CHAPTER 3

QUANTITATIVE ANALYSIS OF ATOM—PROBE DATA FOR STUDIES

OF CONTINUOUS PHASE CHANGES:

A FOURIER TRANSFORM METHOD

3.1 Introduction to Phase Separation Studies

3.1.1 The Suitability of the Atom-Probe

Spinodal phase separation in metallic systemé is characterised by
coﬁtinuous increase in amplitude of a compositional modulation wave
of periodicity in the range'5—20nm (e.g. Hilliard 1970). The general
suitability of the atom-probe for studies of these modulations has
already been demonstrated by Watts and Ralph 1977, 1978 . Only semi-
quantitative numerical analyses could be applied by Watts and Ralph
to growth of compositional excursions, however, because data chains
were too short for the accurate spectral analyses required for tests
of the diffusion equation given in Chapter 2 above. This restriction
upon statistical confidence has been removed in the present study by
extension of effective data chain length to 40-60nm per chain.
Primarilx this ten-fold improvement has been achieved by

implementation of computer-controlled methods of data collection.

As a result of chain extension, methods of analysis to extract

‘ spectral components from data are required. This.chaptef develops one
such new method based upon Fourier transform filtering.
Instrumentation and experimental requirements for data collection are
bnot considered in this account since most pertinent factors are
discussed by Watts and Ralph 1978. More recent changes in

instrumentation (e.g. fast pulse technology (Waugh 1980) and updating
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of computér controlled data collection) are discussed in Appendix A.

3.1.2 The Nature of Atom—probe Data Chains

The data from atom—probe studies appear as a chain of discrete
ioﬁ events. These events must be combined to represent thelphysical
compositional wave as a plot of composition against distance probed
into the specimen. Thé means by which the data are grouped , ahd hence
the possible routes of numerical analysis of the composition profile,
depend upon the model of the time series which is used to describe the

process of field evaporation.

3.1.2i Markov Process

A specific description of atom—probe data as.a Markov Chain was
suggested by Johnson and Klotz 1971. By definition this requires that
the state of the system'Xt is characterised by a knowledge of Xt_1
only and is independent of preceding events (Jenkins and Watts 1968).
In terms of atom probe data this demands that Xt—1 provide information
cencerning lattice structure. Johnson and Klotz justified their
approach by considering ad jacent atoms in the data chain to be nea;est
neighbours in the specimen. Even with a projected probe hole of
single atom diameter, as assumed by Johnson and Klotz, the nearest
neighbour approximation may be invalidated by atomic migration. For
studies of phase changes a probe hole encompaséing 50-100 atoms is

required for compositional analysis (Watts and Ralph 1978) and in this

case the nearest neighbour model certainly fails because atoms under
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the probe'hole may be expected to evaporate in near-random order.

3.1.2ii Random evaporation process

-

A general discrete time series analysis based upon random
evéporation from material under the probe hole‘has been suggested by
Watts and Ralph 1978. In their model the data chain, assumed for
simplicity to sample a binary system, is regarded as a series of A
atoms (minor species) spaced by B atoms. Using data for Ni-12at.4Ti
alloy Watts and Ralph justified their method by demonstrating that the
calculated distribution of A (Ti) atoms approximated that predicted
by the binomial theorem. This approach’is certainly more realistic
than the Markov treatment and tﬁe assumption of random evaporation is
téken as the basis of the present analytical study. Some possible

inadequacies of this assumption are discussed in section 3.6.

3.1.3 Composition Profiles

All methods for conversion of time series of A events into
composition profiles (see section 3.1.3 below) seek to define the
specimen composition at predetermined sampling intervals by expressing
the relative frequency of occurrence of A events in terms of total ion
count i.e. probing distance. Three basic types of composition profile

may be distinguished.

3.1.31 Step profile

The step profile (e.g. Goodman, Brenner and Low 1973) plots the
occurrence of a selected chemical species directly as a function of
total ion count (probing distance) or remaining species. Using small

steps of 1-20 ions through the data chain emphasises abrupt changes
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Figure 3.3 Running mean plot of data from an analysis of Ni-20.0at%Cr-

14.0at3Al alloy aged for 5 minutes at 620°C (two-phase) .



in composition between ad jacent planes and composition excursions of

short periodicities. This technique is suitable for studies of order--

disorder reactions (e.g. Taunt and Ralph 1974), interface development
and Southon

and various forms of segregation (e.g. Waugh/1977). The method is

illustrated in figure 3.1 which shows part of'a step profile for a

<110> probing sequence in an Ni_Al single crystal. Adjacent ordered

3
superlattice planes have compositions of 100%Ni and 50%Ni + 50%Al.

3.1.3ii Simple Grouping

For longer data strings the chain may be divided into larger.sube
units, say 200-1000 ions. Assqming that each unit represents a small
volume of material of constant composition within the sample, this
gives a pfofile of composition in atom% versus ion count. With
suitable correction in sub-unit size for changes in tip radius i.e.
changes in the number of ions collected per atomic plane (section 3.4.h
below) the plot corresponds to a composition against distance profile. .
Figure 3.2 shows such a plot for Ni-14.1lat.3Al alloy aged for

50 hours at 62500 (probing direction <110>, 200 ions per point).

This method sacrifices information contained within each sub-
unit, but it is suitable for studies of long range effects such as

clustering phenomena.

3.1.31iii Running means

The running mean is also used for study of long range phenomena.
In its simplest form the method again defines a small chain sub-unit,
t, of 10-20 ions, and composition values as at% are then plotted over
n terms at intervals of t (e.g. Yule and Kendall 1968). Figure 3.3

shows data from an analysis of two-phase Ni-20.0at.%Cr-14,0at.%Al
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alloy (Chépter 5) plotted in running mean form.

This simple form, however, still rejects information within Sub-
unitss A statistical running mean was therefore proposed by Watts and
Ralph 1978. Where U denotes the number of B atoms separating adjacent

A atoms, the nth term of U in the time series is’replaced by an

average over 2t+1 values.

The disadvantages of running mean methods are conversion of
composition steps to gradients and loss of high frequency oscillations

in the original composition data.

3. 1.4 Methods of Analysis

Once a suitable composition profile has been produced it may be
subjected to some general time-series analysis or trend removal (e.g.
correlation coefficient.studies or Fourier transform methods) in order

to follow the development of the component wavelengths.

For studies of continuous changes Fourier transform techniques
are the most appropriate because results may be compared-directly with
predictions of transition theories which are expressed as Fourier
solutions (Chapter 2). In addition Fourier analysis of composition
data should produce results which are comparable with diffraction
pétterns such as those of TEM or X-ray work. This interrelation of
diffraction studies and modulaped microstructure has been clearly

demonstrated by de Fontaine (1966) using an electronic analogue.

The present study is therefore devoted to two topies: i)
construction of a composition profile suitable for Fourier transform

and ii) development of a method of Fourier transformation by which to
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assess as accurately as‘poséible the relative amplitﬁdes of dominant
Fourier components. Possible extensions of the method to study of

other phase changes are discussed in section 3.6.

3.2 Formal Fourier Transform Theory

3.2.1 General Fourier Transform (FT)

The Fourier Transform, F(w), (Champeney 1973; Brigham 1974;
Bracewell 1978) expresses an aperiodic function, f(t), in terms of a
continuous range of frequencies, w ¥

4 © i
o .
E(w) = (5—;)%‘1/;w f(t) exp(-iwt) dt g et
In order to assess the overall contributions of specific frequencies

(wavenumbers) this equation may be rewritten in terms of the

coefficients of the cosine and sine terms which comprise the waveform.

Thus:
4+ o

Ap(w) = %— f{t) coslwt) dt o oE3. 2
"foo

Bp(w) = %f f(t) sin(wt) dt ....E3.3

where A, and B, represent the cosine and sine coefficients

respectively.

Two specific functions represented in symbolic notation are

referenced in the present work. These are the rectangular function
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IT(t) (a sampling window of unit height and base) and the infinite
impulse train III(t) which corresponds to discrete data sampling at
a fixed interval. Both funetions and their Fourier transforms are

illustrated in Appendix C.1

3.2.2 Discrete Fourier Transform (DFT)

3.2:2i Theory

DFT operates where values of a function or transform are
available only at discrete intervals. Experimental data are an

example of a discrete input stream.

Expressions for DFT are essentially very similar to general FT
solutions, bﬁt with integrations replaced by summation over the
appropriate range of variable. For example the DFT itself is:

N-1

F(v) = ‘% ;E: - f£(1) exp(-2mivt/N) ione
=0

!
Beginning with data sampling of a function using the infinite impulse
train III(t) Appendix C.2 illustrates the series of steps which leads

to the Fourieytransform of experimental data.

The CONVOLUTION THEOREM (e.g. Bracewell 1978) and its inverse,
the PRODUCT THEOREM, are referenced particularly in the following
text. These theorems state that for two sequences (DFT) (or functions
(FT)) convolved in the data domain the transforms are multipiied in
the transform domain and vice versa. Stated formally the convolution

theorem is:
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Figure 3.4 Result of truncation using a rectangular function




£l * g(t) = F G s S

3.2.2ii Calculation

Methods §f calculation are summarised in.the references. By far
the most ngular is an algorithm due to Cooley'and Tukey (see e.g.
Bracewell 1978), known as the Fast Fourier Transform CERTY.. - This 435
somewhat less accurate than other methods, but computation is much

faster.

In terms of limitations imposed upon input experimental data, all
methods should ideally operate upon an oscillating and noiseless

physical waveform.

3.2.2111 Errors

Major errors in DFT may arise from inappropriate data truncation

or sampling.
Truncation

Experimental data chains must be regarded as sections selected
from a much longer chain using a rectangular data window FE(E) . Thé
result of selection seen in the transform domain (product theorem) is
convolution of the true DFT with a sinc function (sinwx/wx). This is
jllustrated in figure 3.4. Thus the original DFT becomes smoothed and
some falsification ofvhigher frequencies may arise from "leakage
error" associated with higher terms of the sinc function (e.g.
Bracewell 1978). These inherent errors are unavoidable, but may be

reduced for low wavenumbers by increasing data chain length.
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Figure 3.5 Result in the transform domain of performing a running mean
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For the Cooley-Tukey aigorithm 2N data values are fequired.
"Packing" of domains to satisfy this requirement may introduce further
error. If zero values are imposed upon a chain of non-zero-mean data
a step is produéed in the input stream and rough structure in the net

transform. Thus packihg must empioy dummy variables.
Sampling

Essentially the data sampling interval must be selected such that
the wave of highest frequency is sampled at least twice per wavelength
(critical sampling). Undersampling generally results in loss of fine
detail. . Additionally "aliasing" may occur, high frequencies

"impersonating" lower frequencies (e.g. Bracewell 1978)

For low wavenumbers transforms may also be inaccurate if few

complete long wavelengths are_sampled.

3.3 A Composition Profile for Fourier Transform: Introduction of a New

Analysis Route

Of the three methods described in section 3.1.3 above only simple
grouping is appropriate for Fourier transform. The step profile
cannot be used because it is non-oscillatory, being possessed of a

trend derived from the form of construction. It is also very noisy.

The running mean is undesirable because the transform contains
terms from the smoothing fﬁnction. In Fourier terminology the
compositional data are convolved with a rectangular sampling function
IT (x), of width (2t+1) terms,in the data domain. Thus the transform
is multiplied (convolution theorem) by sinc(x). This is illustrated

in figure 3.5. In principle the sinc(x) terms may be recovered from
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fthe net transform.

The following Fourier transform treatment is therefore developed
for a composition profile 6f simple grouping type. The spatial
information which is lost within grouping units may be recovered from
the original data by the alternative methods-describéd.in the presenﬁ

section.

New

3.4 The/Fourier Transform Route.
~

3.4.1 Construction of the Composition Profile.

3.4, 11 Sampling

‘Two factors must be considered in selection of sampling size.
Small units tend to introduce noise into the profile and cause loss
of significance in the transform. Undersampling leads to aliasing in
the transform (section 3.2 above) and also general loss of accuracy
by reduction in available data values. The optimum solution to
balance these factors retains the maximum number of compositioﬁal
values, Cn’ while giving acceétably small background variance in the
transform (section 3.4.3 below). An approximate optimum solution may
be obtained by trial and error, selecting a unit size for the

composition profile and observing the transform.

The physical significance of each sub-unit, m, should also be
considered. The separation of components in the transform domain is
reciprocally related to the distance between compositional
determinations, Cn’ in £he sampling domain. Thus if samples contain
some multiple of the number of ions detected per atomic plane, the

Fourier wavenumbers are inversely related to the interplanar spacing.
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Figure 3.6 Optimized simple grouping profiles (150 ions per point)

for Ni- llat%Al alloy aged for a) 5 hours and b) 50 hours at 625°C.




If it is necessary to suppress composition modulations which arise
from planar stacking sequences, this may be achieved by selection of
a unit size appropriate to-the lattice repeat (or some multiple

thereof).

Several problems are associated with the grouping. First, the ion
count per plane varies as a function of probing voltage and also as
a function of probing diréction. The former may be counteracted by
ad justment of unit size on a sliding Scale calibrated using an ordered
single crystal (e.g. L12, Ni3Al), The effect of probing direction is
measurable using the same single crystal and may be estimatéd from

crystallographic considerations.

Second, where compositional modulations are present, and
particularly in cases of lattice ordering, the exact profile produced
may be extremely sensitive to starting pdéition along the data chain.
Thus it is recommended that a-step profile of each data chain be
examined before chain_sub—division. For cases where the composition
profile, Cn’ is origin-dependent, step analyses will detect plane-to-
plane compositidnal discontinuities and provide én origin location

(figtre~ 3,194

For situations where little origin-dependence is seen, minor
effegts may be counteracted, if required, by an averaging procedure.
Three composition plots are derived starting at i) an arbitrary origin
0, ii) a distance m/3 from the origin and iii) 2m/3 from the origin,
where m is the sub-unit size. All three are transformed and the

results summed and averaged as detailed below in section 3.4, 2iii

Two examples of optimised traces are shown in figure 3.6.
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Eiéuré 3.6b replots the data used for figure 3.2 in optimized
form for comparative purposes. Figure 3.6a shows data
from another specimen of -the same alloy_agedvfor 5 - hours at 62500.
In all eases the unit size is 150 ions for a tip at 11.6 kV and <111>
prébing direction. This choice describes two iaptice planes. The
equiValent grouping for <110> would suppress the two-layer lattice
repeat of L12 Ni3A1. Thus <110> transforms may be compared directly
with <111> data which shows no lattice-related compositional

modulations.

3:.4; i1 Truncation:

The profile thus far oscillates about a positive mean and is of
non-standard length for DFFT. Calculation of the mean and subtraction
of this from each separate data value gives an oscillating series
about zero. Dummy variablgs of zero may then be used to extend the

reduced profile, CnR, to the required length.

3.4.2 Transform Steps

3.4.2i Initial transform

The stages of Fourier transform are illustrated in figure 3.7.
Oﬁce the reduced profile CnR has been transformed, sampling errors are
still present at the low frequency end of the Fourier spectrum because
insufficient long wavelengths are present in the data chain for
accurate analysis. A correction may be applied for this by
subtracting from the ofiginal data the effects of the invalid low
frequencies. Thus the significance of terms of interest in spinodal

studies (0.8-20.0nm) is increased.
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The reduced profile comprises a Fourier series. The contribution
of each Fourier component to this series have been evaluated in terms
of the cosine and sine coefficients. Thus a new Fourier series or

!

reduced profile, CnR » may be derived from CnR by subtraction of

appropriate terms from equation E3.4,

Explicitly:
1]
m
R R :
Cn = Cn - Ezi (Ancos nvt + Bn51n nvTt) gt~
q
= 2 (A: cos nvt + B sin nvt)
n n
n=p

If the range of wavelengths 0.8-20.0nm is to be retained then the
number of low frequency terms (p=1,2.....m) rejected in this way
should generally vary between 5 and 20. Other particular frequencies
such as superlattice repeat terms may also be subtracted at this stage
(n=p,q). - Subtraction of Fourier terms provides an attractive
alternative to modulation suppression by grouping at early stages
1

since grouping is very susceptible to aliasing. The new profile CnR

may then be transformed in the normal way.

3.4.2ii Amplitude spectrum

The data am. then represented in the form of a plot of amplitude,

AI(B), against wavenumber, g, where (Jenkins and Watts 1968)

- 2 i1
Adm. = (i@} + (B 1D son Bl

3.4.2iii Summation of transfbrms

Where more than one data chain is available to characterise the

microstructure of each heat treatment some method of combining

.



individual chains to represént the net structure is required. Direct
concatenation of adjacent chains (same specimen) in the data domain
requires knowledge of the distance separating the chains and/or the
change of phase'between them. Chains from different specimens cannot
be directly concatenated in'thié domain.

In thertransform domain, however, coefficients may be summed

directly, provided that standard procedures are followed throughout

for profile construction and transform.

Thus
a1 = 1Al e s
N n=1 :
Similarly
- N e ‘ : gy
BI(B) e B 7T BI(B)
N n=1

For the averaging procedure mentioned in section 3.4.1i,
(representation of single chains), the structure may be considered to
be a summation of the three separate composition series. Fourier

summations given above may then be applied.

3.4.3 Significance

Considering first high Fourier wavenumbers, frequencies greater
than N/2, where N is tﬁe number of compositional points, are
meaningless because a minimum of two points (plus an origin) is
required to defihe a waveform (critical sampling, see section 3.2.2iii
above). In practical terms this region of thé spectrum, (B < N/2), -

may also be complicated by superlattice components.  Thus for
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clustering studies frequencies in the range N/4 and above should be

regarded with caution.

-

At the low frequency end the first few Fourier components are
rendered inaccessible by virtue.of the numerical excluéion employed

in the transform procedure (section 3.4.2i above).

This, however, leaves a large range of terms which may be
examined. Consider a data chain of 75,000 ions corresponding to 1000
atomic planes or ~200nm probing distance. A range of frequencies Bzosmo'

to Bﬂﬁﬂwcmrresponds to wavelengths 20.0—0.4nm. This more than covers

the range of modulations found in most metallic spinodal structures.

For these remainingyterms the amplitude spectrum may be ekpectéd
to show distinct peaks at dominant periodicities. Statistical
significance of the‘major frequencies may be tested in a variety of
ways (e.g. Yule and Kendall 1968). Variance was selected for the
present study. As frequency'terms are rejected from extremities of
the spectrum the overall variance cannot typify specific central
wavenumber regions. Thus local background variance calculations

should be performed for each region of interest.

The variance, V, of data is given by

1
N n=1 2 e B3 10

where A = arithmetic mean amplitude

standard deviation

Q
"

For a profile showing strongly dominant periodicities superposed upon
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an approximately noiseless background the variance will tend to become
stationary when dominant terms are successively removed from the
amplitude data and V recalculated. Two criteria must be defined for
this galculation of background variance: i)the amplitude deviation
which is considered sigﬁificant and ii) the maximum humber of data
values which should be removed. For the first, a departure of 3¢ from
the current mean may be proposed. The second criterion essentially
defines the acceptable degree of merging between dominant peaks and
background. Studies showed that acceptable resolution is obtained
where less than 20% of the initial data values are rejected before

stationary variance was achieved.

3. 4.4 Comparison with Kinetic Theofx

Kinetic equations for clustering have alfeady been presented in
Chapter 2 above. As a summary the following constructions are
required in testing the character of transformation. 1) A plot of
AI(B) against time, t, for dominant wavenumbers. 2) A plot of the
amplification factor, R(B), (given by the slope of AI(B) versus time)

against B, and 3) Examination of R(B.)/’B2 versus 82.

3.5 Practical Analyses

Two net Fourier transforms obtained using the method outlined
above are shown in figure 3.8. These are derived from the composition
profiles shown in figures 3.6a and 3.6b. Each contains some dominant
periodicities and several very dominant peaks (e.g. B =2.50 a;nd B = 1.85,40']
are common, increasing in amplitude as ageing increases. In each
case background variance was found to be acceptable and stationéry.

For example, at B=3.50, V=0.001.
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Calculation of these transforms employed routine CO6AAF from the
Nottingham Algorithm Group Library of the University of Cambridge

Computing Service (Cooley-Tukey algorithm).

These calculations concerning Ni-14.lat.%Al have been ex tended
also to tests of the diffusion equation predictions of Chapter 2. The
results of the study, which demonstrated that decomposition is indeed

continuous, form the basis of Chapter y,

3.6 Assessment of the Fourier Method and Possible Extensions of

Analysis.

3.6.1 Sources of Error

Apart from errors involved in transform this method may be
subject to inaccuracy associated with the original time series. qu
example:

i) although specimens evaporgte in an approximate plane-by-plane
sequence individual events may be recorded from planes not immediately
on the surface; ii) the series can take no account of changes of
phase in oscillation accorded by antiphase domain boundaries in
ordered structures; iii) similarly, grain boundaries and other

defects are not considered.

: However, the latter two effects may be detected by parallel
observations of step profiles and overall it is considered that the

time series analysis represents a reasonable approximation to true
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behaviour.

3.6.2 Extensions of the Study

-

In principie the transform may simply be extended to encompass
order—disordér coﬁpoSition hdduiations by rétention of éuperlattice
modulations and subtraction of all Fourier terms greater in wavelength
than a few lattice periodicities. Similar Fourier techniques may alsé
be applied-to studies of plane stability ratio measurements (Sinelair,
Ralph and Leake 1973) which aré one of the more usual ways of studying

order—-disorder kinetics e.g. Taunt and Ralph 1974.

For small particle sizes studies of coarsening may also be

envisaged.

In the course of the development of this method of Fourier
anélysis transforms corresponding to square-wave prdfiles of parﬁicles
generated by conventional nucleation have been studied in addition to
the modulated profiles of continuous phase separation. Since it has
been shown that contiﬁuous transformations may be distinguished from
nucleating systems (see Chapter 4 below), it may be envisaged that
"jdealized" transforms may be used for comparison with experimehtal
composition data and transforms in order to provide a guide to the
possible mode of phase separation. Some studies of this nature have

been made by Biehl 1979; Piller 1979; Biehl and Wagner 1980.

It may also be noted that, although developed for use with atom-

probe data, the proposed Fourier transform method may be applied in
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principle to other experimental data chains.

3.7 Summary

-

This chapter has shown that data chains taken from atom-probe
analyses are suitable for Fourier analysis. A composition profile
which meets transform requirements has been developed. The chapter
then outlines a sequence of steps in analysis designea to permit
direct comparison of atom'probe results with Fourier fqrmulations of
continuous transformétion theories. Examples of transform results are
given. Possible extensions of this analysis to transitions other than

phase separation are discussed.
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