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Abstract. 

A steel with a chemical composition meant to form nanostructured bainite following 

appropriate heat treatment, was, cooled rapidly from the liquid phase (1550 °C) using melt 

spinning and modified injection-suction methods, as well as from a semi-solid temperature 

(1430 °C) through thixoforming. The hardness of the as-cast melt-spun ribbons was ~960 HV 

due to a fine martensite-austenite mixture surrounded by 3-dimensional skeleton-like primary 

carbides of length scale 0.2-0.3 µm. The suction-injection cast method led to a similar 

structure but less hard (780 HV) due to a lower cooling rate. The thixoformed material 

showed unmelted globular, fine grains and a fine eutectic mixture formed directly from the 

liquid phase. The variety of processed steel samples were tempered and their microstructures, 

examined. 

 

1. Introduction 

Unconventional methods of production applied to conventional materials can occasionally 

lead to an improvement of their mechanical properties [1-3] with the possibility of new 

industrial products or processes [4, 5]. After all, the conditions of crystallization during 

solidification have a direct impact on grain morphology, shrinkage cavity, and the distribution 

of secondary and tertiary phases [6]. The rapid solidification in particular increases structural 

and chemical homogeneity, with solute trapping during transformation that avoids the 

problems of solute partitioning [7]. Conventional solidification can leave regions containing 
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macro and micro segregation of elements and numerous structural defects [8], although 

subsequent processing can resolve all of these issues. The present work is therefore driven 

purely by curiosity rather than any belief that these unusual processes might lead to 

breakthroughs in technology. Furthermore, the work focuses on a steel that is conventionally 

used to produce nanostructured bainite [9, 10], adding to the intrigue. The work may in 

addition reveal the role of parameters, such as the cooling rate, for alternative processing 

methods, as evidenced by a recent study on the feasibility of thixoforming nanostructured 

bainitic steels [11]. 

 

2. Experimental procedure  

2.1 Microstructure and hardness analysis   

The steel (designated SB steel) was supplied as a bar of 300 mm in diameter. Its composition, 

measured after homogenisation at 1200 °C for 2 days, was 0.74C-1.64Si-1.82Mn-1Ni-

0.36Mo-0.21Cr-0.047Al wt%, determined using optical emission spectrometry. The 

metallography was carried out using a Leica DM IRM microscope and associated image 

analysis software. A DuPont 910 instrument was used to measure thermal effects during 

heating in the solid state. A Netzsch 404F1 differential scanning calorimeter was used to 

determine the solidus–liquidus range and the amount of the liquid phase as a function of 

temperature. Whole calorimetric studies have been conducted at the heating rate of 20 ˚C/min 

in an argon atmosphere.  Before X-ray investigations, the samples were prepared by grinding 

with silicon carbide papers (1200, 2500, and 4000), polishing with 1 µm diamond paste, 

etching in nital (2%), and re-polishing with 0.25 µm paste in order to minimise surface 

deformation effects. All samples were tested in a Bruker D8 Advance diffractometer equipped 

with a position sensitive detector using a 10 mm slit, without Ni filter, and with Cu Kα 

radiation. The samples were run from 30-135° with a 5 s dwell time, 0.02° step size, energy 

levels of 210-226 mV, and the rotation speed of 30 rad-1. The diffraction data were analysed 

using Rietveld refinement [12, 13] in HighScore plus [14] by fitting austenite to three non-

overlapping austenite peaks: 002, 022 and 113. The resulting maximum and minimum 

estimates of the austenite lattice parameter were then used to calculate its carbon 

concentration as in [15]. Since the carbon content is inherited by the martensite, its maximum 

and minimum values of tetragonality were obtained according to [16]. The lattice parameters 

(aγ, aα’, and cα’) were used to fit martensite, retained austenite, and bainitic ferrite to the whole 

spectrum. The microanalysis was performed on a scanning electron microscope, FEI SEM 
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XL30 equipped with an energy-dispersive X-ray spectrometer EDAX GEMINI 4000.  The 

transmission electron microscopy was performed on a Philips CM20 and Tecnai G2 F20 

instruments, with samples prepared by electropolishing using a 20 %vol. - HClO4 and 80 

%vol. CH3OH mixtures at subzero temperatures. Vickers hardness tests carried out using a 

Zwick/ZHU 250 (HV5) and CSM Instruments micro-hardness tester.  

2.2 Rapid quenching   

Melt spinning enables a solidification cooling rate of up to 106 °C/s. The experiments were 

performed in a helium atmosphere and a linear copper wheel rate of 25 m/s. The steel was 

heated in an inductive furnace inside a boron nitride crucible, which contained a 0.7 mm hole 

at the bottom. The ejection of liquid steel on the rotating wheel was performed at 1450 °C and 

under a pressure of 2.5 bar. The ribbons produced were several centimetres in length and 40-

80 µm thick, Fig. 1a. An alternative method, which enabled to obtain a highly rapid quenched 

material was the suction process [14, 15], in which the molten steel (50g) was cast into a 

copper die (cavity shape 20 × 20 × 3 mm) by a suction force resulting from the difference 

between the pressure in the crucible (over-pressure, 0.5 bar) and the die (under-pressure, 

5.1×10-1 bar). Finally, the plates presented in Fig. 1b were obtained at cooling rates of about 

5×102 °C/s. The rapid cooling from the semi-solid state was applied as the last method. A 

sample with the diameter of  30 mm and a height of 30 mm was heated at a rate of 150 

°C/min to 1430 °C to get about 30% liquid according to the DSC curve (Fig. 2, point A on 

dashed line), followed by thixioforming into a steel die at ambient temperature and pressure 

[17]. The average cooling rate of the obtained thixo-formed material (Fig. 1c) with 

rectungular shape (30 × 50 ×10 mm) was about 150 °C/s.  

3. Results and discussion  

3.1 Melting temperature and solidus-liquidus range 

Differential scanning calorimetry was used to determine the approximate solidus-liquidus 

range, Fig. 2. The steel started melting at 1350 °C, and was completely liquid at 1476 °C. The 

smooth onset of the melting heat-flow curve during heating is likely to be due to chemical 

homogeneity in the sample. The liquidus temperature during cooling was about 8 °C lower, as 

expected in the absence of heating or cooling rates that are inconsistent with the establishment 

of equilibrium. The solidification process had two stages: the first, between 1468-1408°C was 

due to the exothermic formation of austenite from the liquid. The second step, over the range 

1408-1345 °C was due to the eutectic reaction in which the remaining liquid decomposed into 
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a mixture of M3C and γ-Fe, where ’M’ refers to metal atoms. The solidus temperature was 

determined as ~1345 °C. The liquid fraction is plotted in Fig. 2 as a dashed line with the point 

A at 1430˚C corresponding to the thixoforming temperature where the liquid content is 30%. 

3.2 Melt spun ribbons 

Rapid solidification began with the melt superheated to 1550 °C, which exceeds the measured 

liquidus temperature by 74°C, followed by melt spinning to ribbons 5 mm wide and 40-80 µm 

thick. It was established in a previous study [18], that the rates of cooling during melt-

spinning are in the range of 4×103-5×106 °C/s. Fig. 3 shows the cross-section of a ribbon. The 

central and bottom regions show relatively coarse columnar and dendritic grains (mixture of γ 

and α’), consistent with a lower cooling rate relative to the surface. The atomic number 

contrast in Fig. 3b, c indicates that the light regions correspond to carbides present in the areas 

between the matrix dendrites. In the high cooling-rate region near the contact surface, the 

amount of these secondary phases was 6±0.5 vol%, while in the central part of the ribbon the 

amount of 9±0.7 vol% was recorded. This again is consistent with the expected cooling rate 

differences as a function of depth below the contact surface. Fig. 4 shows a TEM micrograph 

of the flat area of ribbons, whose surface was in contact with the Cu-wheel (top area in Fig. 

3a). The carbide network (marked as arrows) clearly forms a network around the grains. 

Similar observations have been reported on other alloy systems that contain large carbon 

concentrations [3, 19].  Fig. 5a shows the network of cementite layers with an apparent 

thickness of about 20 nm (marked as arrows) surrounding martensitic regions of about 0.4 µm 

in size. The martensite is twinned (Fig. 6), consistent with its high carbon concentration. 

X-ray analysis of the melt-spun ribbons, plate, and thixo-formed samples are shown in Fig. 7. 

Differences in peak positions between α-Fe and γ-Fe, which are related to carbon 

concentration, are clearly visible. The detailed analysis of the melt spun ribbon spectrum 

using the Rietveld refinement method confirmed the presence of 74±1 vol% martensite and 

26±1 vol% austenite. However, the diffracted intensity from M3C carbides, which occupy 

only about 2 vol.% of the microstructure, could not be clearly established given the error in 

the major phase determinations of  ±1 vol%.  

3.3 Microstructure of steel plate produced by suction casting 

The application of the suction casting method enables the fabrication of bulk materials, but 

the cooling rates (300-500 °C/s) involved are lower than during melt spinning [20, 21]. 

Rectangular plates 3 mm thick plates with 20 × 30 mm sections were fabricated. The reduced 
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cooling rate led to large changes in the microstructure. The solidification microstructure 

revealed several micrometres long dendrites together with a coarse, continuous, carbide 

network, homogeneously distributed over the whole plate (Fig. 8a); Fig. 8b shows a cross-

section of a columnar grain area containing a martensite and austenite mixture surrounded by 

carbides. Typical casting defects, such as porosity (marked with arrows) or segregation 

occurred in some carbide-eutectic areas, which presumably are the last to solidify. Fig. 8c 

confirms the presence of martensite and large M3C cementite particles up to 0.5 µm thick and 

2-3 µm long. The X-ray analysis (Fig. 7c) indicated 70±1% of martensite and ferrite and 

30±1% of retained austenite. The combination of untempered martensite and cementite led to 

a hardness of 654 HV, similar to that of high-speed tool steels rapidly cooled from the liquid 

phase [3].  

3.3 Microstructure of thixo-formed steel  

The microstructure of samples thixo-formed at 1430 °C, where liquid occupies 30% of the 

material, following cooling in a cold steel die, is presented in Fig. 9. Unmelted, primary 

globular grains about 120 µm in size are finer grains of about 20 µm in size, with a eutectic 

mixture in between, formed directly from the liquid phase. Fine martensite is visible in the 

centre of the globular grains (Fig. 9a, b) and X-ray diffraction (Fig. 7c, tab) indicated about 

81±1% of α-Fe and 19±1% of austenite. The observed morphologies are consistent with semi-

solid slurry flows under the action of shear stresses, causing the mixture of components in the 

liquid phase, that crystallises into a eutectic mixture and small grains. The hardness of the 

globular grains was 610 HV, whereas that of the small secondary grains was 420 HV.  

Fig. 10 shows that there are microscopic cracks in the coarse martensite plates of the thixo-

formed samples; this is entirely expected from studies that show that quench cracks do not 

occur in fine martensite because as in fibre composites, the plates must be large enough to 

permit stress transfer across the interface [22]. The energy dispersive X-ray analysis scan 

(Fig. 10) shows the level of chemical segregation between the globular grains, although it is 

noted that the analysis of carbon is indicative rather than quantitatively accurate. 

The chemical composition of the eutectic mixture (points 2, 3, Fig. 10a) are also presented in 

Table 1, reveal excess concentrations of Mo, Mn and S, possibly due to the presence of MnS. 

In the case of silicon, it is visible in the line scan profile (Fig. 10b) that just before the grain 

boundary its content increases and then suddenly decreases at the eutectic mixture area, 

presumably because of its rejection by the carbides in the eutectic. The most important role in 
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the segregation effect is played by carbon, whose high content near the grain boundary may 

stabilise austenite and allow carbides to form.  

3.4 Microstructural stability as a function of production method  

Differential scanning calorimetric experiments were conducted on the samples directly after 

rapid-solidification and semi-solid processing, as well as on the reference sample previously 

subjected to typical heat treatment which led to the formation of nanostructured bainite (1000 

°C, 15 min followed by 240 °C, 20 h) [23, 24], Figs. 11, 12 and Table 2. The exothermic 

effects marked `I’ suggest that precipitation during continuous heating over the range 112-216 

°C, is probably associated with the tempering of the martensite, consistent with the change in 

hardness relative to the as-cast state (Fig. 12) following this low temperature-range tempering. 

The wider exothermic effect over the range 195-405 °C is probably related to the 

decomposition of retained austenite [25, 26]. The increased hardness of ribbons after 

tempering at 350 °C/2h resulted mainly from the transformation of austenite into fine 

supersaturated ferrite/martensite (during cooling from the tempering temperature), due to the 

decrease of the γ-Fe content by about 3 vol.% in relation to the state after direct casting. Fig. 

13 presents TEM micrographs of the ribbons after tempering at 350 °C/2h. It shows plates of 

martensite/ferrite with thickness of 5-25 nm, as well as dark contrast points (all along right 

side) probably from numerous defects. The high resolution transmission electron micrograph 

(HRTEM, taken from the area in Fig. 13) with inserted Fast Fourier Transform (FFT) is 

shown in Fig.14a. From the lattice distances and their mutual angles measured using FFT, the 

ferrite/martensite [1-11] zone axis orientation was identified, which fitted well to the 

simulation of the reciprocal lattice section at that orientation. Additional less visible 

reflections (marked with arrows) probably from M3C or transitional carbides [26-29] (lattice 

distance 0.26 nm and angle 36 °) are visible. The inverse FFT obtained using Digital 

Micrograph software by applying masks near reflections in the FFT showed much better 

contrast as can be seen in Fig. 14b. High density of defects (visible as changes in contrast) e.g. 

edge or complex dislocations are well visible in the Fourier filtered part of the image. In 

addition, the usage of masks for chosen reflections in the inverse FFT allowed to obtain the 

Fourier filtered image in certain crystallographic directions (Fig. 15) in which numerous edge 

dislocations are visible. Defects as well as secondary carbides could be responsible for the 

hardening effect of ribbons.  

The X-ray diffraction analysis (Table 3) for three different types of samples (plate, thixo-

formed, and ribbons) all tempered at 350 °C for 2 h, have the same phases with slightly 
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different volume fractions. However, the most likely reasons of differences in hardness 

(mainly of ribbons) are size and morphology of phases formed after tempering, which is 

directly related with the thermal history of the material. In any case, the results evidence that 

the most adequate tempering temperature is likely to be 350 °C. In order to determine the 

influence of the tempering time on the hardening effect in the SB steel ribbons, tempering at 

300 °C for 1, 2, 3, and 4 h was carried out. The results presented in Fig. 16 show that the 

hardness initially decreased from 963 HV (state directly after casting) to 700 HV and 629 HV 

after 1 and 2 h of tempering, respectively. As it was mentioned before, after direct casting 

there was martensite, retained austenite, and a small amount of M3C carbide skeleton (Table 

4), but upon tempering the highly metastable martensite transformed to ferrite, and so did 

some of the retained austenite; the amount of ferrite and austenite continued rising after 1 or 2 

h of tempering. The increase in hardness after tempering at 300 °C/3h is likely to be related to 

the transformation of residual austenite into martensite (during cooling) and some 

precipitation of transitional carbides. After 4 hours, more carbon left the ferrite and austenite, 

reducing their volume fractions, and precipitated as cementite. The enthalpy of process II, 

according to the DSC analysis presented in Fig 11, was the highest for ribbons (Table 2), 

suggesting that the transformation of austenite into ferrite, as well as the precipitation effect 

were the most intensified. The hardness obtained at 350 °C/2h was very similar to the one at 

300 °C/3h indicating, that a lower temperature requires longer times to achieve a similar 

diffusion behaviour of carbon. For all other samples, the hardness decreased with increasing 

tempering temperature. When comparing the enthalpy of the second effect in all samples, it 

can be seen that the carbide free bainitic SB steel revealed the lowest value, suggesting that it 

either had the lowest amount of austenite or that it was more thermodynamically stable.   

During heating in the range of 437–530 °C (IIIrd positive effect), cementite precipitation most 

likely occurred. In the SB steel with a carbide free bainitic structure (obtained through the 

standard heat treatment), continuous heating showed that austenite decomposed in the range 

of 450-600 °C. When the content of Si is increased up to 3.8 wt%, the decomposition 

temperature of austenite could be as high as 600 °C [30]. However, the precipitation of 

cementite in 100Cr6 thixo-cast during tempering occurred at 470˚C due to a lower Si content 

[31]. In the present study, a typical cast microstructure with segregation of elements into a 

eutectic phase was observed. The inhomogeneous distribution of mainly C, Si, and Mn led to 

a different phase transformation than in the conventionally treated SB steel. The IVth effect, 

which appeared only in ribbons is most likely related to the recrystallisation of the structure.  
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Conclusions 

1. Melt spun steel ribbons of a chemical composition normally designed to generate 

nanostructured bainite showed a typical cellular microstructure with a cell size of about 0.5 

µm. The cells contained untempered martensite and retained austenite. Each cell was 

surrounded by a three-dimensional network of cementite, giving the whole structure a 

microhardness of  963±42 HV.  

2. Plates of the same steel, obtained using suction-injection, had a lower hardness of 778 HV 

due to a lower cooling rate, which affected the size and distribution of phases in comparison 

with the melt spun ribbons. The structure of the plates consisted of relatively coarse dendrites 

(20-80 µm) made of a mixture of austenite and martensite with cementite in between. Their 

coarser length scale relative to the melt spun material was a consequence of the lower cooling 

rates associated with the suction-injection process. 

3. Thixoforming of the same steel from the semi-solid state led to a hardness in the range 410-

610 HV, the higher values originating from the 70% of particles which were unmelted at 

1430°C (temperature at which 30% liquid exists). The lower hardness of 410 HV is due to 

secondary ferrite grains of an average size of about 20 µm and a eutectic mixture that formed 

from the liquid phase.  

4. Tempering at 150, 250, and 350 °C/2h led to a decrease in hardness with increasing 

temperature in all samples except for the ribbons, in which hardness increased after tempering 

at 300-350 °C/2h, due to the transformation of austenite into carbon rich ferrite and the  

precipitation of transitional carbides. Further tempering brought about a decrease in hardness 

due to microstructure coarsening and the formation of M3C carbides. 
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Figures and Tables:  

 

 

Figure 1.  Cast samples a) ribbons using melt spinning methods, b) plates with run cast 

obtained using suction casting, c) thixo-formed elements obtained by rapid quenching from 

the solidus-liquidus temperature range.  
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Figure 2. DSC data during heating steel sample at 20 °C/s  

 

Figure 3. SEM microstructures of ribbon a) cross-section, b) in direct contact with Cu wheel 

and c) 15 µm below the surface of contact.   
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Figure 4. TEM image of the surface of the ribbon in contact with the Cu-wheel with carbide 

skeleton marked with arrows.  

 

Figure 5.  a) TEM bright field image of superbainitic steel ribbons along with diffraction data 

from: b) cementite, c) grains within the network. 
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Figure 6. a) Bright field TEM image of SB steel ribbon with diffraction data showing twins of 

martensite (b). 

 

Figure 7. X-ray diffraction spectra of SB steel samples after a) melt spinning, b) thixoforming, 

and c) suction casting. The dots refer to M3C peaks whose volume percentage was not 

possible to accurately determine.  
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Figure 8. Microstructure of rapidly quenched SB steel into copper die, a) optical 

microstructure observed with Nomarski contrast and nital etching, b) SEM image of grains 

surrounded by a secondary phase with numerous casting defects, and c) TEM bright field 

image with annotated carbide and martensite phases. 
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Figure 9.  Microstructure of thixo-formed superbainitic steel, etched in Nital, obtained using 

a) optical microscopy, and b) SEM image. 
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Figure 10.  a) SEM micrograph of SB steel thixo-formed (with line scan and points of 

analysis) and b) line scan of composition changes of characteristic radiation of Fe Kα, C Kα, 

Mn Kα, Si Kα, and Mo Kα. 

 

Figure 11.  Heating flow curves obtained using DSC analysis of the SB steel in the form of 

plate, thixo-formed material, ribbon (directly after casting), and SB steel under standard heat 

treatment (1000°C/15 min followed by 240 °C/5h). 
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Figure 12. Hardness vs tempering at 150-550 °C/2h of SB steel directly after casting: ribbons, 

plate, thixo-formed material, and SB steel under standard heat treatment (1000°C/15 min 

followed by 240 °C/5h). 

 

Figure 13.  Bright field TEM microstructure of as-cast steel ribbons after tempering at 350 

°C/2h and electron diffraction pattern of the area.  
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Figure 14. SB steel ribbons after tempering at 350 °C/2h: a) HRTEM image of the 

microstructure with an insert of Fast Fourier Transform, b) Fourier filtered image showing 

(111) lattice fringes – with marked dislocations and magnified area with the lattice distances 

and their mutual angles measured. 
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Figure 15. Filtered Inverse image FFT obtained for chosen reflections a) 002, b) 011, c) 110 . 

 

Figure 16. Hardness (HV0.5) of as-cast steel ribbons after tempering at 300 °C for 1, 2, 3, and 

4 hs.   
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Table captions  

Table 1. Results of EDS analysis of thixo-formed superbainitic steel. 

 

Table 2. Thermal effect and enthalpy of phase transformation obtained during continuous 
heating of SB steel plate, ribbon, thixo-formed material, and SB steel under standard heat 
treatment. 

 

Table 3.  X-ray analysis results after Rietveld refinement for the superbainitic steel in the 

form of thixo-formed material, plate, and ribbon all tempered at 350 °C/2h.  

 

 

 

	

Area of 
analysis 

                                                     Content  [weight %]   

Si Mn Cr Mo Ni P S Fe 
1 1.9±0.19  1.8± 0.18 0.25±0.12 0.3±0.15 0.9±0.45 <0.003 <0.003 94.8±1.87 
2 1.7±0.23 5.2±0.2 0.7±0.35 5.9±0.39 0.8±0.4 <0.003 0.22 85.5±1.64 
3 1.4±0.27 2.2±0.22 0.4±0.2 2.2±0.22 1.1±0.11 <0.003 0.008 82.7±1.77 

State	of	material 
Temperature	range	of	thermal	effects	during	

heating/enthalpy	of	transformation 
I II III IV 

plate 112-192˚C 
	0.9	J/g 

204-364˚C				
5.3	J/g 

437-545˚C 
4.9	J/g - 

ribbon 126-190˚C	
0.5	J/g 

190-394˚C	
7.8	J/g 

447-522˚C	 
2.6	J/g 

522-572˚C 
	0.6	J/g 

thixo-cast 121-216˚C	
	1.3	J/g 

222-406˚C	 
6.4	J/g 

444-530˚C 
	4.5	J/g - 

Steel	after	hot	rolling	
and	treatment	

1000˚C/15’/240˚C/5h 
125-192˚C	
1.4	J/g 

224-363˚C	
2.6	J/g 

449-537˚C 
4.4	J/g - 

	
	

Phase Thixo-cast-350˚C/2h Plate-	350˚C/2h Ribbon-350˚C/2h 

Ferrite 76±1	vol% 70±1	vol% 77±1	vol% 
a=2.8667±0.0001	Å a=2.8712±0.0001	Å a=2.8703±0.0001	Å 

Austenite 
24±1	vol% 30±1	vol% 

a=3.6153	Å	 
(Xc=1.04	wt%) 

23±1	vol% 
a=3.6108	Å	 

(Xc=0.90	wt%) 
a=3.6154	Å	 

(Xc=1.04	wt%) 
M3C - - - 
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Table 4. X-ray analysis results after Rietveld refinement for the superbainitic steel ribbons in 

the as-cast state and tempered at 300 °C for 1 and 4h.  

 

 

 

Phase Ribbons	after	
directly	casting Ribbons	-	300˚C/1h Ribbons-	300˚C/4h 

Ferrite - 78±1	vol% 76±1	vol% 
a=2.8663±0.0001	Å a=2.8699±0.0001	Å 

Austenite 
26±1	vol% 22±1	vol% 21±1	vol% 
a=3.6039	Å	

(Xc=0.70	wt%) 
a=3.6115	Å	 

(Xc=0.92	wt%) 
a=3.6111	Å	 

(Xc=0.91	wt%) 

Martensite	 
74±1	vol% 
a=2.8490	Å 
	c=2.9410	Å 

- - 

M3C - - 3±1	vol% 
	


