
CHAPTER 7

12CrlMo STEEL

Carbide precipitation studies in 12Cr1MoV steel are discussed in this chapter. As a result

of the very high chromium concentration of 12Cr1MoV steel, the reaction kinetics are rapid

compared to those in low alloy steels. It is found that the equilibrium alloy carbide precipitates

during the commercial stress-relief heat treatment and does not change in composition during

further tempering. This is an important result; indications are that once the cementite trans-

forms to alloy carbides, any changes in their composition are not large enough for this method

to be used as a quantitative estimation of remanent life. (Low alloy steels, however, contain

cementite for a considerable fraction of their useful service life.)

The material described in this chapter has been published in Metallurgical Transactions

A, 23A, 1992, p. 1171-1179.
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CHAPTER 7

12CrlMo STEEL

7.1 Introduction

The vast majority of creep-resisting steels used in power plant or in the petrochemical

industry are based on low-carbon, low-alloy steels containing carbide forming elements such as

chromium, molybdenum and vanadium as deliberate additions. In addition to creep resistance,

prolonged service at elevated temperatures also requires good oxidation and hot-corrosion re-

sistance, possibly in environments containing hydrogen and sulphur. In the United Kingdom,

the steels are often used within the temperature range 480-565°C, the service stresses being

of the order of 15-30 MPa over time periods of some thirty years. There is currently con-

siderable research in progress to implement higher alloy steels with the aim of improving the

creep strength so that the service temperature can be increased (Alberry and Gooch, 1983;

Middleton, 1986). Alternatively, the higher strength can be exploited by reducing section size,

which can be beneficial from the viewpoint of welding, thermal fatigue and the reduced cost of

support structures. A lot of the effort to date has focussed on 12CrlMoV steel. The purpose

of this work was to examine the effect of representative heat-treatments on the chemistry and

some other characteristics of the carbides to be found in 12Cr1MoV type steels.

7.2 Materials and heat treatment

The material used in this work was a 12Cr1MoV steel supplied by National Power Tech-

nology and Environment Centre, Leatherhead, from heat 60348. The steel was supplied in the

form of a rod of diameter 4 cm X 1 m long. Thinner rods of 3 mm diameter and bars 1X 1X 4

cm were machined from the original sample. Experimental results were compared with 'ex-

service' material (i.e. steel which has been in service in a power station), courtesy of Laborelec,

Belgium. The service history of this latter pipe was 68,646 hours at 592°C followed by 146,000

hours at 587°C, both at a pressure of 175 bar. The compositions of both steels, which are

both within British Standard, BS3604, and the German standard X20 for 12Cr1MoV steels,

are given in Table 7.1. In spite of this, it is worth noting that the chromium concentration of

the ex-service steel is significantly higher.

Heat treatments were carried out in order to recreate the microstructures used in the

commercial condition when the steels are first implemented for service. The material is metal-

lurgically complex and requires careful control of the heat treatment to ensure that the starting
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Table 7.1: Chemical compositions of the 12CrlMoV steels in wt. %

C Si Mn P S Cr Mo V Ni Cu Al Co Nb+Ta

12CrlMoV 0.21 0.25 0.46 0.009 0.012 10.9 1.03 0.30 0.52 0.02 <0.005 0.02 0.06

Ex-service 0.18 0.22 0.58 0.01 0.007 12.4 1.07 0.28 0.64 0.13 0.01 0.03 <0.01

X20CrMoV12l

microstructure is 100% martensitic. The specimens were sealed in silica tubes containing a par-

tial pressure of argon of 150 mm Hg. Austenitisation was carried out at 1060°C for 15 minutes.

It has been shown by Barraclough and Gooch (1985) that the austenitising temperature for

12CrlMoV steels is crucial in determining the microstructure and mechanical properties. Too

Iowa temperature will cause heavily spheroidised microstructures with dramatically reduced

creep resistance, and too high a temperature can result in the formation of 0 ferrite and a large

austenite grain size, which is undesirable. Yet the temperature must be high enough to ensure

the complete dissolution of carbides. After austenitisation the specimens were air-cooled, and

re-sealed in silica tubes and tempered for up to 2 hours at 700°C, in order to simulate the com-

mercial stress-relief heat treatment, and then further tempered at 565°C to simulate service

conditions.

7.3 Results

7.3.1 Microstruet ural changes

A typical optical micrograph is shown in Figure 7.1. It can be seen that the microstructure

is 100% martensite and does not contain any 0 ferrite. TEM micrographs of the as-quenched

microstructure are presented in Figure 7.2. Figure 7.2a) shows martensite platelets containing

some internal twins, confirmed by selected area electron diffraction. Figure 7.2b) demonstrates

the fact that there are no carbides in the as-quenched microstructure, Le. that no autotempering

has occurred. Gooch (1982) reported that the microstructure obtained by cooling from 1l00°C

contained a fine dispersion of cementite particles. This difference is attributed to the relatively

slower speed of the quench.

Figure 7.3a) and b) illustrate the carbides beginning to form at prior austenite grain and

lath boundaries, and also intra-lath, in a specimen which has been tempered at 700°C for 15

minutes. The carbides were identified by selected area electron diffraction as both M7C3 and

M23C6•

The carbide M7C3 was also found in specimens aged for up to 30 minutes at 700°C, but

these had all dissolved at the end of the stress-relief heat treatment. Figure 7.4 shows that

163



M7C3 was mainly found within the martensite laths and distant from the clustered M23C6

precipitates. This is in agreement with Beech and Warrington (1966) who found that M23C6

and M7C3 were both present from an early stage of tempering, and that on spheroidisation

the particles within the martensite laths disappeared. The diffraction pattern in Figure 7.4

illustrates the characteristic streaks of M7C3 resulting from its faulted structure compared with

that of pure Cr7C3 (Westgren et ai, 1928). No difference in morphology was found between

M7C3 and M23C6, apart from a tendency for the former carbides to be much finer.

A typical carbon extraction replica from a sample which had been given the commercial

stress-relief heat treatment, Le. tempering at 700°C for 2 hours, is shown in Figure 7.5. The

distribution of the carbides in relation to the martensite boundaries is clearly illustrated. The

carbides at the end of the stress-relief heat treatment were found to consist chiefly of a dispersion

of M23C6 particles concentrated on the austenite grain and lath boundaries.

A comparison between the distribution of coarse M23C6 carbides in the ex-service material

and in a specimen isothermally heat treated at 700°C for 1173 hours is presented in Figure 7.6.

The empirical Larson-Miller (Larson and Miller, 1952) parameter, defined as T(20 + logt),
where T is the temperature in Kelvin and t is the time in hours, indicates that these two

different heat treatment conditions are comparable. The carbide size and distribution is similar

in the two materials, although for reasons which are not clear there appears to be a tendency

for increased clustering of the carbides in the ex-service material.

Macrohardness measurements were made on all the specimens using a 30 kg load. These

results are presented in Table 7.2. Each data point is the average of three measurements on each

sample, with the total scatter being no more than 10 RV. The macrohardness data confirms

that the microstructure of the ex-service material and the 12CrlMoV steel are similar, and

that little change in carbide precipitation occurs on tempering.

Table 7.2: Macrohardness measurements

Specimen Macrohardness fRV

Pre-tem pering 622

700 °C-15 mins 315

700 °C-30 mins 309

700 °C-60 mins 296

700 °C-120 mins 315

700 °C-1173 hours 293

Ex-service material 302
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The appearance of additional phases, such as Laves phase, on tempering a 12Cr1MoV steel

depends critically upon the base composition of the steel. In the steels used in this work no

additional phases were found during tempering which is consistent with the work of Briggs and

Parker (1965).

7.3.2 Thermodynamic calculations

Thermodynamic calculations were performed using MTDATA in order to calculate the

equilibrium phases in the 12Cr1MoV steel. The carbide M23C6 was found to be the stable

carbide, coexisting with ferrite, at all temperatures in the range of interest, 400-800°C. The

equilibrium solution temperature of the carbides was found to be 950°C. Barraclough and Gooch

(1985) found that 30 minutes at 950°C was not an adequate solution heat treatment, although

30 minutes at 1000°C was satisfactory. The temperature at which delta ferrite became stable

on heating was calculated as 1220°C in the 12Cr1MoV steel, and as lllOoC in the ex-service

material, which contained an additional 1.5 wt.% chromium. This difference is consistent with

the work of Irvine et al. (1960) who found that an increase in chromium content of 1 wt.% led

to an increase in b-ferrite content of ~14%. This confirms that the commercial austenisation

temperature range of 1020-1070°C is adequate to completely dissolve carbides and will not

produce large amounts of b-ferrite.

M2JC6 was found to be the most stable carbide, then M7C3, followed by cementite. A

precipitation sequence of M3C ---* M7C3 ---* M23C6 is therefore possible.

The results of the thermodynamic calculations for 7000G (the stress-relief heat treatment)

and for 565°C (the service temperature) are presented in Table 7.3. The alloying element content

of the two carbides of interest, M7C3 and M2JC6, is presented as a function of temperature in

Figure 7.7a) and b).

Table 7.3: Chemical compositions of the carbides in both the 12CrlMoV steels used in wt.%. The

calculations were performed using MTDATA at 700°C and 565°C respectively.

12CrlMoV Steel 'Ex-service' 12Cr1MoV steel

700°C Fe Cr Mo Mn C Fe Cr Mo Mn C

M7C3 5.2 82.2 3.1 0.6 8.9 4.6 83.2 2.7 0.7 8.8

M23C6 10.7 65.1 19.1 - 5.1 9.0 66.4 19.5 - 5.1

565°C Fe Cr Mo Mn C Fe Cr Mo Mn C

M7C3 1.6 84.4 4.5 0.7 8.8 1.4 85.1 4.0 0.7 8.8

M2JC6 4.2 70.3 20.4 - 5.1 3.6 70.9 20.4 - 5.1
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Figure 7.1: Opticalmicrograpli for SPC'imcn aust nitiscd at 1060°

for 2 liours at 700°C.
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The carbides found in the microstructural investigation were M7C3 and M23C6, in good

agreement with the sequence predicted by thermodynamic calculations. The EDXS results show

that the equilibrium chromium content of the carbide M7C3 is higher than that in M2JC6, The

absolute levels of Cr and Mo predicted to be in the carbides are slightly higher than those

observed experimentally (e.g. 65 wt.% Cr and 20 wt.% Mo are predicted in M23C6, whereas 60

wt.% Cr and 10 wt.% Mo, allowing for 5 wt.% C, are measured experimentally), however, there

is good general agreement. The chromium content of both carbides in the ex-service material

is larger due to the increased bulk chromium content of the alloy. The carbides can support a

greater substitutional alloying content as the temperature is lowered. It is possible, therefore,

that when the steel is in service at the lower temperature of 565°C, after the stress-relief heat

treatment, the chromium content of the M2JC6 may increase by approximately 4-5 wt.%. It is

likely, however, that this approach to equilibrium will be extremely slow and difficult to detect

within the experimental error of energy-dispersive X-ray spectroscopy.

7.3.3 Cementite precipitation

It is interesting to note that no cementite was found in any of the specimens, even during

the earliest stages of tempering, because cementite is usually expected to be the first carbide

to form on tempering martensite. Therefore the computer model described in Chapter 3 was

used to investigate the time for cementite, with an initial composition determined by assuming

a paraequilibrium transformation mechanism, to reach its predicted equilibrium composition.

The results of these calculations are presented in Figure 7.8. The chromium concentration in the

cementite is plotted against the time allowed for diffusion at 700°C for a range of particle sizes

between 10 and 30 nm. It can be seen that cementite in fact saturates in an extremely short

time, of the order of a few minutes. It is concluded that with the large amount of chromium

in the base composition of the steel, the driving force for alloy carbide precipitation is large,

and that cementite will only be seen in this steel if tempering takes place at a much lower

temperature, or possibly immediately after tempering has begun.

7.3.4 X-ray microanalysis

Extensive measurements of carbide composition and particle size were performed on car-

bon extraction replicas using EDX. The results of the analyses on the carbides contained in

specimens tempered at 700°C for 15,30, 60 and 120 minutes respectively are presented in Fig-

ure 7.9a)-d) as plots of the chromium concentration against particle size, measured in terms of

a mean linear intercept.

It can be seen in the 15 minute specimen that M7C3 (with a composition of approximately
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Figure 7.8: Calculated rate of cementite enrichment with respect to chromium concentration for

particles of sizes 10-30 nm using a finite difference model.

75 wt.% Cr, 20 wt.% Fe and small amounts of molybdenum and manganese) is found to co-exist

with M23C6 (with a composition of approximately 60 wt.% Cr, 30 wt.% Fe and 10 wt.% Mo).

These compositions are in general agreement with those of Beech and Warrington (1966), the

absolute values being dependent on the base composition of the steel. The average chromium

concentration in M23C6 in all the specimens ranged from 60-63 wt.%. The transition from

M7C3 to M23C6 is picked up in the 30 minute specimen. After 1 hour there is very little

evidence of any M7C3 being present in the microstructure, and after the completion of the

stress-relief heat treatment all the M7C3 has redissolved. Figure 7.ge) compares data from

the 'ex-service' material and the specimen tempered for 1173 hours at 700°C. The chromium

content in the carbides in the 'ex-service' material is larger than that in the isothermally

tempered specimen, but this difference can be attributed to the the higher chromium content

in the base composition of the steel and the longer tempering time. In both cases, however, the

chromium content is constant.

7.3.5 X-ray diffraction analyses

X-ray diffraction analyses on particles extracted from the steel matrix using the method

described in Chapter 4 for specimens tempered at 700°C for 10 minutes and 2 hours respectively
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Figure 7.9: a)-e) Cr concentration versus particle size for specimens tempered at 700°C for varying
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are presented in Figure 7.10a) and b). In the spectra for the specimen tempered for 10 minutes,

the 420 and 202 peaks from M7C3 are clearly visible, whereas these have disappeared after

tempering for 2 hours. The 420 and 202 peaks are the strongest visible peaks for M7C3 because

the strong 421 peak overlaps with the strong 511 peak of M23C6• There was no further change

in the diffraction pattern for specimens tempered up to 1200 hours at 700°C. The lattice

parameters for M23C6 extracted from all the heat-treated specimens of the 12CrlMoV steel

were calculated using the measured values of d-spacings. Errors can arise in the measured

values of the d-spacings factors such as the geometry of the diffractometer and absorption in

the specimen. These were corrected for by fitting a polynomial function to the d-spacings of the

internal standard, which are known to a high degree of accuracy. M23C6 is cubic and therefore

the d-spacings and plane indices are related by the equation

The adjusted d-spacings were fitted to this equation using a non-linear least-squares procedure.

The calculated lattice parameters are presented in Table 7.4.

Table 7.4: Lattice parameters of M23C6 determined by X-ray diffraction.

Time at 700°C Lattice parameter / A
10 mins 10.64± 0.01

15 mins 10.65± 0.01

30 mins 10.66± 0.01

1 hour 10.65± 0.01

2 hours 10.65± 0.01

1173 hours 10.66± 0.01

2 hours + 10.65± 0.01

16 hrs at 565°C

The lattice parameter of (Fe, Cr)23C6 containing 60 wt.% Cr extracted from a commercial

steel containing 14 wt.% Cr has previously been measured as 10.595A (Gullberg, 1971). In

order to estimate the change in lattice parameter due to the molybdenum content in the M23C6
in this work the relative sizes of the atoms are considered. Molybdenum atoms are 10% larger

than chromium and may replace up to 8 out of 92 of the metal atoms in the unit cell (Franck

et ai, 1982). The 10 wt.% Mo measured in the carbide corresponds to Cr16Fe6Mo1 C6, and

therefore an increase in lattice parameter to 10.59(1+0.lxA)=10.64A is predicted. This is
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in good agreement with the calculated value. The calculated lattice parameters differed by no

more than 0.02A, indicating again no significant differences in the composition of the M23C6

after tempering.

7.4 Discussion

The carbides precipitating during the stress-relief heat treatment in 12CrlMoV steel have

been identified by X-ray diffraction and selected area electron diffraction as M7C3 and M23C6.

Therefore, before entering service at approximately 565°C, the steel contains a distribution

of M23 C6 particles. The initial composition of the carbides is close to that predicted using

equilibrium thermodynamics, and it has been established by EDX that there is no further change

in the composition of the carbides with tempering. No significant dependence of chromium

concentration on particle size was found. Lattice parameter measurements and comparison

with ex-service material confirm that there is no change in composition of the M23C6 on

tempering, especially with respect to molybdenum, which might have been expected from the

thermodynamic calculations. The fact that there is no enrichment occurring on tempering in

12CrlMoV steel is in contrast to the low alloy steels reported in the previous chapter. Du (1986)

found that the chromium content in M23C6 precipitating in a !Cr!Mot V steel increased with

time. Whether or not alloy carbides precipitate at their equilibrium composition is therefore

dependent on the concentration of alloying elements available in the base composition of a steel.

Recent work by Bjarbo (1991) (for an alloy with a higher chromium content than that used in

this work) has shown that M23 C6 which precipitates during the stress-relief heat treatment is

enriched in chromium by less than 5 wt.% during a creep test for 20,000 hours at 600°C.

7.5 Conclusions

The kinetics of carbide precipitation in 12CrlMoV steels are rapid when compared with

other low-alloy steels of the type commonly used in power plant. This is attributed to the

fact that the steel studied has relatively large concentrations of carbide-forming substitutional

solutes. Thus, unlike the low-alloy steels, relatively stable alloy carbides have been found to

dominate in the microstructure immediately after the stress-relief heat treatment. Since this

heat treatment is always necessary before implementing the alloy in service, there seems little

prospect of estimating the thermal history of a component from the chemical composition of

its carbides. In fact, both the thermodynamic analysis and the experimental data show that

the chromium concentration of the M23 C6 carbide is very sensitive to the average chromium

concentration of the steel. It is found that variations in the chromium concentration within
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the accepted industrial specifications, can lead to larger corresponding variations in carbide

compositions, than would be caused during service.

It has been established that there is no significant change in the carbide identity or com-

position during service after the stress-relief heat treatment. Therefore, the question arises as

to which other microstructural changes could be fruitfully investigated. It seems from a com-

parison of figures 7.9d) and e), which show an increase in particle size from about 125-300 nm,

that carbide coarsening could potentially be used as a microstructural parameter.
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