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c initial concentration

o
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e electronic charge
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f(t),g(t) aperiodic functions
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r particle radius
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® integral free energy
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PHASE SEPARATION IN SOME MODEL NICKEL-BASE SUPERALLOYS

GENERAL SUMMARY

-

Many physical properties of high temperature nickel-base
superalloys are dictated by features of the underlying two-phase Y /Y!
microstructure. This dissertation examines mechanisms by which #/Y'
distributions are generated in some model superalloys, each model
being designed to illustrate a particular feature displayed by more
complex commercial materials. The major technique employed in this
study is Atom-Probe Field;Ion Microscopy (APFIM). Subsidiary data are

provided by Transmission Electron Microscopy.

Background summaries of superalloy microstructure and formal
theory of phase transitions are presented in Chapters 1 and 2
respectively. Chapter 3 of the thesis develops an original and
quantitative method of data chain analysis suitable for use in APFIM
studies of continuous (spinodal) decomposition kinetics. Extensiéns
of the method to studies of other transitions and more general data

analysis are discussed.

This new method of APFIM data analysis is employed in Chapter 4
to examine phase separation in répidly—quencheq;Ni—Tu.1at.%A1 alloy.
It is shown that decomposition proceeds continuously at 62500. The
sgiqodal reaction is replaced by copventional‘nucleation as the quencﬁ

rate is lowered.

Studies of Ni-20.0at.%Cr-14.0at.%Al alloy (Chapter5) indicate
that in this material two populations of modulated second phase Y',
differing in both composition and size, are present. The possibility

that these arise from separate spinodal and conventional nucleation

2



changes is discussed.

Chapter 5 also demonstrates that Y' phase is nucleated
conventionally in Ni-9. lat.%Al-4.4at.%Ti and Ni-8.7at.%A1-2.5at.%Ti
alloys. The initial second phase composition is sensitive to

prequench temperature, which suggests that nucleationiis

heterogeneous, decomposition proceeding via a non-equilibrium phase.

A matrix model of alloy PE16 (Chapter 6) shows conventional
homogeneous nucleation. APFIM studies of elemental partitioning
reveal that adjustment of the titanium/aluminium ratio in the Y'
towards equilibrium apparently follows the rejection from the Y
lattice of species (particulafly chromium) which partition to the ¥

phase. The implications of this observation are examined.

Chapter 7 discusses the general conclusions reached in the thesis
and suggests possible future studies_based upon the results. Overall,
data for the model systems examined suggest‘that under conditions of
high solute éupersaturation reaction to Y/Y' microstructures may

proceed spinodally (continuously) in commercial alloys.




GENERAL INTRODUCTION

Nickel-base superallo&é possess high strength, good stability
with respéct to creep and excellent corrosion resistance in a service
temperature range of 5500—13OO°C. The alloys are essentially high
temperature analogues of the austenitic stainless steels (ﬁaximum
‘service temperature ~800°C, Decker and deWitt 1965). In various cast
and wrought forms superalloys are employed for structural and moving
parts in péwer plant and aeroengines (e.g. Sims 1978) and also in the

manufacture of high-temperature pressure vessels.

The early superalloys (service temperature 6500-7500C, Betteridge
and Heslop 1974) exhibited essentially only one solid state
precipitation reaction, that is, the formation of ordered Y' phase
(based upon Ni3Al) from supersaturated solid solution. In subsequent
materials alloying additions used to promote an increase in service
temperature encouraged the formation of several other phases, both
desirable (carbides to prevent grain boundary sliding) and deleterious
(brittle Laves phases). Recently yet greater microstructural
stability has been effected by dispersion strengthening using rare
earth oxides, particularly in artifacts produced by powder
meﬁa;lurgical routes (Gessinger and Bomford 1974; Lewis, Parkin and

Thompson 1977).

The behaviour of these alloys under given service conditions is
often predicted on the basis of empirical measurements of physical and
mechanical properties since theoretical assessments are extremely
difficult. The understanding and control of microstructure and

behaviour may be improved, however, by knowledge of the phase

il



transformations by which the complex structure is generated. The
present dissertation concentrates upon identification of possible
phase transitions by which basic two-phase Y/Y' microstructures of

superalloys may develop.

The complexity of commercial superalloys renders direct analysis
of phase transformation behaviour a non-trivial and difficult problem.
The present study therefore approaches the investigation by
identif&ing the operative transition mechanisms in a series of model
superalloys of varying complexity, each alloy being designed to

illustrate a particular feature of the Y!' separation reaction.

The first chapter of this thesis considers the general
characteristics of superalloys and discusses the selection of the
model systems nickel-aluminium, nickel-chromium-aluminium, nickel-
aluminium-titanium, and a PE16 matrix model alloy. Chapter 1 also
introduces the mechanisms of phase separation and other transitions
which may occur’in the alloys. Formal developments of appropriate
transition theories are presented in Chapter 2 with particular

attention to continuous changes.

Experimentally, studies of precipitation reactions require
microanalysis, in order to assess the extent ofwseparation. and
measurements of particle sizés, in order to follow growth processes.
In the present wWork these results Were.obtainéd principally by various
forms of Atom-Probe Field-Ion Microscopy (APFIM, e.g. Muellef 1970@,>
1974; Panitz 1975; Waugh and Southon 1979). Subsidiary data were
produced by Transmission Electron Microscopy (TEM, e.g. Hirsch, Howie,

Nicholson, Pashley and Whelan 1965; Thomas and Goringe 1979).

Operational methods are not pursued in detail in the present study,

i
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with the exception of a brief Summary in Appendix A of the less common
technique of APFIM. General rgviews of instrumental techniques have
been given by e.g. Mulvey-and Webster 1974, Edington 1979 and some
examples of investigations which have employed general techniques of

microstructural examination are discussed by Ralph 1980.

Once gathered, data must be analysed and presented in a form
suitable for direct comparison with compositional and size changes
predicted by transition theories. For continuous_changes, which are
the major subject of this study, the most appropriate representation
describes composition profiles in terms of the relative contributiqns
of wavelengths present in the trace. To date no fully quantitative
method of such analysis has been presented for APFIM data. Chapter
3 is therefore devoted to developmeht of an original method of
analysis by a Fourier transform technique. The route is designed to
generate spectral components in a form suitable for comparison with
current theories of continuéus phase separation . This methbd is also

general, however, and may be applied to other data streams.

The results of experimental investigations and analyses of the
model materials are presented and discussed in Chapters 4-6. Specific
transformation mechanisms which are -identified include spinodal phase
separation in binary Ni-14,1at.% Al alloy (analysis 6f clustering
kinetics,‘Chapter 4) and homogeneous nucleation and growth in PE16
matrix model ﬁaterial (Chapter 6). Observations of alloys of the
ternary systems Ni-Cr-Al and Ni-A1-Ti (Chapter 5), however, reveal
mucﬁ more complex behaviour. Also, as factors which exert
considerable influence upon engineering properties of alloys,

segregation and partitioning effects are examined in some detail. 1In



particular, the ratio of Ti:Al in the Y' phase of the model PE16 waé
monitored as a function of ageing time. It was observed that

ad justment of the ratio from 1.1%¥0.06 to i.6i0.05 occurred in the
latter half of the Y' heat treatment, apparently subsequent to the
rejection of all but small equilibrium amounts of Y-partitioning

elements chromium, iron and molybdenum.

The remaining chapter, Chapter 7, summarises the findings of the
investigation, and relates the results to known characteristics of
similar commercial materials. Suggestions for further work are also
proposed on the basis of these results, both in terms of other
modelling studies and more complex studies of early-stage partitioning

in industrial alloys.
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