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Abstract

Typical computer code for the analysis of complex problems works by approximating

the exact solution to the governing equations for a particular set of parameters. This

paper discusses the OMS algorithm and its application to recirculating thermocapil-

larey flows in the weld pool. The OMS algorithm is the implementation of the Order

of Magnitude Scaling methodology, which is a radically different approach in which the

computing effort results in formulae valid for any parameter value within a well-defined

range. The methodology does not involve meshing and presents no convergence prob-

lems; instead, it is based on a mathematical framework that can automatically estimate

characteristic values for asymptotic extremes. Because the asymptotic regime of the

problem of interest is not known beforehand, the code exhausts all possible iterations

∗Corresponding author: Address: Department of Chemical and Materials Engineering, University of

Alberta, ECERF W7-092 9107 116th St., Edmonton, AB T6G 2V4, Canada; phone: 780 248-1587; e-

mail:pmendez@ualberta.ca
†e-mail:stier@gsb.columbia.edu

1



between dominant forces and makes selections based on self-consistency. This approach

combines elements of artificial intelligence, asymptotic analysis, and linear algebra. In

addition to closed-form expressions for characteristic values, it also provides a unique

set of dimensionless groups that can be used as a basis for regression analysis in cali-

brations against experiments. The OMS algorithm has been implemented in prototype

form in Matlab and applied to the analysis of thermocapillary driven flows where 2,486

combinations of driving forces are tested, identifying 1,897 incompatible balances, 544

inconsistent balances, and 45 self-consistent balances. The 45 self-consistent balances

are grouped into 14 classes, and finally the 14 classes are filtered into a single final set

of closed-form expressions for maximum velocity, pressure differential, and maximum

temperature. The widely accepted solutions obtained by others in the past are repro-

duced automatically. The potential for the treatment of more complex problems and the

limitations of the methodology are discussed.

1 Introduction

This paper discusses a novel procedure called Order of Magnitude Scaling (OMS) which aims

at finding the minimal representation of engineering problems based on detailed analysis

of the governing equations. The methodology is based on linear algebra operations that

enable the computer implementation of scaling analysis of non-linear partial differential

equations, and is described in detail in [1]. In the context of OMS, scaling means assigning a

characteristic value to a variable. For example, if the variable is the temperature of a fluid,

which depends on space and time, the scale is typically the maximum, minimum, or average

temperature within the time and space limits of interest. Characteristic values are described
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in detail in [2].

The OMS algorithm applies to equations of the form:

∑

j

Ajfj ({X}, {U}, {P}) = 0 (1)

where fj are functions in which the arguments are dimensionless combinations of the inde-

pendent variables, the dependent variables, the parameters, and numerical constants (rep-

resented here as column vectors {X}, {U}, {P}, {K} respectively. These sets are defined in

detail in [2]. The equations can be linear or non-linear. The coefficients Aj have the form of

a power law based only on the parameters of the governing equations:

Aj = Kj

∏

k

P
ajk
k (2)

with Kj being a dimensionless numerical constant (for example the numbers 2 or π, or a

power law of convenient numbers) and ajk being the exponent of parameter k in coefficient

j, typically an integer or the ratio of small integers. The parameters are always defined as

positive, but functions fj can have any sign. Expressions that do not have a power-law form

can often be reduced to the form of Equation 1 [2].

1.1 Literature Review

Scaling techniques based on governing equations have been developed by many researchers in

a broad spectrum of disciplines. In chemical engineering, scaling is essential for relating pilot

plants to full-scale plants, and scaling techniques have been developed by Krantz [3], Sides [4],

Deen [5], Astarita [6], Ruckenstein [7], Denn [8], and Aris [9]. In mechanical engineering,

scaling has been used to generalize results, typically in heat transfer and fluid mechanics,
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with scaling techniques developed by Bejan [10], Chen [11], Kline [12], and Rivas [13]. In

materials engineering, scaling is typically used to simplify multicoupled, multiphysics prob-

lems, typically based on transport equations, such as in the books on materials processing by

Dantzig and Tucker [14], Kou [15], Poirier and Geiger [16], and Szekely and Themelis [17].

Asymptotic techniques from applied mathematics have provided the foundation to much

of the work on scaling in engineering through the study of order of magnitude of terms,

dominant balance, and self consistency. Especially relevant is the work of Segel on self-

consistency [18], VanDyke on perturbations [19], Bender and Orszag [20] and White [21] on

dominant balance, and Friedrichs, Kruskal [22], Fowler [23], and Andrianov [24] on asymp-

totic behavior; in all these cases, the scaling approach depends on neglecting small terms

in the governing equations. However, the choice of small terms in the governing equations

is a significant challenge and typically involves a degree of subjectivity: “In practice each

theoretician seems to dial one or more quantities to a small value in his own work and then

attacks other theorists for performing unnatural acts when they do the same thing” [25].

The work presented here aims at overcoming this undesirable subjectivity by considering

all relevant possibilities of small parameters with an exhaustive approach. This approach

requires a computer algorithm for problems beyond the very simple, and this paper is one of

the first attempts at building such algorithm using the governing equations as the starting

point.

Algorithmic implementations of scaling have typically been based on dimensional analy-

sis [26–30], or on artificial intelligence heuristics [31–37]. Only one algorithmic implementa-

tion of scaling based on governing equations has been presented before: Asymptotic Order

of Magnitude (AOM) by Yip [38]. The methodology presented here is similar to AOM in
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that both approaches are based on dominant balance, self-consistency, and a combinatorial

exploration of possible dominant terms. The main difference between AOM and the method-

ology presented here is that AOM is based on an artificial intelligence approach, while this

work is based on linear algebra and characteristic values; in particular, AOM starts with

the equations already normalized, and the normalization does not change with the differ-

ent iterations. Also, the differential expressions are not normalized by their characteristic

values and can have orders of magnitude different than 1. Another important difference is

that in AOM the simplifications are made on a sequential way; this has the advantage of

allowing multiple term balances, but prevents the algorithm from taking advantage of the

power-law form of the coefficients in the normalized equations. AOM thus results in a set of

simplifications that require the solution of a non-linear set of algebraic equations. In OMS

the scaling laws result from solving a system of simultaneous linear algebraic equations,

since the balances considered are only between two terms. The solution of a linear system

does not mean that the original governing equations have been linearized, it means that the

non-linear dependences are captured in the exponents of the power-law coefficients, which

become linear expressions when using logarithms. Multiple-term balances are outside the

scope of this paper, but can be tackled with OMS using a relaxation technique that will be

considered in a separate publication. The earliest version of OMS was introduced in [39].
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1.2 Comparison of OMS with other scaling approaches based on

the governing equations

All scaling approaches mentioned above are based on the governing equations and share the

same conceptual core in their procedure, which is summarized in Table 1. This table also

compares the OMS approach with typocal manual scaling approaches.

Steps 1 to 3 in Table 1 were studied in detail in [2], and Steps 4 to 7 in [1]. In addition to

the ability of being implemented as a computer algorithm, OMS has additional differences

with other scaling approaches such as the typical approach based on the governing equa-

tions, dominant balance, Lie algebras, the use of ratios of forces, dimensional analysis, and

inspectional analysis.

Scaling approaches based on the governing equations often suggest to solve for the un-

known characteristic values (Step 5) by picking a single dominant term that includes it, and

making its coefficient equal to 1 (for example [14]). This approach is insufficient for multiple

coupled governing equations, where the dominant coefficients typically involve more than

one unknown characteristic value, resulting in a system of multiple algebraic equations. A

commonly used approach in this situation is the use of experimental or numerical data as

upper or lower bound estimates for all but one unknown in each coupled equation. Al-

though effective, this approach requires redundant additional information that is not always

available or reliable.

The method of dominant balance from applied mathematics is typically applied to single

equations, with the simplified equation being solved exactly. In contrast, in OMS multiple

coupled equations are possible, although only characteristic values are estimated. The main
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Table 1: Sequence of operations in a typical scaling approach based on governing equations

Typical scaling approach OMS approach

Step 1 Write the governing equations including boundary and

initial conditions.

same

Step 2 Normalize the dependent and independent variables us-

ing their characteristic values. Some characteristic values

might be unknown. This step results in dimensionless dif-

ferential expressions based on the normalized variables.

Normalize each term

by its characteristic

value

Step 3 Insert normalized expressions into governing equations. same

Step 4 Normalize each governing equation using the coefficient

of the term expected to be dominant.

same

Step 5 Solve for the unknown characteristic values by choosing

terms where they are present and making their coefficients

equal to 1.

Solve system of

simultaneous linear

equations.

Step 6 Verify that the terms not chosen are not larger than one. same

Step 7 If any term is larger than one, then normalize equations

again assuming different dominant terms.

same
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difference with the scaling analysis developed by Barenblatt [40, 41] and scaling based on

Lie algebras [42] is that the scaling factors used in OMS describe characteristic values as a

function of the problem parameters, not as a function of the independent variables.

Compared to the scaling approaches based on ad hoc dimensionless ratios of forces, OMS

has the advantage that the scaling factors obtained can converge to the exact solution or

very close to it because OMS takes geometrical factors and other numerical constants into

account.

Inspectional analysis is a technique that generates dimensionless groups from the gov-

erning equations [43]. In inspectional analysis, it is not required that the magnitudes that

normalize the variables represent characteristic values; thus, the resulting normalized govern-

ing equations do not necessarily provide representative estimates of the relative magnitude

of each term.

In dimensional analysis [44] and its modern implementations [45–50], there are no guide-

lines for the choice between different sets of independent dimensionless groups. In contrast,

in OMS the dimensionless groups generated are not arbitrary as in dimensional analysis, in-

stead, they aim at capturing the order of magnitude of the terms of the governing equations.

The concepts and linear algebra operations developed in this work are illustrated using

a detailed example involving thermocapillary flows in welding to demonstrate the capability

of OMS to yield scaling laws and insight in more complex problems.
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2 Mathematical background of OMS

2.1 The Matrix of Coefficients

The matrix of coefficients [C] enables the automation of scaling [51]. This matrix synthe-

sizes the engineering judgement used in Steps 1 to 3, and enables the use of linear algebra

operations to implement Steps 4 to 7 as a computer algorithm.

The power law coefficients of a set of equations can be written in a general form as:

(C) = [C]





(K)

(P )

(S)





(3)

where [C] is the matrix of coefficients, with a structure illustrated in Figure 1. The no-

tation is explained in detail in Appendix A. The matrix of coefficients considers p governing

equations, of which equation j has tj coefficients. The horizontal lines divide the groups of

coefficients corresponding to each governing equation. The total number of coefficients is

t. The vertical lines divide the matrix in three submatrices. The leftmost submatrix (set

{K}) is associated with the numerical constants that appear in the coefficients (e.g. 2, π,

etc.). The submatrix in the middle contains the n columns associated with the parameters

(set {P}). The submatrix on the right contains the q columns associated with the unknown

characteristic values (set {S}). Following the naming convention described in Appendix A,

these submatrices are named [C]K , [C]P , and [C]S respectively.
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K1 · · · Ku P1 · · · Pn S1 · · · Sq

C1,1 · · · · · · · · · · · · · · ·
...

...
. . .

...
...

. . .
...

...
. . .

...

C1,t1 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Cp,1 · · · · · · · · · · · · · · ·
...

...
. . .

...
...

. . .
...

...
. . .

...

Cp,tp · · · · · · · · · · · · · · ·

Figure 1: Structure of the Matrix of Coefficients [C]. Line Cj,k represents coefficient k

in equation i, and each column represents a numerical constant (K1, K2, ...), a problem

parameter (P1, P2, ...), or an unknown characteristic value (S1, S2, ...) [1]

2.2 Modified Dominant Balance

The estimation of unknowns using matrix operations corresponds to Step 5 of the typical

scaling procedure described in Table 1. To accomplish this, OMS follows a rigorous approach

based on a modified implementation of the dominant balance technique.

Traditionally, dominant balance has three steps: 1) elimination of a term of a differential

equation assuming it does not affect its asymptotic behavior; 2) solution of the simplified

equation, 3) replacing the simplified solution into the original equation and verifying that the

neglected term is indeed negligible [18–22, 38]. Because the verification is performed using

the solution of the simplified equation, not the exact solution, there is no fail-proof bound

for the errors. Self-consistency is widely used by engineers and applied mathematicians, and

“pathological” cases are rare in engineering [8, 12, 18, 20]. Appendix B discusses such cases
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through an example.

In the modified implementation of dominant balance in OMS, the terms are balanced

by considering only their normalized characteristic values and discarding all but two terms,

resulting in power-law equations, much faster to solve than a differential equation.

2.2.1 Use of characteristic values to perform balances

OMS estimates the magnitude of every term by considering only its power-law coefficients.

This is also standard practice in engineering analysis [11–14], and has been studied in detail

in [2]. A significant advantage of this approach is that it enables estimating the character-

istic values of the unknown functions without integrating the differential equations. This is

possible because the coefficients do not involve the independent variables.

Two conditions are necessary for a meaningful use of characteristic values. First, the

terms considered must balance each other over almost all the domain (except at singularities).

Second, the dominant terms being balanced must have their characteristic values evaluated

at the same point in the domain, especially when the terms considered involve singularities.

The first condition is the “ortohodoxy” condition described in [52], and provides guide-

lines for the division into subdomains. Subdomains should not be too large as to involve

more than one pair of terms balancing each other, yet subdomains should be large enough

to allow the estimation of differential expressions based on characteristic values. The pres-

ence of singularities in stiff equations is disclosed in Appendix B. From this point forward,

when referring to a domain or subdomain, it will be implicit that the region surrounding a

singularity is excluded.
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2.2.2 Two-term balances

In applied mathematics, after removing a negligible term, the dominant balance technique

typically still involves more than two terms [18–22, 38]. Because the coefficients have the

form of a power-law and in OMS only two coefficients are considered simultaneously, the

unknowns can be estimated by performing linear algebra operations. The linear algebra

approach is not possible when more than two terms are considered simultaneously.

When the two terms balancing each other are the dominant terms, no other term is larger

than these. In the asymptotic cases, the non-dominant (secondary) terms tend to zero and

the simplified balance tends to the exact solution. In some cases, terms outside the balance

tend to neither zero nor infinity in the asymptotic regime, effectively establishing a multiple-

term balance. These special cases are the focus of current work, but beyond the scope of

this paper. Also, the combination of parameters that fall in between asymptotic regimes

require consideration beyond the analysis of asymptotic extremes. Appendix B details the

linear algebra aspects of multiple-term balances.

2.2.3 Practical considerations of modified dominant balance

Because the coefficients have the form of a power-law and only two coefficients are considered

simultaneously, the unknowns can be estimated by performing linear algebra operations.

Calling q the number of unknown characteristic values, then q equations must be considered

in each balance.

In OMS, there can be fewer unknown characteristic values than equations. In this case,

a subset of the original equations must be chosen to avoid overdetermination. The number
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of equations in this subset must match the number of unknown characteristic values q. Self

consistent balances must be found for this subset of equations. The remaining equations

must be normalized by their largest coefficient, this way self consistency is automatically

assured. The normalized remaining equations can be used as a check for the normalization of

differential expressions involved in them. When there are more unknown characteristic values

than governing equations, a division in subdomains can add new equations to generate a well

defined problem. In some cases, such as moving boundary problems, additional equations

can be generated by incorporating integral formulations of the governing equations.

For systems involving many equations with many terms, the number of possible two-term

balances increases exponentially. An upper bound estimation of the number of balances,

which is useful to estimate maximum computational time, is presented in Appendix C.

2.3 Matrix Operations to Estimate the Unknowns

Each of the iterations performed results in a set of normalized equations, where each coeffi-

cient in the equation can be obtained by subtracting the row corresponding to the normal-

izing term from all rows corresponding to terms in that equation. The matrix of normalized

coefficients is defined as:

(N) = [N ]





(K)

(P )

(S)





(4)

where (N) is the column vector of logarithms of normalized coefficients, and [N ] is the matrix

of normalized coefficients, and (K) is the vector of logarithms of the numerical constants, (P )
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the vector of logarithms of the parameters, and (S) the vector of logarithms of the unknown

characteristic values.

Appendix D shows that the characteristic values can be estimated using the following

matrix operation:

(Ŝ) = [S](P ′) (5)

where the matrix of scaling factors [S] contains the exponents of the parameters in the

estimations of the unknowns.

[S] = −[No]
−1

S [No]P ′ (6)

This equation enables the estimation of the characteristic values in a system of equations

without solving the actual system; this is still true even if the system includes non-linear

differential equations. This expression is novel, and it is at the core of the OMS methodology

because it allows computer estimation of characteristic values without manual operations.

2.4 Consistency of Estimations

Checking for self-consistency corresponds to Step 6 in Table 1. Equation 5 yields many

different estimates, depending on the terms chosen in the balances. Estimates which result

in the secondary terms larger than the assumed dominant terms must be discarded. Thus, for

each dominant balance iteration, there are three possible outcomes in OMS: self-consistent,

inconsistent, and incompatible. The classification is based on estimations of the neglected

terms using the estimates of Equation 5.

To accomplish a classification of consistency, the “matrix of normalized secondary coef-

ficients” [Ns] is defined. In this matrix, each row is a row of matrix [N ] that corresponds
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to a secondary term. Replacing the unknown characteristic values in [Ns] by their estimates

results in

(N̂s) = [N̂s](P
′) (7)

where the notation described in Appendix A indicates:

[N̂s] = [Ns]P ′ + [Ns]S[S] (8)

An extension of Equation 8 supplies all coefficients of the normalized equations:

[N̂ ] = [N ]P ′ + [N ]S [S] (9)

Using Equations 7 or 8, a “regime” of a system can be defined as any combination of

parameters that result in small secondary terms. The limits of a regime are the combinations

of parameters that yield a normalized secondary coefficient equal to 1. Tracing the limits

of regimes is essential to create process maps. Of course, the sharp limits obtained are

just markers of the gradual transition between regimes, not exact values. The criteria for

consistency can then be summarized as:

• All elements of (N̂s) are ≤ 0 ⇒ self-consistent

• There is an element of (N̂s) that is > 0 ⇒ inconsistent

• Matrix [No]P ′ is singular ⇒ incompatible

2.5 Summary of OMS algorithm

The OMS algorithm is illustrated schematically in Figure 2, and has three main stages.

The first stage consists of representing the governing equations in matrix form: the matrix
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of coefficients. This stage contains Steps 1, 2, and 3 of Table 1, and requires engineering

judgment for the proper normalization of expressions. The second stage involves iterations

and matrix operations that solve for the unknowns. This stage contains Steps 4 to 7 of

Table 1 and is performed automatically; its outcome is a set of self-consistent scaling laws.

Typically, many balances are associated to the same set of scaling laws and are grouped

into classes. The third stage involves the assessment of results from the iterations, and it

involves a manual check to verify the proper normalization of differential expressions and

the presence of special cases of self-consistency or stiff equations.

3 Case study: Thermocapillary flow in welding

The problem considered is the estimation of velocities, pressure, and temperatures due to

thermocapillary convection in the weld pool. The formulation used is that of Regime I

(no boundary layers) in [13], for which there are known and accepted scaling laws [53–56].

Work on scaling laws in regimes involving boundary layers is also in [13,39,55,56], and most

recently in [57].

Figure 3 illustrates the geometry considered, consisting of long channel with its axis

perpendicular to the page. The walls of the channel are at temperature T0 (melting tem-

perature of the metal), and the molten metal receives heat on its free surface from a long,

stationary heat source of characteristic half-width L. There is a large difference between the

idealized representation considered here and a real welding problem; however, for many rel-

evant cases, the physical mechanism considered is representative of reality, and the resulting

scaling laws are useful in practice. Noteworthy idealizations incurred in the treatment below
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Figure 2: Flowchart of the OMS procedure [1].
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are: non-deformable free-surface, heat source stationary with respect to solid boundaries,

2-D rectangular geometry in steady-state, lack of electromagnetic or buoyance body forces

in the melt, no gas shear on the surface, no frictional heating, and width of solid boundaries

much larger than width of heat source. Also, the fluid is considered laminar, incompressible

and with constant thermophysical properties.

Figure 3: System coordinates and problem configuration for thermocapillary flows (modified

from [13]). Only half the enclosure is shown

Based on the above considerations, the mathematical formulation of the problem involves

the equation of mass conservation, two Navier-Stokes equations, and conservation of energy:

∂u

∂x
+

∂v

∂y
= 0 (10)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
(11)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
(12)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
(13)
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Non slip and symmetry boundary conditions apply as indicated in Figure 3. The surface

pressure far from the heat source is atmospheric. The boundary conditions are what makes

this problem interesting, and involve the Marangoni boundary condition as well as a heat

input condition, both on the free surface:

ρν
∂u

∂y
= σT

∂T

∂x
(14)

k
∂T

∂y
= −Q(x) (15)

The independent variables are {X} = {x, y} (shown in Figure 3); the dependent variables

are {U} = {u(x, y), v(x, y), p(x, y), T (x, y)}, representing the x and y components of the

velocity field, the pressure field, and the temperature field; and the parameters are {P} =

{L, ρ, α, k, Q0, σT , ν, D} representing a characteristic half width of the heat source, the melt

density, the melt thermal diffusivity, the melt thermal conductivity, the maximum intensity

of the heat source, the variation in surface tension with temperature, the kinematic viscosity,

and the depth of the melt. These parameters represent an autogenous weld on 304 stainless

steel (ρ=6907 kg/m3, ν=8.32 10−7 m2/s, α=3.3 10−6 m2/s, k=18 Wm−1K−1 [39]) with 40

ppm of S (σT=1.5 10−9 Nm−1K−1 [58]) using a defocused laser or a GTAW torch with an

argon arc of 70 A and 2 mm length (L=1.2 mm, Q0=4 107 W/m−2 [59]) and depth D=0.6

mm (typical value). The value of 40 ppm S was chosen such that the flow in the weld pool

would be dominated by viscous forces.
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3.1 Construction of the Matrix of Coefficients

Using the normalization scheme described in [2], the independent variables are normalized

as x∗ = x/L and y∗ = y/D, and the normalized counterpart of equations 10-13 is:

(
∂u

∂x

)

c

(
∂u

∂x

)
∗

+

(
∂v

∂y

)

c

(
∂v

∂y

)
∗

= 0 (16)

(
u
∂u

∂x

)

c

(
u
∂u

∂x

)
∗

+

(
v
∂u

∂y

)

c

(
v
∂u

∂y

)
∗

= −1

ρ

(
∂p

∂x

)

c

(
∂p

∂x

)
∗

+

+ν

(
∂2u

∂x2

)

c

(
∂2u

∂x2

)
∗

+ ν

(
∂2u

∂y2

)

c

(
∂2u

∂y2

)
∗

(17)

(
u
∂v

∂x

)

c

(
u
∂v

∂x

)
∗

+

(
v
∂v

∂y

)

c

(
v
∂v

∂y

)
∗

= −1

ρ

(
∂p

∂y

)

c

(
∂p

∂y

)
∗

+

+ν

(
∂2v

∂x2

)

c

(
∂2v

∂x2

)
∗

+ ν

(
∂2v

∂y2

)

c

(
∂2v

∂y2

)
∗

(18)

(
u
∂T

∂x

)

c

(
u
∂T

∂x

)
∗

+

(
v
∂T

∂y

)

c

(
v
∂T

∂y

)
∗

=

= α

(
∂2T

∂x2

)

c

(
∂2T

∂x2

)
∗

+ α

(
∂2T

∂y2

)

c

(
∂2T

∂y2

)
∗

(19)

with normalized boundary conditions:

ρν

(
∂u

∂y

)

c

(
∂u

∂y

)
∗

= σT

(
∂T

∂x

)

c

(
∂T

∂x

)
∗

(20)

k

(
∂T

∂y

)

c

(
∂T

∂y

)
∗

= −Q0Q
∗(x∗) (21)

Table 2 lists the characteristic values of differential expressions calculated using the tradi-

tional normalization approach described in [2]. These characteristic values were assigned

assuming there are no boundary layers; at this stage, this is only a supposition, but it will be

verified later in this paper. Based on equations 16-21 and Table 2 the corresponding matrix

of coefficients [C] is shown in Equation 22.
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Table 2: Estimated characteristic values for equations 16-21

Characteristic value Estimation

(∂u/∂x)c uc/L

(∂u/∂y)c uc/D

(∂v/∂y)c vc/D

(∂p/∂x)c pc/L

(∂p/∂y)c pc/D

(u∂u/∂x)c u2

c/L

(v∂u/∂y)c vcuc/D

(u∂v/∂x)c ucvc/L

(v∂v/∂y)c v2c/D

(u∂T/∂x)c ucTc/L

(v∂T/∂y)c vcTc/D

(∂2u/∂x2)c uc/L2

(∂2u/∂y2)c uc/D
2

(∂2v/∂x2)c vc/L2

(∂2v/∂y2)c vc/D
2

(∂T/∂x)c Tc/L

(∂T/∂y)c Tc/D

(∂2T/∂x2)c Tc/L2

(∂2T/∂y2)c Tc/D
2
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[C] =

L D ρ ν α k σT Q0 uc vc pc Tc


-1 1

-1 1

-1 2

-1 1 1

-1 -1 1

-2 1 1

-2 1 1

-1 1 1

-1 2

-1 -1 1

-2 1 1

-2 1 1

-1 1 1

-1 1 1

-2 1 1

-2 1 1

-1 1 1 1

-1 1 1

-1 1 1

1




Eq. 16

Eq. 17

Eq. 18

Eq. 19

Eq. 20

Eq. 21

(22)

22



3.2 Iterations based on matrix operations

The construction of the matrix of coefficients completes the first stage of OMS. The ma-

trix operations of this section constitute the second stage, performed automatically by a

computer. For the matrix of coefficients of Equation 22, the OMS algorithm tried 2,486

combinations of four pairs of balancing terms in 0.76 s in a MacBook with a 2.4 GHz pro-

cessor. This exhaustive analysis identified 1,897 incompatible balances, 544 inconsistent

balances and 45 self-consistent balances. The 45 self-consistent balances correspond to 14

classes, with each class made of all balances that result in the same estimation. Of the 45

classes of self-consistent balances, only 2 are consistent with mass conservation (Equation 10)

and the boundary conditions (equations 14 and 15). The matrix of normalized coefficients

for one of these two classes is shown in Equation 23. This matrix has six rows with only

zeros (not shown) because these rows correspond to terms used to normalize the equations.
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[N ] =

L D ρ ν α k σT Q0 uc vc pc Tc


-1 -1 1 -1

-1 2 -1 1

1 -1 1

-1 2 -1 -1 -1 1

-2 2

-1 1 1 1 1 -1

1 2 -1

-2 1 1 1 1 -1

-1 1 1 1 -1

-1 2 -1 1

1 -1 1

-2 2

1 -1 1 1 -1 1 -1

-1 1 -1 1




Eq. 16

Eq. 17

Eq. 18

Eq. 19

Eq. 20

Eq. 21

(23)
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The only difference between the two chosen classes is in the scaling law for p̂c, and the

determination of the valid class requires engineering judgement in the Stage 3 in Figure 2.

The criterion of class selection will be explained later. The selected matrix of scaling factors

is:

[S] =

L D ρ ν α k σT Q0


-1 2 -1 -1 -1 1 1

-2 3 -1 -1 -1 1 1

-1 1 1

1 -1 1




ûc

v̂c

p̂c

T̂c

(24)

yielding the following estimates:

ûc =
D2σTQ0

Lρνk = 0.17 mm/s (25)

v̂c =
D3σTQ0

L2ρνk
= 0.09 mm/s (26)

p̂c = σTQ0/k = 0.0033 Pa (27)

T̂c = DQ0/k = 1,333 K (28)

Equations 25 to 28 are exactly the same as those obtained manually in [13]. The velocities

obtained are smaller than usual. This is because the thermocapillary coefficient chosen (σT )

is very small. Such small value is possible, but unstable, because small variations in surface

active elements can radically alter the results.

This thermocapillary flow problem was scaled manually in [13, 55, 56]; in these cases,

manual scaling was possible only because ûc, v̂c, and T̂c can be obtained by considering

equations 10, 14, and 15 alone, and since they involve only two terms each, only one balance

is possible. After the determination, ûc, v̂c, and T̂c, the exhaustive manual determination
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of p̂c still involves 26 iterations. Only Rivas and Ostrach [13] describe considerations of

pressure, arriving to the same result as in this section; however, they do not discuss the

other self-consistent balance and offer no explanation for their choice.

The set of governing equations based on normalized variables can be written using the

linear algebra operations from OMS and the traditional approach to characteristic values,

where (∂u/∂x)∗ = ∂u∗/∂x∗ and so forth, with normalized variables x∗ = L/x, y∗ = y/D,

u∗ = u/ûc, v∗ = v/v̂c, p∗ = p/p̂c, T ∗ = (T − T0)/T̂c. The balance selected yields the

matrix of normalized coefficients [N̂ ] of Equation 29, where the zero elements are omitted.

Because the dominant input and output terms have a coefficient of 1 when normalized, their

corresponding rows in [N̂ ] have only zeros and appear as empty lines. Because equations 10,

14, and 15 are used on the selected balance and they only have only two terms each, they

appear as completely empty rows in Equation 29
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[N̂ ] =

L D ρ ν α k σT Q0


-2 4 -1 -2 -1 1 1

-2 4 -1 -2 -1 1 1

-2 2 1

-4 6 -1 -2 -1 1 1

-4 6 -1 -2 -1 1 1

-4 4

-2 2

-2 4 -1 -1 -1 -1 1 1

-2 4 -1 -1 -1 -1 1 1

-2 2




Eq. 16

Eq. 17

Eq. 18

Eq. 19

Eq. 20

Eq. 21

(29)
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Using matrix [N̂ ], the original set of equations 10 to 15 can be expressed in dimensionless

form as:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0 (30)

(
D4σTQ0

L2ρν2k

)
u∗

∂u∗

∂x∗
+

(
D4σTQ0

L2ρν2k

)
v∗

∂u∗

∂y∗
=

∂p∗

∂x∗
+

(
Dν

L2

)
∂2u∗

∂x∗2
+

∂2u∗

∂y∗2
(31)

(
D6σTQ0

L4ρν2k

)
u∗

∂v∗

∂x∗
+

(
D6σTQ0

L4ρν2k

)
v∗

∂v∗

∂y∗
=

∂p∗

∂y∗
+

(
D4

L4

)
∂2v∗

∂x∗2
+

(
D2

L2

)
∂2v∗

∂y∗2
(32)

(
D4σTQ0

L2ρναk

)
u∗

∂T ∗

∂x∗
+

(
D4σTQ0

L2ρναk

)
v∗

∂T ∗

∂y∗
=

(
D2

L2

)
∂2T ∗

∂x∗2
+

∂2T ∗

∂y∗2
(33)

including normalized boundary conditions:

∂u∗

∂y∗
=

∂T ∗

∂x∗
(34)

∂T ∗

∂y∗
= Q∗(x∗) (35)

In the asymptotic extreme of negligible convection, negligible inertial forces, and very

shallow melt, the coefficients in parentheses tend to zero with no singularity of any type in

the limit. Matrix [N̂ ] shows that in Equation 18 (Navier-Stokes in y) has only its third term,

representing the pressure gradient between the free surface and the bottom, with a coefficient

of unity. Similarly, only the fourth term of Equation 19, representing the temperature

gradient between the free surface and the bottom in the energy equation, has a coefficient of

1. This indicates that in the asymptotic extreme ∂p∗/∂y∗ → 0 and ∂2T ∗/∂y∗2 → 0, and it

can be interpreted as “pressure in the fluid is imposed from the surface” and “temperature

varies linearly across the depth of the weld pool.” The interpretation of pressure behavior is

similar to that in Prantl’s asymptotic analysis of the boundary layer, while the interpretation

of temperature variation is consistent with a one-dimensional conduction-dominated system.
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3.3 Final Choice of Self-Consistent Balance

It was mentioned above that the OMS algorithm yielded two self-consistent balances, of

which the chosen one was described above. This section addresses the reasoning behind this

choice. The discarded balance results in equations 30, 33, 34, 35, and a pressure estimation

of p̂c = (D/L)2σTQ0/k. However, the dimensionless Navier-Stokes equations are different in

this balance:

(
D4σTQ0

L2ρν2k

)
u∗

∂u∗

∂x∗
+

(
D4σTQ0

L2ρν2k

)
v∗

∂u∗

∂y∗
=

(
D2

L2

)
∂p∗

∂x∗
+

(
Dν

L2

)
∂2u∗

∂x∗2
+

∂2u∗

∂y∗2
(36)

(
D4σTQ0

L2ρν2k

)
u∗

∂v∗

∂x∗
+

(
D4σTQ0

L2ρν2k

)
v∗

∂v∗

∂y∗
=

∂p∗

∂y∗
+

(
D2

L2

)
∂2v∗

∂x∗2
+

∂2v∗

∂y∗2
(37)

Equation 36 has a coefficient of 1 only for the term representing the curvature of the

profile of horizontal component of the velocity. This means that in the asymptotic extreme

the horizontal velocity varies linearly across the depth of the weld pool, but this is impossible

for recirculating flows with a no-slip condition at the bottom, as shown in Figure 3.

3.4 Limit of validity of estimates

The scaling estimates for ûc, v̂c, p̂c, and T̂c are the result of considering only the dominant

forces present and assuming the secondary forces are zero. In this example the dominant

forces considered are Marangoni driven flows balanced by viscous forces, and a surface heat

source balanced by heat conduction; the neglected phenomena are inertial forces and con-

vective heat transfer. Because the obtained scaling expressions are the same as long as the

approximations made are valid, it is crucial to determine their range of validity to trust them

enough to use in practice.
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The asymptotic approximations are invalid when the balances become inconsistent, i.e.,

when the dimensionless groups associated with the secondary coefficients are greater than 1;

this way, the limits of validity of equations 25 to 28 are given by:

(
D4σTQ0

L2ρν2k

)
≤ 1 (38)

(
Dν

L2

)
≤ 1 (39)

(
D6σTQ0

L4ρν2k

)
≤ 1 (40)

(
D4

L4

)
≤ 1 (41)

(
D2

L2

)
≤ 1 (42)

(
D4σTQ0

L2ρναk

)
≤ 1 (43)

It is obvious that not all these dimensionless groups are independent among themselves,

and a base set can be determined manually. Dimensional analysis considerations in OMS

determine the number of dimensionless groups involved, and sets the stage for further oper-

ations.

3.5 Dimensional Analysis considerations

The number of independent dimensionless groups in system (m) is very easy to determine

with OMS: it is the number of independent rows in matrix [N̂ ]; therefore:

m = rank[N̂ ] (44)

which for this example yields m =3, meaning that there only three independent dimen-

sionless groups can exist simultaneously; this can be confirmed to be the case by manually
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manipulating equations 38-43. The OMS result is better than what would have been ob-

tained by using Buckingham’s theorem [44], which establishes that for the 8 parameters of

this problem with the 4 reference units involved (m, kg, s, K), there should be four (not

three) dimensionless groups. The reason for the discrepancy is that in the set of governing

equations, mechanical and thermal energy are never converted into each other, resulting in

the possibility of using two independent reference units for energy [39]. The consideration

of an additional reference unit for thermal energy would make Buckingham’s theorem yield

the correct number of dimensionless groups.

The three reference dimensionless groups chosen must be based solely on the problem pa-

rameters, and their choice is arbitrary with the only constriction that they must be mutually

independent. Following [13], the following set is chosen:

Reσ = ûcL/ν =
D2σTQ0

ρν2k
(45)

Pr = ν/α (46)

A = D/L (47)

where Reσ is the Reynolds number obtained using a velocity estimate, Pr is the Prandtl

number, and A is the aspect ratio. It is interesting to highlight that the Marangoni number

is not necessary to completely describe the system with the curent choice of reference di-

mensionless groups. Of course, the Marangoni number could be constructed by combination

of the chosen groups as Ma=ReσPr.

The range of validity given by equations 38-43 can then be expressed in terms of the
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reference dimensionless groups as:

A ≤ 1 (48)

ReσA
2 ≤ 1 (49)

ReσPrA
2 ≤ 1 (50)

The above expressions can be obtained manually from equations 38-43, or from linear al-

gebra operations within the OMS framework. For the stainless steel welding example, the

corresponding values are: Reσ=0.25, Pr=0.25, and A=0.5.

3.6 Process maps

Figure 4 displays the graphic representation of equations 48-50 for shallow enclosures (A ≤1).

The dot labelled “SS 304” corresponds to the stainless steel welding example considered. The

dashed lines delimiting the shaded region represent the “envelope” of the regime considered;

dashed lines are used as a reminder that the regime limits are not sharp, and as the lines are

approached, the secondary terms approach the order of magnitude of the dominant terms,

and the estimates can diverge from the actual values. The representation of range of validity

of one or more regimes in Figure 4 constitutes a “process map.”

Process maps are of great practical use. Any system described by governing equations 10-

15 can be located on the map using only the problem parameters, which are known a priori.

Once a particular system has been located on the map, scaling estimates and correction

factors can be determined using only the problem parameters. The use of correction factors

based on dimensionless groups that capture secondary effects is addressed in [60–62].

Other regimes are possible in this problem, and would be graphically represented in
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Figure 4: Process map for thermocapillary flows. The dashed lines indicate the the range

of self-consistency of scaling estimates from equations 25 to 28 for different values of aspect

ratio A. The shaded area and the dot labelled “SS 304” correspond to the values used

in the stainless steel example (Reσ=0.25, Pr=0.25, A=0.5). The dot labelled “Al 50832”

corresponds to the self-consistent aluminum example (Reσ=0.36, Pr=0.018, A=0.9), and the

point “Al 50831 the the inconsistent aluminum example(Reσ=1.3 106, Pr=0.018, A=0.9).
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Figure 4 by points that fall outside the shaded area. For low Prandtl numbers, these regimes

were reviewed in [13, 39]. Each regime has a different scaling involving the presence or

absence of boundary layers and the dominant heat and momentum transport mechanism:

conduction vs. convection, and viscous vs. inertial. For the problem considered, the set

of dimensionless governing equations 30-35 involves two-term balances with no singularity,

confirming the original hypothesis of absence of boundary layers. It is interesting to highlight

that for shallow enclosures (A ≪ 1, values of Reσ and Pr can be relatively large and the

system still be dominated by conduction and viscosity.

For very shallow enclosures the flow pattern might result in Bénard-Marangoni convective

cells instead of a single recirculating loop; in this case the estimated characteristic values

of Table 2 should be revisited. Convective cells will happen when the Marangoni number

exceeds a value of 80 [63]. Equation 50 indicates that cell convection should not be a problem

for the regime studied for aspect ratio A > 0.11, which covers the typical values of welding.

3.7 Example of application of process map

Consider an autogenous weld on aluminum 5083 made by a Nd:YAG fiber laser. The beam

is set to a power W =4 kW, a FWHM (full width half maximum) spot size of 1 mm, and a

beam velocity of 10 mm/s. The beam efficiency is η=15%. The penetration configuration of

the weld pool is in “conduction mode” with a penetration of D=0.45 mm. The label “con-

duction mode” indicates the absence of a keyhole, and it is used by welders and researchers

even if the dominant heat transfer mechanism is convection in the molten metal. The ther-

mophysical properties of molten aluminum 5083 at 800 ◦C are ρ=2309 kg/m3, ν=4.33 10−7
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m2/s, α=2.4 10−5 m2/s, and k=68 Wm−1K−1 [64]. Two surface tension temperature coef-

ficients will be considered: σT1
=3.5 10−4 Nm−1K−1 as used in [65], and the artificial value

σT2
= 10−10 Nm−1K−1.

The question to answer is: What are the representative surface velocity and maximum

temperature in the weld? This question is very difficult to answer without the help of a

process map and order of magnitude estimates. Fortunately, the thermocapillary flow model

discussed above is a reasonable idealization useful to answer this question.

The first step is to calculate the values of the parameters for the model. The length L=0.5

mm is assigned as half the FWHM. Assuming the beam has a typical gaussian distribution,

the maximum heat intensity is Q0 = ηW/(2πσ2

b ), where σb is the standard deviation of the

beam heat distribution, related to the FWHM by σb = FWHM/(2
√
2 ln 2) ≈ FWHM/2.36

resulting in Q0=5.3 108 W/m−2.

The parameters calculated for this example yield two different sets of dimensionless

groups depending on the value considered for the surface tension temperature coefficient. For

σT1
, the corresponding coordinates in the process map are Re=1.3 106, Pr=1.8 10−2, A=0.9,

indicated as Al 50831 in Figure 4. For σT2
, the coordinates are Re=0.36, Pr=1.8 10−2, A=0.9,

indicated as Al 50832. Using these groups as coordinates in the process map of Figure 4,

point Al 50831 falls outside the self-consistent range for the regime studied, while point Al

50832 falls in the self-consistent region with known scaling estimates.

For point Al50832, the original questions about characteristic surface velocity and tem-

perature are answered using 25 and 28, obtaining uc= 3.2 10−4 m/s, and Tc= 3500 K. To

obtain the actual maximum temperature, the melting temperature must be considered, which

in this case can be considered as 650 ◦C, yielding a maximum temperature of 4150 ◦C. This
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temperature is above the boiling point of aluminum (2519 ◦C), indicating that the heat input

for the system should be decreased accounting for heat losses due to evaporation. In practice,

it is generally agreed that the surface of the weld pool has temperatures approaching boiling.

If reliable experimental or numerical results were available, they would seldom be exactly

the same as predicted by Equations 25 to 28. Assuming the main sources of discrepancy

are the neglect of inertial and convective phenomena, as well as the consideration of finite

aspect ratio, the estimates could be corrected to a high degree of accuracy while keeping the

generality and simplicity. The correction can be performed using calibration functions based

on Reσ, Pr, and A, as described in [60].

4 Discussion

The scaling laws obtained are exactly the same as the known existing scaling, supporting

the validity of the OMS procedure. OMS also allowed for an effortless exhaustive search of

all possible balances, and resulted in awareness followed by rigorous and nuanced discussion

of the choice of scaling laws when more than one was possible. The existence of multiple

self-consistent balances was not discussed in any of the previous literature, and possibly,

there was no awareness of it.

OMS could go further than reproducing the manual results already known as shown

above. Equations 10 to 15 are an incomplete description of a typical welding problem,

since they do not incorporate very important body forces such as the magnetohydrodynamic

effect of imposing an electrical current through a conducting fluid. Incorporating such effects

would have made the problem intractable with a manual approach. In contrast, the OMS
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procedure and matrix operations presented here could deal with more complex equations,

tackling the problem computationally with little additional effort for the researcher. The

application of OMS to a more complete description of welding is presented in [66,67], where

phenomena considered include viscous and inertial forces, Marangoni boundary condition,

electromagnetic, buoyancy, and hydrostatic forces, and gas shear at the free surface.

The estimates have two sources of error: the estimation of characteristic values of dif-

ferential expressions, and the neglecting of secondary terms in the formulation of balances.

Estimates that capture the correct asymptotic behavior but differ from measurements by

a constant factor can be improved with a single experiment or numerical simulation. The

complete independent set of dimensionless groups: Reσ, Pr, and A can be used to improve

the estimates for near-asymptotic cases through regressions based on comparisons with ex-

periments or simulations [68]. The simplified system of governing equations 30-35, is also

desirable as a starting point for perturbation analysis.

5 Conclusions

The OMS algorithm has been implemented in prototype form in Matlab and applied to

the analysis of thermocapillary driven flows, automatically reproducing the widely accepted

solutions for maximum velocity and maximum temperature manually obtained by others in

the past. The code, together with insight gained by the framework of analysis, also yielded

an estimate for pressure that had seldom been presented, and never discussed.

The OMS algorithm identified a set of three independent dimensionless groups that com-

pletely characterizes any thermocapillary flow problem that falls in the formulation used
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(Reσ, Pr, A). These dimensionless groups can be the variables of a formal calibration by

comparisons to experiments and numerical models. These dimensionless groups can also

become the small parameters in perturbation analysis.

The formal creation of process maps based on the complete set of independent dimen-

sionless groups is described in detail, and a case study is worked our as a demonstration.

A detailed literature search was performed to put the mathematical foundations of OMS

in the context of similar work in engineering, physics, applied mathematics, and artificial

intelligence. The OMS formulation is unique in its use of the ”matrix of coefficients” [C], and

in the use of two-term balances. No other formulation of scaling analysis has the capability

of determining by itself a self-consistent normalization scheme.

A complete derivation of the key equation for the estimation of unknowns (Equation 6)

is included. This derivation had never been presented complete before.

Overall, the thermocapillary flow problem shows that the OMS code can tackle the

complexity of welding in a formal way with a minimum of manual involvement, and it is rea-

sonable to expect its successful application to problems of constantly increasing complexity.
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A Notation for OMS

A.1 Naming convention for vectors and matrices

{. . .} column vector; for example, {P} indicates the column vector of parameters.

(. . .) column vector of logarithms; for example, (P ) indicates a column vector in which each

element is a logarithm of the corresponding element of {P}. The implementation of OMS

is independent of the base chosen for the logarithms.

[. . .] matrix; for example, the matrix of coefficients defined in Section 2.1 has the symbol [C]

[. . .]cols submatrix based on the set of columns indicated by the subscript. For example, the

matrix of normalized coefficients [N ] can be divided into three submatrices [N ]K , [N ]P ,

and [N ]S in which each submatrix is formed with the columns of [N ] corresponding to

the numerical constants K, the parameters P or the unknowns S. Using this notation

facilitates matrix operations such as

[N ]





(K)

(P )

(S)





= [N ]K(K) + [N ]P (P ) + [N ]S(S)

[. . .rows] submatrix based on the set of rows indicated by the subscript. The subscript i

indicates a dominant input row, the subscript o indicates a dominant output row, and

the subscript s indicates a row corresponding to a secondary term. For example, [No]

is the submatrix of [N ] that considers only the rows associated with the dominant output

terms.

[.̂ . .] matrix in which the columns corresponding to the unknowns have been replaced by

the estimations through the following operation

[.̂ . .] = [. . .]P ′ + [. . .]S[S]

Using the matrix of normalized coefficients as an example:

[N̂ ] = [N ]P ′ + [N ]S[S]
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A.2 Subscripts

c estimation of characteristic value after approximating functional dependences on the

independent variables (described in detail in [2])

e exact magnitude of a characteristic value

i dominant input

o dominant output

s secondary

A.3 Superscripts

. . .∗ normalized quantity

. . .T transposed vector or matrix

k . . . magnitude, vector, or matrix corresponding to balance k

48



A.4 Vectors

set size description

{C} t coefficients of governing equations with normalized functions

{K} u numerical constants

{N} t coefficients of the normalized governing equations

{No} q dominant output coefficients

{Ns} t− q secondary coefficients

{P} n parameters

{P ′} u+ n numerical constants and parameters: {P ′} = {{K}{P}}T

{S} q unknown characteristic values

{U} dependent variables

{X} independent variables

A.5 Matrices

matrix size description

[B] q × 3 matrix of balances

[C] t× (u+ n+ q) matrix of coefficients

[N ] t× (u+ n+ q) matrix of normalized coefficients

[No] q × (u+ n + q) matrix of normalized coefficients of dominant outputs

[Ns] (t− q)× (u+ n+ q) matrix of normalized secondary coefficients

[S] q × (u+ n) matrix of scaling factors
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B Special considerations in the analysis of self consis-

tency

Three aspects of self-consistency deserve special attention: stiff equations, balances of more

than two terms, and “pathological” cases.

B.1 “Pathological” cases of self-consistency

The following example illustrates how a self-consistent answer can provide an incorrect es-

timation, and how the correct balance of dominant terms can be overlooked. Consider the

equations

u− av − b = 0 (51)

u− v = 0 (52)

with a = 0.9 and b = 0.1. The exact solution of these equations is u = v = 1. Two balances

can be chosen, the first one involving the first and second terms in both equations and the

second balance involving the third instead of the second term in the first equation. The

first balance is incompatible, and the second is self-consistent, yielding ûc = v̂c = b = 0.1,

which has a large error. On the other hand, the balance discarded as incompatible was

representative of the true dominant terms in the first equation, since the first term has a

value of 1, the second of 0.9, and the third of only 0.1. The estimation obtained is accurate

in the asymptotic case when the second term of the first equation tends to zero (0 ≤ a < 1).

In this particular example, the neglected coefficient has a value of 90% of the dominant ones,

which means that this case is very close to the limit of self consistency.
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For the case when a ≥ 1 there are no self-consistent estimations for this system. It

has also been observed in other problems that large errors close to the the limit of self

consistency have been associated with a non-existing self-consistent solution for parameter

combinations outside the original self-consistent regime. Future research is necessary to

explore if the disappearance of self-consistent solutions can be used as a reliable warning

sign of a self-consistency problem when the secondary coefficients approach 1.

B.2 Stiff equations

Self-consistent estimations might result in balances in which all highest order derivatives in

a given independent variable are multiplied by a small factor, such that if the corresponding

term is neglected, the boundary conditions for the system cannot be satisfied. This type of

equations are called “stiff, ” and can be interpreted as having two regions, an “inner” region

close to the boundary or initial time, and an “outer” far far from it. The inner region is

directly affected by the boundary and initial conditions, and in it the highest derivatives

cannot be neglected. In the outer region, neglecting the highest derivatives is an acceptable

simplification.

B.3 Multiple term balances

A special type of self-consistent balance occurs when one or more of the neglected normalized

coefficients do not depend on the problem parameters {P}; thus, the secondary terms will

not tend to zero in the asymptotic case. This occurs when matrix [N̂s]P has a row of zeros.

Matrix [N̂s]P refers to the submatrix of [N̂s] that relates to the parameters but not the
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numerical constants. Multiple-term self-consistent balances must be analyzed individually

as indicated in the third stage of OMS in Figure 2.

C Upper bound for number of balances

Because of the combinatorial nature of the OMS procedure, the computation time can be

very large. For this reason it is useful to estimate beforehand an upper bound of the number

of balances to be computed.

The matrix of coefficients involves p equations, but because there are only q ≤ p unknown

characteristic values, only q equations can be used in each balance. In some cases, some

equations (pr) must be considered in all balances for the problem to make physical sense.

Therefore, the total number of combinations of q equations for the balances is given by:




p− pr

q − pr


 (53)

In this case, the parentheses indicate a combination. For each equation, the upper bound

of the number of balances is given by the combination of the number of coefficients in that

equation taken two at a time. Therefore, the total number of balances will always be lesser

than or equal to: 


p− pr

q − pr







tmax

2




q

(54)

where tmax is the maximum number of coefficients in any equation considered in the problem.

Equation 54 shows that the upper bound for the number of balances grows in a polynomial

way with the number of equations and with the number of terms, and in an exponential way
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with the number of unknowns. In OMS the numbers of equations and unknowns do not need

to be the same; since OMS provides only a characteristic value, OMS’ requisite is that the

number of equations is the same or more than the number of unknowns.

For the thermocapillary flow example, q = 4, p = 6, tmax = 5, yielding an upper-bound

number of combinations of 150,000. The actual number of combinations was 2,486.

D Derivation of Matrix Operations

After Step 4 of the typical scaling procedure detailed in Table 1, a governing equation of the

form of Equation 1 can be expressed as:

f ∗

i ({X∗}, {U∗}, {P}) +Nof
∗

o ({X∗}, {U∗}, {P}) +
∑

j

Ns,jf
∗

j ({X∗}, {U∗}, {P}) = 0 (55)

where f ∗

i ({X∗}, {U∗}, {P}), f ∗

o ({X∗}, {U∗}, {P}), and f ∗

s ({X∗}, {U∗}, {P}) are the normal-

ized functions associated with the input term assumed as dominant, output term assumed as

dominant, and other terms assumed as secondary in the balance. The normalized coefficients

No and Ns,j correspond to the dominant output and the secondary terms. Without losing

generality, in OMS the governing equations are normalized by the coefficient of the input

term assumed as dominant; therefore, that term has a coefficient of exactly 1.

Solving for No for each of q governing equations and taking logarithms on both sides, the

following expression is obtained:
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


No1

...

Noq




=




−f ∗

i 1
({X∗}, {U∗}, {P})

f ∗

o 1
({X∗}, {U∗}, {P}) −

∑

j

Ns1,j

f ∗

s 1,j({X∗}, (U∗}, (P})
f ∗

o 1
((X∗}, (U∗}, (P})

...

−
f ∗

i q({X∗}, {U∗}, {P})
f ∗

o q({X∗}, {U∗}, {P}) −
∑

j

Nsq,j

f ∗

s q,j({X∗}, {U∗}, {P})
f ∗

o q({X∗}, {U∗}, {P})




(56)

In this equation (No1...Noq)
T is a subset of the column vector (N); this subset will be

called (No). Using the notation of Equation 4 results in

(No) = [No]





(K)

(P )

(S)





(57)

where [No] is a matrix formed by the rows of matrix [N ] that correspond to the dominant

output terms in the selected q governing equations. Matrix [No] can also be divided in

two submatrices, such that one submatrix relates to the known numerical constants and

parameters, and the other submatrix relates to the unknown characteristic values:

[No] = [[No]P ′, [No]S] (58)

where [No]P ′ contains the columns of [No] that multiply by the known numerical constants

and parameters, and [No]S contains the columns that multiply the unknown characteristic

values. This way

(No) = [No]P ′(P ′) + [No]S(S) (59)

The combination of Equation 56 with Equation 59 results in:
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[No]P ′(P ′) + [No]S(S) =




−f ∗

i 1
({X∗}, {U∗}, {P})

f ∗

o 1
({X∗}, {U∗}, {P}) −

∑

j

Ns1,j

f ∗

s 1,j({X∗}, {U∗}, {P})
f ∗

o 1
({X∗}, {U∗}, {P})

...

−
f ∗

i q({X∗}, {U∗}, {P})
f ∗

o q({X∗}, {U∗}, {P}) −
∑

j

Nsq,j

f ∗

s q,j({X∗}, {U∗}, {P})
f ∗

o q({X∗}, {U∗}, {P})




(60)

where [No]P ′ is the submatrix of [N ] associated with the dominant output terms, the nu-

merical constants, and the parameters, [No]S is the submatrix of [N ] associated with the

dominant output terms and the unknown characteristic values, (P ′) is the combined set of

logarithms of the numerical constants and parameters, and (S) is the set of logarithms of

the unknown characteristic values, f ∗

i k({X∗}, {U∗}, {P}) and f ∗

o k({X∗}, {U∗}, {P}) are the

normalized forms of the functions associated with the dominant input and dominant output

of the kth of q equations considered in the balance. Nsk,j and f ∗

s k,j({X∗}, {U∗}, {P}) are

the coefficient and associated function of the jth secondary term in the kth equation; the

parentheses indicate that a logarithm operation is applied elementwise. This equation is an

exact reformulation of the governing equations. Equation 60 can be simplified by consider-

ing only the location of the characteristic value of the dominant terms (X∗

ck
for equation k).

Thus:

[No]P ′(P ′) + [No]S(S) =




−f ∗

i 1
({X∗

c1
}, {U∗}, {P})

f ∗

o 1
({X∗

c1
}, {U∗}, {P}) −

∑

j

Ns1,j

f ∗

s 1,j({X∗

c1
}, {U∗}, {P})

f ∗

o 1
({X∗

c1
}, {U∗}, {P})

...

−
f ∗

i q({X∗

cq
}, {U∗}, {P})

f ∗

o q({X∗

cq
}, {U∗}, {P}) −

∑

j

Nsq,j

f ∗

s q,j({X∗

cq
}, {U∗}, {P})

f ∗

o q({X∗

cq
}, {U∗}, {P})




(61)

Equation 60 involves functions of the independent variables and Equation 61 involves
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only one point in the domain for each equation. When the normalization is correct, all

functions f ∗ have a characteristic value ≈ 1; therefore, in the asymptotic limit, all secondary

terms tend to zero (Nsk,j → 0), resulting in the following simplified form of Equation 61:

[No]P ′(P ′) + [No]S(Ŝ) = 0 (62)

where (Ŝ) is the estimate of (S) when the secondary terms are neglected.

56


