Materials Behaviour under Impact

High Dynamic Loading of Materials

Part 2

Erhardt Lach

French-German Research Institute of Saint-Louis, ISL

Imperial College London

Presentation Outline

Institute of Shock Physics

Classic armour steels (Quenched and tempered steels) **High Nitrogen Steel (HNS) Ausforming steels Bainitic steel** γ-ΤΙΑΙ **Ti-alloy** MMC

Tailoring of mechanical properties of:

Quenched and tempered steels:

by quenching (hardening) and subsequent tempering

Austenitic steels:

work hardening and annealing

Shielding against low velocity fragments

Hoog K,. Lach E., Maurer R., Rössner H.: Bericht R 134/86

Institute of Shock Physics

Imperial College

London

Thickness of the sheet: 3mm

 $V_{I} = 300 \text{ m/s}$

Under this condition the more ductil steel alloy NAXTRA shows a better performance than the high strength armour steel XH 129

Classical armour steels

quenched and tempered steels

Institute of Shock Physics

Micro structure after hot rolling

Ballistic Tests on Armour Steel

Institute of Shock Physics

Dyn. Compression Tests on Armour Steels

Institute of Shock Physics

Imperial College London

ISI.

Imperial College London backside of crater

Micro cracks along the white bands, enrichment of carbid → brittle behaviour

Austenitic steels: Hadfield-Steel

Institute of Shock Physics

Chem. composition: <u>13 % Mn und 1.3 % C</u>

metastable austenitic structure

Recommanded for light-weight armour in: MILTECH 5/2007Initial hardness:200 HBAfter severe deformation:500 HBStrongly strain hardening

Comparison of HNS and Armour Steel

Imperial College London

-

Compression Test on HNS

Institute of Shock Physics

P900 (0.6 % N)

Imperial College London _____I.51.

Imperial College London

Ballistic Test without Cover Plate and Backing

Target NATO 60°

1. Plate: armour steel, treated to 530 HV30

Institute of

Shock Physics

2. Platte: HNS P900, forged at 400 °C to 500 HV30

The ballistic performance of both plates is identical

Imperial College London

P900 plate after test without cover plate

Institute of Shock Physics

Plate was impacted in the transient and at the onset of steady state region

High density of ASB

P900 plate after test with cover plate

Institute of Shock Physics

The plate was impacted in the steady state region. Melting of material in ASB's.

Nr. 2 at 14

Micromechanism of HNS

Institute of Shock Physics

Imperial College London

Layered Armour (japanese sword)

Institute of Shock Physics

Very High Hardness Steels

Institute of **Shock Physics**

cold working steels

Hot Isostatic Pressed (HIPped)

melt metallurgy

pressureless sintered

In general are these steels are too brittle

Imperial College London

Compression tests on Mars 300

Institute of Shock Physics

Ausforming Steel

Institute of Shock Physics

Imperial College London

Ausforming steels

Institute of Shock Physics

Imperial College London

Comparison of high-strength steels

Institute of Shock Physics

Formation of ASB in high-strength steels

Institute of Shock Physics

45NCD16

MARS 300

Bainitic steels (lower bainit)

Institute of Shock Physics

dyn compression tests

Bainitic steel

Lower bainit is brittle

Institute of **Shock Physics**

Imperial College London

ISI-

London

After the ballistic test

Ti alloy Ti 6 4

London

rolled, lamellar micro structure slow cooling

rate

Vickershardness HV30

forged, globular micro structure

recrystallisation

- specimen 26: $\phi = 0.7$ solution annealing T = 820 °C 4 h tempern T = 680 °C 8 h, hardness: 391 HV30
- specimen 27: $\phi = 0.7$ solution annealing T = 820 °C 4 h tempern T = 580 °C 8 h, hardness: 463 HV30
- specimen 28: $\phi = 0.9$ solution annealing T = 910 °C 1 h tempern T = 560 °C 8 h, hardness: 507 HV30
- specimen 29: $\varphi = 0.9$ solution annealing T = 910 °C 1 h tempern T = 680 °C 8 h, hardness: 387 HV30

Al	Sn	Zr	Cr	Мо	0	Ν	С	Н
4.9	2	2.04	4	3.94	0.47	0.004	0.016	0.006

Different treated Ti 17

Institute of Shock Physics

initial micro structure

specimen 26

specimen 27

Imperial College

London

specimen 28

specimen 29

Quasistatic tensile test

Institute of Shock Physics

Dyn. Compression Test

Institute of Shock Physics

Ballistic Tests

Institute of Shock Physics

Ti alloy Ti17

Institute of Shock Physics

Initial status ASB: width = 30 µm Specimen 28 ASB: width = 4 µm

Ti 17 specimen 28

Institute of Shock Physics

Imperial College London

Vickershardness HV30

cast AlSi9Mg/20%SiC

Al-Cu5/25% SiC

316L/15%TiB₂

ISI.

AlSi7Mg reinforced by 55 - 60 % SiC of size:

F100	F500	F1200	
106 – 150 µm	5 – 25 µm	1 – 5 µm	

Dynamic Compression Tests

Institute of Shock Physics

Ballistic Tests

Institute of Shock Physics

Imperial College London

AlSi7Mg reinforced by SiCparticles of size F1200

Gaspressure infiltration

Submicro Ceramic

Institute of Shock Physics

 Al_2O_3 , grain size: 0.6 μ m - 9.82 μ m

grain-Ø: 0.6 µm

grain-Ø: 3.76 µm

grain-Ø: 0.91 µm

grain-Ø: 9.82 µm

Ballistic Test and Materials Properties

 AI_2O_3

	grain-Ø	yaw
а	0,6	0°
b	3,76	0°
С	9,82	1,8°
d	0,91	0,2°

	grain-Ø	hardness	strength 4-point bending test
	μm	HV10	МРа
а	0,6	1977 ± 32	557 ± 35
b	3,76	1725 ± 22	470 ± 31
С	9,82	1543 ± 46	350 ± 16
d	0,91	1908 ± 15	345 ± 30

Imperial College London

<u>_____</u>

Ballistic Tests

