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Nomenclature

α Ferrite

c̄ Average carbon content of the alloy

D̄ Effective diffusivity of carbon in austenite lattice

∆ε Energy due to repulsive interaction between carbon atoms

∆G Gibbs free energy

∆Ga Activation free energy

∆H Latent heat of transformation

∆Hform Enthalpy change due to formation of vacancy

∆Hm Enthalpy change due to migration of vacancy

∆Sform Entropy change due to formation of vacancy

∆Sm Entropy change due to migration of vacancy

∆T Undercooling from the eutectoid temperature

δ Depth of phase boundary

γ Austenite
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γm Activity coefficient of the activated complex

λ Distance between the austenite {002} planes

∇cC Carbon composition gradient at the pearlite/austenite interface

∇cC Gradient of X composition at the pearlite/austenite interface

ν Attempt frequency

ρ Density of pearlite

σ Interfacial energy per unit area

σαθ Interfacial energy per unit area of ferrite and cementite interface

θ Cementite

a Lattice constant

Aα Cross sectional area of ferrite and austenite interface in pearlite

b Arbitrary length of pearlite perpendicular to growth direction

cαγ Concentration of solute at ferrite in equilibrium with austenite

cγα Concentration of solute at austenite in equilibrium with ferrite

cγθ Concentration of solute at austenite in equilibrium with cementite
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cθγ Concentration of solute at cementite in equilibrium with austenite

cγ Mole fraction of carbon

cγαγ Maximum permissible carbon content in the austenite at the trans-

formation interface

D Diffusion coefficient or Diffusivity

Dγ
C Volume diffusion coefficient of carbon in austenite

Dγ
X Volume diffusion coefficient of element X in austenite

Di
eff Effective diffusion coefficient of element i for mixed diffusion-controlled

growth

D0 Pre-exponential factor of diffusivity

DB Diffusion coefficient through phase boundary

DV Diffusion coefficient through the lattice

Dγ
C Diffusion coefficient of carbon in austenite lattice

DC
B Boundary diffusion coefficient of carbon

DX
B Boundary diffusion coefficient of element X

DC
V Volume diffusion coefficient of carbon
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DX
V Volume diffusion coefficient of element X

g Geometric factor

h Planck constant

J Flux of solute during transformation

k Boltzmann constant

Q Activation energy for diffusion

QB Activation energy for boundary diffusion

QV Activation energy for volume diffusion

Ri Weighted average of interface compositions for element i

S Interlamellar spacing of pearlite

Sα Length of the ferrite lamellae

Sθ Length of the cementite lamellae

SC Critical interlamellar spacing of pearlite

T Transformation temperature

Te Eutectoid temperature
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v Growth rate of pearlite

Vm Molar volume of austenite

xC Mole fraction of carbon

YC Site fraction of carbon

z Coordination number of octahedral interstitial site in austenite

GB Grain boundary

NPLE Negligible partitioning local equilibrium

PLE Partitioning local equilibrium
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Abstract

The diffusion path during the pearlite transformation has been studied

from the point of view of mixed diffusion-controlled growth. It is reason-

able that the solutes do not choose only one path to move along when they

have multiple available paths. This research has provided better fit for re-

ported growth rate measurements of pearlite than volume and boundary

diffusion models in isolation.

Local equilibrium is assumed to be maintained at ferrite/austenite and

cementite/austenite interfaces. For the Fe-C binary system, the tie-lines

which describe the interfacial compositions that maintain equilibrium at

the interfaces are unique at a given temperature. Unlike the binary sys-

tem, the local equilibrium condition in ternary system that contains an

interstitial and substitutional solute needs to take account of the kinetic

effect of solute because the complexity of the system is increased. Pearlite
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transformation involves the cooperative growth of ferrite and cementite,

thus, this also needs to be considered to find the appropriate local equilib-

rium condition. Two principles are required: one is mass conservation and

the other is solute symmetry: the growth rate should have the same result

when it is calculated by diffusion of any solute. The analysis is supported

with transmission electron microscopy results and gives good agreement

with Mn, Ni, and Co.

The local equilibrium condition for the pearlite transformation has been

analysed for various diffusivity ratios of the two solutes and two different

compositions. Two criteria can be distinguished when diffusivity ratio goes

to infinity by observing the partitioning of substitutional solute between

ferrite and cementite. The boundary between PLE and NPLE for pearlite

is expected from the solution of the mixed diffusion equation.
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1 Introduction

Pearlite contributes to the success of many commercial steels, for example

those for rails, ropes for bridges and elevators, and tyre cords. In three di-

mensions, a colony of pearlite is an interpenetrating bi-crystal of cementite

and ferrite [1], often approximated to consist of alternating lamellae of fer-

rite and cementite. The characteristic feature of pearlite is the fact that the

ferrite (α) and cementite (θ) grow cooperatively, sharing a common trans-

formation front with austenite (γ), where the excess carbon partitioned into

the austenite as the ferrite grows, is absorbed by the adjacent cementite.

The passage of this carbon occurs via the austenite at the transformation

front, so the growth of the colony is modelled assuming that the rate is

controlled by diffusion in the austenite ahead of the front [2, 3, 4, 5, 6].

Diffusion in the interface can be faster, and there are models for pearlite

growth involving boundary diffusion control [7, 8]. There is of course, no

reason why the solute is limited to either the volume or boundary, and there

are models that deal simultaneously with both diffusion fluxes [9, 10, 11].

It has been suggested that diffusion behind the α/γ interface, towards the

cementite, may also play a role [12], but this would lead to the thicken-

ing of the cementite behind the transformation front, and the evidence for

such an effect is lacking. Strain resulting from the volume change has been

claimed to cause a stress of 1000 MPa in the elastic limit, and only relieved

by the diffusion of carbon. This stress driven diffusion thus accelerates the

pearlite reaction [13]. The model is unphysical because it neglects the dif-

fusion of iron that is necessary in a reconstructive transformation [14]; this

relieves transformation strains including the volume change. In [13], the

transformation in pure iron would be dramatically suppressed because to

the absence of carbon diffusion, and this is patently not the case.
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Assuming therefore, that the general problem is best treated by ac-

counting for both the boundary and volume diffusion fluxes, there remain

difficulties in dealing with ternary or higher order steels, especially if local

equilibrium is assumed at the interphase boundaries. The well-known com-

plication is that the diffusivities of the substitutional and interstitial solutes

are vastly different, so unlike the case for binary steels, it becomes necessary

to discover conditions where the two or more solute fluxes can keep pace

whilst maintaining equilibrium locally at the interface [15, 16, 17, 18, 14].

This difficulty is discussed in more detail later in the text, but from an

experimental point of view, there is no doubt that substitutional solutes

are partitioned between the phases at all temperatures where pearlite is

observed [19, 20, 21]. Pandit and Bhadeshia [11] found it necessary to

make approximations when dealing with ternary alloys. Those estimations

do not strictly satisfy the simultaneous conditions of local equilibrium and

flux balance at all the interfaces involved in the growth of pearlite. In

this thesis, an attempts is made to resolve this difficulty, bearing in mind

that the kinetic theory for pearlite is of interest in many current scenarios

[22, 23, 24, 25, 26, 27].
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2 Literature Review

2.1 Austenite-Pearlite Reaction

Pearlite was discovered by Sorby [28] more than a century ago. Sorby

described pearlite as a “the pearly compound” and assumed it has lamellar

structure from the micrograph on the etched surface of pearlite. After

the first observation, pearlite has been used for wide variety of purposes

because it provides substantial contribution to strength, for example, tyre

cord, rail, steel wires for bridge, and so on. Therefore pearlite has been

studied intensively. Lamellar structure with two phases is not only observed

in steel system but also it frequently reported in other metallic systems. So,

pearlite is usually used for generic term to describe them.

2.2 The Morphology of Pearlite

100 years ago, Benedicks [29] noted that pro-eutectoid ferrite could act as a

nucleus for pearlite as well as pro-eutectoid cementite. Smith and Mehl [30]

found that ferrite in bainite had the same orientation relationship to par-

ent austenite same as did Widmanstätten ferrite. Pearlitic ferrite does not

show such kind of relationship. Hull and Mehl [31] conclude that pearlite

starts to form from platelet of cementite and show a case where pearlitic

cementite is always connected to proeutectoid cementite but pearlitic fer-

rite that grows from proeutectoid ferrite was never observed. This idea

was challenged after Modin [32] reported that many micrographs had been

published showing no proeutectoid ferrite/pearlitic ferrite boundaries. This

was tested by Hillert and his colleagues by applying various metallographic

techniques. They showed that pearlitic ferrite can have the same orien-

tation with adjacent proeutectoid ferrite in a hypoeutectoid steels. In a
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Figure 1: Edge-wise growth and side-wise nucleation nature of pearlite
transformation. [32]

hypereutectoid system, pearlitic cementite can have same orientation as

adjacent proeutectoid cementite.

The rapid increase in the number of lamellae after nucleation could be

explained by edgewise growth into austenite grain and sidewise nucleation

along the austenite grain boundary but also, Modin pointed out that it

could be increased by branching inside of pearlite colony during growth.

When pearlite nucleates on a grain boundary in between austenite, the di-

rection that it grows is decided by interfacial energy. Pearlite nuclei form

having orientation relationship with one of austenite grain. Obviously, the
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other austenite will have an incoherent high-energy interface which has

larger mobility than the other side of the nucleus. Therefore, pearlite grows

toward the austenite grain with the high-energy interface. This was first

pointed out by Smith. Hillert and his colleagues were able to show that

pearlite did grow in this way, and on the other hand, Widmanstätten ferrite

or cementite was usually observed to grow toward the low energy interface

with austenite. It was proved by electron microscopy that pearlite/austen-

ite interface is incoherent one. The interlamellar spacing in pearlite is the

key factor of the strength of the pearlitic steels. It has been reported that

extremely fine interlamellar spacing improves the pearlite enormously [34].

The first systematic measurements of lamellar spacing was done by Mehl

and his colleagues [35]. They showed that lamellar spacing decreased as

undercooling, ∆T , below the eutectoid temperature increased. Zener an-

alyzed previous spacing measurement in a more theoretical way [2]. He

considered a volume of pearlite of depth ‘b’ and interlamellar spacing ‘S’

growing towards the x-direction. If the pearlite proceed to the x-direction

by dx, then the volume of austenite which is transformed to pearlite is

Sbρdx, where ρ is the density. The available free energy ∆G to form that

volume of pearlite is :

∆G = ∆H

(
Te − T
Te

)
Sbρdx (1)

where, Te is eutectoid temperature, T is transformation temperature, and

∆H is latent heat of transformation. This volume of pearlite transformation

leads to an increase in the ferrite/cementite interface energy. The increase

in interfacial area will be 2bdx, and in interface energy will be :

16



(a)

(b)

Figure 2: Fe-13Mn-0.8C (in wt%) partly transformed at 600◦C. austenite
is retained in conjunction with ferrite and cementite: (a) nucleation of a
pearlite nodule on grain boundary cementite, (b) interface of nodule with
austenite. Transmission electron microscopy of thin-foil sample [33].
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Interfacial energy increase due to transformation = 2σbdx (2)

Pearlite growth can only be possible when surface energy does not ex-

ceed total Gibbs free energy in the system. Therefore, the condition for

growth can be found from Eq. 1 and 2:

∆H

(
Te − T
Te

)
ρS = 2σ (3)

This is a simple treatment that neglects any strain energy term. More-

over, the enthalpy change per unit mass was assumed to have same specific

heats of austenite and pearlite. Anyhow, Eq. 3 implies three important

views of the pearlite transformation:

1. The lamellar spacing of pearlite S decreases with transformation tem-

perature.

2. Minimum value of interlamellar spacing is decided by total free energy

available in the system.

3. There is a linear relationship between reciprocal of transformation

temperature and interlamellar spacing.

The interlamellar spacing of pearlite was assumed to have a constant

value during the transformation in Zener’s previous theoretical analysis.

However, it could have fluctuation of the spacing because of impingement

between colony, inhomogeneous chemical distribution and the other com-

plex lamellar morphology. The practical measurement of the spacing was

criticized in previous reasons. Forced velocity pearlite growth suggested by
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Figure 3: Collected data of T vs reciprocal of interlamellar spacing S [5].
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Bolling and Richman [36] is a method that a rod specimen is applied the

translating temperature gradient which establishes a single transformation

interface which is sufficiently steep to prevent nucleation ahead of the grow-

ing front. As a result, pearlite colonies grow with a constant velocity. This

technique should be distinguished from isothermally transformed pearlite

growth rate measurement with respect to the fact that the growth rate is

fixed as imposed by the translation velocity and transformation temper-

ature is a free variable. In the series of experiments by Ridley and his

co-workers [5], the pearlite growth rate was measured under conditions of

maximum velocity as possible in the system. Therefore, they measured the

minimum interlamellar spacing in the observed lamellar structure before

pearlite colonies impinged with each other.

In the Fe-C binary system, the spacing does have fluctuation but they

were within a certain range because austenite fully decomposes to ferrite

and cementite with same average composition. On the other hand, in the

Fe-X-C ternary system where X stands for substitutional solute, it is pos-

sible that pearlite may not consume all of the system. This happens be-

cause the substitutional solute partitioning occurs between the phases so

the austenite is enriched or depleted as pearlite grows. This change of

austenite composition causes a reduction in the driving force for transfor-

mation. Those effects lead to an increase in the spacing as pearlite grows

and finally the transformation stops with retained austenite at the trans-

formation temperature. This form of lamellar structure is called “divergent

pearlite”. Further study for divergent pearlite was done by Hillert [38]. In

the Fe-X-C ternary phase diagram, if the mean composition of the system

(grey circle in Fig. 2.2) is located in the three phase field (α + γ + θ),

the two product phases, ferrite (α) and cementite (θ), have composition

20



Figure 4: A longitudinal section of forced velocity pearlite at a quenched
interface with a prior austenite grain boundary separating pearlite colonies
A and B [37].
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at point ‘a’ and ‘b’. It is clear that the average composition of pearlite

must be fall on the line connecting ‘a’ and ‘b’. Because the average al-

loy content in austenite and pearlite is maintained constant, pearlite will

form with composition at the point noted as a grey square. The growing

pearlite represented by the square point will draw carbon from austenite.

This causes a carbon-depleted zone of austenite, therefore, the composition

of the austenite gradually moves from the mean position to where it meets

the critical iso-activity line. This means that the driving force, ∆u, which

is used for partitioning of alloying element is exhausted. As a result, the

pearlite growth rate goes to zero, and interlamellar spacing gradually in-

creases. This phenomenon was first observed by Kuo [39] in the so-called

δ-eutectoid reaction in some high-alloy steels. Cahn and Hagel [40] first

designated the form “divergent pearlite”. Divergent pearlite incompletely

transforms austenite when equilibrium is reached between ferrite, austenite

and cementite..

2.3 The Crystallography of Pearlite

In a single colony of pearlite, there are only two interpenetrating single

crystals of ferrite and of cementite. Neither of α nor θ have an orientation

relationship with austenite grain in which they grow. However, there is a

clear crystallographic orientation between the ferrite and cementite lamellae

in the same pearlite colony. Two orientation relationships have been found

during pearlite growth [42]:

• Pitch/Petch relationship

(001)θ\\(5̄21̄)α,

(010)θ 2− 3◦ from [113̄]α,

(100)θ 2− 3◦ from [131]α.
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Figure 6: Fe-2Mn-C isoplethal phase diagram calculated using Thermo-
Calc with TCFE database [41].
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• Bagaryatski relationship

(100)θ\\(01̄1)α,

(010)θ\\(11̄1̄)α,

(001)θ\\(211)α.

These two relationships are found in the same steel, and the frequency

of each relationships is varies rather unpredictably.

2.4 Diffusion Mechanism in Metals

The diffusion of substitutional atoms in metals is controlled by a vacancy

mechanism. The diffusivity of substitutional solutes can be written in the

classical form:

D = ga2ν exp

(
− ∆Hform + ∆Hm

kT

)
exp

(
∆Sform + ∆Sm

k

)
(4)

where g is a geometric factor, a is the lattice constant, ν is an attempt

frequency and T is in the absolute temperature. ∆Hform and ∆Hm are

the enthalpy changes associated with the formation and migration of the

vacancy respectively, and ∆Sform and ∆Sm are the corresponding changes

in entropy involved with the formation and migration of the vacancy.

Except the enthalpy related term, exp

(
− ∆Hform+∆Hm

kT

)
, the other

terms are reduced in one term as a pre-exponential factor, D0. The activa-

tion energy, Q is the summation of ∆Hform + ∆Hm. The pre-exponential

factor was calculated by following the theory of the transition state in the

work of Bokshtein [43]. D0 was predicted in range 10−2 and 1 cm2 s−1 and
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lower values than these are incompatible.

The concentration of vacancies in the material increases exponentially

with temperature. However, the concentration is not large, for example, it

does not exceed 0.01-0.1 vol.% near the melting temperature.

2.4.1 Volume diffusion of carbon in austenite

The volume diffusion coefficient of carbon in austenite depends strongly

on carbon concentration. The dependence on concentration makes more

kinetic analysis more difficult of various diffusion-controlled reactions that

arise in steels. Ågren gave an analytical approximation to the diffusion

coefficient of carbon in austenite lattice [44]:

Dγ
C =4.53× 10−7

(
1 + YC(1− YC)

8339.9

T

)
× exp

{
− (

1

T
− 2.221× 10−4)(17767− 26436YC)

}
(5)

where Dγ
C is volume diffusion coefficient of carbon in austenite (in m2 s−1)

and T is temperature in K. YC is the site fraction of carbon in the interstitial

sub-lattice is given by:

YC =
xC

1− xC
(6)

where xC is the mole fraction of carbon in the steel.

During the transformation, the existence of substantial carbon concen-

tration gradients at the growth front should account for the variation of Dγ
C

with xC. Trivedi and Pound [45] demonstrated that a weighted average dif-

fusivity D̄ can adequately represent the effective diffusivity of carbon that
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is needed for the application of the theory of diffusion-controlled growth.

They obtained:

D̄ =

∫ c̄

cγαγ

D{cγ , T}
c̄− cγαγ

dx (7)

where c̄ is the average carbon content of the alloy and cγαγ is the maximum

permissible carbon content in the austenite at the transformation interface.

cγ is mole fraction of carbon in austenite.

It is necessary to determine experimentally D{cγ , T} at least in the

range of c̄ and cγαγ . Kaufman et al. [46] tried to overcome this problem by

assuming an activation energy of volume diffusion of carbon in austenite.

The pre-exponential factor of diffusivity was extrapolated beyond the range

of experimental observations.

Bhadashia [47] used the method suggested by Siller and McLellan [48].

The method makes no assumption about the activation energy, the extrap-

olation which are mentioned above, but it used a general expression for

D{cγ , T}, where T is absolute temperature. The method has two impor-

tant factors that should be taken account for the modelling of D{cγ , T},
one is the concentration dependence of the activity of carbon in austenite

[49], and secondly, the repulsive interaction between nearest neighbouring

carbon atom located in octahedral sites [50].

The equation of Siller and McLellan described D{cγ , T} using their

terminology, as follows:

D{cγ , T} = D′ξ{θ} (8)
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where θ is the atomic fraction of carbon and D′ is a temperature dependent

but carbon concentration independent term. D′ is set by using absolute

reaction theory [51] expressed as:

D′ =
kT

h
exp

(
− ∆Ga

kT

)(
λ2

3γm

)
(9)

where k is the Boltzmann constant, h is Planck constant, γm means activity

coefficient of the activated complex, assumed constant and λ is distance

between the {002} austenite planes. The ∆Ga is an activation free energy

which is independent of composition and temperature, and represents the

difference in free energy between the ‘activated complex’ and the ‘reactants’

when each is in its standard state at the temperature of ‘reaction’. Using a

first order quasi chemical thermodynamic model [50] for carbon in austenite

combined with reaction rate theory, Siller and McLallan showed that the

concentration dependent part of Eq. 8 or ξ{θ} is given by:

ξ{θ} = α

(
1 +

z(1 + θ)

1−
(
z
2 + 1

)
θ + z

2( z2 + 1)(1− σ)θ2

)
+ (1 + θ)

dα

dθ
(10)

where, z is the coordination number of octahedral interstitial site in the

austenite lattice, α is the activity of carbon, and σ is expressed as:

σ = 1− exp

(
− ∆ε

kT

)
(11)

where ∆ε is the energy due to the repulsive interaction between neighbour-

ing carbon atoms, taken to be 8235 J mol−1. In the work of Bhadeshia, it

was found that ∆Ga/k = 21230 K−1 and ln(3γm/λ
2) = 31.84 [47].
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2.4.2 Grain boundary diffusion

A grain boundary (GB) has an important role as a diffusion short cir-

cuit, for example, in sintering, diffusion-induced grain boundary migration,

discontinuous reactions (such as discontinuous precipitation, discontinuous

coarsening, etc.), recrystallisation, and grain growth. GB diffusion not only

has an effect at high temperatures but also is particularly significant at low,

and even ambient temperatures.

The first direct observation of GB diffusion was made using autora-

diography in 1950 [52]. This was follwed in 1951 by Le Claire [53] gave

additional blackening of autoradiographic images along grain boundaries in-

dicated that the radio tracer atoms penetrated into grain boundaries much

faster than in regular lattice.

In the work of Fridberg et al. [54], the GB self-diffusion coefficient of

iron have similar behaviour in ferrite and austenite. It implies that GB

diffusion is almost independent of lattice structure. Moreover, Fridberg

figured out that the GB diffusion coefficients of Cr, Mn, Ni and Mo have

nearly same GB diffusion coefficient with self-diffusion of iron in GB. This

fact is predictable because they are the nearest neighbours of iron in the

periodic table. The measured GB self-diffusion coefficient of iron, δDB in

Fridberg’s work is:

δDB = 5.4× 10−14 exp

(
− 155000 J mol−1

RT

)
m3 s−1 (12)
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2.5 Growth Mechanisms of Pearlite

Three mechanisms have been suggested for pearlite growth. Those mecha-

nisms can be distinguished by the diffusion paths of solute in decomposing

austenite. One is that solute atoms diffuse through the austenite lattice

during redistribution. The transformation front is also considered as diffu-

sion short circuit like grain boundary does in another mechanism. However,

if two possible diffusion paths exists, they should be considered at the same

during the transformation. Therefore, the other, mixed-diffusion mecha-

nism, accounts for both volume and boundary fluxes.

2.5.1 Volume diffusion mechanism

For any diffusional transformation, solute atoms should be redistributed.

In pearlite growth, carbon is transported from the edges of ferrite lamellae

to neighbouring cemcentite lamellae [3]. The volume diffusion mechanism

assumes that the carbon diffuse through the parent austenite. Let’s assume

that the interfaces of ferrite-cementite, ferrite-austenite and cementite-

austenite are planar, then, the concentration difference that drives the dif-

fusion would be (cγα − cγθ), where cγα and cγθ are the concentrations in

austenite which is in equilibrium with ferrite and cementite respectively.

Those interface compositions in ferrite and cementite can be obtained from

the extrapolated phase boundaries, α/α+ γ and γ/γ+ θ of the Fe-C phase

diagram. However, phase boundaries are not linear but have a thermody-

namic basis. Thus, the extrapolation should be based on thermodynamic

considerations. At the pearlite growth front, the actual concentration dif-

ference is approximately (1− SC/S)(cγα − cγθ) because of interface energy

between ferrite and cementite in pearlite [2]. Zener suggested this analysis

where SC is the critical interlamellar spacing. The term (1 − SC/S) ac-
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counts the decreased fraction of total free energy for assembling interfaces

between ferrite and cementite. In other words, it is the ratio of free energy

for diffusion of solute to total amount of available free energy in the system.

The term (1−SC/S) was derived in the work of Hillert [8]. The molar free

energy for making the α/θ interface, ∆Ginterface
m , without the part of energy

for transformation can be described as:

∆Ginterface
m =

2σαθVm
S

(13)

where σαθ is α/θ interfacial energy per unit area and Vm is the molar volume

of austenite. If the interlamellar spacing, S, decreases and reaches SC , the

free energy consumed by interfaces would have same value as the total free

energy of the system and pearlite growth should stop because there is no

available energy for transformation. Thus,

∆Gtotal
m =

2σαθVm
SC

(14)

where ∆Gtotal
m is total free energy available in the system. As a result,

the free energy is reduced by factor of (∆Gtotal
m − ∆Ginterface

m )/∆Gtotal
m =

(1 − SC/S). The diffusional flux of carbon from the edge of a ferrite to a

neighbouring cementite lamellae can be written as [8]:

J = −A
α

Vm
Dγ

C

dc

dx
=
Dγ

CbS
α

Vm

(cγα − cγθ)
Sα/2

(15)

where, J is a flux, molar volume Vm is considered same for all the related

phases with pearlite transformation, Aα is the cross sectional area of the

interface, which is equal to bSα, b is an arbitrary distance perpendicular to

the growth direction. The diffusion distance can be approximated to Sα/2
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for the growth of ferrite lamellae. This diffusion flux causes the edgewise

growth of ferrite lamellae in austenite with a growth rate, v and can be

represented as:

J =
vbSα

Vm
(c̄− cαγ) (16)

where c̄ is the mean composition of the system or austenite far from the

growth interface. The volume fraction between phases or thickness ratio of

α and θ in pearlite is calculated from the lever rule with the composition,

cαγ , cθγ , and c̄. After neglecting volume change which accompanies the

reaction, the material balance at the tip of each lamellae is given by:

vbSα

Vm
(c̄− cαγ) =

vbSθ

Vm
(cθγ − c̄) =

vbSαSθ

SVm
(cθγ − cαγ) (17)

where Sα and Sθ are the thickness of each ferrite and cementite lamellae

respectively and S is a interlamellar spacing. Equating equations 16 and

17, we get:

v =
2Dγ

CS

SαSθ

(
cγα − cγθ

cθγ − cαγ

)
=

2Dγ
CS

SαSθ

(
cγαe − cγθe
cθγ − cαγ

)(
1− SC

S

)
(18)

where cαγ is the composition of ferrite at the α/θ interface, and the other

terms like this have similar meaning.

Ridley suggested a simpler form of the pearlite growth rate equation

based on the relation between growth rate, spacings, concentration gradient

and diffusivity [5]. In Ridley’s work, it was assumed that the concentra-

tion difference is proportional to amount of undercooling, which in turn is

proportional to reciprocal spacing. Therefore, the growth rate equation for
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volume diffusion mechanism of pearlite can be written as:

vS2 = k1D (19)

where k1 is thermodynamic term which roughly constant. The Zener-Hillert

method has been used for rate controlling factor of pearlite growth. The

usual method for calculating equation 18 was to incorporate the measured

values of interlamellar spacings, calculated interfacial compositions and

the diffusion coefficient into the equation and then compare the calculated

growth rates with those determined experimentally. Many researchers have

believed that the volume diffusion mechanism of pearlite growth is a rea-

sonable rate controlling step, even though there was a discrepancy of up to

50 times or more.

Bramfitt and Marder [55] used forced velocity growth to study pearlite

for Fe-C alloys at the first time. Bolling and Richman [36] used this tech-

nique to examine the relation vSn = constant, where n = 2.3±0.1, and this

is another rough assumption for equation 18. Another forced growth exper-

iment by Verhoeven and Pearson [56] measured the exponent n to 2.07. For

many other similar experiments has gave the result close to vS2 = constant

and seemed to be good proof for volume diffusion being the rate controlling

factor. The forced velocity pearlite growth can give uniform colonies with

constant interlamellar spacing, however, in the context of avoiding impinge-

ment, it has limitations when used to measure the growth rate of pearlite.

There have been many attempts to calculate the pearlite growth rate us-

ing volume diffusion of carbon as the rate controlling factor. However, there

still important exist discrepancies with the experimental results. When
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Figure 7: Schematic diagram of volume diffusion controlled growth of
pearlite.

it applied to a ternary system [57], there are severe inconsistencies with

growth at low temperatures, attempts were made to introduce boundary

diffusion model.

2.5.2 Boundary (or interface) diffusion mechanism

As the volume diffusion mechanism is not sufficient to explaining pearlite

growth, the researchers tried to introduce alternative diffusion path, the
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Figure 8: Calculated growth rate based on volume diffusion mechanism
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boundary between pearlite and austenite. Boundary diffusion has been

known to have faster diffusivity and lower activation energy than volume

diffusion in Fe-C and other non-ferrous alloys. Cahn and Hagel [40] sug-

gested that boundary diffusion is the most plausible explanation for growth

mechanism of pearlite. Sundquist tried to apply the boundary diffusion as

a dominant mechanism for driving the edgewise growth of pearlite [7]. In

the work of Sundquist, local equilibrium and effect of capillarity were ac-

counted for modelling. The activation energy of surface diffusion coefficient

was deduced from the experimental results of Fe-C steels. The value was

191 kJ mol−1 which was far too higher than that of volume diffusion of car-

bon in austenite. Although, it could be affected by the presence of impurity

atoms in steel, the justification seems to be unrealistic.

Hillert modified Zener-Hillert volume diffusion mechanism for the bound-

ary diffusion controlled growth [8]. Hillert slightly modified the equation

15 that the cross sectional area takes place to be equal to 2bδ, where, δ is

the thickness of the boundary layer. The factor of 2 exists for the diffusion

on both sides of ferrite lamellae. The diffusion distance dx was taken pro-

portional to S to make the result independent of ferrite and cementite and

was approximated to S/4 for the case of symmetric eutectoid.

The flux of solute through the boundary between austenite and pearlite

can be represented as:

J = −A
α

Vm
DC
B

dc

dx
=

2DC
Bbδ

Vm

(cγα − cγθ)
Sα/4

(20)

where DC
B is the boundary diffusion coefficient of carbon. As in the previous

section, the mass flow causes both the phases to grow and their growth rate
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must be equal. Assuming there are no volume changes during the austenite

to pearlite reaction and considering the material balance at the edges of

ferrite and cementite lamellae, the lever rule can be used to relate the

lamellar thickness with the growth rate as in equation 17.

Combining equation 17 and equation 20 results in:

vB =
8DC

Bδ

SαSθ

(
cγαe − cγθe
cθγ − cαγ

)(
1− SC

S

)
(21)

Turnbull suggested that boundary diffusion is one of the important param-

eters has effect on the precipitation rate, and the rate of cell growth in this

theory of cellular precipitation [58]. He described that the cell boundary (or

interface) provides a diffusion short circuit for the solute atoms. This cell

boundary is incoherent and sweeps all of solutes as cell grows in diffusional

transformation. Seith and Laird [59] report that the boundary diffusion

cause many orders of magnitude greater growth rate in precipitation of

tin from lead compares to those calculated from the diffusion data assum-

ing volume diffusion mechanism. In the tin precipitation, if the solute is

drained only by diffusion along the cell boundary during the cell growth,

the growth rate will follow:

vB =

(
cγαe − cγ∞
cγα

)(
δ

τ1

)
(22)

where cγ∞ is parent phase composition at far away from the cell boundary,

and τ1 is the time required to drain the solute from the grain boundary

region and is given by:

τ1 =
S2

DB
(23)
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where DB is diffusion coefficient of tin in the cell boundary. Therefore,

vB =

(
cγαe − cγ∞
cγα

)(
δDB

S2

)
(24)

According to Turnbull’s analysis, the observed growth rate in Seith and

Laird [59] leads to the DB have to be 10−6 to 10−7 cm2 s−1. Assum-

ing the Langmuir-Dushman equation is applicable, this magnitude of DB

correspond to an activation energy, QB, for boundary diffusion equals to

37.68 kJ mol−1, compared with the activation energy of volume diffusion,

QV which is 108.7 kJ mol−1. The ratio QB/QV is 0.35 and agrees fairly

well with QB/QV = 0.44 for self-diffusion in silver. This was thought to be

reasonably sound evidence to justify that the diffusion of tin atoms along

the cell boundary was the rate controlling factor since it was entirely con-

sistent with experimental results.

For more than ternary alloying system, the partitioning of substitutional

element, X, is becoming significant during the pearlite growth. It seems to

make sense that boundary diffusion of X has more important role as a

rate controlling mechanism in this case. The volume diffusion coefficient

of substitutional alloying element is much smaller than that of carbon.

Thus, the boundary between pearlite and parent austenite would provide

the diffusion short circuit for substitutional alloying element and partition

into the product phases [3]. The boundary diffusion controlled growth rate,

vB can be written as:

vB =
12sDX

BδS
2

SαSθ

(
cγαX − c

γθ
X

cθγX − c
αγ
X

)
1

S

(
1− SC

S

)
(25)

where the boundary segregation coefficient, s, is the ratio between alloying
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Figure 9: Schematic diagram of pearlite which grows with boundary diffu-
sion mechanism.

element concentration in austenite near the boundary and at the boundary,

cγαX and cγθX are the concentrations of X in austenite which is equilibrium

with ferrite and cementite and cαγX and cθγX are ferrite and cementite concen-

tration of X which is equilibrium with austenite respectively. s is assumed

as value 1 because the pearlite/austenite boundary is moving, therefore,

there is no time for segregation.
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2.5.3 Other suggested pearlite growth mechanisms

In the work of Cahn and Hagel [40], The diffusion process of both intersti-

tial and substitutional solutes was considered to use the diffusion path in

austenite, ferrite and along the austenite-pearlite interface. Because there

is considerable difference of opinion about the exact growth mechanism of

pearlite, they took a different approach rather than calculating the growth

rate of pearlite based on any of previous mechanisms. They tried to check

the consistency between the measured growth rate, interlamellar spacing

and the diffusion coefficients.

Cahn and Hagel suggested a kinetic parameter βi, which gave a mea-

sure of resistance to segregation. There exists only one parameter for each

element and each phase.

βi =
vS

2πDV
i

(26)

Another term β′i can be written in terms of the thermodynamic parameter:

β′i =
1

2

cγαi − c
γθ
i

cθγi − c
αγ
i

(27)

where cγαi , cγθi , cθγi and cαγi are the concentration which can be obtained

from the phase diagram and i represents the carbon or substitutional so-

lute. If βi is large (for example, low DV
i , high v or high S) and since there is

an upper limit to (cγαi −c
γθ
i ), (cθγi −c

αγ
i ) will be small and hence little parti-

tioning of solute element, i will occur. When βi is small (i.e. high DV
i , high

v or high S), because there is an upper limit to (cθγi − c
αγ
i ), (cγαi − c

γθ
i ) will

be small and hence the concentration gradient driving the diffusion at the

pearlite-austenite interface would be small. βi can be calculated from ex-
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perimental data (DV
i , v and S) with equation 26 and β′i can be established

from phase diagram. For Fe-C binary system, it is possible to calculate the

upper limit of (cγαi − c
γθ
i ) and a lower limit of (cθγi − c

αγ
i ). Because the car-

bon concentration in cementite can not be zero, thus the upper limit of β′i
based on equation 27 would be half their ratio and this is termed as β0. For

comparing β0 and βi, Cahn and Hagel calculated β0 from phase diagram

and βi based on experimentally reported v and S. They suggested that the

opinion that the value of DV
i which make βi = β0 or denoted as apparent

diffusivity, Dapp, would be necessary to satisfy the required segregation of

solute atoms.

If the value of βi is equal to that of β0, then it can be strong proof

for volume diffusion of solute in austenite is rate controlling factor of the

pearlite growth. On the other hand, if the βi is less than β0, then some

process other than the diffusion in austenite is controlling the rate. If the

βi is larger than β0, this can be strong proof for the existence of a faster

diffusion path.

In the case of non-ferrous pearlite, Cahn and Hagel showed that the ap-

parent diffusion coefficients, Dapp, are higher than Di, which are measured

from experiments, by orders of magnitude. Therefore, βi is larger than β0

and it can be considered as strong indication that there is alternative diffu-

sion path or diffusion short circuit. For the pearlite in Fe-C binary steels,

Di and Dapp seems to have good agreement in a reasonable range for which

the v, S and β0 are known. Hence, the carbon diffusion in austenite can

be considered as the main rate controlling factor. However, in that work,

the v and S that they used in their calculation were not measured for same

steel. Moreover, in Fe-C binary system, the pearlite growth rate is limited
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by the range of carbon diffusion in austenite allows, but in their report,

high purity steels shows almost 50 times faster pearlite growth rate than

plain carbon steel. This could well be attributed to the spacings in high

purity steels, but the measurements showed that the spacings were almost

comparable to those in plain carbon steels. this further strengthens the

fact that another mechanism is operative for carbon diffusion.

Diffusion through ferrite in pearlite colony was also considered by Naka-

jima et al.. [12] and Pandit and Bhadeshia [10]. Nakajima and his col-

leagues analyse this matter first using a phase field approach. They re-

ported that since diffusion in ferrite is much faster than that in austenite

and when this was simultaneously active with volume diffusion in austen-

ite, the difference in calculated and the experimental growth rate of pearlite

was narrowed down. They argued that the flux through both austenite and

ferrite results more faster growth rate compared to the one flux through

austenite and the reason why was due to a large ratio of ferrite-cementite in-

terfacial area as compared to that in case of cementite-austenite interfaces.

The phase field calculations that they were used showed the thickening of

cementite behind the transformation front when the diffusion occurs in fer-

rite. Cahn and Hagel considered the effect of volume diffusion in ferrite, but

they did not observed any tapering of cementite at the transformation front.

Since the calculated velocities were still not able to explain the observed

growth rates, they attributed the same to the influence of transformation

strain or diffusion through the boundary. Phase field modelling which con-

sider transformation strain and diffusion in austenite and ferrite was done

by Steinbach and Apel [60]. In their report, they figured out that the trans-

formation strains inhibit the co-operative growth of ferrite and cementite

resulting in solitary growth of wedge-shaped cementite ahead of the ferrite
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which they termed as ‘staggered growth’. But in the Fe-C alloys studied to

date, wedge-shaped cementite lamellae behind the transformation front has

never been observed experimentally. Although the phase field calculations

reduced the gap between the calculated and the observed growth rate in

Fe-C system, this was fundamentally weak due to the neglect of the mecha-

nism of reconstructive transformation. Thus the transformation strains are

mitigated during the reaction due to the flow of iron. It is noticeable that

in the previous two reports, the effect of boundary diffusion was ignored

due to the lack of boundary diffusion data.

The combination of volume and boundary diffusion was considered by

Hashiguchi and Kirkaldy for the first time in Fe-C alloys [9]. They as-

sumed existence of local equilibrium across the transformation front, both

of mass flow through the volume of austenite and the advancing pearlite-

austenite boundary with a mechanical equilibrium at the interface junction

and the effects of capillarity. The boundary diffusion coefficient of carbon

was extracted from the experimental growth and spacing data of Brown

and Ridley [61]. In their model, the activation energy for the boundary

diffusion of carbon was 170 kJ mol−1. However, this clearly does not make

sense, because the deduced boundary diffusivity has greater activation en-

ergy than volume diffusion of both ferrite and austenite. Their theory was

too complex to be implemented, requiring approximations which rendered

the details unimportant.

Another form of mixed-diffusion model which accounts both boundary

and volume flux was suggested by Pandit and Bhadeshia [10]. In their re-

port, they used the flux equations which are derived by Zener and Hillert,

the equation 18 and 25. The theory accounts only for the effect of diffusion
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fluxes and local equilibrium across the advancing phase boundary unlike

Hashiguchi and Kirkaldy. They also extracted the boundary diffusivity of

carbon from Brown and Ridley [61] and earn the activation energy which

has value 96 kJ mol−1. The result shows reasonable value of the activation

energy for carbon boundary diffusion, but during the extraction of bound-

ary diffusivity, they used only part of the temperature range in the growth

and spacing data of Brown and Ridley. Thus, the data were selected on

purpose. Moreover, the interface energy between ferrite and cementite, σαθ

was also calculated from equation 13 and 14 but the value was too large.

2.6 Pearlite in Multicomponent Steels

Almost all of commercialised steel products have more than one alloying ele-

ment except carbon. The alloying elements in addition to carbon are added

for strength, hardenability, toughness and many other reasons. They can

be categorised as interstitial and substitutional. They can be distinguished

with whether alloyed atom take place the one of lattice position instead

of iron atom or locate in the site between the space of crystal. The exis-

tence of substitutional alloying atom in the system makes the calculation

of diffusion controlled transformation in such systems quite complicated

because of the interaction between the alloying element and carbon. The

growth of proeutectoid ferrite from austenite in Fe-C-X system, where X is

the substitutional alloying element has been studied in considerable details

owing to the relative simplicity of the influence of a ternary addition on

the growth rate [62, 63]. However, the pearlite growth is more complicated

than the growth of proeutectoid ferrite because both growth of ferrite and

cementite work in concert during the pearlite transformation and the parti-

tioning behaviour is different. Also, the diffusion path should be considered
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for substitutional solute. Pearlite growth rate can be controlled by diffusion

of carbon or substitutional solute through the volume of austenite or the

pearlite-austenite boundary or simultaneous diffusion of both solutes.

2.6.1 Thermodynamics of ternary systems

In a Fe-C binary system, the tie-line at certain temperature between ferrite-

austenite and cementite-austenite uniquely exists. As the figure describes,

the tie-line between two phases can be decided by a common tangent con-

struction using a free energy composition diagram and it give the composi-

tion of the growing phase (or phases) in equilibrium with the parent phase.

However, alloying substitutional solute, X, causes the complication for find-

ing the acting tie-line during the reaction. Now, the free energy curves for

the parent and product phases become three dimensional surfaces and an

infinite number of tangent planes can be constructed. To decide the acting

tie-line in α+ γ and γ+ θ phase field, the two fluxes of carbon and X must

be simultaneously satisfied.

(cγαC − c
γθ
C )v = −DC∇cC (28)

(cγαX − c
γθ
X )v = −DX∇cX (29)

Where the ∇cC is carbon composition gradient at the pearlite/austenite in-

terface, and ∇cX stands for similar meaning to previous notation but gradi-

ent of X composition. For the volume diffusion of both X and C in austenite,

diffusivity of carbon is 6 orders larger than that of X, orDγ
C � Dγ

X. Thus

the two equations cannot be simultaneously solved using the tie-line pass-

ing through the alloy composition. To resolve this issue, Kirkaldy [64] and

Purdy et al. [17] suggested that the fast diffuser (C) has to slow down and
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keep pace with the slow diffusing atom (X) in which case the diffusion driv-

ing force for C has to be negligible or the slow diffusing species has to have a

large driving force. This is termed as partitioning local equilibrium (PLE)

where the alloying element, X, is partitioning between austenite and the

product phases. Therefore, the growth rate or reaction rate is slowed down

because of the slow diffusivity of the substitutional solute. In another case,

it could be possible to consider when the substitutional element is involved

in a shot range diffusion (a sharp spike at the interface) and the reaction

proceeds by the diffusion of carbon through a combination of austenite.

This is termed as negligible partitioning local equilibrium (NPLE) and al-

loying element affects the reaction kinetics only through its thermodynamic

influence on the driving force for carbon diffusion.

In the papers published by Coates [62, 63], it was considered that when

the diffusivity difference between two solutes is not only Dγ
C � Dγ

X, but

also in various range. Consider a ternary system with component i = 1, 2, 3

where 1 and 2 are independent solute and 3 is solvent. At temperature T1, a

specimens of uniform composition (C̄1, C̄2) is in a single γ phase field. This

alloy undergoes an instantaneous quenching to temperature T0 then, the

composition (C̄1, C̄2) located in α + γ phase field. To solve the diffusional

growth of α precipitate particles in the γ matrix, the following assumptions

are made:

1. The diffusion fields around the various precipitate particles do not

impinge. This is equivalent to considering the growth of a single

particle in an infinite medium of initial composition, (C̄1, C̄2).

2. Ternary diffusional interactions are ignored. That is to say, in the
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flux equations,

Ji = −Di1∇C1 −Di2∇C2 (i = 1, 2) (30)

the terms D12∇C2 and D21∇C1 are assumed to be negligible with

respect to D11∇C1 and D22∇C2. In other words, the diffusion field

of component 1 does not interact with that of component 2.

Accordingly, these fields are solutions of the binary equation

∂Ci
∂t

= Di∇2Ci (31)

where it is assumed the diffusion coefficients D1 and D2 are not functions of

concentration. Although unlike the binary case, the two solute equations

are coupled. The effect of capillarity and interface reaction kinetics can

be ignored. Therefore, the composition of the precipitate and matrix at

the interface, (Cαγ1 , Cαγ2 ) and (Cγα1 , Cγα2 ) respectively, are constant. There

exists a class of exact solutions to equation 31 which are often referred to

as being shape-preserving [65]. In Coates’ paper, those solutions were used.

It is assumed that the local equilibrium is maintained at the α/γ interface.

Hence (Cαγ1 , Cαγ2 ) and (Cγα1 , Cγα2 ) are located on the points at α/α + γ

and α + γ/γ phase boundaries, respectively, of the T0 isotherm and these

points are joined by a tie-line. With the solutions of equation 31, the only

remaining problem is the mass conservation conditions which apply at the

α/γ interface. These boundary conditions are of the general form:

n ·V(Cαγi − C
γα
i ) = n ·Ji|interface

= n · ∇Ci|interface (32)
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where n is a unit vector normal to the interface and V is the velocity of

the interface. Ham was shown that for shape-preserving growth of precip-

itate particles of uniform interface concentrations, when the appropriate

solutions of Eq. 31 are applied to Eq. 32, one obtains:

1

2
(Cαγi − C

γα
i )ξF (ξ,Di) = −Di(C̄i − Cγαi )F ′(ξ,Di) (i = 1, 2) (33)

where the constant ξ is a measure of the precipitate growth rate, F (ξ,Di)

arises out of the solution to Eq. 31 and its functional form depends on the

shape of precipitate particle. Here, the fractional compositions are defined:

fi ≡
C̄i − Cγαi
Cαγi − C

γα
i

=
C̄i − Cγαi

(Cαγi − C̄i) + (C̄i − Cγαi )
(34)

It is obvious that the fractional component fi of component i goes from

0 at negligible supersaturation, (C̄i − Cγαi ) = 0 to 1 at the maximum

supersaturation (Cαγi − C̄i) = 0. Combining equation 33 and 34 results to:

fi = − ξF (ξ,Di)

2DiF ′(ξ,Di)
(35)

For planar growth, the velocity of the precipitate-matrix interface i simply:

V =
1

2
ξt−1/2 (36)

And it is convenient to define:

ξ = η1

√
D1 = η2

√
D2 (37)

where η1 and η2 are constants. Hence, the Di and ξ appear only as the

ratio ξ/
√
Di in the equation 35 which allows to describe fi as a function of
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ηi. In short,

fi = fi(ηi) (38)

The values (f1, f2) mean that the fractional position in the square that

made of four lines:

1. C1 = Cαγ1 and C1 = Cγα1

2. C2 = Cαγ2 and C1 = Cγα2

For certain ratio of D1 to D2, it decide also the ratio between η1 and η2

from equation 37 and it is possible to find number of (f1, f2) which satisfy

those ratios. Important fact is that the those values, (f1, f2), will have the

acting tie-line which connects (Cαγ1 , Cαγ2 ) and (Cγα1 , Cγα2 ) for given ratio of

D1 to D2. If component 1 is X and component 2 is C, then it is the case

when D2/D1 =∞. Moreover, it is equivalent that f1 = 1 with NPLE and

f2 = 0 with PLE for the D2/D1 =∞.

2.6.2 Pearlite transformation in ternary system

It is important to consider the co-operative growth nature of pearlite when

it is analysed in the content of thermodynamics. Because substitutional

element X is alloyed, the partitioning behaviour of X becomes important to

account. Carbide forming elements such as Mn, Cr, and Mo would partition

to the pearlitic cementite whereas Si, Ni, and Co would tend to segregate to

the ferrite. Most of partitioning studies used analytical electron microscopy

and the results are expressed as partitioning coefficient KX which is defined

as the ratio of concentration of alloying element in cementite to that in

ferrite:

KX =
(CX/CFe)θ
(CX/CFe)α

(39)
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Figure 10: The relationship between phase diagram and free energy curves.
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(a)

(b)

Figure 11: Schematic ternary steel phase diagram in the corner of α and γ
related phase field: (a) PLE mode of proeutectoid ferrite growth and (b)
NPLE mode of proeutectoid ferrite growth in the parent austenite.
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where, CX and CFe are the weight fraction of X and Fe respectively. Most

of these alloying additions retard the growth rate of pearlite through their

effect on the carbon concentration gradient.

Picklesimer et al. [66] measured the growth rate of pearlite based on

the modified absolute rate theory of the form:

v = b∆T∆G exp

(
−Q
RT

)
(40)

where v is the growth rate in mm s−1, b is a constant, ∆G is the free energy

difference of austenite to pearlite transformation and Q is the activation

energy. They argued that the rate of pearlite growth is neither controlled

by Mn diffusion and probably not by carbon. In their theory, decrease of

pearlite growth rate by alloying X is due to increase of activation energy

for those atomic movements at the moving boundary which are required

because of the differences in crystal structure of austenite and ferrite and

cementite in contact with it. They observed the partitioning behaviour of

Mn stop below 640 ◦C where the chemical analysis was done from extracted

carbide replicas. However, it was measured after 24 h at transformation

temperature and the carbides came from far behind of transformation front.

Razik et al. [67] reported that the electron probe micro-analyser was

not an effective tool for partitioning studies owing to its resolution (2µm)

as comparing with the thickness of cementite lamellae is far less than 2µm.

They used the analytical electron microscopy to measure the composition

of manganese in pearlitic cementite and ferrite. The study was done with

1.08 and 1.8Mn wt% eutectoid steels. They observed the partitioning coef-

ficient of manganese between pearlitic cementite and ferrite becomes unity.
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The partitioning of Mn decreased from eutectoid temperature and it ceased

below 683 ◦C and 649 ◦C for 1.08 and 1.8Mn wt% respectively. However,

they used the interface compositions in the Fe-C binary phase diagram.

Because the effect of Mn changes the phase diagram very differently com-

pared to binary system, this is clearly not appropriate procedure to find

acting tie-line. In other work of Razik et al [57]et al., they studied Fe-

1.29Cr-0.8C wt% and observed partitioning even lower than the reported

no-partitioning temperature as 703 ◦C. Both of studies assumed either vol-

ume and boundary diffusion, but those mechanisms cannot properly explain

experimentally measured growth rate.

Finding the acting tie-line at the interface of pearlite/austenite was

studied by Hillert [38]. He tried to categorise the pearlite transformation

using phase diagram. It was an excellent attempt to explain thermodynam-

ical background of pearlite transformation using PLE and NPLE model. In

his report, the divergent pearlite was the result of driving force decreasing

due to the pearlite composition. Divergent pearlite forms only in α+ γ+ θ

three phase field, and the pearlite always have higher alloying element con-

centration than parent austenite that is the reason why the free energy

for diffusion is ceased when the composition of the system reached the γ

corner of three phase field. His theory was supported by the measure-

ment of Hutchinson et al. [21]. Hutchinson and his colleagues measure the

composition profile of Mn across the pearlite/austenite interface over the

transformation time and temperature for various Fe-C-Mn system using

analytical transmission microscopy. Hillert used PLE and NPLE for the

pearlite transformation in α + θ phase field. He only analysed the area

which both of ferrite and cementite grow with PLE or NPLE and, for those

areas, it was also well explain Hutchinson’s data. However, those PLE and
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NPLE assumptions cannot explain all area of α+θ phase field. Pandit and

Bhadeshia [11] used both of volume and boundary diffusion mechanism for

pearlite growth and used PLE assumptions at the pearlite/austenite inter-

face. However, it cannot give solutions that compromise both mass balance

and local equilibrium condition. Pandit and Bhadeshia use the straight tie-

line which is passing through the mean composition of the system rather

than use PLE or NPLE condition. However, their solution is clearly incor-

rect because that lose both mass balance and thermodynamical nature.

2.7 Deriving Mixed-Diffusion Growth Rate Equation

The mixed-diffusion of pearlite growth rate equation was suggested by Pan-

dit and Bhadeshia[10]. Mixed-diffusion equation is well explained in the

case of the iron-carbon binary system without any artificial factor relating

volume and boundary fluxes.

v =

(
2DV +

12DBδ

S

)
S

SαSθ

(
cγαe − cγθe
cθγ − cαγ

)(
1− SC

S

)
(41)

Eq. 41 is derived from a flux balance between pearlite and austenite. v is

the growth rate of pearlite, DV and DB are volume and boundary diffusion

coefficients in austenite respectively, S is the interlamellar spacing, SC is

the critical interlamellar spacing when interface energy between ferrite and

cementite consumes total free energy in the system (so pearlite never grow),

and cab are composition on phase ‘a’ have interface with phase ‘b’. Phases

are ferrite (α), cementite (θ), and austenite (γ).

The flux in the austenite, from the front of ferrite to the front of ce-

mentite is,
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Figure 13: Pearlite growth on the phase diagram when the pearlite grows
as (a) PLE mode, (b) NPLE mode
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Figure 14: The regions which are distinguished by growth mode of pearlite.
When the cementite and ferrite grow with PLE mode (in red area), that
pearlite called ortho-pearlite. When the both θ and α is in NPLE region,
it called para-pearlite growth [38]. However there are no analyses on green
area.
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JV =
DV bSα
Vm

cγα − cγθ

Sα/2

JB =
12DBbδ

Vm

cγα − cγθ

S

(42)

where b is the arbitrary length which is normal to growth direction, δ

is a length of boundary, Vm is the molar volume and is considered as same

for all the phases involved. This diffusion causes the edgewise growth of α

lamellae in γ with a velocity v and can be written as equation 17:

J =
vbSα
Vm

(c̄− cαγ) =
vbSθ

Vm
(cθγ − c̄) =

vbSαSθ
SVm

(cθγ − cαγ)

Combining Eq. 42 and 17 will result in Eq. 41.
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3 Mixed Diffusion Controlled Growth of Pearlite

in Fe-C Binary System

3.1 Boundary diffusion coefficient of carbon

Because there is a lack of boundary diffusion data for carbon, the coefficient

needs to be deduced from other data. In this thesis, the measured pearlite

growth rate in Fe-C binary system was used to extract the boundary dif-

fusion coefficient. This kind of an attempt with mixed diffusion controlled

model is not the first. Hashiguchi and Kirkaldy [9] did the first extrac-

tion of boundary diffusion coefficient of carbon from the pearlite growth

data based on mixed diffusion model. However, their carbon diffusivity in

pearlite/austenite boundary was not able to explain the higher diffusion

activation energy for interface than lattice. Their mixed diffusion equation

accounted for many effects that included unimportant factors. Thus, the ac-

tivation energy for boundary diffusion of carbon was over-fitted and showed

larger value than that for volume diffusion. Pandit and Bhadeshia [10] con-

structed the mixed diffusion equation of pearlite with only the edge-wise

volume diffusion and side-wise boundary diffusion. In their equation, the ef-

fects except diffusion, such as capillarity and surface tension, were not taken

account during the modelling. The procedure of extracting carbon bound-

ary diffusivity in the paper of Ashwin and Bhadeshia underestimate the

difference between experimental methods used to measure pearlite growth

rate. There are three known methods to observe the pearlite growth rate.

One is the maximum nodule radius method (MNR method)[68]. MNR is

the method that measure the radius of the largest colony in the microstruc-

ture and the transformation time, then calculate pearlite growth rate with
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them. Therefore, MNR method always give the maximum growth rate of

the pearlite during the transformation. It is important that the radius of

colony should be observed before the impingement happens and the incuba-

tion time which is the period before the actual growth start have not to be

considered. MNR is hardly measure the growth rate with non-hemispherical

colony shape, time dependency, and impingement. Cahn and Hagel method

(CH method) was developed for measuring time-dependent pearlite growth

rate [69]. This evaluates the average growth rate of the observed pearlite

colonies as:

v̄ =
1

Af

dr

dt
(43)

where, v̄ is the average growth rate, Af is the instantaneous pearlite sur-

face area per unit volume available for migration, r is the averaged radii

of colonies, and t is the time for transformation. The value of Af and

r can be measured using standard point counting method [70]. The last

one is particle size analysis method (PSA method). PSA method approx-

imate the pearlite nodule as a sphere, then compute a size distribution

of ‘circle’ diameters observed on a optical micrograph of a plane that is

polished and etched. The distribution curves of circle diameters per unit

volume have informations of both growth and nucleation. The Johnson-

Mehl equation [71] used for determining the nucleation rate at early stage

of transformation and growth rate. Also, in-situ neutron depolarisation

[72] and three-dimensional X-ray microscopy [73] can be used to measure

individual colony.

Among the above methods, latter two, CH and PSA methods, take

the average of observed pearlite nodules. However, the models, or the

growth rate equations, predict the maximum velocity of the transformation
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front. Therefore, it is reasonable that the boundary diffusion coefficient of

carbon is deduced from using the MNR method result. In this chapter, the

boundary diffusivity of carbon will extracted from the experimental results

from Frye et al. [74] which measured the pearlite growth rate with MNR

method.

3.2 Methods

The diffusion-controlled growth of pearlite in a binary steel, including both

the volume and boundary fluxes, is given by Pandit and Bhadeshia [10]

(Eq. 41):

v =

(
2DV +

12sDBδ

S

)
S

SαSθ

(
cγαe − cγθe
cθγ − cαγ

)(
1− SC

S

)
where v is the growth rate, s is the arbitrary length which is normal to

growth direction, DV and DB are volume and boundary diffusion coeffi-

cients in austenite respectively, S is the interlamellar spacing, SC is the

critical interlamellar spacing when the α/θ interfaces that are created dur-

ing pearlite growth consume all the available free energy so that the growth

rate becomes zero. cγθ is the concentration in austenite that is in equilib-

rium with cementite, and other terms like this have similar meaning. These

equilibrium compositions are here calculated using ThermoCalc with the

TCFE6 database [41].

In equation 41, the values of interlamellar spacing S, the diffusion co-

efficients and boundary thickness δ = 2.5 Å can be obtained from the pub-

lished literature [74, 5, 61, 67]. The diffusivity of carbon in austenite is
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Table 1: Calculated interface C concentrations (at.%).

cγθC cθγC cγαC cαγC

866 K 2.10 0.25 8.33 0.127
892 K 2.35 0.25 7.33 0.124
913 K 2.54 0.25 6.53 0.120
933 K 2.75 0.25 5.78 0.115
963 K 3.05 0.25 4.68 0.104
978 K 3.21 0.25 4.16 0.098
981 K 3.24 0.25 4.06 0.097

concentration dependent, so a weighted average value is used instead [45]

DV =

∫ cγα

cγθ

D{c, T}
cγα − cγθ

dcγ (44)

where c is the mean carbon concentration in the steel.

3.3 Results

There are three methods that were shown above for measuring the growth

rate of pearlite: particle size analysis method [61], the maximum nodule

radius method [68] and Cahn & the Hagel method [69]. The experimental

data of Frye et al. [74] based on the maximum nodule radius method

were used to obtain the boundary diffusion coefficient of carbon. This is

because the method is based on the assumption that the largest module

correctly represents the actual growth rate, whereas the other two methods

rely on averaged values. The term SC
S was calculated by taking derivative

of equation 41 with respect to the interlamellar spacing, S, and solving the
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resulting equation for SC that satisfies:

dv

dS
= 0 (45)

Equations 41 and 45, when used with the experimental value of v, have

two unknowns. They can therefore be solved iteratively to find the values

of DB and SC
S . As a result, the boundary diffusion coefficient for carbon is

found to be

DC
B = 1.84× 10−3 exp

(
−124995 J mol−1

RT

)
m2 s−1 (46)

where R is the gas constant and T is the temperature, in Fig. 15. The

boundary diffusion activation energy, QB = 125 kJ mol−1, is lower, as it

should be, than the corresponding value for diffusion in the volume of the

austenite, QV = 135 kJ.

Fig. 16 shows calculations based on equation 41 and the experimental

data of Brown and Frye et al. The carbon diffusion coefficient derived

using Frye’s data has been applied unmodified to the data from Brown and

Ridley, and yet there is excellent closure between experiment and theory.

Fig. 17 illustrates the ratio of volume to boundary diffusion fluxes and the

deependence of S on the transformation temperature. As expected, the

boundary flux dominates at low temperatures where diffusion within the

austenite lattice is relatively sluggish. Fig. 17b is the set of all solutions

which satisfying equation 45. When DV is negligible relative to DB, SC
S

tends towards 2
3 in the low temperature range.
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Figure 15: Arrhenius plot from which DB was derived based on experimen-
tal data on Fe-0.8 wt%C steel assuming mixed diffusion-controlled pearlite
growth.
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S as a function of temperature.
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3.4 Interface energy

The interface energy between ferrite and cementite per unit area, σαθ, has

critical role during the pearlite transformation. It is not directly included

in the growth rate equation but the critical interlamellar spacing, SC have

σαθ as variable. This is because the σαθ always consumes the total free

energy as the pearlite colony grows. Zener [2] has shown that the pearlite

growth rate have maximum value when the interface energy between fer-

rite and cementite is half of total free energy available for transformation

assuming volume diffusion controlled growth. Kramer et al. calculated the

σαθ using Zener’s free energy and spacing data to be 0.7 J m−2 [75]. They

calculated the interface energy, σαθ, using a calorimetric method.

Das et al. [76] and, Deb and Chaturvedi [77] measured the energy of

ferrite/cementite interface for coarsening of cementite particles in ferrite

matrix steel (Fig. label interface). The interface energy was obtained from

the coarsening rate constant, which was determined by fitting experimental

growth rate data. It is worth noting that these data for a different mor-

phology (spherical) of ferrite/cementite interface shows lesser energy value

than for a lamellar pearlite. Martin and Sellers calculated the interface en-

ergy for lenticular cementite precipitates on a ferrite grain boundaries from

dihedral angle measurements and reported a value of 0.52 ± 0.13 J m−2.

Embedded atom method with first-principles method was used to compute

the interface energy between ferrite and cementite in Fe-C system by Ruda

et al. [78]. They reported the value of 0.615 J m−2. There was no mention

about the temperature at which this calculation was done, but it can be

assumed to be same at 0 K as usually used by first-principles calculations.

67



In other point of view, it is possible that govern the interface energy of

ferrite/cementite interface from the pearlite growth rate because the term

SC. In this thesis, the interface energy between ferrite and cementite, σαθ,

was deduced from the results of fig. 17 and following equation [9]:

σαθ =
1

2
SC∆G (47)

where the ∆G is a total free energy of the system for transformation. The

free energy is calculated using Thermo-Calc[41], TCFE6 database. The in-

terface energy values calculated in current thesis are illustrated in fig. label

interface. Comparing the interface energies calculated from pearlite growth

rate measurements and the independently measured values, the discrepan-

cies between them are large for the lower transformation temperatures,

relative to the data based on coarsening reactions and dihedral angle mea-

surements. Both of the measurements are done at which the transformation

is kinetically slow, therefore, it is possible that the measured values are af-

fected by the segregation of solutes to the interface, which might lead to a

reduction in energy.

3.5 Conclusions

The mixed diffusion-controlled growth of pearlite is revised with consider-

ing the relationship between experimental data and maximum growth rate

spacing criteria. The spacing criteria is also mathematically solved to anal-

ysis the temperature-SC relationship. The critical interlamellar spacing SC

indirectly shows the ratio change between volume and boundary flux, for

example, SC converges to 2
3 as temperature goes down and this can be well

explained by low activation energy of boundary diffusivity. Because of lack-

ing boundary diffusion data, the boundary diffusion coefficient of carbon
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is deduced from the experimental data of Frye et al. [74]. The expected

pearlite growth rate in Fe-C system shows an excellent agreement with the

experimental data of Brown and Ridley [61] which is not used for deducing

boundary diffusion coefficient of carbon.

The interface energy is calculated using maximum growth rate spacing cri-

teria, and compared to reported independent measurements. The energy

is higher than reported values at all temperature range, possibly because

the reported values are measured at slow coarsening of cementite and the

effect of segregation might reduced the value.

70



4 Mixed Diffusion Controlled Growth of Pearlite

in Fe-X-C (X=Mn, Cr, Co, Ni) Ternary System

4.1 Methods

In Fe-C binary steels, the interface composition at ferrite/austenite and

cementite/austenite boundary is easily found by simple thermodynamic

calculation. This is because the tie line between α/γ and θ/γ in Fe-C

phase diagram is unique during isothermal transformation.

To maintain local equilibrium condition, the situation is more complex

in Fe-C-X steels containing a substitutional solute (X) in addition to inter-

stitial carbon. Local equilibrium requires the compositions at the interface

to be maintained at levels that are consistent with a tie-line of the Fe-C-X

phase diagram. At a constant temperature, this is in general not possible to

achieve for the tie line passing through cMn, cC because the rate at which

each solute is partitioned must then equal to that at which it is carried

away from the interface by diffusion. It is necessary therefore that

at α/γ interface:

{
v(cγαC − c

αγ
C ) = −DC∇cC

v(cγαX − c
αγ
X ) = −DX∇cX

(48)

at θ/γ interface:

{
v(cγθC − c

θγ
C ) = −DC∇cC

v(cγθX − c
θγ
X ) = −DX∇cX

(49)

where the subscripts identify the solute. Given that DX � DC, it becomes

impossible to simultaneously satisfy either equation 48 or 49 if the tie-line

passing through cX, cc is selected.

Pandit and Bhadeshia [11] argued that in the context of experimental

data, local equilibrium could not be assumed for both the α/γ and θ/γ

interfaces. They therefore proceeded to adopt the tie line connecting the
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Figure 19: Fe-Mn-C phase diagram and tie-lines (red) used in [11].

θ/γ interface passes through cX, cc (Fig. 19), neglected the role of carbon

and calculated the growth rate on the basis of the diffusion of manganese

through the interfaces rather than the volume ahead of the interface.

All of above work only considered the case of DX � DC even some of

them dealing with boundary diffusion. The natural question arises when

the boundary diffusion has an important role as a diffusion short circuit;

Does DX � DC still stand for the boundary diffusion and mixed diffusion

controlled transformation?

Coates [62] already studied the case when the ratio DX to DC is fi-

nite for the single phase transformation. He used the solution of diffusion

equation which is reported by Ham [65]. Pearlite is cooperative growth of

ferrite and cementite so it needs other solution. Hashiguchi and Kirkaldy
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[9] solved the diffusion equation of pearlite with considering boundary diffu-

sion of carbon. However, that solution deduced physically unlike activation

energy of carbon boundary diffusivity. In previous chapter, simplified so-

lution of pearlite diffusion equation with mixed diffusion controlled growth

well describes the experimental data and physically reasonable boundary

diffusion coefficient of carbon. Thus, that solution is used to find interface

composition when the ratio DX to DC is finite.

A different procedure avoiding the difficulties encountered in ref. [11],

can be based on the following equations that are analogous with equa-

tion 41:

vC =

(
2DC

V +
12sDC

Bδ

S

)
S

SαSθ

(
cγαC − c

γθ
C

cθγC − c
αγ
C

)(
1− SC

S

)

vX =

(
2DX

V +
12sDX

Bδ

S

)
S

SαSθ

(
cγαX − c

γθ
X

cθγX − c
αγ
X

)(
1− SC

S

)
(50)

where the velocities vC and vX are calculated on the basis of the diffusion

of only carbon or only manganese, respectively. Clearly, since there is only

one transformation front, the equations must be solved such that vC = vX.

Bearing in mind that the interlamellar spacing is also identical in these

equations, a further condition arises that:

DC
eff

DX
eff

=
RX

RC
with

 Di
eff ≡ Di

V +
6sDiBδ
S

Ri ≡
cγαi −c

γθ
i

cθγi −c
αγ
i

(51)

The Di
eff is effective diffusion coefficient for mixed diffusion-controlled

growth and Ri condition ensures that the weighted average of the ferrite
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volume diffusion and (b) boundary diffusion
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and cementite yields the mean composition of the steel. With these two

constraints and in addition the local equilibrium condition, it has been

found possible to find unique interface compositions at the growth front by

coupling the conditions and the velocity equations to thermodynamic calcu-

lations using Thermo-Calc with TCFE6 database; the application package

was designed as follows:

• a trial θ/γ interface composition is set, selected from possible such

tie-lines for the given transformation temperature.

• The α/γ interface composition tie-line is selected such that cαγC,X, c
θγ
C,X 3

c̄C,X (where cαγC,X, c
θγ
C,X means the line connecting the compositions of

ferrite and cementite, and c̄C,X is average composition in the system).

• If equation 51 is not satisfied by these choices then the process is

repeated until a solution is found.

• This solution provides the interface compositions to substitute into

equation 50 to calculate the single velocity v = vC = vX of the trans-

formation interface.

4.2 Results and Discussion

4.3 Mixed diffusion-controlled growth for Fe-X-C

The diffusion coefficients of substitutional solute in the boundary and austen-

ite are from Fridberg et al. [54]:

DX
B = 2.16× 10−4 exp

(
−155000 J mol−1

RT

)
m2 s−1 (52)
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DMn
V = 1.34× 10−4 exp

(
−286000 J mol−1

RT

)
m2 s−1 (53)

There will be some uncertainty in DX
B because it is assumed to be

identical to that for the grain boundary diffusion of iron [54]. Equation 41

for the ternary system was tested against experimental data on 1 wt% Mn

and 1.8 wt% Mn eutectoid steels from the work of Razik and Ridley [67].

As shown in Fig. 21, the mixed diffusion controlled-growth model ex-

plains the pearlite growth rates within an order of magnitude. A careful

examination of the tie-lines operating during growth showed that at low

temperatures, there is very little partitioning of manganese between the

phases and partitioning becomes prominent for transformation at temper-

atures near the eutectoid. The extent of partitioning is predicted well us-

ing our mixed diffusion model, when compared against the microanalytical

data of Hutchinson et al. [21] for Fe-3.50Mn-2.46C at.% steel at 898 K [21],

Fig. 22. It is likely that during the 10 h treatment, soft impingement occurs

and that might explain the discrepancy observed for that transformation

time. The measured growth rate was 1.08 × 10−8 m s−1, which compares

well with our calculated value of 9.46× 10−9 m s−1.

Similar work is done for Cr, Ni, and Co. These atoms are selected by

the neighbour of iron. This is because those atoms share the boundary

diffusion coefficient which was reported by Fridberg et al. [54]. Therefore,

they use eq. 52 for the boundary diffusion coefficient and volume diffusivity

in below:

DCr
V = 3.29× 10−4 exp

(
−286000 J mol−1

RT

)
m2 s−1 (54)
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Table 2: Calculated Mn concentrations (at.%); the mean value for the alloy
is 1.07 at%.

cγθMn cθγMn cγαMn cαγMn

823 K 0.37 1.13 10.3 1.06
855 K 0.40 1.15 8.30 1.052
895 K 0.44 1.16 6.33 1.050
915 K 0.46 1.19 5.58 1.045
935 K 0.52 1.27 4.85 1.03
945 K 0.57 1.37 4.50 1.02
952 K 0.65 1.54 4.18 0.987
958 K 0.773 1.81 3.89 0.942
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Figure 21: Mixed diffusion-controlled model applied to 1.0 and 1.8 wt%Mn
eutectoid steels and experimental data for comparison.
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Figure 22: Mixed diffusion-controlled model predicts the interface composi-
tion of pearlite in Fe-3.50 at%Mn-2.46 at%C steel at 898 K. UMn is the ratio
of the Mn to Fe atoms.
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DNi
V = 3.17× 10−5 exp

(
−286000 J mol−1

RT

)
m2 s−1 (55)

DCo
V = 3.31× 10−4 exp

(
−286000 J mol−1

RT

)
m2 s−1 (56)

When the mixed diffusion-controlled growth is applied to 2 and 3 wt%

of Ni eutectoid steels and compared to experimental results of Brown and

Ridley [61], it shows excellent agreement with the growth rate measured

by MNR method as shown in Fig. 23. The experiment results are done at

relatively higher temperature than the results Mn [67], thus discrepancies

at low temperature is impossible to observe. The effect of Co to growth rate

of pearlite was studied by Ridley and Burgess [79] and they measured the

minimum interlamellar spacing. Those data are used for comparing with

calculated pearlite growth rate based on mixed diffusion model in this the-

sis. Fig. 24 shows the comparing between calculated and measured pearlite

growth rate. Similar as the results of Ni eutectoid steels, Co addition in

eutectoid steels is well predicted by mixed diffusion-controlled growth.

When the mixed diffusion model is applied to Fe-Cr-C ternary system,

the calculated results are about to be an order away from the experimental

data of Chance and Ridley [20]. This is quite interesting compared to the

results for Mn, Ni, Co. Large discrepancies appeared in Cr eutectoid steels

can be explained with generalised Fick’s first law:(
JC

JX

)
= −

(
DCC DCX

DXC DXX

)(
∇cC

∇cX

)
(57)

where Ji is the flux of component i, Dij is diffusion coefficients of i affected

by j, ci is composition of i and, C and X are carbon and substitutional
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Figure 23: Mixed diffusion-controlled model applied to 1.98 and 3.00 wt%Ni
eutectoid steels and experimental data for comparison. Points are experi-
mental data from Brown and Ridley [61]. Lines are calculation work done
in current thesis.

atom respectively. When the mixed diffusion-controlled model is derived,

the off-diagonal term of diffusivity coefficient matrix in Eq. 57 are ignored.

This off-diagonal diffusivities means that the chemical effect on each solute

atoms. Ni and Co are known to have a low chemical interaction with

carbon. On the other hand, Cr is a well-known strong carbide former,

thus, the off-diagonal diffusivities may not be ignored.
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Figure 24: Mixed diffusion-controlled model applied to 2.2 wt%Co eutectoid
steels and experimental data for comparison. The experimental data of
Ridley and Burgess [79] (points) and calculated result in current work by
mixed diffusion-controlled growth of pearlite (line).
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Figure 25: The experimental data is compared with mixed diffusion-
controlled model in 1.4 wt%Cr eutectoid steels.
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4.4 Metallography for the Fe-Mn-C system

In Fig. 21, it is seen that the measured growth rate at low temperatures

tends to be significantly slower than that calculated. It was not felt that

there are any options in modifying the theory to obtain a better fit; for

example, if the transfer of iron atoms across the interface is limiting, then

we would not be able to explain the low-temperature data for Fe-C to such

a high degree as illustrated in Fig. 16. Therefore, an Fe-0.8C-1.0Mn wt%

alloy was made and the microstructure and growth rates of pearlite were

measured for samples transformed at 958 K and 823 K, consistent to the

experiments of Razik et al [67]. About 500 g of steel sample was charged in

a refractory crucible made of Al2O3 (OD 60 mm × ID 52 mm × H 100 mm).

The steel sample in the crucible was melted in a reaction chamber made

of a quartz tube equipped with water cooled brass end caps in an induc-

tion furnace. Argon gas purified by passing through silica gel and Mg

chips heated at 723 K (450 ◦C), was passed through the reaction cham-

ber during the experiment and the sample solidified by natural cooling.

The sample was the sealed in an evacuated quartz tube, homogenised at

1250 ◦C for 48 h and hot-rolled at 1000 ◦C to 12 mm thickness and wa-

ter quenched. The final chemical composition was Fe-0.79C-0.98Mn wt%.

Specimens 3 mm diameter and 10 mm length were wire cut for dilatometer

experiments (Dilatronic lll, Theta Inc). The heat treatments were con-

ducted in the dilatometer, with the sample austenitised 1100 ◦C and left

for 10 min, cooled to transformation temperature, 823 K and 958 K and

finally quenched to room temperature.

Transformation at 958 K led to the classical round pearlite colonies, the

shape of which was affected only by the presence of the austenite grain

boundaries Fig. 26. However, it is evident that the classical shape gen-
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erated by the cooperative growth of ferrite and cementite clearly broke

down during transformation at 823 K (Fig. 27). The transmission elec-

tron micrograph shown in Fig. 27d was obtained by machining a sample

specifically from the spiky transformation product using focused ion-beam

milling. It is evident that the cementite and ferrite do not share a com-

mon transformation front, with disconnected cementite particles present

within the predominantly ferritic matrix. When this happens, the growth

rate should decrease because the lack of cooperation would increase the

diffusion distances, and with the shapes observed, boundary diffusion at

the transformation front would make a smaller contribution since the flux

becomes less parallel to the interface.

It could be argued that the spiky transformation product observed for

823 K is in fact bainite. Experiments were therefore done to see whether

this non-cooperative growth product results in the surface relief that is typ-

ical of bainite, as opposed to diffusional transformation produces that only

result in volume changes. Metallographically polished but un-etched sam-

ples were heat treated using the dilatometer, and then inspected for surface

relief. The sample was austenitised at 1100 ◦C and left for 10 min, cooled

to transformation temperature, 823 K, stayed for 3.6 s, then quenched to

room temperature. Hardness indents were used as fiducial marks to corre-

late surface relief with the same area after very light etching using 2 % nital

in ethanol with less than 10 s. Fig. 28 shows with clarity that the only sur-

face relief is from the few plates of bainite that formed during the quench,

with neither the spiky nor regular bainite exhibiting any such upheavals.

Table 3 compares our experimental data, derived specifically from iso-

lated, spherical pearlite colonies, using the largest colony method, against

those from ref. [67]. There is good agreement for transformation at 958 K

but our growth rate for 823 K is larger and more consistent with the cal-
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culated values. We are not able to explain this discrepancy at this mo-

ment. It is noteworthy that neutron depolarisation experiments [73] gave a

pearlite growth rate of 1.19× 10−7 m s−1 at 953 K in a Fe-0.715C-0.611Mn-

0.266Cr-0.347Si wt%, consistent with the present work if the differences in

substitutional solute concentrations are neglected.

Table 3: Comparison of measured growth rate [67] against our experimental
data.

958 K 823 K

Measured rate / m s−1 [67] 1.63× 10−7 9.54× 10−6

Measured rate / m s−1, current work 1.09× 10−7 2.30× 10−5

Calculated rate / m s−1 1.87× 10−7 3.12× 10−5

The spiky growth of pearlite was expected by Hillert [38] in his work

using limitation of atomic dimension during NPLE mode. The concentra-

tion spike of substitutional solute in NPLE mode is also exist in pearlite.

The depth of the concentration spike was calculated by DX/v, where DX is

diffusivity of slow diffuser, and v is growth rate. Hillert analysed that if the

depth of the spike DX/v is less than atomic dimension, the ferrite-austenite

interface in pearlite will grow like martensite and the cooperative growth

will break down. However, even if all of the reported growth rate, except

near A3 temperature, are having the depth less than 1 Å with volume DX,

the martensitic interface did not observed for those data.

In this work, the depth of concentration spike is calculated with effective

diffusivity which is the effective term of volume and boundary diffusion

coefficient in mixed diffusion-controlled growth of pearlite.

The calculated depth of concentration spike with three diffusion mech-
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anism, volume, boundary and mixed diffusion, are compared in Table. 4

at the temperature of 958 K and 823 K which are taken metallographical

analysis. The other two mechanisms gives much lower or higher depth of

concentration spike than 1 Å for all temperature. On the other hand, the

mixed diffusion-controlled growth mechanism gives the depth of spike an or-

der lower than 1 Å at 823 K and much larger depth at 958 K. The existence

of spiky pearlite growth at specific temperature can be perfectly explained

by the depth of concentration spike calculated by mixed diffusion mech-

anism. Thus, the results strongly support the mixed diffusion-controlled

growth is the closest mechanism to explain pearlite growth.

Table 4: Comparison of the depth of concentration spike based on mixed
diffusion, volume diffusion, and boundary diffusion-controlled growth.

958 K 823 K

DMn
eff

v / m 1.77× 10−8 3.88× 10−11

DMn
V
v / m 2.09× 10−13 1.06× 10−17

DMn
B
v / m 4.68× 10−6 3.42× 10−9

4.5 Conclusions

It has been possible to find solutions that satisfy local equilibrium at the

pearlite transformation front for both the Fe-C and Fe-C-X systems. The

method used to achieve this involves independent calculations of growth

velocity based on each solute, followed by iteration to achieve the same

growth rate irrespective of solute. The method takes into account both

boundary and volume diffusion, gives satisfactory closure between theory
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(a)

(b)

Figure 26: Microstructure of isothermal transformation at 957 K held for
2 min by optical micrograph. (a) and (b) show spherical shape of typical
pearlite morphology.
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(a) (b)

(c)

(d)

Figure 27: Optical micrographs of isothermal transformation at 823 K held
for (a) 3.6 s and (b) 5 s. (c) Scanning electron micrograph (3.6 s). (d)
Transmission electron micrograph (3.6 s).
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(a)

(b)

Figure 28: Corresponding images from the surface relief experiments. The
dark-etching spiky form of pearlite where the ferrite and cementite do not
grow at a common transformation front does not exhibit any surface up-
heavals. Nor does any of the pearlite. It is only the few plates of lighter-
etching bainite that show the surface relief. (a) Unetched sample, (b) after
light etching. Samples transformed at 823 K for 3 s.
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and experiment. The calculation results of Cr is usually more than an order

away from the experimental data, the reason might be raised from the off-

diagonal diffusivity. The elements which have low chemical interaction

such as nickel and cobalt shows excellent agreement between theory and

experiments.

The largest discrepancy between published data on the Fe-Mn-C sys-

tem and theory exists at the lowest transformation temperature, where we

have demonstrated that two forms of pearlite form, one represented by the

regular spheroidal colony and the other by a spiky morphology where the

cooperation between ferrite and cementite breaks down. In such circum-

stances, the growth rate equations derived for cementite and ferrite sharing

a common transformation front with austenite do not apply. When the

growth rate is measured only for the spheroidal colonies of pearlite, even

the low temperature data closely approximate theory. The spiky pearlite

can be predicted by calculation of the concentration spike depth during the

growth whether it is less then atomic distance or not. However, the other

mechanisms are impossible to explain the existence of spiky pearlite.

Finally, it has been demonstrated that the spiky transformation product

does not lead to the surface relief effect associated with displacive transfor-

mations.
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5 Analysis of Local Equilibrium Condition Dur-

ing Pearlite Growth

The most important assumptions in PLE and NPLE is the substitutional

solute, X, diffuses much slower than the interstitial solute, carbon. How-

ever, it was considered as trivial fact even when the former researches dealt

with boundary diffusion during pearlite transformation. Fig. 20 shows

the diffusivity ratio of carbon to manganese in volume and boundary have

different in many orders. As reminding the PLE and NPLE work in the

condition of DX � DC , those two local equilibrium modes does not appro-

priate to apply in mixed diffusion-controlled pearlite transformation.

In the previous chapter, the local equilibrium condition for pearlite

transformation was found from two simple constraints, mass conservation

and velocity conservation. However, the condition was calculated through

the iterative program using Thermo-Calc. Thus the uniqueness of solution

or the dependence on diffusivity ratio remain unknown. In this chapter, the

local equilibrium condition for pearlite growth will be tested more analytical

method to understand its nature.

5.1 Method

Fig. 29 shows a brief Fe-X-C phase diagram where X is the substitutional

alloying element. There are five points which are the interface compositions,

cαγ , cθγ , cγα and cγθ, and average composition, c̄. Each points can be

expressed by carbon and manganese composition as a coordinate in phase

diagram. Back to mass conservation condition, the interface compositions
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should satisfy below:

cθγX − c
αγ
X

cθγC − c
αγ
C

=
c̄X − cαγX

c̄C − cαγC

=
cθγX − c̄X

cθγC − c̄C

(58)

where the subscript X and C denote each solutes. This condition makes

possible that pearlite consume the whole system. As a result of lever rule,

points cθγ and cαγ literally move like lever having pivot point c̄.

The other condition, the velocity conservation, can give the relationship

between ‘the lever’ and the diffusivity ratio. It can be equated:

DC

DX
=
RX

RC
=
cγαX − c

γθ
X

cθγX − c
αγ
X

·
cθγC − c

αγ
C

cγαC − c
γθ
C

=
cγαX − c

γθ
X

cγαC − c
γθ
C

·
cθγC − c

αγ
C

cθγX − c
αγ
X

=
slope of line cγθcγα

slope of line cαγcθγ
(59)

With the fact that the tie-line connect the points at α/γ and θ/γ interfaces,

it is possible to test the unique existence of interface composition for given

diffusivity ratio. Let’s assume the situation that the compositions cαγ or

cθγ move towards x-axis, then the points cγα or cγθ will follow the direc-

tion to x-axis. In contrast, if the compositions of product phases changes

away from the x-axis then connected interface compositions will show same

behaviour. It is obvious because the tie-lie is the line between free energy

surfaces of two different phases.

Now, it is known that the compositions of product phases follows the

lever rule, for example, cθγ goes to downward, then it cause the upward

compensation of cαγ . Moreover, this changes also affect on the interface
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composition at austenite side. As continuing previous example, downward

movement of cθγ cause same change to cγθ and upward movement of both

cαγ and cγα. Finally, the slope of line cαγcθγ will decrease but the slope

of line cγθcγα will increase. Combining this results with equation 59, it is

noticeable that diffusivity ratio DC/DX is increasing as cθγX goes to 0. Thus,

it is possible to describe the diffusivity ratio as a function of X composition

in cementite:
DC

DX
=
RX

RC
= f(cθγX ) (60)

This is based on the fact that the composition of carbon in cementite, cθγC ,

is always constant. The most important property of this function f(cθγX ) is

shown in previous example with decreasing cθγX : The function f(cθγX ) is

monotonic decreasing function or it can be described as:

d f(cθγX )

d cθγX
< 0 (61)

As a result, the local equilibrium condition is unique for given diffusivity

ratio and mean composition. When the ratio DC/DX goes to infinite, it is

associated with the local equilibrium condition:

slope of line cγθcγα =∞ (62)

or

slope of line cαγcθγ = 0 (63)

More specific analysis on this conditions will be dealt in next section.

93



5.2 Analysis

The similar analysis was done by Coates [62] but it was only single phase

transformation. In pearlite transformation, the previous two conditions,

equation 58 and 59 show the increase of complexness by coupling two phase

transformation at the same time. The idea of interface composition (IC)

contour was suggested by Coates [62] and it is also applied to current anal-

ysis of pearlite. The IC contour, which is the series of average compositions

sharing the same interface composition, is usually a curve except the case

DC/DX is unity in the work of Coates. The IC contour during the pearlite

transformation, however, has straight line for all possible diffusivity ratio

and the line is cαγcθγ . Also, during single phase transformation, a single

tie-line can have infinite number of IC contours which they have different

diffusivity ratio to each other. IC contour during pearlite transformation,

unlikely to previous case, connected to two different tie-line which are in

α + γ and γ + θ phase field (Fig. 33). Therefore, the set of tie-lines will

have an unique IC contour. Instead of tie-lines, it is possible that to group

the IC contours which pass the common mean composition as shown in

Fig. 33. The growth rate is decided by the position of mean composition

on IC contour that makes difference of phase fraction in Eq. 41. Thus, the

term related to interface compositions maintains constant on the arbitrary

IC contour, and the terms SαSθ which are related to phase fraction decide

the growth rate. Also, the diffusivity ratio change implies that interface

composition term Ri in Eq. 59 follows its ratio, thus, the difference be-

tween diffusivity ratio 1000 and 10000 in Fig. 32 looks like negligible but

it cause miscalculation of growth rate. In conclusion, looking for precise Ri

for given diffusivity ratio is essential to predict the growth rate of pearlite.
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As shown in Eq. 62, two conditions are possible to exist during pearlite

transformation. When their IC contours and related tie-lines are plotted on

the phase diagram (Fig. 34), it can be distinguished by the existence of par-

titioning between ferrite and cementite. The previous research of Hillert

[38] focused on the relationship between ferrite-austenite and cementite-

austenite partitioning, however, in the local equilibrium condition deduced

from Eq. 41, the partitioning between ferrite and cementite is more impor-

tant. It is noticeable that the upper mean composition in Fig. 34 which has

higher Mn and lower C composition always produces the pearlite which has

partitioning of element X between ferrite and cementite as diffusivity ratio

gets larger and larger. On the contrary, the lower mean composition which

has lower Mn and higher C composition loses the X partitioning between

ferrite and cementite when the DC/DX increases to infinite. Clearly, the

two different mean composition in Fig. 34 have different mode of trans-

formation, PLE and NPLE. Combining this result with Eq. 62 and 63, it

can be deduced that the mean composition which follows PLE condition

during pearlite transformation is equivalent to Eq. 62 and NPLE is Eq. 63.

In this work, instead of calculation of PLE-NPLE boundary, the condition

for boundary is suggested: at the boundary of PLE and NPLE in pearlite

transformation, both of

slope of line cγθcγα =∞

slope of line cαγcθγ = 0

will be satisfied simultaneously when DC/DX = ∞. The most important

point of this result is that pearlite transformation in the green area of Fig.

14 can be understood with breaking the classical LE conditions and use

new solutions for diffusion equation. Although the solutions are the result
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of simplified system, the result is well supported by the experiment.

Calculation of growth rate is now a bit more complicate than the single

phase transformation, constructing interface velocity (IV) contour is con-

suming too much time. Therefore, in this work, the IV contour that was

shown in Coates’ work [62] does not reconstructed for pearlite transforma-

tion.
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Figure 29: Related interface compositions in Fe-X-C phase diagram. Solid
red line is the line passing through the mean, ferrite and cementite composi-
tions. The red broken lines are acting tie-lines. The blue line is connecting
austenite interface compositions.
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Figure 30: Change of tie-line when the compositions cθγ and cαγ are
changed in Fe-Mn-C ternary system. The tie-lines are calculated for pearlite
transformation with various diffusivity ratio.
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Figure 31: Change of interface compositions caused by movement of cθγ

and cαγ . (a)Positions after taking lower composition of cθγ than Fig.30 and
(b)the compositions at the limit
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Figure 32: IC contours of two different mean composition for various diffu-
sivity ratio.
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Figure 33: IC contour and related acting tie-lines calculated by Thermo-
calc[41].
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Figure 34: Acting tie-lines and IC contours for PLE and NPLE condition
at high diffusivity ratio.
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6 Conclusions and Future Work

6.1 Conclusions

In present thesis, the mixed diffusion-controlled growth of pearlite is studied

for the Fe-C and Fe-X-C ternary system. To solve the diffusion equation,

the system is modified for simplicity. This is because to avoid over fitting

of the parameters. In [9], too many parameters gave a result that boundary

diffusion is harder path than lattice diffusion. The solution in this thesis

gives a reasonable value of activation energy for carbon boundary diffu-

sion comparing with volume diffusion and it describes well for the other

experimental results which are not used to deduce boundary diffusion co-

efficient. It has been shown that the flux ratio of boundary to volume for

various temperatures. The results show that the flux of boundary diffusion

is usually dominant for most of temperature range except near the eutectoid

temperature.

For Fe-X-C ternary system, previous researches [38, 11] suggested the

conditions to maintain local equilibrium condition at interphase bound-

aries, however, they were not enough to explain the pearlite transforma-

tion. Moreover, the boundary diffusion coefficient reduces the diffusivity

ratio between carbon and substitutional solute and making differences from

classical PLE and NPLE condition. The remaining problems of the mixed

diffusion for ternary system were solved based on two principles. One is

mass conservation of solute during austenite to pearlite transformation,

and second is that the pearlite growth rate must have same results without

which solutes is used for calculating the growth rate. With series of iterative

calculations with Thermo-Calc, this thesis makes possible to get precise in-

terface composition term R which satisfying local equilibrium. The results

also supported by reported analytical electron microscopy data.
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At low temperatures, the loss of cooperative growth in pearlite is ob-

served. This phenomenon is analysed using various metallographic tech-

niques including a surface relief experiment. As a result, it is determined

that the spiky form of pearlite has no surface relief effect thus it is the prod-

uct of diffusional transformation. It is supposed that the broken cementite

causes longer diffusion distance for the solutes and slows down the growth

rate. This broken cementite was predicted by Hillert [38] from limitation

of diffusion distance DX/v, but volume and boundary diffusion controlled

growth gave discrepancies to experimental results. The mixed diffusion

equation is strongly supported by this limitation and it gives a reasonable

explanation for existence of spiky pearlite at low temperature.

The local equilibrium condition suggested in this thesis to describe

pearlite transformation is analysed with assuming various diffusivity ra-

tio and compared to single phase transformation. It is shown that the

local equilibrium condition exists uniquely for given mean composition and

diffusivity ratio. Also, PLE and NPLE in pearlite transformation is now

focusing on partitioning between ferrite and cementite.

6.2 Future Work

Work in this thesis suggested the description of pearlite using mixed diffu-

sion controlled growth. The mixed diffusion model and experiment agrees

well for both Fe-C and Fe-X-C systems. Remaining difficulty in ternary sys-

tem is how to take account the chemical interactions between carbon and

substitutional solute fluxes. Because the boundary diffusion data is lack-

ing, there are a few options for solving mixed diffusion equation. The most

promising solution is constructing database for boundary diffusion coeffi-

cient with combination of solutes with experiments. Multi-scale modelling
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such as combination of first-Principles calculations and molecular dynam-

ics and etc. can be a good alternative way to building boundary diffusivity

database [80, 81].

As shown in present thesis, the elements which has small interaction

with carbon (Co, Ni, etc.) have good agreement with experiments without

considering above problems unlike Cr. Therefore, expansion of mixed dif-

fusion model to quaternary system can have good starting point with those

elements before the boundary diffusion database have enough information.

The spiky pearlite has not been modelled in this thesis because its shape

loses the symmetry of classical pearlite. Thus the successful modelling of

this spiky pearlite could give a description the transition of diffusional to

displacive transformation.

104



7 Appendix

7.1 Mathematica source code

Mathematica source code is programmed to find SC/S by equating Eq. 45

and experimental pearlite growth rate of Frye et al. [74]

Dv=0.000015∗Exp[−135000/(8.314472∗T) ]

Dc=5.004338714∗10ˆ−3∗Exp[−132877.8/(8 .3144∗T) ]

x=1/(162034000−166210.00398∗T)

f [ S ] :=( (Dv+(6Dc 2 . 5 ) /(10ˆ10 S) ) (1−Sc/S) ) /S

f ’ [ S ]

Solve [ ( ( 0 . 0 0 0 0 1 5 ‘ Eˆ(−16236.749609596374 ‘/T)

+(7.506508071 ‘∗ˆ−12 Eˆ(−15981.646300394497 ‘/T) ) /x )

a l ) /x ˆ2−((0.000015 ‘ Eˆ(−16236.749609596374 ‘/T)

+(7.506508071 ‘∗ˆ−12 Eˆ(−15981.646300394497 ‘/T) ) /x )

(1− a l ) ) /x ˆ2+((0 . ‘\ [ VeryThinSpace

]−(7.506508071 ‘∗ˆ−12 Eˆ(−15981.646300394497 ‘/T) ) /x

ˆ2) (1− a l ) ) /x==0, a l ]

7.2 TC-API source code

The TC-API module is used to find local equilibrium condition in Fe-X-

C ternary system with C language. Related header file and dynamic-link

library (DLL) file are given by Thermo-Calc software [41].

This source code needs Thermo-Calc software in the executing com-

puter.
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/∗ C a l c u l a t e s an e q u i l i b r i u m in the Fe−Mn−C system and

r e t r i e v e s c e r t a i n q u a n t i t i e s . ∗/

#include <s t d i o . h>

#include <s t r i n g . h>

#include ” t c a p i . h”

int main ( int argc , char ∗∗ argv )

{
char ∗ l i n e , ∗sub , ∗xsub , ∗ fbsub , ∗bfsub , ∗ cfsub , ∗

database ;

double value , c cgt , c c tg , c cga , c cag , c mngt , c mntg ,

c mnga , c mnag , eng err , eng err2 , abs eng , abs eng2 ;

double temp c1 , temp mn1 , temp mn2 , temp c , temp mn ;

double c min , mn min , d i s tance , temperature ;

double r a t i o , a lpha c , alpha mn ;

//Now automation o f f i n d i n g proper r a t i o o f

e f f e c t i v e d i f f u s i v i t y i s updat ing (11/05/2013)

double t a r g e t ;

char e r r o r [ 8 0 ] ;

int i e r r ;

sub=”MN” ;
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xsub=”X(MN) ” ;

fbsub=”X(FCC A1 ,MN) ” ;

bfsub=”X(BCC A2,MN) ” ;

c f sub=”X(CEMENTITE,MN) ” ;

database=”SSOL4” ;

c min =0.0246; // Hut : 0 . 0 2 4 6 , 1 . 0 8Mn:0 .036136 , 1 .8Mn

:0 .031285 , 1 .4CR:0 .03742

mn min=0.035; // Hut : 0 . 0 3 5 , 1 . 0 8Mn:0 .010665 , 1 .8Mn

:0 .017843 , 1 .4CR:0 .01458

/∗ fcc−cem mean composi t ion ∗/

temp mn=0.1487; // Hut : 0 . 1 4 5 8 , 1.08Mn: 0 . 0 0 9 9 , 1 .8Mn

: 0 . 0 4 8

temp c =0.23002; // Hut : 0 . 2 3 0 0 2 , 1.08Mn: 0 . 2 2 , 1 .8Mn

: 0 . 2 2

temperature =900;

// t a r g e t e f f e c t i v e d i f f u s i v i t y

t a r g e t =1000;

/∗ Making Roop to f i n d the p o i n t ∗/
abs eng =1;

temp mn1 =0.05; // 1.08Mn&1.8Mn: 0 . 0 3

temp c1 =0.01; // 1.08Mn&1.8Mn: 0 . 0 1

do{ /∗ Added in 11/05/2013 ∗/
/∗ Set i n i t i a l gamma−cement i te in format ion ∗/
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/∗ I n i t i a l i z e the system ∗/
t c i n i t r o o t ( ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Open database ∗/
t c open database ( database ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ S e l e c t the e lements ∗/
l i n e=”FE” ;

t c e l e m e n t s e l e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
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t c e l e m e n t s e l e c t ( sub ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

l i n e=”C” ;

t c e l e m e n t s e l e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Rejec t a l l phases ∗/
l i n e=”∗” ;

t c p h a s e r e j e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Restore phases ∗/
l i n e=”FCC A1” ;
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t c p h a s e s e l e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

l i n e=”CEMENTITE” ;

t c p h a s e s e l e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Get the data from the database ∗/
t c g e t d a t a ( ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Set the necessary c o n d i t i o n s ∗/
value=temp mn ;

t c s e t c o n d i t i o n ( xsub , va lue ) ;
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i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

l i n e=”X(C) ” ; va lue=temp c ;

t c s e t c o n d i t i o n ( l i n e , va lue ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

l i n e=”T” ; va lue=temperature ;

t c s e t c o n d i t i o n ( l i n e , va lue ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

l i n e=”N” ; va lue =1;

t c s e t c o n d i t i o n ( l i n e , va lue ) ;

i e r r =0;
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i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

l i n e=”P” ; va lue =101325;

t c s e t c o n d i t i o n ( l i n e , va lue ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Compute the e q u i l i b r i u m ∗/

t c compute equ i l ib r ium ( ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Check the number o f Phases ∗/
/∗ t c s t a b l e p h a s e s ( phs , v a l u e ) ;

i f ( v a l u e !=2){
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f p r i n t f ( s tdout ,” Reset FCC−CEM component

! ! ! ! ” ) ;

t c d e i n i t ( ) ;

}
∗/

/∗ R e t r i e v e the d e s i r e d v a l u e ∗/

value=t c g e t v a l u e ( fbsub ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
c mngt=value ;

va lue=t c g e t v a l u e ( c f sub ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
c mntg=value ;

l i n e=”X(FCC A1 ,C) ” ;

va lue=t c g e t v a l u e ( l i n e ) ;
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i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
c c g t=value ;

l i n e=”X(CEMENTITE,C) ” ;

va lue=t c g e t v a l u e ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
c c t g=value ;

t c d e i n i t ( ) ;

/∗ Find gamma−a lpha composi t ion ∗/

/∗ I n i t i a l i z e the system ∗/

t c i n i t r o o t ( ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;
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}

/∗ Open database ∗/
t c open database ( database ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ S e l e c t the e lements ∗/
l i n e=”FE” ;

t c e l e m e n t s e l e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

t c e l e m e n t s e l e c t ( sub ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
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l i n e=”C” ;

t c e l e m e n t s e l e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Rejec t a l l phases ∗/
l i n e=”∗” ;

t c p h a s e r e j e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Restore phases ∗/
l i n e=”FCC A1” ;

t c p h a s e s e l e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
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l i n e=”BCC A2” ;

t c p h a s e s e l e c t ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Get the data from the database ∗/
t c g e t d a t a ( ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
abs eng =0.1 ; // abs eng i n i t i a l i z a t i o n .

while ( abs eng>1E−7){

/∗ Set the necessary c o n d i t i o n s ∗/
value=temp mn1 ;

t c s e t c o n d i t i o n ( xsub , va lue ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
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l i n e=”X(C) ” ; va lue=temp c1 ;

t c s e t c o n d i t i o n ( l i n e , va lue ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

l i n e=”T” ; va lue=temperature ;

t c s e t c o n d i t i o n ( l i n e , va lue ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

l i n e=”N” ; va lue =1;

t c s e t c o n d i t i o n ( l i n e , va lue ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
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l i n e=”P” ; va lue =101325;

t c s e t c o n d i t i o n ( l i n e , va lue ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Compute the e q u i l i b r i u m ∗/

t c compute equ i l ib r ium ( ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}

/∗ Check the number o f Phases ∗/
/∗ t c s t a b l e p h a s e s ( phs , v a l u e ) ;

i f ( v a l u e !=2){
f p r i n t f ( s tdout ,” Reset FCC−CEM component

! ! ! ! ” ) ;

t c d e i n i t ( ) ;

}
∗/
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/∗ R e t r i e v e the d e s i r e d v a l u e ∗/

value=t c g e t v a l u e ( fbsub ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
c mnga=value ;

va lue=t c g e t v a l u e ( bfsub ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
c mnag=value ;

l i n e=”X(FCC A1 ,C) ” ;

va lue=t c g e t v a l u e ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
c cga=value ;
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l i n e=”X(BCC A2,C) ” ;

va lue=t c g e t v a l u e ( l i n e ) ;

i e r r =0;

i f ( t c e r r o r (& i e r r , e r ro r , s izeof ( e r r o r ) ) ) {
f p r i n t f ( stdout , ” e r r o r : %d : %s \n” , i e r r , e r r o r ) ;

t c r e s e t e r r o r ( ) ;

}
c cag=value ;

d i s t anc e =(c mntg−mn min) /( c ctg−c min ) ;

e n g e r r=d i s t ance ∗ c cag+mn min−d i s t anc e ∗c min−c mnag ;

f p r i n t f ( stdout , ” e n g e r r : %g\ r ” , e n g e r r ) ;

i f ( eng err <0){
abs eng=e n g e r r ∗−1;

i f ( abs eng>1e−4){
temp mn2=temp mn1 ;

temp mn1=temp mn1−0.0001;

}
else i f ( abs eng>1e−5){
temp mn2=temp mn1 ;

temp mn1=temp mn1−0.00001;

}
else i f ( abs eng>1e−6){
temp mn2=temp mn1 ;
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temp mn1=temp mn1−0.000001;

}
else {
temp mn2=temp mn1 ;

temp mn1=temp mn1−0.0000001;

}
}
else i f ( eng err >0){

abs eng=e n g e r r ;

i f ( abs eng>1e−4){
temp mn2=temp mn1 ;

temp mn1=temp mn1 +0.0001;

}
else i f ( abs eng>1e−5){
temp mn2=temp mn1 ;

temp mn1=temp mn1 +0.00001;

}
else i f ( abs eng>1e−6){
temp mn2=temp mn1 ;

temp mn1=temp mn1 +0.000001;

}
else {
temp mn2=temp mn1 ;

temp mn1=temp mn1 +0.0000001;

}
}

// f p r i n t f ( s tdout ,”%g\n” , e n g e r r ) ;

}
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// d i s t a n c e =(c mntg−mn min) /( c c t g−c min ) ;

// e n g e r r=d i s t a n c e ∗ c cag+mn min−d i s t a n c e ∗c min−c mnag

;

/∗ Get f i n a l r e s u l t s ∗/
f p r i n t f ( stdout , ”\n” ) ;

a lpha c=(c cga−c c g t ) /( c ctg−c cag ) ;

alpha mn=(c mnga−c mngt ) /( c mntg−c mnag ) ;

r a t i o=alpha mn/ a lpha c ;

eng e r r2=target−r a t i o ;

i f ( r a t i o <0){
f p r i n t f ( stdout , ” r a t i o i s l e s s than zero !\n” ) ;

break ;

}
i f ( eng err2 <0){

temp mn=temp mn+0.00001; // 1.08Mn:+0.00001

abs eng2 =−1.0∗ eng e r r2 ;

}
else {

temp mn=temp mn−0.00001; // 1.08Mn:−0.00001

abs eng2=eng e r r2 ;

}
f p r i n t f ( stdout , ” d i s t anc e to t a r g e t : %f \n” , abs eng2 ) ;

}while ( abs eng2 >0.05∗ t a r g e t ) ;
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//

f p r i n t f ( stdout , ”%g\n” , e n g e r r ) ;

f p r i n t f ( stdout , ” t e s t Mn : %.10g\n” , temp mn2 ) ;

f p r i n t f ( stdout , ”X(FCC BCC,C) : %.10g\n” , c cga ) ;

f p r i n t f ( stdout , ”X(FCC CEM,C) : %.10g\n” , c c g t ) ;

f p r i n t f ( stdout , ”X(CEM FCC,C) : %.10g\n” , c c t g ) ;

f p r i n t f ( stdout , ”X(BCC FCC,C) : %.10g\n” , c cag ) ;

f p r i n t f ( stdout , ”X(FCC BCC,Mn) : %.10g\n” , c mnga ) ;

f p r i n t f ( stdout , ”X(FCC CEM,Mn) : %.10g\n” , c mngt ) ;

f p r i n t f ( stdout , ”X(CEM FCC,Mn) : %.10g\n” , c mntg ) ;

f p r i n t f ( stdout , ”X(BCC FCC,Mn) : %.10g\n” , c mnag ) ;

f p r i n t f ( stdout , ” D i f f u s i v i t y r a t i o : %5g\n” , r a t i o ) ;

t c d e i n i t ( ) ;

}
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