
CHAPTER 2

~

BASES or Pmsgzé TRANSITION ijmzony

2.1 Introduction

This chapter gives a very brief review of the transition routes

which are relevant to the work described in this thesis. Most

attention is given to the examination of continuous behaviour and its
kinetic treatments, since tests of the appropriate equations comprise

part of theizork of the experimental chapters. The essential

characterisqs of other types of conventional behaviour are discussed,

however (and see also general reviews e.g. Wayman 1971;

Meyrick and Powell 1973; Jack and Nutting 1974; Christian 1975, 1979'
K4:9|4.A/AAA. MA C¢L~.a~ ms) ' . ’

2.2 Continuous transitions

2.2.1 General formulation of kinetic theories

Thermodynamic instability has already been discussed in Chapter 1

(above) as the essential characteristic of systems which exhibit
continuous transition behaviour. This criterion is satisfied if
(E1.1) 82¢

""5" <§ O
8c .

where ® is a free energy function containing terms for strain and

chemical gradient energies.

Kinetic descriptions of continuous reactions require the,

incorporation of this necessary and sufficient condition into a

diffusion equation. This problem was solved originally by Hillert
(1961) for a discrete lattice and by Cahn (1951, 1952a)fOF 8
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F 
continuum. The solution which is considered below is that of Cahn,

upon which much research into spinodal processes has been based.

Order-disorder transitions, which may only be modelled using lattice
theories, are introduced in section 2.2.3 and are discussed as

solution of unified theories of continuous transitions in Section

" 2.2.9.

2.2.2 Spinodal decomposition

2.2.2i The linearized diffusion equation (one-dimensional)

The linearized equation, due originally to Cahn (1961, 1962a),

has been reviewed several times (e.g. Cahn 1968, 1971; Hilliard 1970;

Cahn and Hilliard 1971; de Fontaine 1975a). For a system containing

two atomic species, A and B, the flux of each species is proportional

to the gradient in chemical potential with respect to a fixed

reference plane. The change in chemical potential itself corresponds

to the variation in free energy with composition. ~Therefore, in the

absence of strain or composition gradient effects :

" E21'“ 0000 0

By comparison with Fick's second law and conversion to

interdiffusional flux, this equation may be rewritten as 1

F’ IV“J = ouooE2|2

av A
'

in which D takes the sign of the derivative (32fABc2) and is thus

negative inside the spinodal. Figure 2.1a illustrates this "uphill"
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diffusion for a simple clustering sine wave composition profile. This

may be compared with diffusion down the concentration gradient in fig.2
Figures 2.1b and c depict model profiles for two cases of

nucleation (classical and non-classical respectively) which are

considered in section 2.2. below. '

A composition gradient term (Cahn and Hilliard 1959a) may be

added next to the chemical potential equation :

, 2
(“A_“B) ' fa 2KV CA ....E2.3

giving the flux equation :

g II w 3—J-—Mf vc 2MKVc "MEL"

The time dependent diffusion equation required is then obtained by

taking the divergence of equation E2. to yield :

§E_= Mf"V2c — 2MKV4c + non-linear terms ....E2.5
3t

This equation (E2.5) has a sine—wave solution (Cahn 1961) :

C * Co = eXp( R(3)t )cos§;£_ ....E2.6

Resubstitution of the solution into the diffusion equation then

produces the relationship
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R(8) = ~MB2( f" + ZKB2) ....E2.7

in which the amplification rate of a selected composition modulation

of wave-number 3 is an experimentally measurable quantity.

The addition of other factors, such as strain energies, to the

flux equation (Cahn 1962a), resulisin the addition of more terms to

the amplification factor equation. Thus for coherent isotropic solids

(Cahn 1961) 2

R(B) = —M82( f" + 2n2Y + 2KB2) E2_8

given that

Y = E/ (1 " “) ....E2.9

The important predictions of i equation, E2.8, are that i) the

plot of R(B) versus B shows a positive maximum at small 6, falling
towards a cut—off at BC as B increases and ii) R(B)/B2 against B2 is
linear and of negative gradient. These criteria are illustrated in

figure 2.2. Experimental tests of this equation, shown in many cases

to be a good approximation for spinodal studies (although incorrect
in some details), are discussed by Hilliard.197O and Ditchek and '
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Schwartz 1979.

2.2.1ii Extensions of the Cahn theory
I

There are many extensions of the Cahn model (e.g. applications to

ternary systems (Morral and Cahn 1971), continuous cooling (Huston,

Cahn and Hilliard 1966), elastic anisotropy and coarsening (reviews

Hilliard 1970 and Ditchek and Schwartz 1979)). Of‘ particular interest
for the present study is the result of Cahn 1966 that cubic materials
showing some strain field develop compositional modulations in

preferred directions, <100> and <111> for f.c.c. and b.c.c. alloys
respectively. This eventually leads, by stress field interactions,
to the alignment of coarsening microstructures (Cahn 1969) such as are

found in nickel-base alloys (e.g. Tyapkin 1977). Further theoretical
development and specific study of coarsening in terms of the behaviour

of harmonic solutions of the diffusion equation were provided by

extension of the non-linear equation to three dimensions (Cahn 1966

and see also Ditchek and Schwartz 1980). 9

Recent developments of spinodal theory (see Ditchek and Schwartz

1979) have also considered the construction and solution of non-linear
equations. Contributions include the work of Cook 1970 on thermal

fluctuations, the theory of Langer and co—workers which encompasses

thermal fluctuations and other non-linear terms (Langer 1971, 1973,

Langer and Bar-on 1973, Langer, Bar-on and Miller 1975) and studies

by Abraham 1976. An alternative analysis by Binder and co—workers

(Binder and Stauffer 1976, Mirold and Binder 1977) approaches the

spinodal from the metastable region. This method allows the

activation barrier to nucleation (see section 2.3 below for the

probabilistic equation) to decrease to <kT, but not to zero. The
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result correctly models behaviour at the miscibility gap itself.
Computer simulations of spinodal decomposition have been made by

Lebowitz and Kalos 1976.

2.2.3 Order—disorder transitions

2.2.31 Statistical theories

Prior to the development of continuous reaction theory studies of
order—disorder transitions and their kinetics were purely statistical.
A complete examination of all these models, based variously upon

superlattice site occupation (see below) or bond energy summations

(e.g. Clapp and Moss 1968a, 1968b) is beyond the scope of this
dissertation. Details may be obtained from reviews (e.g. Krivoglaz
and Smirnov 1964; Cohen 1970; Moss 1973). ‘

The_Bragg—Wi1liams theory may be taken as a simple examphe. This

theory, in its simplest form, specifies the degree of long range

order, S, as a function of "correct" lattice site occupation:

S = a J’ bar ....E2.1O

However, there exist two immediate draw—baoks to this representation.
Difficulties are experienced in the modelling of off-stoichiometric
alloys and in summation over anti—phase domain boundaries. A more

complex weighted summation must be employed in the latter case (Cohen

1970). An example of kinetic treatment of the Bragg-Williams theory
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has been provided by Dienes 1955.

2.2.311 Continuous Theories
I

Four major continuous ordering theories, all of which consider

the growth of ordering waves of superlattice dimensions are due to

Ling and Starke 1971, Taunt and Ralph 1974 ("modular ordering"),
Khachaturyan 1978 and de Fontaine 1979 (also Yamauchi and de Fontaine

197M). Recently Kubo and Wayman 1980 have also considered spinodal

decomposition in ordered alloys. The two treatments by Khachaturyan

and de Fontaine, which are essentially parallel developments of the
same "static concentration wave" theory, have both been reviewed

recently by their originators (Khachaturyan 1978, de Fontaine 1979).

For the purpose of brevity the present dissertation considers only the

de Fontaine formulation.

2.2.“ Unified theories of continuous transformation

2.2.ui The Cook,de Fontaine and Hilliard theory .

The first unified theory (Cook, de Fontaine and Hilliard 1969)

amalgamated the instability treatments of Hillert 1961 and Cahn 1961,

1962a to produce a discrete lattice diffusion equation with

appropriate solutions for both ordering and clustering reactions. In

terms of modification of the equations quoted above for the Cahn "

theory, the new ordering solution is generated by replacing 52 by 1

B2 = _2__ (1-cos(Bd)) ....1=:2.11
. d2

Interestingly, further expansion of cos(8d) shows that the error in

...27...
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the continuum theory is of the order of (B2d2/12). which is small for
most clustering phenomena. Figure 2.3 reproduces the amplification
factor versus a/X plots of Cook, de Fontaine and Hilliard for ordering
and clustering systems, demonstrating that many characteristics of the
separate reactions are inverses of one another.

2.2.4ii Fourier Representation

A full unified and reformulated theory, encompassing the work of
Cahn 1961, 1962a, Hillert 1961, and Cook, de Fontaine and Hilliard
1969, the fluctuation studies of Cook 1970 and the microelasticity
considerations of Cook and de Fontaine 1969 was provided by de

Fontaine and Cook 1971. Defining a function V(h) as

‘I/(h) = F(h) + G(h) E2 12

where F and G are the elastic free energy and chemical free energy

respectively and h an allowed lattice site. The total free energy may

then be written in Fourier notation as

F = N Z.’ ‘l’(h)Q(h) ....E2.13t 5 h

where Q(h) is the Fourier transform of the concentration covariance
(harmonic concentration waves). Just as in the Cahn approach, a

diffusion equation for the rate of concentration variation is
1

I
l

-2 8_



constructed, giving a general amplification factor

0"“) = "M B<h)‘1’(h) ....E2.1u
v

with a solution

V(h) = Vo(h) €XP( G(h)t ) _.__E2.15

such that the composition waves V(h) again grow exponentially with

time.

This theory was then developed to produce a lattice wave

description of clustering and ordering in multicomponent systems(de
' Q)?

Fontaine 1972,197%t1975a-c), using a time—averaged concentration in
order to represent the n components. Of particular value to the

present study is a detailed description (de Fontaine 19758) Qf

different modes of ordering in terms of symmetry properties of the
reciprocal lattice (see Landau and Lifshitz 1969). Defining spinodal

clustering and spinodal ordering respectively as long— and short-
wavelength events governed solely by kinetic factors (i.e. equilibrium
vectors are not necessarily produced upon initial decomposition),
these may be differentiated from continuous ordering, in which

I
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equilibrium Structures are always generated.

2.3 Homogeneous Nucleation
¢

2.3.1 General kinetic principles

In contrast to phenomenological treatments of continuous
decomposition, kinetic analyses of nucleation are probabilistic,
calculating expectation values for the rate at which critical nucleus

formation is achieved as a sum of the probabilities of growth and '

decay of all cluster sizes.

2.3.2 Development of the classical theory

Classical theories of nucleation (reviews Russell 1970; Christian
1975) are founded upon expressions of Volmer and Weber 1926 and Becker

and Doering 1935. These expressions calculated the statistical
distribution function of embryos and the nucleation rate for the

steady state. Current theories of solid state nucleation treat the
quasi-steady state in two parts, namely the approach to dynamic

equilibrium and the steady state itself. For the approach to the

steady state Russell 1970 shows that the rate of critical nucleus
formation is given by

_ S __

Jk(t) “ Jk eXp(T/t) ....E2.16

rate
with an incubation time I A profile of nucleationzagainst time,
taken from Russell 1969a, i§ shown in figure 2.4. Present theories
for the steady state regime are based upon the analysis of Turnbull
and Fisher 19M9. This is essentially an expansion of the Becker-
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Doering approach. The net nucleation rate is then given by

5 o
Jk “ Z Pk °k . ....E2.17

where

2 12z = (-1 <>AGno)> / .,..E2.l7a**_' '__§““21kT 8n

~

The above analyses assume that the nucleus and matrix are
completely incoherent and that the nucleus is of uniform and

1’equilibrium composition. These assumptions, and their cojection in
classical analysis, are discussed in reviews by Russell 1970 and

Christian 1975. Also discussed are the effects of surface and elastic
anisotropy (see Eshelby 1957 for study of precipitate shape changes).
Alternative studies of nucleation using statistical mechanics have

been provided by Lothe and Pound 1969. An example of experimental
investigation is the work of Servi and Turnbull 1966 on copper—cobalt
alloys.

2.3.3 Non-classical nucleation

An alternative approach for studies of diffuse-interface
phenomena has been provided by Cahn 1962b. This non-classical method

based upon an earlier study of fluids by Cahn and Hilliard 1959b,

closely resembles continuum studies (see section 2.2.21 above) in that
a free energy function having the properties of a chemical potential
is formulated. Again the function contains terms for gradient energy
(i.e. free energy change with composition) and for strain. Thus the
critical nucleus which is deduced as a fluctuation of the system
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describes most coherent nucleation phenomena with equilibrium
composition strictly only at the centre of the new phase. Composition

profiles for classical and non-classical nucleation models are shown

in figures 2.1b and 2.10 respectively.

2.U Heterogeneous Processes

2.U.1 General heterogeneous nucleation

Heterogeneous reactions (reviews Hornbogen 1965; Nicholson 1970;

Russell 1970; Christian 1975; Aaronson, Lee and Russell 1978),

"catalysed" by access to stored energy at a host defect, are favoured

kinetically with respect to homogeneous nucleation because the

activation barrier is lower. Complete dominance of the faster process

is only limited by the availability of "catalyst" sites.

Examples of studies of the roles of specific defects (considered

individually in the reviews) are the work of Cahn 1956 and Russell

1969a (grain boundaries), Cahn 1957 (dislocations) and Russell 1969b

(vacancy effects). Microstructural aspects of the transformations are

reviewed by Hornbogen 1969 and Nicholson 1970. Specific examples of
general heterogeneous nucleation are grain boundary carbides in steels
(e.g. Edmund; M01, I-I-9|4_¢5¢pw.b¢. I973), dislocation decoration in iron-
nitrogen systems (Hornbogen 1962) and so—called "athermal nucleation"

on pre-existing particles in aluminiumezinc (Lorimer and Nicholson

1969). ' '

2.U.2 Cellular decomposition

Cellular precipitation is a specific case of heterogeneous
activity. The general features of the transformation are i)nucleation
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of particles of one new phase at a grain boundary, the particles
matching a habit plane in one grain and presenting an incoherent

boundary to the second (see Turnbull and Tu 1970 for details), ii)
subsequent growth of two product phases in lamellar fashion by advance

of the incoherent boundary.

The various theories describing both nucleation and growth events

have been reviewed several times. The following reviews and original
references give further details: Turnbull 1955; Cahn 1959; Liu and

7 Tu and
Aaronson 1968; Hillert 1969, 1972;lTurnbull 1969; Turnbull and Tu

1970; Aaronson and Aaron 1972; Fournelle and Clarke 1972; Hornbogen

1972; Tu 1972; Sundquist 1973; Christian 1975; Meyrick 1976, 1979;

Gust 1979; Ecob, Bee and Ralph 1980,

2.5 Growth and coarsening

Particle growth is defined to occur when diffusion fields of
neighbouring particles do not overlap (e.g.Christian 1975).

Coarsening relates to increase in particle size at constant volume

fraction, while a change in volume fraction of second phase coupled

with overlap of diffusion fields impies growth—plus-coarsening.

2.5.1 Interface versus diffusion control

Two modes of growth and coarsening may be distinguished. The

first employs interface control (IC), where the rate—determining step

is the chemical reaction of addition of solute to the new phase and

the second occurs under volume diffusion control (VDC) which is
limited only by solute accessibilty (see reviews by Christian 19752

Hillert 1975; AEFOHSOH 1979). The exact mechanism of IC i.e. random

solute addition or step motion, depends upon the driving force for the
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reaction (Cahn 1960). A step motion (Hillert 1969; Aaronson, Laird
and Kinsman 1970; Aaronson, Lee and Russell 1978; Aaronson 1979;)

represents metastable equilibrium.

VDC, occurring only by random and simultaneous solute addition,
generally operates where there is a compositional change across a

moving boundary, with associated composition gradient and often volume

change effects (e.g. nickel-aluminium alloys, Ardell and Nicholson
1966). Specific details of the effects upon growth of precipitate
morphology, interface structure and strain are discussed by Christian
1975 and Aaronson 1979.

2.5.2 Kinetics ca’ CCOx&HAifEj@

The most generally accepted rate equations for both VDC and IC

are founded upon analyses by Lifshitz and Slyozov 1961 and Wagner 1961

(known collectively as the L-S-w theory, see also Greenwood 1956,

1969; Christian 1975; Kahlweit 1976). Based upon the assumption that
uniform attachment and detachment of solute occurs over the entire
surface, the L-S-W theory predicts the following rate equations:

VDC r3 — r 3 = k t ....E2.180 1

IC r2 — r 2 = k t ....E2.19
. ° 2

These equations have been shown to obtain approximately in many

experimental situations e.g. Ardell 1969, Ardell, Nicholson and

Eshelby 1966.
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Alternative kinetic analyses depending upon step growth rather
than uniform interface advance are presently appearing in the
literature e.g. Shiflet, Aaronson and Courtney 1979.

Summary

This chapter briefly reviews theories of some possible transition
behaviours which may be displayed by supersaturated nicke1—base

alloys. On a general basis, and assuming as a first approximation
that transformations are independent, the observable characteristics
are:

1)Spinoda1: a negative diffusion coefficient.
2)Order—disorder: the appearance of superlattice reflections in
diffraction experiments. '

3)Homogeneous nucleation: an incubation time for appearance of the
second phase. The new phase should be randomly dispersed i.e.
indepen_dently of defects.
4)General heterogeneous precipitation: decoration of defects.
5)Cellular decomposition: coupled nucleation and growth of two phases

in colonies emanating from grain boundaries.
-

6)General coarsening: increase in mean particle size, with
accompanying shape changes and alignment(c»uan4~f' u4§~MwuL ~)wnchju)

I
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