
Model for multiple stress-affected martensitic

transformations, microstructural entropy and

consequences on scatter in properties

H. K. D. H. Bhadeshiaa,c, AppaRao Chinthab, S. Kundub

aMaterials Science and Metallurgy, University of Cambridge, U.K

bTata Steel, Jamshedpur, India

cGraduate Institute of Ferrous Technology, POSTECH, Republic of Korea

Abstract

Building on previous work on stress-affected martensitic transformations, a
simple theory is presented to enable the calculation of the volume fractions
of each martensite variant in an austenite grain, as a function of tempera-
ture. Polycrystalline austenite is dealt with by introducing specific textures,
so that the orientation of the martensite in any region of the sample is de-
fined. The calculations show that there is strong variant selection even with
relatively small applied stresses, and the the evolution of overall volume frac-
tion is dominated by the favoured variants. The notion of microstructural
entropy, which indicates the level of heterogeneity in the microstructure is
then used to indicate consequences on properties such as the scatter to be
expected in toughness. These and further detailed consequences of stress-
affected transformation are described.

1. Introduction

Displacive transformations such as bainite and martensite involve both a
change in crystal structure and a physical deformation which is an invariant-
plane strain with a large shear component. They therefore react to stress
much in the same way as slip or mechanical twinning. For example, the
application of a stress favours certain slip systems over others, and the
same applies to displacive transformations, since those plates which interact
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favourably to relieve the applied stress grow in preference to others which op-
pose the external stress. An austenite grain in general can transform into 24
differently oriented martensite plates (variants), but variant selection is said
to occur when some grow preferentially due to an external influence. The
theory for variant selection is not well established for the following reasons.

The essential framework for dealing with the thermodynamics of stress-
affected martensitic transformation was established by Patel and Cohen [1],
by defining a mechanical free energy term ∆GMECH which supplements the
chemical free energy available for transformation, ∆GCHEM so that the total
driving force becomes

∆G = ∆GCHEM +∆GMECH (1)

where for an applied stress that is uniaxial [1],

∆GMECH = sτ + δσN (2)

where s and δ represent the shear and dilatational strains due to transforma-
tion, the latter being normal to the martensite habit plane. The magnitudes
of the shear stress τ on the habit plane, and σN normal to that plane, de-
pend on the orientation of the plate relative to the applied stress. Therefore,
the sign and magnitude of the mechanical driving force depends on the ori-
entation of each of the 24 variants of martensite in any given grain of the
parent phase with respect to the external stress. Strong variant selection
has been shown to occur in the case of carbide precipitation [2] and bainitic
transformations when the ratio ∆GMECH/∆G is large [3].

Transformation under the influence of external stress leads to a differenti-
ation of martensite variants during the evolution of transformation. In other
words, it is as if there are many separate reactions starting at different tem-
peratures. Classical Avrami theory [4–6] introduced the concept of extended
volume when dealing with a single phase transformation, and the method
has been adapted for multiple transformations [7–12]. The purpose of the
present work was to develop to present a simple model capable of predicting
the volume fractions of each kind of martensite as a function of the applied
stress, and to assess the consequences of the results including the influence
of the crystallographic texture in the parent phase.
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2. Method

2.1. Multiple transformations

It is necessary to be able to estimate first, in each grain of austenite, the
distribution of volume fractions of every one of the 24 individual variants of
martensite, and to repeat this for every grain of austenite in a polycrystalline
sample. Since every variant will be associated with a different ∆GMECH , and
hence a different martensite-start temperature (MS), it must be treated as
a unique phase. Therefore, the number of different kinds of martensite (and
MS temperatures) will be 24×Nγ where Nγ is the number of austenite grains.
These multiple transformations are not exclusive and can occur simultane-
ously.

The evolution of the martensite fraction f as a function of undercooling
below MS is described by the classical Koistinen and Marburger equation
[13], the physical basis of which was revealed by Magee [14]:

1− f = exp

[

V φ
d{∆G}

dT
︸ ︷︷ ︸

χ=−0.011

(MS − T )

]

. (3)

where V is the average volume per plate of martensite, and φ is the propor-
tionality constant relating the change in the number of plates per unit volume
of austenite to the corresponding change in driving force, dN = −φd{∆G}.
The composite parameter χ was derived by Koistinen and Marburger fitting
to experimental data [13].

However, this equation applies to the case where there is a unique MS .
To deal with multiple transformations occurring in the same austenite grain,
the simultaneous transformations adaptation [7–11] of the extended volume
concept of Avrami theory [4–6] applies. The method has been widely ap-
plied, including to martensitic transformation by [12]; we therefore follow
[12] but avoid complexity by dealing directly with the Koistinen and Mar-
burger equation. So for 24 different martensitic reactions happening at the
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same time in a given austenite grain, and in a temperature interval dT [15]:

df1 = χ

(

1−
24
∑

i=0

fi

)

dT, with df1 = 0 if MS1
< T

...

df24 = χ

(

1−
24
∑

i=0

fi

)

dT, with df24 = 0 if MS24
< T (4)

(5)

with each equation obtained by differentiating equation 3. The fraction from
individual austenite grains are then summed over all the Nγ austenite grains,
assuming that there is no interaction between the grains. Equations like these
are perfect for numerical interpretation by reducing the temperature in small
intervals and updating the terms at each step.

2.2. Calculation of stress-affected MS temperatures

In the discussion that follows, the stress-free start temperature is defined
as M◦

S, and that influenced by stress as Mσ
S . To a good approximation, the

chemical driving force varies linearly with temperature and may be written
as:

∆GCHEM = a1T + a2 (6)

where a1 and a2 are constants. At the martensite-start temperature, it has a
critical value ∆GMS

required to trigger transformation, then in the absence
of stress,

∆GMS
= a1M

◦

S + a2. (7)

Recalling that ∆G = ∆GCHEM +∆GMECH , it follows that under the influ-
ence of stress, the case for stress-affected transformation becomes:

∆GMS
= a1M

σ
S + a2 +∆GMECH . (8)

On combining equations 7 and 8 we see that

∆GMECH = a1(M
σ
S −M◦

S) = a1∆MS (9)

so that a knowledge of the mechanical free energy enables the change in
the martensite-start temperature to be estimated. The coefficient a1 was
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estimated to be 0.174 Jmol−1K−1 for a typical low-alloy steel of composition
Fe-1Mn-0.2Cwt% using thermodynamic calculations [16] and is not expected
to be sensitive to alloy composition in the class of low-alloy steels, so is
assumed constant in the present analysis; if the need arises, it is easy to
calculate using our standard and freely available software for specific steels
[16].

There are examples in the literature, originating from the pioneering
work by Patel and Cohen [1], where the mechanical driving force is ex-
pressed in a simple manner as a function of stress, for example that it equals
−0.86σ Jmol−1MPa for martensite induced in uniaxial tension with a stress
σ [17–19]. However, these assume that the martensite that forms will be at
an optimum orientation consistent with the maximum interaction with the
applied stress. On the other hand, what is required here is to calculate the
mechanical free energy term for each of the 24 variants of martensite per
grain of austenite.

The applied system of stresses can be described by a 3 × 3 stress tensor
σlm which when multiplied by the unit normal to the martensite habit plane
gives the traction t describing the state of stress on that plane. The traction
can then be resolved into σN and τ in the normal manner [20]:

σN = |t| cos{θ}
τ = |t| cos{β} cos{φ} (10)

where |t| is the magnitude of t, θ is the angle between the habit plane normal
and t, β the angle between t and the direction of the maximum resolved shear
stress, and φ the angle between the latter and the direction of shear for the
martensite plate concerned. Substituting these terms into equation 2 gives
the mechanical free energy. Throughout this work, the set of parameters
which represent the crystallography of an individual plate of martensite, i.e.,
the shape deformation, the habit plane indices, the orientation relationship
with the austenite, are identical to those used in previous studies [3].

To deal with polycrystalline austenite, samples of 500 grains were ar-
ranged with respect to a reference set of coordinates in order to generate a
variety of crystallographic textures, including random, Goss, Cube and Cop-
per, using a method described elsewhere [21]. As a consequence, 24 × 500
values of the mechanical free energy were calculated for the exact orienta-
tion of each martensite plate in the polycrystalline sample. Fig. 1 illustrates
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the distribution of ∆GMECH for the most favoured variant in each austenite
grain, as a function of the texture and of the direction of the applied stress
(20 MPa). Clearly, the nature of the interaction of the overall interaction of
martensite with stress will be different as a function of the austenite texture,
but in some cases (Goss and Copper), the orientation of the stress axis is
important to specify.

3. Results and Discussion

Given the calculated mechanical free energy terms and the theory for
calculating the fraction of transformation contributed by each variant to in-
dividual austenite grains, and summing over all the 24×500 austenite grains,
it becomes possible to predict many features of the evolution of martensite
as a function of stress. Fig. 2a shows the distribution within the polycrys-
talline sample, of the volume fractions of martensite variants. In the absence
of stress, each plate within an austenite grain could contribute equally, re-
sulting in a fraction 1

24
≡ 0.042 so any deviation from this is a consequence

of variant selection, i.e., the favouring of particular orientations of marten-
site which better comply with the applied stress. The distribution broadens
as the stress is increased, because particular variants then are strongly bi-
ased, resulting in large volume fractions. But surprisingly, the frequency of
variants that contribute little to the volume fraction of transformation also
increases. As will be seen later, this is because the dominant variants con-
sume most of the austenite in the early stages of transformation, resulting in
little austenite left for unfavourable variants to grow.

These results have consequences on mechanical properties. If large parts
of austenite transform into few variants, then blocks of identically oriented
plates would form. These large, crystallographically homogeneous regions,
are known to be detrimental to toughness because they permit the undeviated
propagation of cleavage cracks [22–26], and a coarse block size also results in
a reduction of strength [27].

The dispersion of volume fractions represents a microstructural hetero-
geneity, the extent of which can be defined in terms of a parameter known
as microstructural entropy [28] which has its origins in statistical theory
[29, 30]. Thus, for a random variable X assuming the value i with prob-
ability pi = 1, . . . , n, the entropy of X , as a logarithmic measure of the mean
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(a) (b)

(c) (d)

(e) (f)

(b) (h)

Figure 1: 〈100〉γ pole figures showing austenite grain orientations relative to the sample
(s) axes, together with the distribution of mechanical free energy terms (σ = 20MPa)
for the most favoured variant in each of the 500 austenite grains. The axes x ‖ [1 0 0]s,
y ‖ [0 1 0]s and z ‖ [0 0 1]s refer to the direction along which the tensile stress is applied.
(a,b) Radom γ texture. (c,d) Cube texture. (e,f) Goss texture. (g,h) Copper texture.
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probability, is given by:

H{X} = −
n

∑

i=1

pi ln{pi} (11)

which has a maximum when all the probabilities are identical. If volume frac-
tions (Vi) are substituted for probabilities, the n the resulting microstructural
entropy is known to correlate strongly with scatter in toughness values [28].
Thus, the microstructural entropy within each austenite grain is defined on
the basis of equation 11 as:

H =

[

−
24
∑

i=1

Vi ln{Vi}

]/

ln{24} (12)

where the ln{24} term normalises H to vary between 0 and 1, with 0 rep-
resenting the case where the whole of the austenite grain transforms into a
single variant of martensite, and 1 for the case where all variants are equally
represented (i.e., a uniform microstructure).

Fig. 2b shows the distribution of 500 values of microstructural entropy
as a function of the applied stress; the microstructure becomes ever more
non-uniform as the stress is increased, indicating a detrimental effect of
stress-affected transformation on the scatter to be expected in mechanical
properties.

The evolution of total volume fraction is illustrated in Fig. 2c where
M◦

S = 140◦C. The effect of stress is spread the temperature range over which
transformation occurs, a phenomenon which also occurs when the steel is
chemically heterogeneous or where transformation occurs in a temperature
gradient [31]. Recalling that in the absence of stress, the 24 variants in an
individual austenite grain would each have a fraction ≈ 0.04, Fig. 3 shows
that most of the austenite in the polycrystalline sample transforms into those
variants which are favoured by the applied stress. There is, therefore, strong
variant selection. Furthermore, the approximate linear and empirical rela-
tionship reported in previous work, between the number of active variants
and the ratio ∆GMECH/∆G [3], is consistent with the trend in Fig. 3, al-
though in the case of martensite, the ratio of the mechanical to total driving
force is not relevant because the chemical driving force at the onset of trans-
formation is essentially fixed to the value ∆GMS

. It is the absolute value
∆GMECH which determines variant selection.
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(a)

(b) (c)

Figure 2: Stress-affected martensitic transformation from a random distribution of five
hundred grains of austenite. (a) Distribution of martensite fractions. (b) Microstructural
entropy as a function of the applied tensile stress. (c) Volume fraction of martensite as a
function of temperature and applied stress.

9



Figure 3: Total volume fraction of martensite
“favoured” variants in all austenite grain, i.e.,
those whose individual volume fractions exceed
0.04, as a function of tensile stress.

Calculations were conducted to investigate further the influence of austen-
ite texture on subsequent martensitic transformation. It turns out that the
volume fraction obtained as a function of transformation temperature is very
insensitive to the austenite texture (Fig. 4a), presumably because much of
the reaction is dominated by the most favoured variants. There are, never-
theless, significant difference expected in the microstructure as shown in the
distribution of volume fractions, Fig. 4b.

(a) (b)

Figure 4: Data for all textures for a stress of 200MPa applied along the z-axis. (a)
Volume fractions; there is no significant different between the four textures. (b) Frequency
distributions.
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4. Possible Experiments

The calculations presented here can in practice be subjected to experi-
mental probes. Modern electron back-scatter diffraction (EBSD) on a scan-
ning electron microscope can, in combination with orientation imaging, pro-
duce quantitative characterisations of the data presented in Fig. 2a. The data
presented in Fig. 2c can readily be measured using dilatometry in the case
of the sample which undergoes martensitic transformation in the absence of
external stress. When transformation occurs under the influence of stress,
variant selection means that the strains measured during dilatometry are no
longer isotropic [32]. It would be necessary in those circumstances to charac-
terise strains along the three of the principal axes of the sample in order to
deduce the true volume fraction of martensite. The relationship between the
scatter in mechanical properties and the measured microstructural entropy is
likely to be most significant the the steel is in the ductile-to-brittle transition
temperature range.

11



5. Conclusions

It now becomes possible to calculate with a simple algorithm, not only the
crystallographic orientations of martensite plates but also the overall volume
fraction of each variant of martensite in each grain of austenite, given the
orientations of the austenite grains relative to the sample reference frame.
The advent of electron back scattered diffraction makes it possible to quanti-
tatively determine the volume fractions calculated in the present work. The
computer program used in the calculations is freely available on [33] and may
be used to better assess diffraction data.

The work presented in this paper focuses on stress-affected transforma-
tion leading to a different martensite-start temperature depending on the
orientation of the plate relative to the system of stresses. However, it is of
generic value and applies to any scenario in which the steel is heterogeneous
in the following contexts:

• differences in MS temperatures caused by the fact that chemical com-
position may vary with position.

• When macroscopic measurements are made, the temperature may not
be homogeneous, in which case the transformation temperature in dif-
ferent regions of the sample will not be identical. This can be treated
in using the simultaneous transformation equations 5 expressed as a
function of time instead of temperature.

• When transformation occurs under the influence of magnetic fields
which are not homogeneously applied.

• There are alloys in which both α′ and ε martensite form when the
samples are deformed [34]. The method can in principle be applied
to such scenarios to estimate the relative volume fractions of the two
phases.

A further conclusion is that variant selection can be expressed quantita-
tively by stating both the crystal orientation of the variant and how dominant
it becomes by quoting its volume fraction. The microstructural entropy term
then in principle helps relate, for example, the scatter in toughness to the
development of microstructure.
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[34] O. Grässel, L. Kruger, G. Frommeyer, L. W. Meyer, International Jour-
nal of Plasticity 16 (2000) 1391–1409.

15


