this section results obtained with the kMC simulations in the ternary Fe-Cu-Ni

and Fe-Cu-Mn and in the quaternary Fe-Cu-Ni-Mn alloys are presented. The kMC

simulations were performed according to the residence time procedure and broken bond

model SPEM2 (cf. section 4.2) using the developed algorithm presented in Appendix A

and simulations parameters presented in Table 5.2. Results from several runs did not

reveal significantly different results for each alloy system. Simulations were performed

with chemical conditions presented in Table 6.4 where content of Fe is base.

Table 6.4: Chemical compositions in at.% used in kMC simulations.

Fe-Cu-Ni Fe-Cu-Mn Fe-Cu-Ni-Mn

1 at.% Cu 1 at.% Cu 1 at.% Cu
1 at.% Ni 1 at.% Mn 1 at.% Ni

1 at.% Mn

Size of the simulation box for the ternary alloys was 803 BCC lattices (233 nm). In

figure 6.1 snapshots of obtained clusters in Fe-Cu-Mn alloy with 1 at.% Cu and 1 at.%

Mn are presented. Figure 6.2 depicts extracted cluster and induvidual atom groups.

At approximately 30 s, Cu atoms form nucleus which then starts to grow in time.

In figure 6.3 evolution of the short range order parameters αCuCu, αMnMn, and

αCuMn from kMC simulations of Fe-Cu-Mn alloy are shown. In order to quantify

influence of the Mn impurity, figure 6.3 depicts the SRO parameter αCuCu obtained
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6.2 Results

Figure 6.1: Snapshots of clusters in Fe-Cu-Mn alloy with 1 at.% Cu and 1 at.% Mn,
obtained from kMC simulations during annealing at 873 K. Size of the simulation box
is 803 BCC lattices (233 nm), Cu atoms are orange and Mn are blue. Fe atoms are not
shown due to visibility reasons; a) initial disordered configuration, b) at 66.5 s, c) at
133.2 s, d) at 334.7 s, e) at 1356 s, f) at 2720 s.
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alloys

Figure 6.2: Snapshots of individual atom group clusters from kMC simulations during
isothermal treatment at 873 K for Fe-Cu-Mn alloy with 1 at.% Cu and 1 at.% Mn.
Size of the simulation box is 803 BCC lattices (233 nm), Cu atoms are orange and Mn
atoms are blue; a)-c) at 66.5 s, d)-e) at 133.2 s, f)-h) at 334.7 s, i)-k) at 1356 s, l)-m at
2720 s.
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in binary Fe-Cu alloy with dashed line. Both curves are similar and follows S curve

shape. At the beginning incubation time is present before SRO parameter αCuCu starts

to increase. Compared to the binary Fe-Cu alloy, incubation time becomes longer when

Mn impurities are added. Mixing energies of Fe-Mn (−0.17 eV) and Fe-Cu (−0.52

eV) should cause phase separation of both phases and competition between both has

influence on the incubation time and impede increase rate of the SRO parameter.

Figure 6.3: Evolution of the short range order parameters in Fe-Cu-Mn alloy with 1
at.% Cu and 1 at.% Mn at 873 K. Dashed line presents evolution of the short range
order parameter in binary Fe-Cu alloy at same conditions.

From figure 6.2 slight mixing of the Cu and Mn in outer shell of formed precipitate is

seen, which is confirmed with rise of the value of SRO parameter αCuMn in figure 6.3.

Beside evolution of the short range order parameter αXX, evolution of the average

cluster size in time was used to analyse obtained results. In figure 6.4 evolution of

the average cluster size, together with lines for classical growth law (t3/2) and LSW

regime (t) are presented. At the beginning, the average cluster size does not change in

time until stable nuclei are formed. After that, the average cluster size starts to slowly

increase. Approximately at the middle of the simulation the average cluster size start to

follow classical growth law. During growth stage the the mean average cluster increases

according to L2(t) ∝ tx with x ≈ 1/1.25 in the range between 30 s and 200 s. Following

the growth period at times longer than 200 s, the growth stalls and average cluster size

reaches plateau. When average cluster size is reached, the equilibrium concentration
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Figure 6.4: Evolution of the average cluster size in time for Fe-Cu-Mn alloy isothermally
annealed at 873 K.

in the matrix is attained. Slight increase of the average cluster size curve at the end is

indication of slow commencement of the LSW regime.

In the case of the ternary Fe-Cu-Mn alloy, the addition of Mn causes significant

changes in the clustering kinetics. Before influence of two impurities on the clustering

kinetics was analysed, the second impurity was introduced into Fe-Cu alloy similar than

in the case of Fe-Cu-Mn alloy. Second impurity used was Ni with snapshots obtained

from kMC simulations presented in figure 6.5. Beside change in impurity atom type

and its influence on the simulation parameters, both simulation runs were performed at

same starting conditions. Size of the simulation box used was 803 BCC lattices which

yields 233 nm. Snapshots of extracted clusters and their individual atom groups are

shown in figure 6.6. Comparison of formed clusters reveal very little mixing between Cu

and Ni in the outer shell of formed clusters. Amount of Ni mixed with Cu in the outer

shell of the precipitate is much smaller than in case of added Mn. Evolution of the

SRO parameter α is depicted in figure 6.7, where it is compared to the evolution of the

short range order parameter obtained in binary Fe-Cu alloy at same conditions. The

curves are very similar if much longer incubation time in the case of Fe-Cu-Ni alloy is

neglected. Values of the SRO parameter when its peak is reached are also very similar.

Evolution of the mean cluster size in time is shown in figure 6.8. The average cluster

size is almost constant for very long time before exhibits sharp increase in size. During
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the growth stage approximately between 180 s and 400 s, curve changes according to

L2(t) ∝ tx with x ≈ 0.93. Between 400 s and 1000 s, the growth rate slows down

before becomes constant where equilibrium matrix is attained. The LSW regime can

not proceed as only one cluster was formed during simulation. Addition of Ni causes

significant changes in clustering kinetics. The amount of time before stable nuclei are

formed is very long due to influences of the mixing energies as explained in the case

of ternary Fe-Cu-Mn alloy. However, when stable nuclei are finally formed the growth

rate is almost linear in time.

Simulations performed with ternary alloy model reveal that additions of various

impurities has significant effects on the clustering kinetics. The ternary alloy simulation

model was then made a bit more complex by addition of another element. That allowed

to study influence of both impurities at the same time. Obtained results are first

presented only for quaternary model and then also compared to the ternary model for

both impurities. The model for quaternary Fe-Cu-Ni-Mn alloy was build like previous

ones with used simulation parameters given in Table 6.2. Size of the simulation box

was 803 BCC lattices (233 nm). At the beginning the disordered quaternary alloy with

1 at.% Cu, 1 at.% Ni and 1 at.% Mn atoms and one vacancy was quenched at 873

K and then isothermally anneald at the same temperature. In figure 6.9 snapshots

obtained from kMC simulation at various times are presented. Although only Cu, Ni

and Mn atoms are depicted the amount of atoms makes visibility of formed clusters

very difficult. Extracted clusters and induvidual atom groups are shown in figure 6.10.

Clustering starts with stable nuclei of Cu atoms. These nuclei then grow and attract

Mn and Ni atoms on outer shells. Figure 6.10 reveals that amount on Ni atoms is lower

than Mn atoms in clusters. Evolution of SRO parameter α in simulated quaternary

Fe-Cu-Ni-Mn alloy is shown in figure 6.11 where dashed line coresponds to the SRO

parameter of the binary Fe-Cu alloy simulated at same conditions. Both curves are

almost identical with some minor distinctions. Differences are in the incubation time

period before αCuCu increases and peak values of αCuCu. The average cluster size

evolution in time is depicted in figure 6.12 and follows S curve shape. Cluster size is

up to 60 s almost constant. After that cluster growth begins and size evolves according

to L2(t) ∝ tx with x ≈ 0.62. The growth stage takes place between 80 s and 200 s,

following by slow transition into coarsening regime, which at the very end starts to

follow classical LSW coarsening law.

In previous paragraph results from ternary and quaternary alloys were compared

to the well analysed binary Fe-Cu alloy. In order to reveal true influence of each

impurity separately or combined, curves for SRO parameter α were collected in one
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Figure 6.5: Snapshots from kMC simulations of Fe-Cu-Ni alloy with 1 at.% Cu and
1 at.% Ni, obtained from kMC simulations during annealing at 873 K. Size of the
simulation box is 803 BCC lattices (233 nm), Cu atoms are orange and Ni atoms
are green. Fe atoms are not shown due to visibility reasons; a) initial disordered
configuration, b) at 67.9 s, c) at 244.5 s, d) at 680.7 s, e) at 1368 s, f) at 2743 s.
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Figure 6.6: Snapshots of individual atom group clusters from kMC simulations during
isothermal treatment at 873 K for Fe-Cu-Ni alloy with 1 at.% Cu and 1 at.% Ni. Size
of the simulation box is 803 BCC lattices (233 nm), Cu atoms are orange and Ni atoms
are green; a)-c) at 67.9 s, d)-e) at 244.5 s, f)-h) at 680.7 s, i)-k) at 1368 s, l)-m at 2743
s.
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alloys

Figure 6.7: Evolution of the short range order parameter in Fe-Cu-Ni alloy with 1 at.%
Cu and 1 at.% Ni at 873 K. Dashed line presents evolution of the short range order
parameter in binary Fe-Cu alloy at same conditions.

Figure 6.8: Evolution of the average cluster size in time for Fe-Cu-Ni alloy isothermally
annealed at 873 K.
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Figure 6.9: Snapshots of precipitation in Fe-Cu-Ni-Mn alloy with 1 at.% Cu, 1 at.% Ni
and 1 at.% Mn, obtained from kMC simulations during isothermal treatment at 873
K. Size of the simulation box is 803 BCC lattices (233 nm), Cu atoms are orange, Ni
atoms are blue and Mn atoms are red, Fe atoms are not shown due to visibility reasons;
a) initial disordered configuration, b) at 80.7 s, c) at 134.7 s, d) at 202 s, e) at 476 s,
f) at 2623 s.
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Figure 6.10: Snapshots of individual atom group clusters from kMC simulations during
isothermal treatment at 873 K for Fe-Cu-Ni-Mn alloy with 1 at.% Cu, 1 at.% Ni and
1 at.% Mn. Size of the simulation box is 803 BCC lattices (233 nm), Cu atoms are
orange, Ni atoms are blue and Mn atoms are red; a)-d) at 80.7 s, e)-h) at 134.7 s, i)-l)
at 202 s, m)-p) at 476 s, q)-u) at 2623 s.
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Figure 6.11: Evolution of the short range order parameter in Fe-Cu-Ni-Mn alloy with
1 at.% Cu, 1 at.% Ni and 1 at.% Mn at 873 K. Dashed line presents evolution of the
short range order parameter in binary Fe-Cu alloy at same conditions.

Figure 6.12: Evolution of the average cluster size in time for Fe-Cu-Ni-Mn alloy isother-
mally annealed at 873 K.
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Figure 6.13: Evolution of the short range order parameter α1
CuCu in time for Fe-Cu-Ni,

Fe-Cu-Mn and Fe-Cu-Ni-Mn alloy systems. Dashed line presents evolution of the short
range order parameter in binary Fe-Cu alloy at same conditions.

Figure 6.14: Evolution of the average cluster size in time for Fe-Cu-Ni, Fe-Cu-Mn and
Fe-Cu-Ni-Mn alloy systems.
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graph. Although, various simulation box sizes does not influences evolution of the

SRO parameter α and average cluster size; cf. section 5.3.1, the same simulation box

sizes were used in all simulations (803 BCC constants) compared here. Figure 6.13

shows evolution of SRO parameter α1
CuCu for ternary Fe-Cu-Ni, ternary Fe-Cu-Mn and

quaternary Fe-Cu-Ni-Mn alloys. The same figure also depicts SRO parameter α1
CuCu

for binary Fe-Cu alloy with dashed line. Clear distinctions are visible between all curves

displayed. Addition of Ni atoms causes significant increase of incubation time before

clustering occurs. This incubation time is much smaller when only Mn is added to

binary Fe-Cu alloy or when both Mn and Ni are introduced, albeit compared to the

pure binary Fe-Cu alloy still significantly increased.

Nucleation, growth and coarsening stages can be identified with evolution of the

average cluster size. Figure 6.14 shows evolution in time of the average precipitate

size for all three alloys simulated in this chapter. Curve representing evolution of

mean size of the quaternary alloy is for nucleation and growth stage located between

curves where Mn was added and curve where Ni was used as impurity. Average size of

the clusters at the end of the simulations is lower for quaternary alloy. Both ternary

systems exhibit almost identical sizes. Addition of the Mn impedes growth rate, while

Ni impurity causes increase of the growth rate. Size of the clusters change according to

the L2(t) ∝ tx with values for the exponent x for particular alloy system presented in

Table 6.5, where L2(t) are expressed as radii. The highest growth rates exhibit ternary

Table 6.5: Values of exponent x for growth stage according to the L2(t) ∝ tx, with
average cluster size expressed as radii.

Alloy x

Fe-Cu-Ni 0.93
Fe-Cu-Mn 0.8
Fe-Cu-Ni-Mn 0.62

Fe-Cu-Ni system. A little slower growth is observed in ternary Fe-Cu-Mn system, while

quaternary Fe-Cu-Ni-Mn system grows according to the L2(t) ∝ x = 0.62, which is very

near to the classical growth rate (x = 0.5).
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1977) 7
The phase separation in Ni-Cr-Al alloy

Alloys with high content of Ni are called nickel superalloys and are intended for parts un-

der heavy thermal stresses. The decomposition of supersaturated NiCrAl solid solutions

involves two processes, ordering and phase separation. The equilibrium microstructure

exhibits face centred cubic (FCC) matrix with various carbides, and ordered L12, γ′

phase like Ni3Al or Ni3Cr , depending on the alloy chemical composition. The trans-

formation FCC → L12 crystal structure is typical first order transition. In figure 7.1

ternary phase digram for Ni-Cr-Al system at 873 K is depicted, [179].

Figure 7.1: Ni part of equilibrium ternary phase diagram of Ni-Cr-Al alloy at 873 K,
[179].

Nickel superalloys with various chemical compositions were extensively studied ex-
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7. The phase separation in Ni-Cr-Al alloy

perimentally, [15, 16, 179–186] and theoretically with phase field and Monte Carlo

methods, [15, 16, 31, 35, 38, 186–189].

- Al

- Ni

Figure 7.2: Schematic presentation of Ni3Al with L12 crystallographic structure.

Small lattice mismatch between FCC matrix and ordered γ′ precipitates with L12

structure, shown in figure 7.2 justifies use of the rigid lattice for the kMC simulations.

The mismatch is around 1 %, therefore at initial stages coherency can be kept and

elastic strains neglected, [35]. Lattice constant of pure FCC nickel is a = 0.352 nm,

[190]. The γ′ unit cell consists of nickel atoms at the face centres, and Al atoms at

the cube corners. Each nickel atom is surrounded by eight other Ni atoms and four

Al atoms. Every Al atom has two Ni atoms as its first nearest neighbours, and no

other Al atom, [187]. Phase diagram in figure 7.1 show that solubility of Cr is large in

Ni and Al, therefore large amount of Cr can be accommodated in Ni3Al phase. This

was previously confirmed by other studies, [16, 180], where was also suggested that Cr

can substitute both Al and Ni, and that beside expected Ni3Al phase, also Ni3Cr L12

crystal structure is possible.

7.1 Model parametrization

Parameters used in kMC simulations are presented in Table 7.1. Full Ni-Cr-Al alloy

thermodynamics needs to be embodied in the simulation parameters and was based

on the data from literature, [16, 31]. Interatomic parameters taken from reference [31]

were deduced from a cluster expansion of the cohesive energy of Ni(Al,Cr) supercells

computed with density functional theory, local density approximation, combined with

non-local, norm-conserving pseudopotentials, and plane-wave expansions. Calculations

used the band-by-band conjugate gradient technique to minimize the total energy with
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Table 7.1: Simulation parameters used for kMC simulations in NiCrAl alloy

ε
(1)
NiNi = −0.7485 eV ε

(2)
NiNi = −0.0135 eV

ε
(1)
CrCr = −0.6845 eV ε

(2)
CrCr = −0.0112 eV

ε
(1)
AlAl = −0.5786 eV ε

(2)
AlAl = −0.0265 eV

ε
(1)
NiCr = −0.7582 eV ε

(2)
NiCr = 0.0258 eV

ε
(1)
NiAl = −0.7495 eV ε

(2)
NiAl = 0.0349 eV

ε
(1)
CrAl = −0.6963 eV ε

(2)
CrAl = 0.0225 eV

ε
(1)
NiV = −0.178 eV ε

(1)
CrV = −0.223 eV

ε
(1)
AlV = −0.221 eV
ESpNi = −9.750 eV ESpCr = −9.862 eV
ESpAl = −9.412 eV νNi = 1.10× 1015 s−1

νCr = 8.70× 1014 s−1 νAl = 1.10× 1015 s−1

respect to plane-wave coefficients. Kinetic parameters, ESpX and νX were taken from

reference [16] and they reproduce the impurity diffusion of Al and Cr in Ni accurately.

7.2 Results

In this section results obtained with kMC simulation on Ni-5.2Al-14.2Cr at.% alloy

are presented. Size of the simulation box used, was 78 × 78 × 39 FCC lattices or

27.46 × 27.46 × 13.73 nm. This amounts to total of 949104 available atom positions,

which were populated with 764977 Ni atoms, 134773 Cr atoms, 49354 Al atoms and

one vacancy. Total random atom distribution was quenched from infinite temperature

to 873 K and then isothermally annealed at that temperature. In figure 7.3 snapshots

obtained from kMC simulations at different times are presented. Ni atoms are omitted

due to visibility reasons. Snapshots reveal, that initial disordered configuration is

gradually changing as L12 phase precipitates an grows. From obtained results, the

ordered γ′ phase with L12 structure (cf. figure 7.2) was extracted. Two possible

variants of the γ′ precipitates are possible, Ni3Al and Ni3Cr and their evolution in

time is shown in figure 7.4. The Ni3Cr variant is in obtained results present from the

very early stage, which indicates that Cr starts to order with respect to Al atoms. Its

amount slightly increases at first, before starts do decreasing. The Ni3Al phase variant

was not detected in a early stage of the simulations. After Ni3Al phase was formed, its

amount very quickly reached maximum value.

Snapshots of extracted Ni3Al and Ni3Cr precipitates at four different times are
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Figure 7.3: Snapshots of isothermally treated Ni-Cr-Al alloy with 15.2 at% Cr, 5.2 at%
Al, at 873 K obtained from kMC simulations. Due to visibility reasons only Cr (blue)
and Al (red) atoms are displayed; a) initial disordered configuration, b) at 0.04 s, c) at
0.18 s, d) at 0.28 s, e) at 0.39 s, f) at 0.49 s.
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Figure 7.4: Time evolution of the amount of Ni3Al and Ni3Cr precipitates.

shown in figures (7.5) and (7.6), respectively. Optical comparison of both figures reveal

higher amount of the Ni3Cr precipitates, which are smaller compared to the extracted

Ni3Al precipitates.

In figure 7.7 are depicted γ’ precipitates extracted from microstructures obtained

from isothermal annealing at 873 K of Ni-Cr-Al alloy with 15.2 at% Cr, 5.2 at% Al

using threshold concentration 0.66 around Ni atoms. If these snapshots are compared

to snaphots of extracted exact L12, γ′ phases Ni3Al and Ni3Cr shown in figures 7.5 and

7.6, yielded results are diffrent. This difference is attributed to concentration threshold

arround searched atoms which collects whole sorroundings belonging to that particular

treshold. When search is executed for exact crytal structure only those atoms are

collected. The severe difference in obtained results suggests that special care must be

put into analysis of obtained data either from computer or real experiments.

Similar than in the case of Fe-Cu alloys, short range order parameter can be used

to investigate precipitation kinetics. In the case of ternary Ni-Cr-Al alloys several SRO

parameters are possible to be defined which enable insight into the phases evolution,

simulated with kMC. The precipitation kinetics in Ni-Cr-Al alloy simulated in this chap-

ter was investigated through time evolution of α1
AlAl, α

2
AlAl, α

1
CrCr, α

2
CrCr, α

1
AlNi, α

2
AlNi,

α1
CrNi and α2

CrNi SRO parameters. In figure 7.8 evolution of SRO parameters α1
AlAl,

α2
AlAl, α

1
CrCr and α2

CrCr in time are depicted. All SRO parameters are increasing, with

α2
AlAl exhibiting highest increase rate, which indicates that Al atoms are positioning
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Figure 7.5: Snapshots of obtained Ni3Al precipitates in isothermally treated Ni-Cr-Al
alloy with 15.2 at% Cr, 5.2 at% Al, at 873 K. Al atoms are red and Ni atoms are silver;
a) at 0.18 s, b) at 0.28 s, c) at 0.39 s, d) at 0.49 s.

themselves for Ni3Al phase, where Al is present on the FCC cube corner sites. Similar

behaviour was observed also for Cr atoms, which also tend to form γ′ precipitates. The

ordering of Al atoms on first neighbouring positions was not noticed. However, α1
CrCr

starts to increase towards the end of the simulation, suggesting that Ni is being replaced

on the face centre sites of the FCC cells. This happens because of high solubility of

Cr in Ni and was previously confirmed with experimental observations, [180] and kMC

simulations, [16].
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7.2 Results

Figure 7.6: Snapshots of obtained Ni3Cr precipitates in isothermally treated Ni-Cr-Al
alloy with 15.2 at% Cr, 5.2 at% Al, at 873 K. Cr atoms are blue and Ni atoms are
silver; a) at 0.18 s, b) at 0.28 s, c) at 0.39 s, d) at 0.49 s.

In figure 7.9 heteroatomic short range order parameters α1
AlNi, α

2
AlNi, α

1
CrNi and

α2
CrNi are shown. SRO parameters α1

AlNi and α1
CrNi describes tendency of Al and Cr to

form bonds on first neighbour positions with Ni. Both parameters are constant at the

beginning and start to decrease toward the end of the simulation. As expected, SRO

parameters α2
AlNi and α2

CrNi are decreasing from the beginning, with α2
AlNi exhibiting

higher decrease rate. When γ′ precipitates are formed, Ni atoms are expected on

their firs nearest neighbour positions. With increasing amount of γ′ phase, the SRO
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Figure 7.7: Snapshots of obtained γ’ precipitates using threshold concentration around
Ni atoms in isothermally treated Ni-Cr-Al alloy with 15.2 at% Cr, 5.2 at% Al, at 873
K. Cr atoms are blue, Al atoms are red and Ni atoms are silver; a) at 0.18 s, b) at 0.28
s, c) at 0.39 s, d) at 0.49 s.

parameters α2
AlNi and α2

CrNi should decrease.

Parts made from nickel superalloys are often used in very demanding environment

and exposed to high thermal loadings. The strength of nickel superalloys is derived from

the presence on γ′ precipitates, which then in the presence of thermal loads grow and

coarsen. This can have undesired effects, therefore simulations to predict life span of

Ni-superalloys are welcomed. Simulations performed here on the highly supersaturated

Ni-Cr-Al alloy, nucleation of ordered γ′ precipitates was observed from the beginning.
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7.2 Results

Figure 7.8: Evolution of the short range order parameter in Ni-Cr-Al alloy at 873 K
for homoatomic combinations.

Figure 7.9: Evolution of the short range order parameter in Ni-Cr-Al alloy at 873 K
for heteroatomic combinations.
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At the early stages of phase separation by kMC simulations, two types of ordered γ′

precipitates (Ni3Al and Ni3Cr) were detected and their time evolution was analysed.

Detection of both variants of the γ′ precipitates is in agreement with previous experi-

mental and modeling studies, [16, 31, 35, 38, 180, 183–186, 186, 188]. Comparison of

matrix and γ′ precipitates with 3D atom probe (3D APT) confirms very small mismatch

between their lattice parameters and confirms justification to perform simulations with

the use of rigid lattice diffusion model. Furthermore, similar kinetic pathways were also

observed with 3D APT studies, which confirms used simulation parameters.
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The scientist is not a person

who gives the right answers,

he’s one who asks the right

questions.

Claude Lévi-Strauss

(1908-2009) 8
The simulation of coupled

interstitial/substitutional diffusion in

Fe-C alloy

The precipitation of carbides is very important and helps to control physical properties

of the steels. Other chemical elements (e.g. Nb, Ti, V, . . . ) which enhances carbide

precipitation are often added to steels. In order to obtain given microstructure ad-

equate processing is needed. To better choose thermal treatments for desired phase

composition it is important to predict the precipitation kinetics. The Fe-C phase dia-

gram, shown in figure 8.1 provides valuable foundation on which to build knowledge of

steels in their immense variety, [191].

This chapter focuses on the homogeneous precipitation in α-iron. The simulations

model used in previous chapters was made even more complicated with addition of

simultaneous diffusion of the interstitial atoms. Therefore, the simulations model com-

bines vacancy diffusion of the substitutional elements (Fe) and interstitial diffusion of

C atoms. If plain carbon steel is aged at 473 K or above, the orthorhombic cementite

Fe3C is formed, [191]. This is also evident from the Fe-C phase diagram, where phase

composition below 1000 K is made from ferrite and cementite.

8.1 Model parametrization

Rigid lattice used for simulations in previous chapters needs to be changed to account

interstitials. Since carbon atoms diffuse on different lattice sites than substitutional

elements, it is logical to define two separate sublattices. First sublattice accommodates
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Figure 8.1: The Fe-C phase diagram, [191].

Fe atoms and substitutional vacancy, while other sublattice responsible for diffusion

of C atoms is almost empty and represents 3/4 of all sites. Nearest neighbours in the

coupled substitutional and interstitial kinetic Monte Carlo simulations are defined on

a simple cubic lattice as follows

• First nearest neighbours are between two sites on interstitial sublattice with dis-

tance between them one half of base BCC lattice, r1 = 0.1435 nm

• Second nearest neighbours are also between two interstitial sites on the diagonal

of simple cubic cube with distance, r2 = 0.20294 nm

• Third nearest neighbours are first nearest neighbours on substitutional sublattice,

defined same as in previous simulations, r3 = 0.2486 nm

• Fourth nearest neighbours are second nearest neighbours on substitutional sub-

lattice, already defined in previous simulations, r4 = 0.287 nm

Simulations of cementite precipitation from supersaturated ferrite with carbon rep-

resents several difficulties if rigid lattices are used. The cementite has orthorhombic,
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D011 crystal structure with lattice parameters a = 0.4525 nm, b = 0.5087 nm and

c = 0.6743 nm, [192] and ferrite has body centred cubic, A2 crystal structure with

lattice parameter a = 0.287 nm. This mismatch of lattice parameters makes impossible

to accurately reproduce the Fe-C phase diagram with rigid lattice approximation. The

Fe3C phase is thus replaced by approaching FeC phase and interaction parameters are

fitted to the real Fe-C system. In the cubic stoichiometric FeC phase, C atoms occupy

1/3 of the interstitial sites and can be build in several variants, shown in figure 8.2.

a) b) c)

Figure 8.2: Schematic presentation of Fe3C structure on the simple cubic lattice. Three
variants, a), b), and c) are possible, with C atoms occupying various interstitial posi-
tions.

Table 8.1: Interaction energies and kinetic parameters used for the kMC simulations of
Fe-C alloy.

ε
(1)
CC = 0.10 eV ε

(2)
CC = 0.10 eV

ε
(3)
CC = −0.09 eV ε

(4)
CC = −0.09 eV

ε
(3)
FeFe = −0.611 eV ε

(4)
FeFe = −0.611 eV

ε
(1)
FeC = 0 eV ε

(2)
FeC = 0 eV

ε
(1)
CV = −0.30 eV ε

(2)
CV = 0 eV

ε
(3)
FeV = −0.34 eV ε

(4)
FeV = 0 eV

ESpFe = −9.31 eV ESpC = 0.88 eV
νFe = 1016 s−1 νC = 1.46× 1014 s−1

Simulation parameters used for coupled substitutional and interstitial diffusion are

presented in Table 8.1. It can be seen that interactions are not possible on first and

second nearest positions for substitutional atoms. The carbon solubility depends only

on ε
(3)
CC and ε

(4)
CC and was fitted to correspond to the Fe-C phase diagram. Slightly

repulsive interactions ε
(1)
CC and ε

(2)
CC do not effect carbon solubility and were fitted to
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the simple pair potential, [193]. Fe interaction energies were fitted to the cohesive

energy of iron as was also the case in previous chapters. Similar parametrization for

homogeneous precipitation model was used in previous work by Dominique Gendt, [28]

for Fe-Nb-C alloy. The kinetic parameters, jump frequencies and saddle point energies

were based on the values from previous work by D. Gendt, [28]. The pair interaction

energies ε1XYi and ε2XY are parameters for reactions with 1st and 2nd nearest neighbours

on interstitial part of rigid lattice.

8.2 Results

In this section results obtained with kinetic Monte Carlo simulations are presented.

Simulations, performed on 323 BCC lattice sites (9.183 nm) in Fe-C alloy with 1 at.%

C atoms and single vacancy. In figure 8.3 snapshots of initial disordered configuration

Figure 8.3: Snapshots of Fe-C alloy with 1 at.% C, obtained from kMC simulations
during annealing at 873 K. Size of the simulation box is 323 BCC lattices (9.23 nm),
only C atoms are displayed due to visibility reasons; a) initial disordered configuration,
b) at 0.9 s, c) at 2 s.

and obtained microstructures at two times are depicted. Only C atoms are depicted

for visibility reasons. Quick ordering of C atoms can be observed and in figure 8.3c

almost all C atoms are in FeC clusters.

The C-C pair correlation function of the initial disordered state in shown in fig-

ure 8.4. Initial configuration is sufficiently disordered although slight correlations can

be observed at short distances, at around r ≈ 0.25 nm with value g(r) ≈ 5, which

corresponds to third nearest neighbours.

The carbon clusters are formed very quickly due to fast diffusion of interstitial

carbon and driving force for iron carbide precipitation (activity of carbon in iron).

The composition and crystal structure of obtained precipitates are cubic FeC crystal
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8.2 Results

Figure 8.4: Carbon-carbon pair correlation function of initial disordered state.

Figure 8.5: Snapshots of FeC precipitates in Fe-C alloy with 1 at.% C, obtained from
kMC simulations during annealing at 873 K; a) at 0.9 s, b) at 2 s.
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8. The simulation of coupled interstitial/substitutional diffusion in Fe-C alloy

structure and not expected Fe3C cementite phase, due to use of the rigid lattice approx-

imation. Also associated lattice mismatches are not accounted for. However, obtained

Figure 8.6: Carbon-carbon pair correlation function at 0.9 s.

Figure 8.7: Carbon-carbon pair correlation function at 2 s.

precipitation kinetics should qualitatively describe diffusion of carbon in iron and its
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rapid clustering. Extracted clusters with cubic FeC structure are depicted in figure

8.5. When both both snapshots are compared, coarsening of obtained FeC clusters is

revealed. In figure 8.5a very small amount of C atoms is seen in the matrix, while in

figure 8.5b all C atoms are bind into clusters. This can be studied with pair correlation

function of both states. In figures 8.6 and 8.7 pair correlation function corresponding

to snapshots in figures 8.5a and 8.5b are shown, respectively. Strong correlation are ob-

served at distance r ≈ 0.25 nm which relates to third nearest neighbours and is correct

according to the chosen simulation parameters. Value of the pair correlation function

increases even more at distance r ≈ 0.25 for snapshot in figure 8.5b, confirming that C

atoms started to form larger clusters.

Rigid lattice model used in this chapter for simulation of cementite precipitation

offers some insight into precipitation kinetics. Model reproduces naturally much faster

occurring diffusion of carbon atoms and slower diffusion of iron. As explained, expected

orthorhombic Fe3C phase was replaced by cubic FeC phase and solubility limit of carbon

was fitted to follow Fe-C phase diagram.
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No amount of experimentation

can ever prove me right; a sin-

gle experiment can prove me

wrong.

Albert Einstein (1879-1955) 9
Conclusions

Alloys used in everyday life are mainly used in nonequilibrium states where certain

physical properties of such states are exploited. The processing path to desired prop-

erties often leads through precipitation of the new phases. The kinetic pathways to

optimal processing route, require a huge amount of expensive experimental work and

are not straightforward. Precipitation and its kinetics is classically divided into nucle-

ation, growth and coarsening, which are then studied as separate processes. Classical

theories for these three idealized stages are based on minimization of the free energy

potential and solving diffusion equation, where several assumptions are needed for ana-

lytical solutions. In the real alloys those idealized stages overlap and assumptions used

causes problems in prediction of the kinetic pathways leading to the desired physical

properties with classical theories. Fore mentioned assumptions are not needed, if diffu-

sion processes leading to precipitation are treated explicitly on the atomistic level. The

main purpose of the presented thesis was to use atomistic simulations, which explicitly

treat diffusion of the atoms, to simulate phase transformations in supersaturated solid

solutions. Simulations were performed with a kinetic Monte Carlo method on several

alloy compositions, where various processes were studied.

In the scope of this thesis a diffusion model, based on the rigid lattice approxi-

mation for kinetic Monte Carlo simulations was developed. Its validity was tested and

confirmed on the simple binary alloy system. The developed simple binary model offers

very good description of the diffusion processes and accurate description of nucleation,

growth and coarsening stages. Although a lot of kinetic Monte Carlo simulations can be

found in literature, the simulation box size effects were not addressed before. Majority

of simulations were performed on the binary Fe-Cu alloy where influence of the box

size, temperature, chemical compositions, mixing energy and asymmetry were tested.

Influence of the model asymmetry on the vacancy trapping was also investigated. Neg-

ative values of the asymmetry parameter change kinetic pathways at late stages, where
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coarsening was not observed. Negative asymmetry parameter causes agglomeration or

direct coagulation of formed clusters and has influence on their mobility, even when

they are large. Increased mobility of subcritical clusters have influences on incubation

time, nucleation and growth rates and also growth mechanism. Controlled study of

the cluster evolution was performed with computer experiments where various initial

cluster sizes were seeded in slightly supersaturated medium. The moment of inertia

tensors were calculated for several obtained cluster shapes which revealed, that initial

spherical shape can deviate a lot. Also displacement of the clusters centre of mass in

time and concentration profiles at various times were addressed and discussed. Influ-

ence of subcritical clusters was assessed using at high temperature previously annealed

microstructure as initial conditions. Here number of subcritical clusters with more than

five atoms were detected and their influence is in shorter incubation time and dimin-

ished growth rate. However, after some time growth rate and mean cluster size start

to behave as in the case with initial random solid solution. The simple binary BCC

model served as a starting point, and was made more complex by introduction of other

substitutional elements. First ternary Fe-Cu-Mn and Fe-Cu-Ni alloys and then also

quaternary Fe-Cu-Ni-Mn alloy were simulated. Effects of additional impurities on the

nucleation, growth and coarsening stages were studied. The rigid lattice approximation

accurately described clustering, even after introduction of other chemical elements, and

obtained results were discussed and compared to the binary Fe-Cu alloy system. This

diffusion model was then adjusted for simulations of the phase separation in ternary

Ni-Cr-Al alloys with FCC crystal structure. Obtained results are in agreement with

3D atom probe and high resolution microscope experimental studies and with other

kinetic Monte Carlo studies. Two variants of γ′ precipitates, Ni3Al and Ni3Cr were ob-

served and their time evolutions analysed and discussed. After substitutional diffusion

processes were examined in detail on several alloy systems, focus was turned to de-

velop kinetic Monte Carlo diffusion model, where substitutional diffusion is competing

with interstitial diffusion. Kinetic Monte Carlo simulations with the rigid lattice ap-

proximation were then performed on the binary Fe-C alloy, where interstitial positions

were populated with carbon atoms. The competing substitutional and interstitial diffu-

sion processes are operating at very different speeds which further complicates model.

Furthermore, realistic orthorhombic Fe3C cementite phase can not be accurately repro-

duced with rigid lattice approximations and was replaced by approaching cubic FeC

crystal structure. Pair correlations of obtained results reveal very quick clustering of

carbon on third nearest neighbour positions.

From the presented results, we can conclude that the main goal of this work, which
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was to develop and implement an atomistic simulation package based on the kinetic

Monte Carlo method, that is able to study at a detailed atomistic, spatial scale the

diffusion processes, leading to the nucleation, growth, ripening and coalescence of pre-

cipitates, was successfully achieved. Furthermore, influence of the subcritical clusters

on the incubation time, nucleation rate and growth was also studied. The developed

kinetic Monte Carlo simulations package and used atomic potential models enables

accurate forecasting of the clustering kinetics from nucleation, growth and coarsening

stages.

The developed rigid lattice kinetic Monte Carlo model can be used for fundamental

study of diffusion processes and with some further development also for determination

of adequate processing routes in industry. There are still points for improvements which

could not be implemented due to the limited resources and given time-frame.

Various processes and physical properties could be studied with the developed com-

puter experiment code and underlying model with some improvements and adaptations.

However, they were not considered as their treatment would exceed the scope of the

thesis. They are as follows

• During material processing, cooling rates can have large effects on the obtained

microstructures and consequently mechanical properties of alloys. Developed

model was used only for isothermal simulations and could be adjusted also for

anisothermal simulations.

• The kinetic Monte Carlo of diffusion model presented in this thesis avoids assump-

tions common to the phenomenological models. Especially in the multicomponent

alloys, it is assumed that the off-diagonal terms of the Onsager matrix can be ne-

glected. However, the diffusion matrix is in general nondiagonal and off-diagonal

terms can effect the kinetic pathways. Full diffusion matrix could be calculated

from results of kMC simulations with some effort.

In order to obtain an even more realistic description of the kinetic pathways, the

following improvements can be made in future

• Simulations in this thesis were performed with simple potentials. Interatomic

potentials calculated with ab-initio methods would be an improvement. In order

to obtain even more realistic kinetic pathways full atomic relaxations should be

taken into account. However, this dramatically increases computational time and

some trade off between atomic relaxations and simplicity is needed.

• Calculation of the position dependant interatomic energies, using density func-

tional theory (DFT) methods requires enormous computing power. A possible
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improvement is the use of optimized interaction energies obtained by using neural

networks from a pool of large number of cases previously calculated.

• It was assumed that formed clusters keep coherency with matrix. However, es-

pecially in the case of Fe-C and precipitation of Fe3C cementite phase this is not

true. Furthermore, loss of coherency is associated with elastic energies due to

lattice mismatches which can have large effect of precipitation. Semi rigid lattice

model could be build which would improve lattice mismatch effects.

• Time needed for typical simulations is very long. Although some efforts were

put into parallelization of the developed model, better parallelization techniques

would greatly improve computing time efficiency.
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The problems of language here
are really serious. We wish to
speak in some way about the
structure of the atoms. But we
cannot speak about atoms in
ordinary language.

Werner Heisenberg
(1901-1976) A

Description of the developed kMC code

To perform atomic kinetic Monte Carlo simulations on crystal lattice simulations pack-

age is needed. During the course of doctoral study simulations package in C++ pro-

gramming language was developed, tested and evaluated. Simulation package was made

from several object which were then put together into bigger building blocks used in

the main function. In the main function chemical concentration and atoms names are

selected first. Next very important parameter is the size and type of the simulation box.

At the moment two crystal lattice types with or without interstitials are available, BCC

and FCC. The chosen lattice structure is then populated with desired concentrations of

atoms. After lattices are populated initialization function is called, which calculate ini-

tial transition probabilities from simulation parameters. One Monte Carlo step (MSC)

is completed after same number of exchanges are performed as there is number of all

atoms in the simulation box using residence time algorithm described previously. In-

termediate results are recorded after several hundred MCS and simulation is run until

desired number of MCS is reached, usually around one hundred thousand, depending

on the size of simulation box, asymmetry and temperature.

Higher the simulations temperature, more MCS steps is needed to reach reasonable

scaled real time relevant for diffusion processes. The simulations software itself consists

from following files:

kMCmain.cpp - function main

kMCsim.h and kMCsim.cpp - calculation of transition probabilities and residence time

algorithm

kMCgrid.h and kMCgrid.cpp - building of grids and recording of results

kMCsosedi.h and kMCsosedi.cpp - positions of neighbours and simulation parameters

161



A. Description of the developed kMC code
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Figure A.1: Flowchart of the developed kMC simulation software
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Rand.h and Rand.cpp - random number generation
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Pri vseh zadevah je zdravo tu
pa tam obesiti vprašaj na vse,
kar imaš že dolgo za samou-
mevno.

Bertrand Russell (1872-1970) B
Extended summary in Slovene

(Povzetek v slovenskem jeziku)

Lastnosti mnogih industrijsko pomembnih zlitin so močno odvisne od izločanja delcev

drugih faz. Mehanske lastnosti mnogih jekel so odvisne od mikrostrukture karbidov,

ki se pri visokih temperaturah izločajo iz avstenitne faze, pri nizkih pa iz feritne faze.

Maloogljičnim jeklom, kot so na primer visokotrdna malo legirana (HSLA) jekla, se

z dodatkom Nb, V ali Ti zvǐsa napetost tečenja, z izločanjem karbidov teh elemen-

tov pa lahko vplivamo tudi na kinetiko rekristalizacije. Med zlitine, pri katerih igra

izločevanje zelo pomembno vlogo, spada tudi skupina tehnološko zelo pomembnih Al

zlitin z dodatkom Mg in Si (6xxx) in druge Al zlitine z dodatkom Cu, za katere je

značilno kompleksno zaporedje tvorbe in razpada metastabilnih faz v odvisnosti od

temperature, časa in kemične sestave zlitine. Za te zlitinske sisteme je bilo v preteklo-

sti opravljenih veliko eksperimentalnih in teoretičnih študij. Še posebej velik napredek

pri razumevanju izločevalnih mehanizmov je prinesel razvoj modernih preiskovalnih me-

tod, kot so vrstična elektronska mikroskopija (SEM), presevna elektronska mikroskopija

(TEM), rentgenska difrakcija (XRD), 3D tomografija z atomsko konico (3DAP), itn.

Pri študiju izločanja v prenasičenih metastabilnih trdnih raztopinah ponavadi ločimo

tri različne faze: (i) nukleacijo stabilnih gruč atomov izločene faze, (ii) difuzijsko rast

nastalih gruč in (iii) nato še njihovo ogrobitev (Ostwaldovo zorenje) in koalescenco, ki

vključuje rast večjih izločkov na račun manǰsih zaradi zmanǰsanja površinske energije

sistema. V realnih sistemih se ti trije idealizirani kinetični režimi največkrat prekri-

vajo, kar posledično zelo oteži interpretacijo rezultatov. Znano je, da je z ustrezno izbiro

parametrov v okviru modelov, ki temeljijo na klasični teoriji nukleacije, mogoče zado-

voljivo opisati časovni potek števila in velikosti izločkov v fazi njihove rasti in ogrobitve.

Vendar ti modeli temeljijo na mnogih poenostavitvah in vprašljivih privzetkih kot na

primer o sferičnosti in stehiometričnosti izločkov, da so površinske energije neodvisne
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od temperature in velikosti izločkov, itn. V obstoječih modelih je površinska ener-

gija ponavadi uporabljena kot prilagoditveni parameter. Poleg tega obstoječi modeli

upoštevajo le rast izločkov nadkritične velikosti (večji od kali), medtem ko popolnoma

zanemarijo vlogo velikega števila nestabilnih podkritičnih gruč (embriji). Le te zaradi

nenehnega nastajanja in razpada celo v nenasičenih trdnih raztopinah tvorijo staci-

onarno porazdelitev, kar vpliva na kinetiko izločanja. Pri vǐsjih temperaturah in/ali

pri nizkih površinskih energijah lahko te gruče znatno vplivajo na koncentracijo raz-

topljenih atomov v zlitini, kar posledično vpliva tako na nukleacijo, kot tudi na rast

in ogrobitev izločkov. Nasprotno pri atomističnih simulacijah, temelječih na ekspli-

citni obravnavi difuzije posameznih atomov, niso potrebne omenjene poenostavitve in

predpostavke. Zato lahko atomistične simulacije kinetike izločanja v odvisnosti od tem-

perature, časa in od kemične sestave pomembno prispevajo k globljemu razumevanju

nastanka kali in nadaljne rasti. Simulacije izločanja na atomističnem nivoju so zato

orodje z odlično sposobnostjo napovedovanja in v pomoč pri načrtovanju modernih zli-

tin z bolǰsimi lastnostmi, še posebej za sisteme pri ekstremnih pogojih (npr. ekstremni

tlaki, temperature, radioaktivni elementi, itn), kjer je eksperimentalno delo zahtevno,

težavno ali celo nemogoče.

V okviru naloge je poudarek na simulacijah dinamičnega razvoja sistema atomov.

Razvoj atomističnih simulacij se je pričel v petdesetih in šestdesetih letih dvajsetega

stoletja z molekularno dinamiko (MD), pri kateri integriramo Newtonove enačbe giba-

nja atomov po času. Zaradi upoštevanja termičnih nihanj atomov morajo biti pri MD

integracijski koraki dovolj majhni, približno 10−15 s. Naslednja stopnja razvoja so bile

metode izračuna elektronske strukture, z namenom dosega še bolj natančnih rezultatov,

ki temeljijo na reševanju Schrödingerjeve enačbe, [4] in so dandanes znane kot ab-initio.

Največkrat uporabljena metoda v znanosti o materialih je teorija gostotnih funkciona-

lov (DFT). Korenine DFT izhajajo iz Thomas-Fermijevega modela [5, 6], vendar so

temelji postali trdni šele z Hohenberg-Kohnovimi izreki, [7]. Navkljub povečani na-

tančnosti zaradi upoštevanja elektronske strukture, je slabost ab-initio metod potreba

po izredno visoki računalnǐski moči. Za dosego še dalǰsih časov, potrebnih za študij

difuzijsko pogojenih procesov, so potrebne metode, ki omogočijo večje povprečenje.

Atomistične simulacije, pri kateri je možno razširiti velikost in časovno skalo, so sku-

pina Monte Carlo (MC) metod, ki so v uporabi od poznih štiridesetih let dvajsetega

stoletja [10, 11]. Njihova uporaba se je začela v petdesith letih dvajsetega stoletja kot

Metropolis Monte Carlo, kjer je časovni razvoj sistema pogojen z izračunom verjetnosti

posameznega dogodka. MC metoda uporabljena v okviru te naloge je kinetična Monte

Carlo (kMC) metoda, ki omogoča simulacije v realnem času. Metoda je primerna za
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študij kinetike nukleacije, saj ne zasleduje natančnih termičnih nihanj atomov, ampak

difuzijske preskoke med stanji. To omogoča večje velikosti in časovne skale, pomembne

pri študiju nukleacije in rasti izločkov v realnih zlitinah [12–38]. Naloga se osredotoča

na uporabo kMC metode za podrobno proučevanje nukleacije, rasti, ogrobitve in koale-

scence izločkov, s posebnim poudarkom na kinetiki tvorbe in razpada nestabilnih gruč

podkritičnih velikosti ter njihov vpliv na kinetiko izločanja, ki jih obstoječi modelu ne

upoštevajo.

Delo je mogoče v grobem razdeliti na tri dele; in sicer na splošni uvod, teoretični del

in modeliranje. Splošnemu uvodu, v katerem so zastavljeni cilji in metode, sledi teo-

retični pregled, v katerem so prestavljene klasična teorija nukleacije, osnove statistične

mehanike s poudarkom na MC metodah in difuzijski model za simulacije izločanja z

metodo kMC. V delu kjer je predstavljeno modeliranje so opisani posameznih zlitin-

ski sistemi in njihova parametrizacija ter detajlno obdelani dobljeni rezultati simulacij.

Zaključkom sledi dodatek v katerem je predstavljena shema izdelanega programa za

simulacije. Razvit in izdelan program za simulacije omogoča študij difuzijskih faznih

transformacij na atomistični skali. V okviru doktorske naloge so bile izvedene različne

simulacije, s katerimi je bil ugotovljen vpliv temperature, kemične sestave, asimetrije

medatomskih potencialov, mešalne energije in začetne mikrostrukture na kinetični ra-

zvoj izločkov in njihovo gostoto, volumski delež elementov, velikost in obliko izločkov,

koncentracijske profile, parameter reda kratkega dosega in parsko korelacijsko funkcijo.

Detajlna študija je bila najprej narejena na enostavnem binarnem modelu z telesno cen-

trirano kristalno (t.c.k.) strukturo na Fe-Cu zlitinskem sistemu. Dobljene mikrostruk-

ture so zelo podobne tipičnim mikrostrukturam pridobljenimi z 3D APT ali HRTEM.

Ugotovljeno je bilo, da je vpliv mešalne energije na razvoj parametra reda kratkega do-

sega in števila izločkov podoben vplivu temperature. Zvǐsana mešalna energija pospeši

izločanje in posledično zvǐsa vrednosti parametra reda kratkega dosega. Nadalje, pri

zvǐsani mešalni energiji je opaziti jasni območji rasti in ogrobljenja izločkov. Simulacije

so pokazale, da sta izločanje in kinetične poti občutljivi na asimetričnost medatom-

skih potencialov, kar je bilo študirano z definicijo parametrov asimetrije. V doktorski

nalogi je predlagan nov model za asimetrijo, ki poleg medatomskih energij upošteva

tudi navidezne (ghost) energije med praznino in atomi. Pri negativnem parametru

asimetrije prevladuje direktna koagulacija izločkov, medtem ko v primeru simetričnega

modela in modela s pozitivnim parametrom asimetrije prevladuje Ostwaldovo zorenje.

Časovni eksponenti za razvoj povprečnega radija izločkov, dobljeni iz simulacij, so bili

za dolge čase primerjani z napovedmi LSW teorije. Razlike med LSW teorijo in do-

bljenimi rezultati so pripisane vplivom mobilnosti gruč. Nadalje je bilo ugotovljeno, da
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negativni parameter asimetrije povzroči povečanje časa simulacije za dosego enakega

realnega časa. To je povezano z preferenčnim okoljem, kjer se zadržuje praznina ali

tako imenovanemu efektu ujetja lete v bakrovih izločkih. Za podrobneǰso pojasnitev

kinetike izločanja so bile izvedene računalnǐske simulacije, pri katerih so bili izločki

predhodno zasejani v rahlo prenasičeno trdno raztopino. Namen študija je bil pojasni-

tev vpliva izločkov z različnimi začetnimi oblikami na obliko in velikost izločkov med

njihovo rastjo. Vizualno opažene velike razlike med začetno sferično obliko in doblje-

nimi končnimi oblikami in velikostmi izločkov so bile dodatno preverjene še s pomočjo

tenzorjev vztrajnostnih momentov izločkov. Mikrostrukture dobljene iz računalnǐskih

eksperimentov, izvedenih nad temperaturo topnosti Cu v železu pri kateri so bili v

večjem številu prisotne gruče atomov podkritičnih velikosti (dvojčkov, trojčkov, ...) so

bile uporabljene za določitev vpliva podkritičnih gruč na inkubacijski čas in hitrost

nukleacije in rasti izločkov. V primeru prisotnosti večjih podkritičnih gruč (več kot pet

atomov v gruči) je inkubacijski čas kraǰsi in hitrost nukleacije in rasti manǰsa. Vpliv teh

podkritičnih gruč se s časom izniči in tudi povprečna velikost izločkov je enaka, kot v

primeru brez prisotnih večjih gruč. Dodatno je bil preverjen vpliv možnih periodičnosti

na dobljene rezultate, saj so bili v vseh simulacijah uporabljeni popolni periodični robni

pogoji. Ugotovljeno je bilo, da so rezultati pridobljeni s simulacijsko škatlo velikosti

403 t.c.k rešetk zadovoljivi in omogočajo ponovljivost. Vendar so bile uporabljene večje

simulacijske škatle, da je bilo dobljeno večje število izločkov, kar omogoča natančneǰso

statistično analizo dobljenih rezultatov.

Razviti paket za računalnǐske eksperimente je bil zastavljen tako, da omogoča doda-

janje poljubnega števila kemijskih elementov in uporabo različne globine simulacijskih

modelov (števila najbližjih sosedov). Sam model je bil preverjen na dveh ternarnih

in eni kvaternarni zlitini z t.c.k kristalno strukturo. Kinetika izločanja v ternarnih

Fe-Cu-Mn in Fe-Cu-Ni zlitinah ter kvaternarni Fe-Cu-Ni-Mn zlitini, je bila primerjana

z rezultati predhodno simulirane binarne Fe-Cu zlitine. Pri temperaturi 873 K je bil

spremljan razvoj parametra reda kratkega dosega in povprečna velikost izločkov. Ugo-

tovljeno je bilo, da dodatek Ni in Mn atomov v zlitino, poveča inkubacijski čas za

nukleacijo in ima vpliv na hitrost rasti izločkov. Najvǐsja hitrost rasti je bila opažena,

v primeru ko je bil dodan samo Ni. Najnižja hitrost rasti je bila opažena v primeru, ko

je bil dodan samo Mn, medtem ko je hitrost rasti izločkov je za kvaternarno zlitino leži

med obema skrajnima vrednostma ternatnih zlitin med obema do sedaj omenjenima v

primeru kvaternarnega sistema.

Za simulacije razmešanja je bil razvit simulacijski paket nadgrajen tako, da omogoča

simulacije tudi za zlitine s ploskovno centrirano kristalno strukturo. Z njim so bili nare-

168



jeni računalnǐski eksperimenti na zlitini Ni-Cr-Al pri 873 K. Pri tej temperaturi sta bila

zaznana dva tipa γ′ faze, in sicer Ni3Al in Ni3Cr, kar je v skladu s 3D APT eksperimenti

iz literature. Simulacije so pokazale, da se delež Ni3Al vseskozi povečuje s časom, med-

tem ko delež Ni3Cr najprej narašča in nato po dosegu največje vrednosti začne padati.

Za detekcijo teh dveh faz sta bili razviti in testirani dve metodi. Pri prvi so bile faze

določene na podlagi izračuna povprečnih koncentracij okoli iskanih elementov, druga

pa temelji na natančni določitvi točno določene kristalne strukture. Dobljeni delež in

položaj faz se za obe metodi razlikuje, zaradi česar je potrebna posebna previdnost

pri analizi podatkov tako računalnǐskih simulacij, kot tudi rezultatov eksperimentov z

atomsko konico. Namreč, pri eksperimentih z atomsko konico se delež posameznih faz

določa na osnovi povprečnih koncentracij.

Zmožnosti razvitega simulacijskega paketa so bile preverjene tudi s simulacijami

kinetike izločanja v zlitinah, z atomi legirnih elementov na intersticijskih in substi-

tucijskih mestih kristalne mreže in sicer z uporabo Fe-C zlitinskega sistema. Čeprav

kot pričakovano Fe3C faze in mogoče reproducirati s približkom toge mreže, sta bili

reproducirani mnogo hitreǰsa difuzija intersticijskih elementov in počasneǰsa difuzija

substitucijskih elementov. Za ta primer so bile izračunane parske korelacijske funkcije

za začetno neurejeno stanje in dve pozneǰsi stanji. Ugotovljeno je bilo, da ogljikovi

pari tvorijo vezi na mestu tretjih najbližjih sosedov, kar je pričakovano in v skladu z

izbranimi interakcijskimi energijami.

V okviru doktorske naloge razviti model temelji na upoštevanju navideznih (ghost)

energij med praznino in atomi, in sicer preko definicije asimetrije medatomskih poten-

cialov. Kohezivna enegija topljneca je bila uporabljena kot prilagoditveni parameter,

pri čemer smo v modelu zahtevali ohranitev energije mešanja, saj slednja določa obliko

faznega diagrama. Na podlagi tega modela je bila za dano asimetrijo medatomskih po-

tencialov določena celotna energetika. V pričujočem delu smo upoštevali prve in druge

najbližje sosede danega atoma, sam model pa omogoča določitev celotne energetike do

n-tih sosedov, kjer je n poljubno naravno število. V primeru izbire simetričnih meda-

tomskih potencialov, nam model da podobne vrednosti energetike, kot jih najdemo v

literaturi.

Iz predstavljenih rezultatov je mogoče ugotoviti, da je glavni cilj te naloge, ki je bil

uporabiti difuzijski model za simulacije s kinetično Monte Carlo metodo, ki temelji na

eksplicitni obravnavi difuzije posameznih atomov brez dodatnih poenostavitev in pred-

postavk, značilnih za klasične teorije nukleacije, rasti in ogrobitve, uspešno dosežen.

Razviti model je mogoče uporabiti kot napovedno orodje in omogoča natančno napo-

vedovanje kinetike izločanja v odvisnosti od temperature, kemične sestave in začetne
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B. Extended summary in Slovene (Povzetek v slovenskem jeziku)

mikrostrukture. Nadalje je bil s predlaganim pristopom študiran vpliv gruč atomov

podkritične velikosti na inkubacijski čas ter hitrost nukleacije in rasti izločkov. Ugoto-

vljeno je bilo, da je mobilnost gruč atomov močno odvisna od asimetrije medatomskih

potencialov. Negativna asimetrija vpliva na povečanje mobilnosti gruč atomov, pri

čemer lahko njihova mobilnost preseže mobilnost monomerov, kar smo pripisali uje-

tju vakance v gručo. Povečana mobilnost teh podkritičnih gruč atomov, vpliva na

skraǰsanje inkubacijskega časa za nukleacijo, zmanǰsanje hitrosti nukleacije, vpliva pa

tudi na mehanizem rasti izločkov. Slednji zaradi povečanja mobilnosti gruč poteka manj

z kondenzacijo posameznih atomov in v vse večji meri z združevanjem posameznih gruč.

Seznam količin in procesov, ki jih je mogoče z razvitim atomističnim modelom

simulirati brez bistvenih izbolǰsav ali prilagoditev, pa ni bil obravnavan, ker bi takšna

obravnava presegla zastavljene naloge, je naslednji:

• Hitrost ohlajanja ima velik vpliv na mikrostrukturo in posledično na mehanske

lastnosti. Razviti model je bil uporabljen za izotermne simulacije. Z nekaterimi

prilagoditvami bi ga bilo mogoče nadgraditi za neizotermne simulacije.

• Predstavljen in uporabljen difuzijski model ne potrebuje posebnih predpostavk

značilnih za fenomenološke modele. Pri večkomponentnih zlitinah ostali klasični

modeli ponavadi zanemarijo nediagonalne komponente Onsagerjeve matrike. Di-

fuzijska matrika je v splošnem nediagonalna in zanemarjeni členi lahko vplivajo

na kinetične poti posameznih elementov. Z dodatnimi nadgradnjami simulacij-

skega programa in programov za analizo rezultatov, bi bil omogočen izračun vseh

komponent difuzijske matrike iz rezultatov kMC simulacij.

Z nekaterimi izbolǰsavami, bi bilo mogoče v prihodnosti izdelati še bolj realističen

model, za kar je potrebno sledeče:

• Uporabljeni potenciali so bili enostavni. Nadaljnja izbolǰsava bi bila izračun po-

tencialov z metodami za funkcionale elektonske gostote. Za še bolj natančne

kinetične poti, pa bi bile potrebne celovite atomske relaksacije odvisne od meda-

tomskih razdalj.

• Izračun medatomskih energij v odvisnosti od položaja atomov z metodami za

funkcionale elektonske gostote zahteva ogromno računalnǐsko moč. Možna iz-

bolǰsava je uporaba optimiziranih energij, pridobljenih z uporabo nevronskih mrež

na bazenu velikega števila predhodno izračunanih primerov.

• V doktorskem delu je bila predpostavljena popolna koherentnost izločkov z ma-

trico, kar v primeru izločanja cementita ne drži. Elastične napetosti, ki nasta-
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nejo pri izgubi koherentnosti lahko vplivajo na dobljene rezultate, zato bi bilo

potrebno izbolǰsati neskladja kristalnih struktur, ki nastanejo pri izgubi koheren-

tnosti izločkov.

• Čas tipične simulacije je precej dolg. Nekaj korakov je bilo narejenih v smeri para-

lelizacije, vendar so na temu področju ostale še preceǰsne možnosti za izbolǰsave.
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