
CHAPTER 3

QUANTITATIVE ANALYSIS OF ATOM-PROBE DATA FOR STUDIES

OF CONTINUOUS PHASE CHANGES!

A FOURIER TRANSFORM METHOQ

3.1 Introduction to Phase Separation Studies

3.1.1 The Suitability of the Atom-Probe

Spinodal phase separation in metallic systems is characterised by

continuous increase in amplitude of a compositional modulation wave

of periodicity in the range 5—2Onm (e.g. Hilliard 1970). The general
suitability of the atom-probe for studies of these modulations has

already been demonstrated by Watts and Ralph 1977, 1978 . Only semi-
quantitative numerical analyses could be applied by Watts and Ralph

to growth of compositional excursions, however, because data chains

were too short for the accurate spectral analyses required for tests
of the diffusion equation given in Chapter 2 above. This restriction
upon statistical confidence has been removed in the present study by

extension of effective data chain length to 40-6Onm per chain.
Primarilx this ten—fold improvement has been achieved by

implementation of computer—controlled methods of data collection.

As a result of chain extension, methods of analysis to extract
spectral components from data are required. This chapter develops one

such new method based upon Fourier transform filtering.
Instrumentation and experimental requirements for data collection are

not considered in this account since most pertinent factors are

discussed by watts and Ralph 1978. More recent changes in
instrumentation (e.g. fast pulse technology (Waugh 1980) and updating
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of computer controlled data collection) are discussed in Appendix A.

3.1.2 The Nature of Atom-probe Data Chains
r

The data from atom—probe studies appear as a chain of discrete
ion events. These events must be combined to represent the physical
compositional wave as a plot of composition against distance probed
into the specimen. The means by which the data are grouped, and hence

the possible routes of numerical analysis of the composition profile,
depend upon the model of the time series which is used to describe the
process of field evaporation. ’

3.1.21 Markov Process

A specific description of atom-probe data as a Markov Chain was

Suggested by Johnson and Klotz 1971. By definition this requires that
the state of the system Xt is characterised by a knowledge of Xt_1

only and is independent of preceding events (Jenkins and Watts 1968).
In terms of atom probe data this demands that Xt_1 provide information
concerning lattice structure. Johnson and Klotz justified their
approach by considering adjacent atoms in the data chain to be nearest
neighbours in the specimen. Even with a projected probe hole of
single atom diameter, as assumed by Johnson and Klotz, the nearest
neighbour approximation may be invalidated by atomic migration. For
studies of phase changes a probe hole encompassing 50-100 atoms is
required for compositional analysis (Watts and Ralph 1978) and in this
case the nearest neighbour model certainly fails because atoms under
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the probe hole may be expected to evaporate in near—random order.

3.1.2ii Random evaporation process
1

A general discrete time series analysis based upon random

evaporation from material under the probe hole has been suggested by

Watts and Ralph 1978. In their model the data chain, assumed for
simplicity to sample a binary system, is regarded as a series of A

atoms (minor species) spaced by B atoms. Using data for Ni-12at.%Ti
alloy Watts and Ralph justified their method by demonstrating that the
calculated distribution of A (Ti) atoms approximated that predicted
by the binomial theorem. This approach is certainly more realistic
than the Markov treatment and the assumption of random evaporation is
taken as the basis of the present analytical study. Some possible
inadequacies of this assumption are discussed in section 3.6.

3.1.3 Composition Profiles

All methods for conversion of time series of A events into
composition profiles (see section 3.1.3 below) seek to define the
specimen composition at predetermined sampling intervals by expressing
the relative frequency of occurrence of A events in terms of total ion
count i.e. probing distance. Three basic types of composition profile
may be distinguished.

3.1.31 Step profile

The step profile (e.g. Goodman, Brenner and Low 1973) plots the
occurrence of a selected chemical species directly as a function of
total ion count (probing distance) or remaining species. Using small
steps of 1-20 ions through the data chain emphasises abrupt changes
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in composition between adjacent planes and composition excursions of
short periodicities. This technique is suitable for studies of order—-

disorder reactions (e.g. Taunt and Ralph 197M). interface development
and Southon

and various forms of segregation (e.g. Waugh/1977). The method is
illustrated in figure 3.1 which shows part of a step profile for a

<1lO> probing sequence in an Ni3Al single crystal. Adjacent ordered

superlattice planes have compositions of 100%Ni and 50%Ni + 50%Al.

3.1.3ii (Simple Grouping

For longer data strings the chain may be divided into larger sube

units, say 200-1000 ions. Assuming that each unit represents a small

volume of material of constant composition within the sample, this
gives a profile of composition in atom% versus ion count. With

suitable correction in sub-unit size for changes in tip radius i.e;
changes in the number of ions collected per atomic plane (section 3.hJi
below) the plot corresponds to a composition against distance profile.
Figure 3.2 shows such a plot for Ni-14,1at,%A1 alloy aged for

hours at 625°C (probing direction <110>, 200 ions per point).

‘U1

LO

This method sacrifices information contained within each sub-

unit, but it is suitable for studies of long range effects such as

clustering‘phenomena.

3.1.3iii Running means

The running mean is also used for study of long range phenomena.

In its simplest form the method again defines a small chain sub-unit,
t, of 10-20 ions, and composition values as at% are then plotted over

n terms at intervals of t (e.g. Yule and Kendall 1968). Figure 3.3

shows data from an analysis of two-phase Ni-20.0at.%Cr-1U.Oat.%Al
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alloy (Chapter 5) plotted in running mean form.

This simple form, however, still rejects information within sub-

units. A statistical running mean was therefore proposed by Watts and

Ralph 1978. Where U denotes the number of B atoms separating adjacent

A atoms, the nth term of U in the time series is replaced by an

average over 2t+1 values.

The disadvantages of running mean methods are conversion of
composition steps to gradients and loss of high frequency oscillations
in the original composition data.

3.1.4 Methods of Analysis

Once a suitable composition profile has been produced it may be

subjected to some general time—series analysis or trend removal (e.g.

correlation coefficient studies or Fourier transform methods) in order

to follow the development of the component wavelengths.

For studies of continuous changes Fourier transform techniques

are the most appropriate because results may be compared directly with

predictions of transition theories which are expressed as Fourier

solutions (Chapter 2). In addition Fourier analysis of composition
data should produce results which are comparable with diffraction
patterns such as those of TEM or X-ray work. This interrelation of
diffraction studies and modulated microstructure has been clearly
demonstrated by de Fontaine (1966) using an electronic analogue.

0

The present study.is therefore devoted to two topics: i)
construction of a composition profile suitable for Fourier transform

and ii) development of a method of Fourier transformation by which to
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assess as accurately as possible the relative amplitudes of dominant

Fourier components. Possible extensions of the method to study of

other phase changes are discussed in section 3.6.

3.2 Formal Fourier Transform Theory

3.2.1 General Fourier Transform (FT)

The Fourier Transform, F(m), (Champeney 1973; Brigham 197R;

Bracewell 1978) expresses an aperiodic function, f(t). in terms of a

continuous range of frequencies, w t
+®

E(w) =,'(51;3%‘/r f<t> eXp(—iwt) at ....E3.1

In order to assess the overall contributions of specific frequencie$

(wavenumbers) this equation may be rewritten in terms of the

coefficients of the cosine and sine terms which comprise the waveform

Thus: -

4%

A,<w> = %- f<t> cos<wt> at ....E3.2
~02

-Poo

Bn(w) = %. bl“ f(t) sin(wt) dt ...iE3.3
-~®

where An and B" represent the cosine and sine coefficients
respectively.

Two specific functions represented in symbolic notation are

referenced in the present work. These are the rectangular function
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II(t) (a sampling window of unit height and base) and the infinite
impulse train III(t) which corresponds to discrete data sampling at

a fixed interval. Both functions and their Fourier transforms are

illustrated in Appendix C.1

3.2.2 Discrete Fourier Transform (DFT)

3.2.21 Theory

DFT operates where values of a function or transform are

available only at discrete intervals. Experimental data are an .

example of a discrete input stream.

Expressions for DFT are essentially very similar to general FT

solutions, but with integrations replaced by summation over the

appropriate range of variable. For example the DFT itself is:
. N—1

F(v) = -% 2%: f(T) exp(—2nivT/N) __..E3.u
T=0

Beginning with data sampling of a function using the infinite impulse

train III(t) Appendix C.2 illustrates the series of steps which leads

to the Fourieyéransform of experimental data.

' The CONVOLUTION THEOREM (e.g. Bracewell 1978) and its inverse,

the PRODUCT THEOREM, are referenced particularly in the following

text. These theorems state that for two sequences (DFT) (or functions

(FT)) convolved in the data domain the transforms are multiplied in

the transform domain and vice versa. Stated formally the convolution

theorem is:
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1 r

gm * g(t) = F(w) cu») ....E3.5

3.2.211 Calculation

Methods of calculation are summarised in the references. By far

the most popular is an algorithm due to Cooley and Tukey (see e.g.

Bracewell 1978), known as the Fast Fourier Transform (FFT). This is"
somewhat less accurate than other methods, but computation is much

faster. '

In terms of limitations imposed upon input experimental data, all
methods should ideally operate upon an oscillating and noiseless

physical waveform.

3.2.2iii Errors

Major errors in DFT may arise from inappropriate data truncation

or sampling.

Truncation

Experimental data chains must be regarded as sections selected

from a much longer chain using a rectangular data window TT(t). The

result of selection seen in the transform domain (product theorem) is

convolution of the true DFT with a sinc function (sinwx/x). This is

illustrated in figure 3.U. Thus the original DFT becomes smoothed and

some falsification of higher frequencies may arise from "leakage

error" associated with higher terms of the sine function (e.g.

Bracewell 1978). These inherent errors are unavoidable, but may be '

reduced for low wavenumbers by increasing data chain length.

lug-
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For the Cooley—Tukey algorithm 2N data values are required.

"Packing" of domains to satisfy this requirement may introduce further

error. If zero values are imposed upon a chain of non—zero—mean data

a step is produced in the input stream and rough structure in the net

transform. Thus packing must employ dummy variables. '

Sampling

Essentially the data sampling interval must be selected such that

the wave of highest frequency is sampled at least twice per wavelength

(critical sampling). Undersampling generally results in loss of fine

detail.. Additionally "aliasing" may occur, high frequencies

"impersonating" lower frequencies (e.g. Bracewell 1978)

For low wavenumbers transforms may also be inaccurate if few

complete long wavelengths are sampled. -

3.3 A Composition Profile for Fourier Transform: Introduction of a New

Analysis Route

Of the three methods described in section 3.1.3 above only simple

grouping is appropriate for Fourier transform. The step profile
cannot be used because it is non-oscillatory, being possessed of a

trend derived from the form of construction. It is also very noisy.

The running mean is undesirable because the transform contains

terms from the smoothing function. In Fourier terminology the

compositional data are convolved with a rectangular sampling function

IT (x), of width (2t+1) terms,in the data domain. Thus the transform

is multiplied (convolution theorem) by sinc(x). This is illustrated '

in figure 3.5. ,In principle the sinc(x) terms may be recovered from
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the net transform.

The following Fourier transform treatment is therefore developed
.-for a composition profile of simple grouping type. The spatial

information which is lost within grouping units may be recovered from

the original data by the alternative methods described in the present

section. i

3.U The Fourier Transform Route.

3.H.1 Construction of the Composition Profile.

3.M.1i Sampling

Two factors must be considered in selection of sampling size.
Small units tend to introduce noise into the profile and cause loss

of significance in the transform. Undersampling leads to aliasing in
the transform (section 3.2 above) and also general loss of accuracy
by reduction in available data values. The optimum solution to

balance these factors retains the maximum number of compositional
values, Cn, while giving acceptably small background variance in the

transform (section 3.".3 below). An approximate optimum solution may

be obtained by trial and error, selecting a unit size for the

composition profile and observing the transform.

The physical significance of each sub-unit, m, should also be

considered. The separation of components in the transform domain is
reciprocally related to the distance between compositional

determinations, Cn, in the sampling domain. Thus if samples contain

some multiple of the number of ions detected per atomic plane, the

Fourier wavenumbers are inversely related to the interplanar spacing.

-4M-
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u

If it is necessary to suppress composition modulations which arise

from planar stacking sequences, this may be achieved by selection of

a unit size appropriate to'the lattice repeat (or some multiple

thereof). ' '

Several problems are associated with the grouping. First,the ion

count per plane varies as a function of probing voltage and also as ‘

a function of probing direction. The former may be counteracted by

adjustment of unit size on a sliding scale calibrated using an ordered

single crystal (e.g. L12, Ni3Al)- The effect of probing direction is

measurable using the same single crystal and may be estimated from

crystallographic considerations.

Second, where compositional modulations are present, and

particularly in cases of lattice ordering, the exact profile produced

may be extremely sensitive to starting position along the data chain.

Thus it is recommended that a step profile of each data chain be

examined before chain sub—division. For cases where the composition

profile, Cn, is origin—dependent, step analyses will detect plane-to-
plane compositional discontinuities and provide an origin location

(figure 3.1).

For situations where little origin-dependence is seen, minor

effects may be counteracted, if required, by an averaging procedure.

Three composition plots are derived starting at i) an arbitrary origin

O, ii) a distance m/3 from the origin and iii) 2m/3 from the origin,

where m is the sub-unit size. All three are transformed and the

results summed and averaged as detailed below in section 3.U.2iiL

Two examples of optimised traces are shown in figure 3.6.
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Figure 3.6b replots the data used for figure 3.2 in optimized

form for comparative purposes. Figure 3.6a shows data

from another specimen of»the same alloy aged for 5 hours at 625°C.

In all cases the unit size is 150 ions for a tip at 11.6 kV and <111>

probing direction. This choice describes two lattice planes. The

equivalent grouping for <110> would suppress the two-layer lattice
repeat of L12 Ni3Al. Thus <11O> transforms may be compared directly
with <111> data which shows no lattice—related compositional

modulations.

3.H.1ii Truncation.

V The profile thus far oscillates about a positive mean and is of
non-standard length for DFFT. Calculation of the mean and subtraction

of this from each separate data value gives an oscillating series

about zero. Dummy variables of zero may then be used to extend the

reduced profile, CnR, to the required length.

3.M.2 Transform Steps

3.4.21 Initial transform

The stages of Fourier transform are illustrated in figure 3.7.

Once the reduced profile CnR has been transformed, sampling errors are

still present at the low frequency end of the Fourier spectrum because

insufficient long wavelengths are present in the data chain for
accurate analysis. A correction may be applied for this by

subtracting from the original data the effects of the invalid low

frequencies. Thus the significance of terms of interest in spinodal

studies (0.8-20.0nm) is increased.

..Ll 6..



Data

Step profile Simple grouping profile, Cn Running mean

Reduced Profile cnR

cR=c -E
1'1 1'1

Initial Transform
1 N
—- Z (A cosinvr) + B sin(nvr))N n=1 n n

New Reduced Profile
R‘ R M , q _

C = C — Z (A ¢0s(nvr) + B sinLnvt)) - Z (A cos(nvr2 + B sininvrl)n n n=N n n n n

Final Transform
N V

1
-I; “:1 (P-1'1 cos (.1'1v1') + B11‘ sin(.nv1'))

Amplitude Spectrum

Alma) = <An<s>= 4 B-n<.s)=>"

Summation

K(s>—-1- §A<>I‘ -N I‘B

23

0-

Variance

V = 1. Q (C _ 732
N ‘ncn=1

If V Stationary

Kinetic Analyses

R(B) vs. 5 and R(B)/B: vs. B’

Figure 3.7 Stages of Fourier Transformation



R R
C = C — 2 (A cos nvr + B sin nvt)n n n n ,

The reduced profile comprises a Fourier series. The contribution
of each Fourier component to this series have been evaluated in terms

of the cosine and sine coefficients. Thus a new Fourier series or
R’ Rreduced profile, Cn , may be derived from Cn by subtraction of

appropriate terms from equation E3.4.

Explicitly:
I m '

IF1 IOQE3I6

5
wfmz

55

cos nut + Bn sin nvr)

If the range of wavelengths 0.8—20.0nm is to be retained then the
number of low frequency terms (n=1,2.....m) rejected in this way

should generally vary between 5 and 20. Other particular frequencies
such as superlattice repeat terms may also be subtracted at this stage

(n=p,q). Subtraction of Fourier terms provides an attractive
alternative to modulation suppression by grouping at early stages

- |since grouping is very susceptible to aliasing. The new profile CnR

may then be transformed in the normal way.

3.U.2ii Amplitude spectrum

The data aILthen represented in the form of a plot of amplitude,
AI(B), against wavenumber, 3, where (Jenkins and Watts 1968)

2 2 1 2 'AI(B) = ( (An(B)) + (Bn(3)) ) / __..E3.7

Q3.u.2iii Summation of transforms

Where more than one data chain is available to characterise the
microstructure of each heat treatment some method of combining

_u7_



1

individual chains to represent the net structure is required. Direct

concatenation of adjacent chains (same specimen) in the data domain

requires knowledge of the distance separating the chains and/or the

change of phase between them. Chains from different specimens cannot

be directly concatenated in this domain. - '

In the transform domain, however, coefficients may be summed

directly, provided that standard procedures are followed throughout "A

for profile construction and transform.

Thus ‘

_ N
31(3) .= 1223(5) ....E3.8

Nn='-'1 »

Similarly
....E3.9

‘MPZ

131(6) =_:? BI<s>

For the averaging procedure mentioned in section 3.4.11,

(representation of single chains), the structure may be considered to

be a summation of the three separate composition series. Fourier

summations given above may then be applied.

3.H.3 Significance

Considering first high Fourier wavenumbers, frequencies greater

than N/2, where N is the number of compositional points, are

meaningless because a minimum of two points (plus an origin) is
required to define a waveform (critical sampling, see section 3.2.2iii
above). In practical terms this region of the spectrum, ( B< N/2),

may also be complicated by superlattice components. Thus for

_H8_
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clustering studies frequencies in the range N/U and above should be

regarded with caution.
1-

At the low_frequency end the first few Fourier components are

rendered inaccessible by virtue of the numerical exclusion employed

in the transform procedure (section 3.H.2i above).

This, however, leaves a large range of terms which may be

examined. Consider a data chain of 75,000 ions corresponding to 1000 '

8
atomic planes or "200nm probing distance. A range of frequencies B=05m0

to &54wcwrresponds to wavelengths 20.0—0.#nm. This more than covers

the range of modulations found in most metallic spinodal structures.

For these remaining terms the amplitude spectrum may be expected

to show distinct peaks at dominant periodicities. Statistical
significance of the major frequencies may be tested in a variety of '

ways (e.g. Yule and Kendall 1968). Variance was selected for the

present study. As frequency terms are rejected from extremities of

the spectrum the overall variance cannot typify specific central

wavenumber regions. Thus local background variance calculations

should be performed for each region of interest.‘

The variance, V, of data is given by

N. 2 2
v = _i_ 2: (A - A) = o

N n=1 "' ....E3.10

wherez = arithmetic mean amplitude

0 = standard deviation

For a profile showing strongly dominant periodicities superposed upon

..U,9..
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an approximately noiseless background the variance will tend to become

stationary when dominant terms are successively removed from the ’

amplitude data and V recalculated. Two criteria must be defined for

this calculation of background variance: i)the amplitude deviation

which is considered significant and ii) the maximum number of data

values which should be removed. For the first, a departure of 36 from

the current mean may be proposed. The second criterion essentially

defines the acceptable degree of merging between dominant peaks and

background. Studies showed that acceptable resolution is obtained

where less than 20% of the initial data values are rejected before -

stationary variance was achieved

3.4.U Comparison with Kinetic Theory

Kinetic equations for clustering have already been presented in

Chapter 2 above. As a summary the following constructions are

required in testing the character of transformation. 1) A plot of

AI(B) against time, t, for dominant wavenumbers. 2) A plot of the

amplification factor, R(B), (given by the slope of AI(B) versus time)

against B, and 3) Examination of R(B)/B2 versus B2.

3.5 Practical Analyses

Two net Fourier transforms obtained using the method outlined

above are shown in figure 3.8. These are derived from the composition

profiles shown in figures 3.6a and 3.6b. Each contains some dominant

periodicities and several very dominant peaks (e.g. 6 = 2.50 and B = 1.85>¢|0'|

are common, increasing in amplitude as ageing increases. In each

case background variance was found to be acceptable and stationary.

For example, at B=3.50, V=0.001

_.5Q_
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Calculation of these transforms employed routine C06AAF from the

Nottingham Algorithm Group Library of the University of Cambridge

Computing Service (Cooley-Tukey algorithm).

These calculations concerning Ni—1U.1ap,%A1 have been extended

also to tests of the diffusion equation predictions of Chapter 2. The

results of the study, which demonstrated that decomposition is indeed\

continuous, form the basis of Chapter 4.

3.6 Assessment of the Fourier Method and Possible Extensions of

Analysis.

3.6.1 Sources of Errog

Apart from errors involved in transform this method may be

subject to inaccuracy associated with the original time series. For

example:

i) although specimens evaporate in an approximate plane-by-plane

sequence individual events may be recorded from planes not immediately

on the surface; ii) the series can take no account of changes oft

phase in oscillation accorded by antiphase domain boundaries in

ordered structures; iii) similarly, grain boundaries and other

defects are not considered.

‘However, the latter two effects may be detected by parallel

observations of step profiles and overall it is considered that the

time series analysis represents a reasonable approximation to true

-51..
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behaviour.

3.6.2 Extensions of the Study
I

In principle the transform may simply be extended to encompass

order-disorder composition modulations by retention of superlattice

modulations and subtraction of all Fourier terms greater in wavelength

than a few lattice periodicities. Similar Fourier techniques may also

be applied to studies of plane stability ratio measurements (Sinclair,

Ralph and Leake 1973) which are one of the more usual ways of studying

order-disorder kinetics e.g. Taunt and Ralph 197“.

For small particle sizes studies of coarsening may also be

envisaged.

In the course of the development of this method of Fourier' .

analysis transforms corresponding to square—wave profiles of particles

generated by conventional nucleation have been studied in addition to

the modulated profiles of continuous phase separation. Since it has

been shown that continuous transformations may be distinguished from

nucleating systems (see Chapter H below), it may be envisaged that

"idealized" transforms may be used for comparison with experimental

composition data and transforms in order to provide a guide to the

possible mode of phase separation. Some studies of this nature have

been made by Biehl 1979; Piller 1979; Biehl and Wagner 1980. ~

It may also be noted that, although developed for use with atom-

probe data, the proposed Fourier transform method may be applied in
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principle to other experimental data chains.

3.7 Summary
1-

This chapter has shown that data chains_taken from atom—probe

analyses are suitable for Fourier analysis. A composition profile

which meets transform requirements has been developed. The chapter

then outlines a sequence of steps in analysis designed to permit

direct comparison of atom probe results with Fourier formulations of

continuous transformation theories. Examples of transform results are

given. Possible extensions of this analysis to transitions other than

phase separation are discussed.
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