Materials Behaviour under Impact

Materials Behaviour and Evaluation of Protection Potential

Erhardt Lach

French-German Research Institute of Saint-Louis, ISL

elach@gmx.de

Institute of Shock Physics

Materials Behaviour under Impact

Part 1 Evaluation of Ballistic Results

Part 2 High Dynamic Loading of Materials

Imperial College London

Outline

Institute of Shock Physics

Part 1

Evaluation of Ballistic Results

Introduction Perforation and Penetration Ballistic Limit and Tate Equation Depth of Penetration (DoP) Equivalence and Effectiveness Factor Failure of Materials

Ballistic

External ballistic

from gun to target

sight

Angle of Sight

Horizontal Plane

sight

Same trajectory with angle of

TANGENT TO TRAJECTORY YAW POLL TRAJECTORY PITCH

correction required for 'non-rigidity'

Target

Shells fall short of target -

Institute of Shock Physics

Terminal ballistic

Interaction projectile/target

materials/materials

Gun

Internal

ballistic

as port pressure

Time In milliseconds

Acceleration of

a projectile

Imperial College

London

Bullet exi

50,000

40,000

30,000

20,000

- 10.000

0.3

IS4 ru en PSI

Transitional ballistic

Trajectory without angle of

Projectile leaves the muzzle Interaction with the muzzle

Terminal Ballistic Tests

Institute of Shock Physics

Penetration

DoP (depth of penetration) residual penetration in semi infinite target

Information about:

→ max. ballistic protection potential

 \rightarrow direct comparison of materials

"materials ranking"

Reference target

(same material as backing)

Failure of Materials

Institute of Shock Physics

Failure of Materials

Institute of Shock Physics

Classification of failure modes to illustrate the effects of material properties and structure and projectile and plate geometry

Imperial College London

Threads of Armoured Vehicles

KE-projectiles bullets kinetic energy		Shaped Charges particle- jet	EFP	Fragments
			explosively formed penetrator	kinetic energy
bullets not deformable	deformable long rods > 1000 m/s	> 5000 m/s hydrodyn. penetration	deformable penetrator > 2000 m/s	deformable parts > 1000 m/s
< 800 m/s penetration of rigid body	hydrodyn. penetration depends on strength	depends not on strength	hydrodyn. penetration may be depending on strength	hydrodyn. penetration may be depending on strength

Institute of Shock Physics

Imperial College

London

KE-Penetrator "long rod"

Homemade EFP

EFP

Institute of Shock Physics

Shaped charge

Imperial College

London

Bullets

deformation ammunition: Action

different nose shapes

Core is consisting mainly of hardened steel (HRc 60 – 64 und ρ = 7,85 g/cm³)

Specially designed models are of WC having an increased hardness and a density $\rho = 13,5 - 15$ g/cm³, L/D-ration of 3:1 bis 5:1

 $V_p = < 1 \text{ km}$, Machinengun < 1,3 km, Kinetic Energy = $10^3 - 10^4 \text{ J}$

MODELLING OF PENETRATION AND PERFORATION

Institute of Shock Physics

Classical equations of perforation

 $F_{Shear}(x) = (t - x) D \pi \tau$

t = thickness of armour plate,

- x = penetration,
- D = caliber of bullet,

 τ = shear resistance of armour plate

$$E_{\text{Shear}} = D \pi \tau \int_{0}^{t} (t - x) dx = D \pi \tau \frac{t^{b}}{2} = C_{1} D t^{b}$$

 $\tau = 0.5 \sigma$ b = 2

shear plugging

 Noble
 :
 b = 2.035 for 250 mm $\leq t \leq 500$ mm

 b = 1.654 for 100 mm $\leq t \leq 250$ mm

 Hélie
 :
 $b = \frac{3}{4}$
 C_1 is constant for a specific b

 Gâvre
 :
 $b = \frac{4}{5}$

Moisson assumed C₁ depending from impact velocity by

 $C_1 = C' / v$

Institute of Shock Physics

Martel assumed in his theory that for the penetration and perforation of a bullet the energy is proportional to the plastically displaced volume of target material:

 $E_{dis}(x) = C V(x)$

displacement of materials

Imperial College

London

x = penetration, V = displaced volume, $E_{dis} =$ energy for displace material

A bullet having a diameter of D will lose the energy E_{dis} during a perforation of an armour plate with a thickness of t

$$E_{dis} = C \pi \frac{D^2}{4} t = C_2 D^2 t$$

The resistance against penetration at x is given by a differentiation of E_{dis} to x

$$F_{dis}(x) = dE_{dis}/dx = C dV(x) / dx = C A(x)$$
 for $x \le t$

$$F_{dis}(x) = C[A(x) - B(x)]$$
 for x > t

Imperial College

London

For thin armour plates shearing is dominating, whereas for thicker plates displacing of target materials dominates the perforation

Institute of Shock Physics

An acceptable approximation was achieved by a combination of the two equations:

Institute of Shock Physics

$$\mathbf{E} = \mathbf{A} \mathbf{E}_{\text{Shear}} + \mathbf{B} \mathbf{E}_{\text{dis}} = \mathbf{A} \mathbf{C}_1 \mathbf{D} \mathbf{t}^2 + \mathbf{B} \mathbf{C}_2 \mathbf{D}^2 \mathbf{t}$$

A + B are factors for distribution

For practical application the two terms were transformed in one term:

E = C D^a t^b
$$a > 1, b > 1, a + b \approx 3$$

C depends on impact velocity, penetration velocity, shape of the bullet and the materials properties of the bullet and armour plates

The two most famous equations of this type are these von Krupp and de Marre:

Krupp: $E = B_1 D^{5/3} t^{4/3}$

de Marre: $E = B_2 D^{1.5} t^{1.4}$

de Marre the sum of the exponents amounts to 2.9

Tate-Theorie for KE-Projectiles

Institute of Shock Physics

Tate's equation is based on Bernoulli-Equation. Tate added materials strength of projectile and target.

$$\frac{1}{2} \rho_{P} (v_{P} - u)^{2} + Y_{P} = \frac{1}{2} \rho_{T} u^{2} + R_{T}$$

 ρ_P = density of rod, ρ_T = density of target, v_P = impact velocity, u = penetration velocity, R_T = dyn. resistance of target, Y_P = dyn. strength of long rod

Dyn. strength of long rod $Y_P = 1.7 \sigma_P$

Dyn. resistance of the target: $R_T = \sigma_T [2/3 + \ln (0.57 + \sigma_T / E_T)]$

 σ_P = flow stress of the long rod σ_T = flow stress of the target E_T = young's modulus of target

Tate A: "A Theory for the Deceleration of Long Rods ...", J. Mech. Phys. Solids, 17, 15, p. 387 ff, 1967

Imperial College London

The relative magnitudes of R_{T} and Y_{P} influence the penetration principally

Case $R_T < Y_P$

 $Y_{\mathbf{P}}$ is larger or equal to the right-hand, rod penetrates like rigid body: $u = V_{P}$

 $Y_{P} \ge \frac{1}{2} \rho_{T} u^{2} + R_{T}$

V_P slightly increased compared to u → 70% of long rod

280HV30, $V_p = 1700 \text{ m/s}$

Penetration occurs if the left-hand becomes larger than R_{T}

Case $R_T > Y_P$

$$\frac{1}{2} \rho_{\mathbf{P}} v_{\mathbf{P}}^2 + Y_{\mathbf{P}} \ge \mathsf{R}_{\mathsf{T}}$$

→ 20% of long rod

380 HV30, $V_p = 1700 \text{ m/s}$

19

Institute of **Shock Physics**

AP Projectiles

Early Research discovered that the perforation of ceramic armor systems occurred in three general stages:

- 1: shattering
- 2: erosion
- 3: catching

During the shattering phase the penetrator fractures and breaks on the surface of the ceramic plate.

This initial stage is followed by a period of damage accumulation in the ceramic material initiated by tensile wave reflections and bending of the ceramic tile and backing plate.

In the final catching phase ceramic and backing combine to reduce the velocity through momentum transfer mechanisms.

The defeat mechanism for hard-core AP projectiles is primarily stages 1 and 3 with projectile fracture upon impact against an armor plate having sufficient hardness and/or high obliquity

Imperial College London

Evaluation of Ballistic Performance

Balistic Limit (V₅₀)

The **ballistic limit** or **limit velocity** is the <u>velocity</u> required for a particular <u>projectile</u> to reliably (at least 50% of the time) penetrate a particular piece of material. In other words, a given projectile will not pierce a given target when the projectile velocity is lower than the ballistic limit ¹. The term *ballistic limit* is used specifically in the context of <u>armour</u>

¹ D. E. Carlucci, S. S. Jacobson, *Ballistics: Theory and Design of Guns and Ammunition, CRC Press, 2008, p. 310*

The ballistic limit for small-caliber into homogeneous armour is:

Imperial College

London

Evaluation of Ballistic Performance

Institute of Shock Physics

Equation of Lambert and Jonas:

$$V_{R} = \alpha (V_{I}^{k} - V_{L}^{k})^{1/k}, V_{I} > V_{I}$$

$$1_{2}^{1} m_{P}^{1} V_{I}^{2} = \frac{1}{2} (m_{Res}^{1} + m_{plug}^{1}) V_{Res}^{2} + E_{plug}^{1} = \frac{1}{2} (m_{Res}^{1} + m_{plug}^{1}) V_{Res}^{2} + \frac{1}{2} m_{P}^{1} V_{50}^{2}$$

E_{plug} = Energy for plugging

Assumption: same velocity for plug and residual projectile

→ in reality often not fulfilled

But: good approximation with k = 2 and determination of α by regression

Heterogeneous Material

Institute of Shock Physics

Homogeneous armour materials based on metals and ceramics may adequate tested by the V_{50} method with < 14 shots. For heterogeneous materials like fibre reinforced composites more shots (<30) are necessary. The standard deviation should be taken also in consideration.

Imperial College London **151.**

Nano-Composite (nano-Ni + nano-Al₂O₃)

Institute of Shock Physics

WC-bullet / nano-Composite

Institute of Shock Physics

v _I [m/s]	v _R [m/s]	Phi [°]	
837	790	0.2	
836	788	3.2	

Plate: nano Ni reinforced with nano Al2O3 thickness = 5 mm
→ effect on the bullet is negligible

APDSFS (armor-piercing, discarding-sabot, fin stabilized)

Institute of Shock Physics

Hydrodynamic Penetration

Long Rod Penetration (KE)

The defeat of long rod penetrator (LRP) is more complex than for conventional AP projectiles.

Penetrators are made of high strength, high density materials, such as W sintered alloy or depleted U, having densities near 18 g/cm³ and moderate hardness, good toughness and ductility.

They are not susceptible to shattering like brittle AP projectiles.

Caliber from 20 mm up to > 140 mm.

High L/D ratio (exceed 30 : 1), Velocity 1.3 - >1.6 km/s.

Yields kinetic energy in excess of 10⁶ J.

Creating high energy density per unit area of a target impacted.

The primary defeat mechanism is erosion.

Classification of Impact Processes (high L/D)

Institute of Shock Physics

several target reactions: brittle spalling, recristallisation

Crater shapes due to rod impact

Institute of Shock Physics

London

DoP (Depth of Penetration)

Institute of Shock Physics

equivalence factor = evaluation of test material only **effectiveness factor** = evaluation of both test material and backing

Target NATO 0° (test configuration)

used to evaluate the results

- → Fm values are depending on thickness of studied materials
- ➔ Em values: crater length of studied materials and backing is added and leads to different results. This is becoming important if backing and studied material are of different density

Vickershardness HV30

Institute of Shock Physics

Different treated P900 (HNS), increasing hardness increases susceptibility to ASB → protection capability decreases

280HV30

400HV30

450HV30

CFC Material

Institute of Shock Physics

 ${\rm E}_{\rm s}$ values have to take in consideration for materials with low density

