
STEELS

H. K. D. H. BHADESHIA

1. Martensite in Steels 1

2. Bainite in Steels 13

3. Alloy design: strong bainite 21

4. Widmanstätten Ferrite 25

5. Allotriomorphic Ferrite 30

6. Pearlite 38

7. Overall Transformation Kinetics 41

8. TRIP Steels 45

9. TWIP Steels 52

10. Mitigation of Residual Stress 54

11. Bulk Nanostructured Steel 57

12. Question Sheet 61

References 67

i



Question and example class documents attached to the end of this handout.

The book associated with this course: “Steels”, 2017, 4th edition, H. K. D. H.
Bhadeshia and R. W. K. Honeycombe, available on the Tripos reference shelves in
the library.

Many questions associated with this course are on:

https://edge.edx.org/courses/MSM/M21/2013 Winter/about

You may click directly on the above link on your PDF file to reach the location.
The link will take you to an automated learning system based on the edX platform
courtesy of Harvard and MIT.

In order to optimally benefit from this system, you should attempt one set of ques-
tions after each lecture. This will test your understanding of the lecture material.
Marking is fully automated. Supervisions can therefore be better exploited to deal
with conceptual difficulties and for broadening the discussion.

The full set of resources associated with this course is available on:

http://www.phase-trans/msm.cam.ac.uk/teaching.html

1. Martensite in Steels

The name martensite is after the German scientist Martens. It was used originally
to describe the hard microconstituent found in quenched steels. Martensite remains
of the greatest technological importance in steels where it can confer an outstanding
combination of strength (> 3500MPa) and toughness (> 200MPam
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2 ). Many ma-
terials other than steel are now known to exhibit the same type of solid-state phase
transformation, known as a martensitic transformation, frequently also called a shear
or displacive transformation. Martensite occurs in, for example, nonferrous alloys,
pure metals, ceramics, minerals, inorganic compounds, solidified gases and polymers
(Table 1). We shall review first the experimental facts about martensite and then
proceed to explain them.

1.1. Diffusionless Character. Martensitic transformations are diffusionless, but
what evidence is there to support this?
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Table 1. The temperature MS at which martensite first forms on
cooling, and the approximate Vickers hardness of the resulting marten-
site for a number of materials.

Composition MS / K Hardness HV

ZrO2 1200 1000

Fe–31Ni–0.23C wt% 83 300

Fe–34Ni–0.22C wt% < 4 250

Fe–3Mn–2Si–0.4C wt% 493 600

Cu–15Al 253 200

Ar–40N2 30

Martensite can form at very low temperatures, where diffusion, even of interstitial
atoms, is not conceivable over the time period of the experiment. Table 1 gives val-
ues of the highest temperature at which martensite forms in a variety of materials;
this temperature is known as the martensite–start, or MS temperature. It is obvious
that although martensite can form at low temperatures, it need not do so. There-
fore, a low transformation temperature is not sufficient evidence for diffusionless
transformation.

Martensite plates can grow at speeds which approach that of sound in the metal.
In steel this can be as high as 1100m s−1, which compares with the fastest recorded
solidification front velocity of about 80m s−1 in pure nickel. Such large speeds are
inconsistent with diffusion during transformation. Note that martensite need not
grow so rapidly. For example, in shape–memory alloys or in single–interface trans-
formations, the interface velocity is small enough to observe.

The chemical composition of martensite can be measured and shown to be identical
to that of the parent austenite. The totality of these observations demonstrate
convincingly that martensitic transformations are diffusionless.

1.2. The Habit Plane. This is the interface plane between austenite and martensite
as measured on a macroscopic scale (Fig. 1), for example by using one or two–surface
crystallographic trace analysis on metallographic samples. For unconstrained trans-
formations this interface plane is flat, but strain energy minimisation introduces some
curvature when the transformation is constrained by its surroundings. Nevertheless,
the macroscopic habit plane is identical for both cases, as illustrated in Fig. 1.
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Figure 1. An il-
lustration of the habit
plane between austenite
(γ) and martensite (α′).

Steels of vastly different chemical composition can have martensite with the same
habit plane (Table 2), and indeed, other identical crystallographic characteristics.

Table 2. Habit plane indices for martensite. With the exception
of ǫ–martensite, the quoted indices are approximate because the habit
planes are in general irrational.

Composition /wt.% Approximate habit plane indices

Low–alloy steels, Fe–28Ni {1 1 1}γ
Plate martensite in Fe–1.8C {2 9 5}γ
Fe–30Ni–0.3C {3 15 10}γ
Fe–8Cr–1C {2 5 2}γ
ǫ–martensite in 18/8 stainless steel {1 1 1}γ

1.3. Orientation Relationships. The formation of martensite involves the coordi-
nated movement of atoms. It follows that the austenite and martensite lattices will be
intimately related. All martensitic transformations therefore lead to a reproducible
orientation relationship between the parent and product lattices. It is frequently the
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case that a pair of corresponding close–packed1 planes in the ferrite and austenite
are parallel or nearly parallel, and it is usually the case that corresponding directions
within these planes are roughly parallel:

Kurdjumov–Sachs

{1 1 1}γ || {0 1 1}α
〈1 0 1〉γ || 〈1 1 1〉α

Nishiyama–Wasserman

{1 1 1}γ || {0 1 1}α
〈1 0 1〉γ about 5.3◦ from 〈1 1 1〉α towards 〈1 1 1〉α

Greninger–Troiano

{1 1 1}γ about 0.2◦ from {0 1 1}α
〈1 0 1〉γ about 2.7◦ from 〈1 1 1〉α towards 〈1 1 1〉α

Note that these have been stated approximately: the true relations are irrational,
meaning that the indices of the parallel planes and directions cannot be expressed
using rational numbers (the square root of 2 is not a rational number).

1.4. Athermal Nature of Transformation. In the vast majority of cases, the
extent of reaction is found to be virtually independent of time:

(1) 1− Vα′ = exp{β(MS − T )} where β ≃ −0.011

Vα′ is the fraction of martensite and T is a temperature below MS. This is the
Koistinen and Marburger equation; notice that time does not feature in this rela-
tion, so that the fraction of martensite depends only on the undercooling below the
martensite–start temperature. This athermal character is a consequence of very rapid
nucleation and growth, so rapid that the time taken can in normal circumstances be
neglected.

1The body–centred cubic lattice does not have a close–packed plane but {0 1 1}α is the most densely

packed plane.
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Isothermal martensite is possible when nucleation is hindered, although the growth
rate of individual plates of martensite can still be rapid.

1.5. Structure of the Interface. Any process which contributes to the formation
of martensite cannot rely on assistance from thermal activation. There must there-
fore exist a high level of continuity across the interface, which must be coherent or
semi-coherent. A stress–free fully coherent interface is impossible for the γ → α′

transformation since the lattice deformation BR is an invariant–line strain. A semi–
coherent interface must be such that the interfacial dislocations can glide as the
interface moves (climb is not permitted). It follows that the Burgers vectors of the
interface dislocations must not lie in the interface plane unless the dislocations are
screw in character.

There is an additional condition for a semi–coherent interface to be glissile. The
line vectors of the interfacial dislocations must lie along an invariant–line, i.e. a line
which joins the parent and product crystals without any rotation or distortion. Why
is that? If there is any distortion along the dislocation line, then other dislocations
are needed to accommodate that misfit. It will then be necessary to have more than
one set of non–parallel dislocations in the interface. These non–parallel dislocations
can intersect to form jogs which render the interface sessile.

It follows that for martensitic transformation to be possible, the deformation which
changes the parent into the product must leave one or more lines invariant (unrotated,
undistorted). A deformation which leaves one line invariant is called an ‘invariant–
line strain’.

1.6. The Shape Deformation. The passage of a slip dislocation through a crys-
tal causes the formation of a step where the glide plane intersects the free surface
(Fig. 2a,b). The passage of many such dislocations on parallel slip planes causes
macroscopic shear (Fig. 2c,d). Slip causes a change in shape but not a change in
the crystal structure, because the Burgers vectors of the dislocations are also lattice
vectors.

During martensitic transformation, the pattern in which the atoms in the parent
crystal are arranged is deformed into that appropriate for martensite, there must be
a corresponding change in the macroscopic shape of the crystal undergoing transfor-
mation. The dislocations responsible for the deformation are in the α′/γ interface,
with Burgers vectors such that in addition to deformation they also cause the change
in crystal structure. The deformation is such that an initially flat surface becomes
uniformly tilted about the line formed by the intersection of the interface plane with
the free surface. Any scratch traversing the transformed region is similarly deflected
though the scratch remains connected at the α′/γ interface. These observations, and
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others, confirm that the measured shape deformation is an invariant–plane strain
(Fig. 2e–g) with a large shear component (≃ 0.22) and a small dilatational strain
(≃ 0.03) directed normal to the habit plane.

Figure 2. (a, b) Step caused by the passage of a slip dislocation.
(c, d) Many slip dislocations, causing a macroscopic shear. (e) An
invariant–plane strain with a uniaxial dilatation. (f) An invariant–
plane strain which is a simple shear. (g) An invariant–plane strain
which is the combined effect of a uniaxial dilatation and a simple shear.

1.7. Bain Strain. We now consider the nature of the strain necessary to transform
the c.c.p. lattice of γ into the b.c.c. lattice of α′. Such a strain was proposed by Bain
in 1924 and hence is known as the ‘Bain Strain’ (Fig. 3). There is a compression
along the z axis and a uniform expansion along the x and y axes.

The deformation describing the Bain Strain is given by

(2) B =





ǫ0 0 0
0 ǫ0 0
0 0 ǫ′

0





(3) ǫ0 =

√
2aα′ − aγ

aγ
ǫ′
0
=

aα′ − aγ
aγ
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Figure

3. The Bain
strain (not all
lattice points
illustrated).

where aα′ and aγ are the lattice parameters of martensite and austenite respectively.
The contraction is therefore along the [0 0 1]γ axis and a uniform expansion on the
(0 0 1)γ plane.

The Bain strain implies the following orientation relationship between the parent
and product lattices:

[0 0 1]fcc||[0 0 1]bcc [1 1 0]fcc||[1 0 0]bcc [1 1 0]fcc||[0 1 0]bcc

but in fact, the experimentally observed orientation relationships are irrational, as
discussed earlier. We shall deal with this inconsistency later.

Temporarily neglecting the fact that the Bain orientation is inconsistent with ex-
periments, we proceed to examine whether the Bain strain leaves at least one line
invariant. After all, this is a necessary condition for martensitic transformation.

In Fig. 4a,b, the austenite is represented as a sphere which, as a result of the Bain
strain B, is deformed into an ellipsoid of revolution which represents the marten-
site. There are no lines which are left undistorted or unrotated by B. There are
no lines in the (0 0 1)fcc plane which are undistorted. The lines wx and yz are
undistorted but are rotated to the new positions w′x′ and y′z′. Such rotated lines
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are not invariant. However, the combined effect of the Bain strain B and the rigid
body rotation R is indeed an invariant–line strain (ILS) because it brings yz and y′z′

into coincidence (Fig. 4c). This is the reason why the observed irrational orienta-
tion relationship differs from that implied by the Bain strain. The rotation required
to convert B into an ILS precisely corrects the Bain orientation into that which is
observed experimentally.

Figure 4. (a) and (b) show the effect of the Bain strain on austenite,
which when undeformed is represented as a sphere of diameter wx =
yz in three–dimensions. The strain transforms it to an ellipsoid of
revolution. (c) shows the invariant–line strain obtained by combining
the Bain strain with a rigid body rotation through an angle θ.

As can be seen from Fig. 4c, there is no rotation which can make B into an invariant–
plane strain since this would require two non–parallel invariant–lines. Thus, for the
fcc → bcc transformation, austenite cannot be transformed into martensite by a
homogeneous strain which is an IPS. And yet, the observed shape deformation leaves
the habit plane undistorted and unrotated, i.e. it is an invariant–plane strain.

The phenomenological theory of martensite crystallography solves this remaining
problem (Fig. 5). The Bain strain converts the structure of the parent phase into
that of the product phase. When combined with an appropriate rigid body rotation,
the net homogeneous lattice deformation RB is an invariant–line strain (step a to
c in Fig. 5). However, the observed shape deformation is an invariant–plane strain
P1 (step a to b in Fig. 5, but this gives the wrong crystal structure. If a second
homogeneous shear P2 is combined with P1 (step b to c), then the correct structure
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is obtained but the wrong shape since

P1P2 = RB

These discrepancies are all resolved if the shape changing effect of P2 is cancelled
macroscopically by an inhomogeneous lattice–invariant deformation, which may be
slip or twinning as illustrated in Fig. 5.

The theory explains all the observed features of the martensite crystallography. The
orientation relationship is predicted by deducing the rotation needed to change the
Bain strain into an invariant–line strain. The habit plane does not have rational
indices because the amount of lattice–invariant deformation needed to recover the
correct the macroscopic shape is not usually rational. The theory predicts a substruc-
ture in plates of martensite (either twins or slip steps) as is observed experimentally.
The transformation goes to all the trouble of ensuring that the shape deformation
is macroscopically an invariant–plane strain because this reduces the strain energy
when compared with the case where the shape deformation might be an invariant–line
strain.

1.8. Thermodynamics of Martensitic Transformations. Martensite is not rep-
resented on phase diagrams because the latter deal with equilibrium. Martensite
deviates from equilibrium in two important ways:

Martensite grows without diffusion, so it inherits the chemical composition of the
parent austenite. In an equilibrium transformation the chemical elements partition
into the parent and product phases in a manner which leads to a minimisation of
free energy.

Secondly, the shape deformation associated with martensitic transformation causes
strains; the resulting strain energy has to be accounted for before the transformation
can happen.

These deviations can be represented on a free energy plot as illustrated in Fig. 6.

Table 3. Typical energies associated with martensitic transformation.

Jmol−1

Strain energy 600

Twin interface energy 100

γ/α′ interface energy 1

Stored energy due to dislocations 20
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Figure 5. The phenomenological theory of martensite crystallography.

The relationship with the phase diagram is illustrated in Fig. 7. Martensitic trans-
formation is only possible below the T ′

0
temperature.
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Figure 6. The distance ac represents the free energy decrease when
austenite of composition x decomposes into an equilibrium mixture of
ferrite and austenite of compositions xαγ and xγα respectively. The
distance ab is the smaller decrease in free energy when martensite
forms without any composition change, taking into account the strain
associated with the transformation.
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Figure 7. Schematic illustration of the origin of the T0 curve on the
phase diagram. The T ′

0
curve incorporates a strain energy term for the

ferrite, illustrated on the diagram by raising the free energy curve for
ferrite by an appropriate quantity.

12



2. Bainite in Steels

Bainite forms by the decomposition of austenite at a temperature which is above
MS but below that at which fine pearlite forms. All bainite forms below the T0

temperature.

All time–temperature–transformation (TTT) diagrams consist essentially of two C–
curves (Fig. 8). If we focus first on the Fe–Mn–C steel with the higher hardenability
(slower rates of transformation) then the two curves are separated. The upper C–
curve represents the time required to initiate reconstructive transformations such as
ferrite or pearlite, whereas the lower C–curve represents displacive transformations
such as bainite or Widmanstätten ferrite. Notice that as the hardenability of the
steel decreases, the two curves tend to overlap so that in experiments it appears as
if the TTT diagram contains just one curve with a complicated shape, describing all
the reactions. This is not the case because it is possible to show that this is an exper-
imental artefact caused by the inability to detect the two C–curves separately.

Figure 8. TTT dia-
grams for two steels,
one of which has a
high hardenability.

A further feature to note (Fig. 8, Fe–Mn–C) is that the lower C–curve representing
displacive transformations has a flat top. This represents the highest temperature
Th at which displacive transformations may occur. The temperature Th may equal
the bainite–start temperature BS if the hardenability is high enough, but otherwise,
Th = WS where WS is the Widmanstätten ferrite start–temperature (Fig. 9). The
latter does not form in high–hardenability steels and we shall discuss in this lecture
the detailed differences between bainite and Widmanstätten ferrite.

Bainite is a non–lamellar aggregate of carbides and plate–shaped ferrite (Fig. 10). As
we shall see later, the carbide part of the microstructure is not essential; the carbides
form as a secondary reaction, rather as in the tempering of martensite. The ferrite
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Figure 9. TTT di-
agrams showing the
different domains of
transformation.

plates are each about 10µm long and about 0.2µm thick, making the individual plates
invisible in the optical microscope.

Upper bainite consists of clusters of platelets of ferrite adjacent to each other and
in almost identical crystallographic orientation, so that a low–angle boundary arises
whenever the adjacent platelets touch. The ferrite always has a Kurdjumov–Sachs
type orientation relationship with the austenite in which it grows.

Elongated cementite particles usually decorate the boundaries of these platelets, the
amount and continuity of the cementite layers depending on the carbon concentration
of the steel.

Figure 10. Schematic
illustration of the mi-
crostructure of upper
and lower bainite.

The clusters of ferrite plates are known as ‘sheaves’ (Fig. 11); each sheaf is itself in
the form of a wedge–shaped plate on a macroscopic scale. The sheaves inevitably
nucleate heterogeneously at austenite grain surfaces. The cementite precipitates from
the carbon–enriched austenite between the ferrite plates; the ferrite itself is free from
carbides. Cementite precipitation from austenite can be prevented by increasing the
silicon concentration to about 1.5 wt%; this works because silicon is insoluble in
cementite. Silicon–rich bainitic steels can have very good toughness because of the
absence of brittle cementite.
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Figure 11. Evolution
of a bainite sheaf as a
function of time.

2.1. Shape Deformation. The formation of bainite causes a deformation (Fig. 12)
which is an invariant–plane strain with a shear component of about 0.26 and a
dilatational strain normal to the habit plane of about 0.03. This is consistent with
a displacive mechanism of transformation.

Bainite forms at a relatively high temperature when compared with martensite. The
parent austenite is weaker at high temperatures and cannot accommodate the large
shape deformation elastically. It therefore relaxes by plastic deformation in the region
adjacent to the bainite. This is evident in Fig. 12, but is also presented as a height
scan in Fig. 13. The effect of this plastic deformation is to stifle the growth of bainite
plates before they hit any obstacle. This is why each bainite plate grows to a size
which is often smaller than the austenite grain size and then comes to a halt. Further
transformation happens by the formation of a new plate and this is why the sheaf
morphology arises.

2.2. Substitutional Alloying Elements. These do not redistribute at all dur-
ing transformation, even though equilibrium requires them to partition between the
austenite and ferrite (Fig. 14). The ratio of substitutional to iron atoms remains con-
stant everywhere including across the interface. This is consistent with a displacive
mechanism of transformation and the existence of an atomic correspondence between
the austenite and bainitic ferrite. The results exclude any mechanism which involves
local equilibrium at the interface, or solute drag effects associated with interfacial
motion.

2.3. Interstitial Alloying Elements (C, N)). It appears from Fig. 14 that the
carbon has partitioned into the austenite. It is simple to establish that martensitic
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Figure 12. Atomic force microscope image of the displacements
caused on a polished surface of austenite by the growth of bainite.
Notice the shear deformation (dark contrast) and indeed the plastic
accommodation (light contrast tapering from the ridge of the region
of dark contrast) of the shape change in the austenite adjacent to the
bainite plates.

transformation is diffusionless, by measuring the local compositions before and after
transformation. Bainite forms at somewhat higher temperatures where the carbon
can escape out of the plate within a fraction of a second. Its original composition
cannot therefore be measured directly.

There are three possibilities. The carbon may partition during growth so that the
ferrite may never contain any excess carbon. The growth may on the other hand be
diffusionless with carbon being trapped by the advancing interface. Finally, there
is an intermediate case in which some carbon may diffuse with the remainder being
trapped to leave the ferrite partially supersaturated. It is therefore much more
difficult to determine the precise role of carbon during the growth of bainitic ferrite
than in martensite.

Diffusionless growth requires that transformation occurs at a temperature below
T0, when the free energy of bainite becomes less than that of austenite of the same
composition. A locus of the T0 temperature as a function of the carbon concentration
is called the T0 curve, an example of which is plotted on the Fe–C phase diagram in
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Figure 13. (a) A perfect invariant–plane strain surface relief effect.
(b) One where plastic relaxation of the shape change occurs in the
adjacent matrix. (c,d) An actual atomic force microscope scan across
the surface relief due to a bainite sub–unit (Swallow and Bhadeshia,
1996).

Fig. 15. Growth without diffusion can only occur if the carbon concentration of the
austenite lies to the left of the T0 curve.

Suppose that the plate of bainite forms without diffusion, but that any excess carbon
is soon afterwards rejected into the residual austenite. The next plate of bainite then
has to grow from carbon–enriched austenite (Fig. 16 a). This process must cease
when the austenite carbon concentration reaches the T0 curve. The reaction is said
to be incomplete, since the austenite has not achieved its equilibrium composition
(given by the Ae3 curve) at the point the reaction stops. If on the other hand,
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Figure 14. Imaging atom–probe micrographs, taken across an
austenite–bainitic ferrite interface in a Fe–C–Si–Mn alloy. The im-
ages confirm quantitative data (Bhadeshia and Waugh, 1982) showing
the absence of any substitutional atom diffusion during transformation.
(a) Field–ion image; (b) corresponding silicon map; (c) corresponding
carbon map; (d) corresponding iron map.

the ferrite grows with an equilibrium carbon concentration then the transformation
should cease when the austenite carbon concentration reaches the Ae3 curve.

It is found experimentally that the transformation to bainite does indeed stop at the
T0 boundary (Fig. 16 b). The balance of the evidence is that the growth of bainite
below the BS temperature involves the successive nucleation and martensitic growth
of sub–units, followed in upper bainite by the diffusion of carbon into the surround-
ing austenite. The possibility that a small fraction of the carbon is nevertheless
partitioned during growth cannot entirely be ruled out, but there is little doubt that
the bainite is at first substantially supersaturated with carbon.
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Figure 15. Schematic illustration of the origin of the T0 construction
on the Fe–C phase diagram. Austenite with a carbon concentration to
the left of the T0 boundary can in principle transform without any dif-
fusion. Diffusionless transformation is thermodynamically impossible
if the carbon concentration of the austenite exceeds the T0 curve.

These conclusions are not significantly modified when the strain energy of transfor-
mation is included in the analysis.

There are two important features of bainite which can be shown by a variety of tech-
niques, e.g. dilatometry, electrical resistivity, magnetic measurements and by metal-
lography. Firstly, there is a well defined temperature BS above which no bainite will
form, which has been confirmed for a wide range of alloy steels. The amount of bai-
nite that forms increases as the transformation temperature is reduced below the BS

temperature. The fraction increases during isothermal transformation as a sigmoidal
function of time, reaching an asymptotic limit which does not change on prolonged
heat treatment even when substantial quantities of austenite remain untransformed.
Transformation in fact ceases before the austenite achieves its equilibrium composi-
tion, so that the effect is dubbed the “incomplete–reaction phenomenon”.

These observations are understood when it is realised that growth must cease if the
carbon concentration in the austenite reaches the T0 curve of the phase diagram.
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Figure 16. (a) Illustration of the incomplete reaction phenomenon.
During isothermal transformation, a plate of bainite grows without
diffusion, then partitions its excess carbon into the residual austenite.
The next plate therefore has to grow from carbon–enriched austen-
ite. This process continues until diffusionless transformation becomes
impossible when the austenite composition eventually reaches the T0

boundary. (b) Experimental data showing that the growth of bainite
stops when the austenite carbon concentration reaches the T0 curve
(Fe–0.43C–3Mn–2.12Si wt.% alloy).

Since this condition is met at ever increasing carbon concentrations when the trans-
formation temperature is reduced, more bainite can form with greater undercoolings
below BS. But the T0 restriction means that equilibrium, when the austenite has a
composition given by the Ae3 phase boundary, can never be reached, as observed ex-
perimentally. A bainite–finish temperature BF is sometimes defined, but this clearly
cannot have any fundamental significance.

2.4. Summary. Bainite grows by displacive transformation; the growth is accom-
panied by a shape deformation which is an invariant–plane strain with a large shear
component. The transformation is diffusionless but carbon atoms partition into the
residual austenite (or precipitate as carbides), shortly after growth is arrested. The
precipitation of carbides is therefore a secondary event.
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3. Alloy design: strong bainite

High-strength bainitic steels have not in practice been as successful as quenched
and tempered martensitic steels, because the coarse cementite particles in bainite
are detrimental for toughness. However, it is now known that the precipitation of
cementite during bainitic transformation can be suppressed. This is done by alloying
the steel with about 1.5wt% of silicon, which has a very low solubility in cementite
and greatly retards its growth.

An interesting microstructure results when this silicon-alloyed steel is transformed
into upper bainite. The carbon that is rejected into the residual austenite, instead of
precipitating as cementite, remains in the austenite and stabilises it down to ambient
temperature. The resulting microstructure consists of fine plates of bainitic ferrite
separated by carbon-enriched regions of austenite (Fig. 17).

Figure 17. Transmission electron micrograph of a mixture of bainitic
ferrite and stable austenite. (a) Bright field image. (b) Retained
austenite dark field image.

The potential advantages of the mixed microstructure of bainitic ferrite and austenite
can be listed as follows:

1. Cementite is responsible for initiating fracture in high-strength steels. Its
absence is expected to make the microstructure more resistant to cleavage
failure and void formation.
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2. The bainitic ferrite is almost free of carbon, which is known to embrittle
ferritic microstructures.

3. The microstructure derives its strength from the ultrafine grain size of the
ferrite plates, which are less than 1µm in thickness. It is the thickness of
these plates which determines the mean free slip distance, so that the effective
grain size is less than a micrometer. This cannot be achieved by any other
commercially viable process. It should be borne in mind that grain refinement
is the only method available for simultaneously improving the strength and
toughness of steels.

4. The ductile films of austenite which are intimately dispersed between the
plates of ferrite have a crack blunting effect. They further add to toughness
by increasing the work of fracture as the austenite is induced to transform
to martensite under the influence of the stress field of a propagating crack.
This is the TRIP, or transformation-induced plasticity effect.

5. The diffusion of hydrogen in austenite is slower than in ferrite. The presence
of austenite can, therefore, improve the stress corrosion resistance of the
microstructure.

6. Steels with the bainitic ferrite and austenite microstructure can be obtained
without the use of any expensive alloying additions. All that is required is
that the silicon concentration should be large enough to suppress cementite.

In spite of these appealing features, the bainitic ferrite/austenite microstructure does
not always give the expected good combination of strength and tough-ness. This
is because the relatively large ‘blocky’ regions of austenite between the sheaves of
bainite (Fig. 18) readily transform into high-carbon martensite under the influence
of stress. This untempered, hard martensite embrittles the steel.

The blocks of austenite are detrimental to toughness, and anything that can be done
to reduce their fraction, or increase their stability to martensitic transformation,
would be beneficial. Both of these effects are controlled by the T ′

0 curve of the phase
diagram. This curve determines the composition of the austenite at the point where
the reaction to bainite stops. By displacing the curve to larger carbon concentrations,
both the fraction of bainite that can form, and the carbon concentration of the
residual austenite can be increased. Modifications to the T ′

0 curve can be achieved
by altering the alloy composition. It is therefore necessary to calculate the effect of
substitutional solutes on the T ′

0
curve.
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Figure 18. Optical micrograph of upper bainite in an Fe–0.43C–
3Mn–2.02Si wt% showing the blocks of retained austenite between
sheaves of bainite.

3.1. The improvement in toughness. An apparently ideal microstructure con-
sisting of bainitic ferrite and ductile austenite in a Fe–3Mn–2.02Si–0.43Cwt% ex-
hibits poor toughness because of the presence of blocky unstable austenite (Fig. 19).
It is necessary to increase the amount of bainitic ferrite in the microstructure and to
increase the stability of the austenite. Both of these aims can be achieved by chang-
ing the substitutional solute concentration such that the T ′

0
curve is shifted to higher

carbon concentrations (i.e. T ′

0 is raised at any given carbon concentration).

Manganese has a large effect in depressing the T ′

0
temperature. An examination of

thermodynamic data shows that one possibility is to replace all of the manganese
with nickel (Fig. 19). Thus, for a Fe–4Ni–2Si–0.4Cwt% (3.69Ni, 3.85Si at%) alloy
remarkable improvement in toughness achieved by doing this, without any sacrifice of
strength, is illustrated in Fig. 19, along with the T ′

0
curves as calculated above.
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Figure 19. (a) Experimentally determined impact transition curves
showing how the toughness improves as the amount of blocky austenite
is reduced. (b) Calculated T′

0
curves for the Fe–C, Fe–Mn–Si–C and

Fe–Ni–Si–C steels.
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4. Widmanstätten Ferrite

4.1. Morphology. Primary Widmanstätten ferrite grows directly from the austen-
ite grain surfaces, whereas secondary Widmanstätten ferrite develops from any al-
lotriomorphic ferrite that may be present in the microstructure (Fig. 20). Wid-
manstätten ferrite can form at temperatures close to the Ae3 temperature and hence
can occur at very low driving forces; the undercooling needed amounts to a free
energy change of only 50 Jmol−1. This is much less than required to sustain diffu-
sionless transformation.

Figure 20. Morphology of primary and secondary Widmanstätten ferrite.

4.2. Shape Change. The growth of a single plate of martensite is accompanied
by an invariant–plane strain of the type illustrated in Fig. 21a. However, at the
high temperatures (low undercoolings) at which Widmanstätten ferrite grows, the
driving force is not sufficient to support the strain energy associated with a single
plate. Widmanstätten ferrite formation therefore involves the simultaneous and ad-
jacent cooperative growth of two plates, which are crystallographic variants such that
their shape deformations mutually accommodate (Fig. 21b). This has the effect of
cancelling much of the strain energy.

It follows that what is seen as a single plate in an optical microscope is actually a
combination of two variants, usually separated by a low–misorientation boundary
(Fig. 21c). Widmanstätten ferrite has a habit plane which is close to {5 5 8}γ.
Hence, the two plates αw1 and αw2 which have different variants of this habit with
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Figure 21. (a) A single invariant–plane strain shape deformation.
(b) The combined effect of two mutually accommodating, back–to–
back IPS deformations. (c) The morphology of two plates, with dif-
ferent habit plane variants, growing together in a mutually accommo-
dating manner.

the austenite, together form the thin–wedge shaped plate which is characteristic of
Widmanstätten ferrite.

Because Widmanstätten ferrite forms at low undercoolings (and above the T0 tem-
perature), it is thermodynamically required that the carbon is redistributed during
growth. αw therefore always has a paraequilibrium carbon content and grows at
a rate which is controlled by the diffusion of carbon in the austenite ahead of the
plate–tip. For plates, diffusion–controlled growth can occur at a constant rate be-
cause solute is partitioned to the sides of the plate, whereas the growing tip can
advance into fresh austenite. Since the transformation is, nevertheless, displacive,
substitutional atoms do not partition and an atomic correspondence is maintained
between the parent and product lattices for all atoms other than carbon.

4.3. Growth Kinetics. For isothermal transformation during growth in which there
is no partitioning of substitutional solutes, the growth rate is governed by the rate
at which carbon diffuses ahead of the Widmanstätten ferrite plate tip. In the first
approximation, the concentrations at the interface are given by a tie-lie of the phase
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diagram as shown in Fig. 22. The diffusion flux of solute from the interface must
equal the rate at which solute is incorporated in the precipitate so that:

(4) (cγα − cαγ)
∂z∗

∂t
︸ ︷︷ ︸

rate solute partitioned

= −D
∂c

∂z
︸ ︷︷ ︸

diffusion flux from interface

≃ D
cγα − c

∆z

where z is a coordinate normal to the interface with a value z∗ at the position of the
interface. Note that concentration gradient here is assumed to be constant but it is
in general evaluated at the position of the interface (z = z∗).

Figure 22. Phase diagram and its relationship to the concentration
profile at the α/γ interface during diffusion-controlled growth.

The plate can be described as a parabolic cylinder in three dimensions (Fig. 23), a
shape which is preserved as the plate lengthens. If it is assumed that the diffusion
distance ∆z is equal to the plate tip radius r (Fig. 23), then from equation 4 it
follows that the lengthening rate vl = ∂z∗/∂t is given by

(5) vl ≈
D

r

cγα − c

cγα − cαγ
.

This leads to the obvious difficulty that vl → ∞ as r → 0, caused by the fact
that the creation of additional interfacial area as the plate grows is neglected in the
derivation. Given that the change in surface area per atom added to the plate is
va/r, the corresponding increase in the free energy per atom due to the creation of
additional interface is σva/r where σ is the interfacial energy per unit area and va is
the volume per atom. Therefore, the net free energy change per atom, ∆gr, as the
plate grows is

(6) ∆gr = ∆g∞ − σva
r

where ∆g∞ represents the free energy change per atom, driving the transformation
in the absence of interface creation. At a critical radius rc, ∆gr = 0 so that ∆g∞ =
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Figure

23. Widmanstätten
ferrite plate
represented
as a parabolic
cylinder, with
tip radius r.

σva/rc and vl = 0. Equation 6 can therefore be written as

(7) ∆gr =
σva
rc

− σva
r

or
∆gr
∆g∞

= 1− rc
r

The velocity scales with the driving force when the latter is small, so equation 5 can
be rewritten to account for the interface creation as follows:

(8) vl ≈
D

r

(
cγα − c

cγα − cαγ

)

×
(

1− rc
r

)

The accounting for interfacial energy in this manner is known as the capillarity
effect [1] which governs the equilibrium between a curved particle and the matrix.
Fig. 24 shows how the lengthening rate now goes through a maximum, and it is
often assumed that the plate picks a radius consistent with the maximum growth
rate. This is approximately consistent with experimental measurements as shown in
Fig. 24b [2].
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(a) (b)

Figure 24. (a) Influence of interface curvature on plate lengthening
rate. (b) Comparison of measured versus calculated lengthening rates.

4.4. Summary.

• An atomic correspondence is maintained for substitutional solutes, consistent
with a displacive transformation mechanism.

• Ferrite has a paraequilibrium carbon content during growth which occurs at
a constant rate, controlled by the diffusion of carbon in the austenite ahead
of the plate tip.

• Growth involves the simultaneous and cooperative formation of a pair of
adjacent, self–accommodating plates of Widmanstätten ferrite.
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5. Allotriomorphic Ferrite

An allotriomorph has a shape which does not reflect its internal crystalline symmetry.
This is because it tends to nucleate at the austenite grain surfaces, forming layers
which follow the grain boundary contours (Fig. 25).

An idiomorph on the other hand, has a shape which reflects the symmetry of the
crystal as embedded in the austenite. Idiomorphs nucleate without contact with
the austenite grain surfaces; they tend to nucleate heterogeneously on non–metallic
inclusions present in the steel.

Figure 25. Allotriomorphic & idiomorphic ferrite.

These are both true diffusional transformations, i.e., there is no atomic correspon-
dence between the parent and product crystals, there is no invariant–plane strain
shape change accompanying transformation, the growth rate is either diffusion–
controlled, interface–controlled or mixed. Thermal activation is necessary for trans-
formation, which can therefore only occur at high homologous temperatures.

The α/γ interface need not in this case be glissile; the motion of the interface involves
diffusion and is not conservative.

5.1. Revision of Diffusion–Controlled Growth in Fe–C. The ferrite has a dif-
ferent chemical composition from the austenite in which it grows. We shall assume
that the growth of ferrite (α) is controlled by the diffusion of carbon in the austenite
(γ) ahead of the interface.
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As the ferrite grows, so does the extent of its diffusion field. This retards growth
because the solute then has to diffuse over ever larger distances. As we will prove,
the thickness of the ferrite increases with the square root of time, i.e., the growth
rate slows down as time increases. We will assume in our derivation that the con-
centration gradient in the matrix is constant, and that the far–field concentration c
never changes (i.e., the matrix is semi–infinite normal to the advancing interface).
This is to simplify the mathematics without loosing any of the insight into the prob-
lem.

For isothermal transformation in a binary alloy, the concentrations at the interface
are given by a tie–lie of the phase diagram as shown in Fig. 26. The diffusion flux of
solute from the interface must equal the rate at which solute is incorporated in the
precipitate so that:

(9) (cγα − cαγ)
∂z∗

∂t
︸ ︷︷ ︸

rate solute partitioned

= −D
∂c

∂z
︸ ︷︷ ︸

diffusion flux from interface

≃ −D
c− cγα

∆z

where z is a coordinate normal to the interface with a value z∗ at the position of the
interface. Note that the concentration gradient is evaluated at the position of the
interface (z = z∗).

Figure 26. Phase diagram and its relationship to the concentration
profile at the ferrite/austenite interface during diffusion–controlled
growth.

A second equation can be derived by considering the overall conservation of mass:

(10) (cαγ − c)z∗ =
1

2
(c− cγα)∆z

On combining these expressions to eliminate ∆z we get:

(11)
∂z∗

∂t
=

D(c− cγα)2

2z∗(cαγ − cγα)(cαγ − c)
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It follows that

z∗ ∝
√
Dt

5.2. Thermodynamics of Irreversible Processes. Thermodynamics generally
deals with measurable properties of materials, formulated on the basis of equilibrium.
Thus, properties such as entropy and free energy are, on an appropriate scale, static
and time–invariant during equilibrium. There are other parameters not relevant to
the discussion of equilibrium: thermal conductivity, diffusivity and viscosity, but
which are interesting because they can describe a second kind of time–independence,
that of the steady–state. Thus, the concentration profile does not change during
steady–state diffusion, even though energy is being dissipated by the diffusion.

The thermodynamics of irreversible processes deals with systems which are not at
equilibrium but are nevertheless stationary. The theory in effect uses thermodynam-
ics to deal with kinetic phenomena. There is nevertheless, a distinction between the
thermodynamics of irreversible processes and kinetics. The former applies strictly to
the steady–state, whereas there is no such restriction on kinetic theory.

5.2.1. Reversibility. A process whose direction can be changed by an infinitesimal
alteration in the external conditions is called reversible. Consider the example illus-
trated in Fig. 27, which deals with the response of an ideal gas contained at uniform
pressure within a cylinder, any change being achieved by the motion of the piston.
For any starting point on the P/V curve, if the application of an infinitesimal force
causes the piston to move slowly to an adjacent position still on the curve, then
the process is reversible since energy has not been dissipated. The removal of the
infinitesimal force will cause the system to revert to its original state.

On the other hand, if there is friction during the motion of the piston, then deviations
occur from the P/V curve as illustrated by the cycle in Fig. 27. An infinitesimal
force cannot move the piston because energy is dissipated due to friction (as given by
the area within the cycle). Such a process, which involves the dissipation of energy,
is classified as irreversible with respect to an infinitesimal change in the external
conditions.

More generally, reversibility means that it is possible to pass from one state to another
without appreciable deviation from equilibrium. Real processes are not reversible
so equilibrium thermodynamics can only be used approximately, though the same
thermodynamics defines whether or not a process can occur spontaneously without
ambiguity.

For irreversible processes the equations of classical thermodynamics become inequal-
ities. For example, at the equilibrium melting temperature, the free energies of the
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Figure 27. The curve repre-
sents the variation in pressure
within the cylinder as the vol-
ume of the ideal gas is altered by
positioning the frictionless pis-
ton. The cycle represents the
dissipation of energy when the
motion of the piston causes fric-
tion.

pure liquid and solid are identical (Gliquid = Gsolid) but not so below that tempera-
ture (Gliquid > Gsolid). Such inequalities are much more difficult to deal with though
they indicate the natural direction of change. For steady–state processes however,
the thermodynamic framework for irreversible processes as developed by Onsager is
particularly useful in approximating relationships even though the system is not at
equilibrium.

5.2.2. The Linear Laws. At equilibrium there is no change in entropy or free energy.
An irreversible process dissipates energy and entropy is created continuously. In the
example illustrated in Fig. 27, the dissipation was due to friction; diffusion ahead
of a moving interface is dissipative. The rate at which energy is dissipated is the
product of the temperature and the rate of entropy production (i.e. Tσ) with:

(12) Tσ = JX

where J is a generalised flux of some kind, and X a generalised force. In the case of
an electrical current, the heat dissipation is the product of the current (J) and the
electromotive force (X).

As long as the flux–force sets can be expressed as in equation 12, the flux must
naturally depend in some way on the force. It may then be written as a function
J{X} of the force X . At equilibrium, the force is zero. If J{X} is expanded in a
Taylor series about equilibrium (X = 0), we get

J{X} =

∞∑

0

anX
n

= J{0}+ J ′{0}X
1!

+ J ′′{0}X
2

2!
. . .(13)
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Note that J{0} = 0 since that represents equilibrium. If the high order terms are
neglected then we see that

J ∝ X.

This is a key result from the theory, that the forces and their conjugate fluxes are
linearly related (J ∝ X) whenever the dissipation can be written as in equation 13,
at least when the deviations from equilibrium are not large.

Consider for example, a closed system in which a quantity dH of heat is transferred
in a time interval dt across an area A in a direction z normal to that area, from a
region at temperature Th to a lower temperature Tℓ. The receiving part increases its
entropy by dH/Tℓ whereas the depleted region experiences a reduction dH/TH, so
that the change in entropy is

dS = dH

(
1

Tℓ

− 1

Th

)

.

The rate of entropy production per unit volume is therefore

(14) σ =
1

V

dS

dt
=

1

V

dH

dt

(
1

Tℓ

− 1

Th

)

.

The flux of heat J is defined as A−1dH/dt so Equation 14 becomes

σ = J
A

V

(
1

Tℓ

− 1

Th

)

≡ J

(

− 1

T 2

)
dT

dz
or Tσ = J

︸︷︷︸

flux

(

− 1

T

)
dT

dz
︸ ︷︷ ︸

force

Examples of forces and fluxes in the context of the present theory are listed in Table 4.

Table 4. Examples of forces and their conjugate fluxes. z is distance,
φ is the electrical potential, and µ is a chemical potential.

Force Flux

−∂φ

∂z
Electrical Current

− 1

T
∂T
∂z

Heat flux

−∂µi

∂z
Diffusion flux

Stress Strain rate
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5.2.3. Multiple Irreversible Processes. There are many circumstances in which a
number of irreversible processes occur together. In a ternary Fe–Mn–C alloy, the
diffusion flux of carbon depends not only on the gradient of carbon, but also on that
of manganese. Thus, a uniform distribution of carbon will tend to become inhomo-
geneous in the presence of a manganese concentration gradient. Similarly, the flux of
heat may not depend on the temperature gradient alone; heat can be driven also by
an electromotive force (Peltier effect)2. Electromigration involves diffusion driven by
an electromotive force. When there is more then one dissipative process, the total
energy dissipation rate can still be written

(15) Tσ =
∑

i

JiXi.

In general, if there is more than one irreversible process occurring, it is found exper-
imentally that each flow Ji is related not only to its conjugate force Xi, but also is
related linearly to all other forces present. Thus,

(16) Ji = MijXj

with i, j = 1, 2, 3 . . .. Therefore, a given flux depends on all the forces causing the
dissipation of energy.

5.2.4. Onsager Reciprocal Relations. Equilibrium in real systems is always dynamic
on a microscopic scale. It seems obvious that to maintain equilibrium under these
dynamic conditions, a process and its reverse must occur at the same rate on the
microscopic scale. The consequence is that provided the forces and fluxes are chosen
from the dissipation equation and are independent, Mij = Mji. This is known as
the Onsager theorem, or the Onsager reciprocal relations. It applies to systems near
equilibrium when the properties of interest have even parity, and assuming that the
fluxes and their corresponding forces are independent. An exception occurs with
magnetic fields in which case there is a sign difference Mij = −Mji.

5.3. Ternary Steels. Consider now a ternary steel, say Fe–Mn–C. It would be
necessary to satisfy two equations of the form of equation 1, simultaneously, for each
of the solutes:

(cγα
1

− cαγ
1
)v = −D1∇c1

(cγα2 − cαγ2 )v = −D2∇c2(17)

where the subscripts refer to the solutes (1 for carbon and 2 for Mn). The interface
velocity v is the ∂z∗/∂t in equation 11.

2In the Peltier effect, the two junctions of a thermocouple are kept at the same temperature but the

passage of an electrical current causes one of the junctions to absorb heat and the other to liberate

the same quantity of heat. This Peltier heat is found to be proportional to the current.
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Because D1 ≫ D2, these equations cannot in general be simultaneously satisfied for
the tie–line passing through the alloy composition c1, c2. It is, however, possible to
choose other tie–lines which satisfy equation 17. If the tie–line is such that cγα

1
= c1

(e.g. line cd for alloy A of Fig. 28a), then ∇c1 will become very small, the driving
force for carbon diffusion in effect being reduced, so that the flux of carbon atoms
is forced to slow down to a rate consistent with the diffusion of manganese. Ferrite
forming by this mechanism is said to grow by a ‘Partitioning, Local Equilibrium’
(or PLE) mechanism, in recognition of the fact that cαγ2 can differ significantly from
c2, giving considerable partitioning and long–range diffusion of manganese into the
austenite.

An alternative choice of tie–line could allow cαγ2 → c2 (e.g. line cd for the alloy of
Fig. 28b), so that ∇c2 is drastically increased since only very small amounts of Mn
are partitioned into the austenite. The flux of manganese atoms at the interface
correspondingly increases and manganese diffusion can then keep pace with that of
carbon, satisfying the mass conservation conditions of equation 17. The growth of
ferrite in this manner is said to occur by a ‘Negligible Partitioning, Local Equilibrium’
(or NPLE) mechanism, in recognition of the fact that the manganese content of
the ferrite approximately equals c2, so that little if any manganese partitions into
austenite.

What circumstances determine whether growth follows the PLE or NPLE mode?
Fig. 29 shows the Fe–Mn–C phase diagram, now divided into domains where either
PLE or NPLE is possible but not both. The domains are obtained by drawing
right–handed triangles on each tie–line in the α + γ phase field and joining up all
the vertices. For example, prove to yourself that if you attempt to define NPLE
conditions in the PLE domain, then the tie–line determining interface compositions
will incorrectly show that both austenite and ferrite contain less carbon than c1, a
circumstance which is physically impossible.

Paraequilibrium is a constrained equilibrium. It occurs at temperatures where the
diffusion of substitutional solutes is not possible within the time scale of the ex-
periment. Nevertheless, interstitials may remain highly mobile. Thus, in a steel,
manganese does not partition between the ferrite and austenite, but subject to that
constraint, the carbon redistributes until it has the same chemical potential in both
phases.

Therefore, the tie–lines in the phase diagram (Fig. 30) are all virtually parallel to
the carbon axis, since Mn does not partition between ferrite and austenite.
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Figure 28. Schematic isothermal sections of the Fe–Mn–C system,
illustrating ferrite growth occurring with local equilibrium at the α/γ
interface. (a) Growth at low supersaturations (P–LE) with bulk redis-
tribution of manganese, (b) growth at high supersaturations (NP–LE)
with negligible partitioning of manganese during transformation. The
bulk alloy compositions are designated by the symbol • in each case.

Prove to yourself that in an isothermal section of the ternary phase diagram, the
paraequilibrium phase boundaries must lie within the equilibrium phase boundaries
as illustrated in Fig. 31.
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Figure 29. Regions of the two–phase field where either PLE or NPLE
modes of transformation are possible.

Figure 30. A paraequilibrium phase diagram.

6. Pearlite

A colony of pearlite when viewed in three dimensions consists of an interpenetrating
bicrystal of ferrite and cementite. In planar sections the phases appear as lamellae
which grow at a common front with the austenite. Cementite (θ) is rich in carbon
whereas ferrite (α) accommodates very little when it is in equilibrium with either
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Figure 31. The paraequilibrium phase field lies within the equilib-
rium field. The tie–lines illustrated are for equilibrium.

cementite or austenite (γ). It is therefore necessary for carbon to be redistributed
at the transformation front. This can happen either by diffusion in the austenite in
a direction parallel to the transformation front (Fig. 32).

Figure 32. Diffusion flux parallel to
the advancing interface. S is the inter-
lamellar spacing.

The diffusion distance parallel to the interface can be approximated as aS where a is
a constant and S is the interlamellar spacing. By analogy with equation 9, it follows
that the rate at which solute is absorbed by the cementite must equal the amount
arriving there by diffusion, so that

(18) v(cθ − cγθ) = D
cγα − cγθ

aS

where v is the speed of the growth front, D is the diffusivity of carbon in austenite
and the concentration terms are self–explanatory.
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Figure 33. Phase diagram with extrap-
olated phase boundaries to identify the
concentrations in the austenite which is
in equilibrium with cementite or ferrite.

However, there is an additional process which consumes energy, the creation of
cementite/ferrite interfaces within the pearlite colony. The minimum value of in-
terlamellar spacing possible is a critical spacing SC = 2σαθ/∆G where σαθ is the
interfacial energy per unit area and ∆G is the magnitude of the driving force for
transformation in Joules per unit volume. Growth ceases when S = SC . To allow
for the energy consumed in the process of interface creation, equation 18 is modified
by a term 1− [SC/S] as follows:

(19) v =
D

aSSC

cγα − cγθ

(cθ − cγθ)

(

1− SC

S

)

We now need to specify the value that S will adopt during growth, and one assump-
tion is that the spacing will correspond to that consistent with the maximum growth
rate, i.e. when S = 2SC .

The theory presented here is necessarily oversimplified and uses a number of unnec-
essary assumptions; more rigorous models are available but get extremely complex
as soon as interfacial diffusion and the influence of solutes other than carbon is taken
into consideration.
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7. Overall Transformation Kinetics

7.1. Isothermal Transformation. To model transformation it is obviously neces-
sary to calculate the nucleation and growth rates, but an estimation of the volume
fraction requires impingement between particles to be taken into account.

Figure 34. An illustration of the concept of extended volume. Two
precipitate particles have nucleated together and grown to a finite size
in the time t. New regions c and d are formed as the original particles
grow, but a & b are new particles, of which b has formed in a region
which is already transformed.

This is done using the extended volume concept of Kolmogorov, Johnson, Mehl and
Avrami. Referring to Fig. 34, suppose that two particles exist at time t; a small
interval δt later, new regions marked a, b, c & d are formed assuming that they are
able to grow unrestricted in extended space whether or not the region into which
they grow is already transformed. However, only those components of a, b, c & d
which lie in previously untransformed matrix can contribute to a change in the real
volume of the product phase (α) :

(20) dV α =

(

1− V α

V

)

dV α
e

where it is assumed that the microstructure develops at random. The subscript e
refers to extended volume, V α is the volume of α and V is the total volume. Mul-
tiplying the change in extended volume by the probability of finding untransformed
regions has the effect of excluding regions such as b, which clearly cannot contribute
to the real change in volume of the product. For a random distribution of precip-
itated particles, this equation can easily be integrated to obtain the real volume
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fraction,

(21)
V α

V
= 1− exp

{

−V α
e

V

}

The extended volume V α
e is straightforward to calculate using nucleation and growth

models and neglecting completely any impingement effects. Consider a simple case
where the α grows isotropically at a constant rate G and where the nucleation rate
per unit volume, IV . The volume of a particle nucleated at time t = τ (Fig. 35) is
given by

(22) vτ =
4

3
πG3(t− τ)3

The change in extended volume over the interval τ and τ + dτ is

(23) dV α
e =

4

3
πG3(t− τ)3 × IV × V × dτ

On substituting into equation 21 and writing ξ = V α/V , we get

dV α =

(

1− V α

V

)

4

3
πG3(t− τ)3IV V dτ

so that − ln{1− ξ} = 4

3
πG3IV

∫ t

0
(t− τ)3 dτ

and ξ = 1− exp{−πG3IV t
4/3}(24)

This equation has been derived for the specific assumptions of random nucleation, a
constant nucleation rate and a constant growth rate. There are different possibilities
but they often reduce to the general form:

(25) ξ = 1− exp{−kAt
n}

where kA and n characterise the reaction as a function of time, temperature and
other variables. The values of kA and n can be obtained from experimental data
by plotting ln(− ln{1 − ξ}) versus ln{t}. The specific values of kA and n depend
on the nature of nucleation and growth. Clearly, a constant nucleation and growth
rate leads to a time exponent n = 4, but if it is assumed that the particles all begin
growth instantaneously from a fixed number density of sites (i.e., nucleation is not
needed) the n = 3 when the growth rate is constant. There are other scenarios and
the values of the Avrami parameters are not necessarily unambiguous in the sense
that the same exponent can represent two different mechanisms.

The form of equation 25 is illustrated in Fig. 36. Note that the effect of temperature
is to alter the thermodynamic driving force for transformation, to alter diffusion
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Figure 35. An illustration of the incubation time τ for each particle.

coefficients and to influence any other thermally activated processes. The effect of
manganese is via its influence on the stability of the parent and product phases.

The results of many isothermal transformation curves such as the ones illustrated
in Fig. 36 can be plotted on at time–temperature–transformation diagram as illus-
trated in Fig. 37. The curves typically have a C shape because the driving force for
transformation is small at high temperatures whereas the diffusion coefficient is small
at low temperatures. There is an optimum combination of these two parameters at
intermediate temperatures, giving a maximum in the rate of reaction. The curve
marked start corresponds to a detectable limit of transformation (e.g., 5%), and that
marked finish corresponds to say 95% transformation.
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Figure 36. The calculated influence of (a) transformation tempera-
ture and (b) manganese concentration on the kinetics of the bainite
reaction (Singh, 1998). Bainite is a particular kind of solid–state phase
transformation that occurs in steels.

Figure 37. A time–temperature–transformation (TTT) diagram.
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8. TRIP Steels

The steels developed to exploit the properties obtained when the martensite reaction
occurs during plastic deformation are known as transformation-induced plasticity
(TRIP) steels [3]. The way in which they enhance the strength and uniform ductility
of the steel is discussed later, but suffice it to say that a significant constituent of the
microstructure must be austenite which is capable of transforming into martensite
under the influence of an applied stress. Some of the original studies were conducted
on alloys rich in solutes in order to preserve the austenite to ambient temperature;
this can be expensive, but is a good starting point for the discussion of the TRIP
effect.

As pointed out in section 1, martensitic transformation is also a deformation, de-
scribed accurately as an invariant-plane strain with a shear s on the habit plane,
and a dilatation δ normal to that plane, Fig. 38. Given the orthonormal coordinate
system Z defined by the the unit vectors z1 parallel to the direction of shear, and z3
normal to the habit plane, the deformation matrix P becomes:

(26)
(
Z P Z

)
=





1 0 s
0 1 0
0 0 1 + δ



 .

The effect of the deformation on any vector u to produce a resultant vector v is then
given by

(27)
(
Z P Z

)
[Z;u] = [Z;v]

The two vectors will not in general be parallel, but a comparison of the magnitudes
gives an impression of the strain expected due to martensitic transformation. This

Figure 38. Coordinate axes for
the derivation of the deformation
matrix representing martensitic
transformation (α′) from austen-
ite (γ).

calculation of strain is along a specific direction u, due to the shape deformation
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associated with the formation of a plate of martensite. In dealing with TRIP steels,
the problem needs to be posed somewhat differently, i.e., what is the strain along a
particular direction when a stress is applied to induce martensitic transformation in
an otherwise stable austenite. It is necessary therefore to consider the thermodynam-
ics of stress-affected martensitic transformation. Fig. 39 shows that in the absence
of external stress (σ = 0), the martensite-start temperature MS is defined by the
temperature at which the free energy change ∆Gγα when austenite decomposes into
ferrite of the same composition, reaches a critical value ∆GMS

.

In contrast, when transformation occurs under the influence of a stress, the latter
interacts with the shape deformation and the interaction energy U is given by [4] to
be:

(28) U = τ◦s+ σNδ

where τ◦ is the shear stress on the habit plane and σN the stress normal to that
plane. Notice that the strains involved are plastic, so the interaction energy is given
simply by the product of the stress and strain, rather than half that value as is
sometimes assumed on the basis of elastic strains. If the stress is such that it favours
the formation of martensite then U supplements ∆Gγα and the martensite-start
temperature is raised to Mσ

S which is above ambient temperature, so that stress-
induced martensitic transformation becomes feasible (Fig. 39).

Figure 39. Plot of the chemical driving force for martensitic trans-
formation against temperature, with σ representing the applied stress.
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Each single crystal of austenite can in principle transform into 24 different crystallo-
graphic variants of martensite. Each of these variants is associated with a particular
value of U depending on its orientation relative to the applied stress. Therefore,
those variants with the largest interaction with the stress, i.e., which transform in
a manner that relieves the stress, are favoured. This process is known as variant
selection so that stress-induced martensite results in a biased microstructure with
reduced variety. This is illustrated in Fig. 40, where the martensite is generated by
applying a tensile stress to polycrystalline metastable austenite, resulting in plates
which are approximately at 45◦ to the tensile axis.

Figure 40. A non-
random distribution
of martensite habit-
plane orientations
produced by stress-
induced martensitic
transformation at a
temperature between
MS and Mσ

S . The sam-
ple is polycrystalline
austenite.

Assuming that a tensile stress σ1 is applied, inclined at an angle θ to the habit plane
normal, with the stress axis in the plane containing z1 and z3, then from equation 28
and the Mohr’s circle representation in Fig 41,

U =
σ1

2
sin 2θ

︸ ︷︷ ︸

τ◦

×s +
σ1

2
(1 + cos 2θ)

︸ ︷︷ ︸

σN

×δ

dU

dθ
=

σ1

2
[2s cos 2θ − 2δ sin 2θ](29)

Setting the differential to zero gives the maximum value of U at tan 2θmax = s/δ,
which for typical values of s = 0.26 and δ = 0.03 gives θmax = 41.7◦. Given that
there are 24 habit plane orientations within a single austenite grain, it is likely that
one close to this value will form first, hence explaining the observation of aligned
plates in Fig. 41 even though the sample has many orientations of austenite grains.
The tensile axis can be represented as a unit vector

[Z;u] = [sin θmax 0 cos θmax]

and using θ = θmax, the elongation obtained along the tensile axis when a sin-
gle crystal of austenite transforms completely into the most favoured orientation of
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Figure 41. Mohr’s
circle representation of
the shear and normal
stresses on a habit
plane normal inclined
at θ to the tensile stress
σ1.

martensite is, using equation 27, given by:

[Z;v] = [(sin θmax + s cos θmax) 0 (1 + δ) cos θmax]

elongation% =

( |v|
|u| − 1

)

× 100

This assumes that v is parallel to u and a correction would be needed if there is a
relative rotation. The elongation due to phase transformation is therefore calculated
is found to be 15% [5]. This impressive value of elongation due to phase transforma-
tion alone supplements that due to ordinary dislocation plasticity, which can be a
significant boon to the design of strong steels which usually suffer from early plastic
instabilities. However, steels which are fully austenitic at ambient temperature can,
in the context of iron-based alloys, be expensive.

8.1. TRIP-Assisted Steels. One way of producing cheap austenite is to stabilise it
with carbon, but excessive carbon can harm other important engineering properties
such as the ability to use the steel in a welded state. But an ingenious method involves
a low-carbon steel (≈ 0.15wt% C), which is first transformed into about 70% of
allotriomorphic ferrite and the remaining austenite cooled to partly transform it into
bainitic ferrite. Both of these transformations leave the residual austenite enriched in
carbon to a concentration in excess of 1.2wt%, thus leaving about 15% of retained
austenite in the final microstructure. Since bainite is the last phase to form, the
carbon concentration of the austenite is limited by the T0 condition described in
section 2.
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It is because the steel is not fully austenitic, that it is referred to as TRIP-assisted
and typically has a lean composition Fe–0.15C–1.5Si–1.5Mnwt%. The silicon serves
to prevent the precipitation of cementite from the carbon-enriched austenite, and the
manganese enhances the hardenability required to implement heat treatments suit-
able for mass production. The microstructure and typical properties are illustrated
in Fig. 42, which also shows how the retained austenite transforms during the course
of deformation.

(a) (b)

Figure 42. TRIP-assisted steel. (a) Typical final microstructure (mi-
crograph courtesy of P. Jacques). (b) True stress versus true strain,
and the stress-assisted decomposition of retained austenite [data from
[6]].

The fraction of retained austenite in a TRIP-assisted steel is Vγ = 0.20 (Fig. 42,
in which case the maximum elongation to be expected if it all transforms into the
favoured crystallographic variant of martensite is, using equation 30 scaled with Vγ

given by 0.15 × 0.2 = 0.03. The transformation strain therefore makes a negligible
contribution to the overall elongation which is about 25% as shown in Fig. 42b. The
major contribution from stress-affected transformation is not via the shape deforma-
tion of the martensite, but through a composite effect [5]. The production of hard,
untempered martensite increases the work hardening rate and hence delays the on-
set of plastic instabilities. This is why TRIP-assisted steels have a large uniform
elongation.

8.2. δ–TRIP Steel. In this alloying concept, δ–ferrite which forms during solidifi-
cation is stabilised by specific aluminium additions, and substitutes for the 70% of
allotriomorphic ferrite in conventional TRIP-assisted steels [7]. The advantage in
doing this is that the δ-ferrite can never be fully removed from the microstructure so
that a a fully martensitic structure cannot be produced in the heat–affected zone of
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a resistance spot weld. Another benefit is that the aluminium substitutes for the role
of silicon in suppressing cementite precipitation. The difficulty with silicon is that
during hot processing, it forms a low-melting temperature oxide known as fayalite
which adheres to the steel, making it difficult to remove other disfiguring oxides from
the surface of the steel during de-scaling operations. Silicon can therefore lead to a
reduction in the quality of the steel surface, and cause problems during coating pro-
cesses. The chemical composition of the steel is typically Fe-0.4C-0.2Si-1Mn-3Alwt%
and the microstructures obtained directly from casting and following processing are
illustrated in Fig. 43.
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(a) (b)

(c)

Figure 43. δ-TRIP steel. (a) Optical microstructure of the as-cast
condition showing the δ-ferrite dendrites and martensite between the
dendrite arms [7]. (b) The structure after processing to produce bai-
nite and retained austenite [8]. (c) The properties obtained (in red)
compared against a range of established automotive steels.
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9. TWIP Steels

There are three essential modes by which steels can be permanently deformed at
ambient temperature, without recourse to diffusion. Individual dislocations whose
Burgers vectors correspond to lattice vectors can glide, leading to a change in shape
without altering the crystal structure or volume. In contrast, a displacive trans-
formation (e.g. martensite or bainite) results not only in a plastic strain, but also
a change of crystal structure and density; this is the phenomenon exploited in the
TRIP steels.

The third mode of deformation is mechanical twinning, in which the crystal struc-
ture of the steel is preserved but the twinned region is reoriented in the process.
Mechanical twinning results in a much larger shear strain s=1/

√
2, compared with

displacive transformations where s is typically 0.25. There is a particular class of
extraordinarily ductile alloys of iron, known as the TWIP steels, which exploit me-
chanical twinning to achieve their properties. “TWIP” stands for twinning-induced
plasticity.

TWIP stands for twinning-induced plasticity. The alloys are austenitic and remain
so during mechanical deformation, but the material is able to accommodate strain
via both the glide of individual dislocations and through mechanical twinning on the
{1 1 1}γ 〈 1 1 2 〉γ system. The alloys typically contain a large amount of manganese,

some aluminium and silicon (e.g. Fe-25Mn-3Si-3Alwt%) with carbon and nitrogen
present essentially as impurities. Larger concentrations of carbon may be added to
enhance strength. At high manganese concentrations, there is a tendency for the
austenite to transform into ǫ-martensite (hexagonal close packed) during deforma-
tion. ǫ-martensite can form by the dissociation of a perfect a/2 〈 0 1 1 〉γ dislocation

into Shockley partials on a close packed {1 1 1}γ plane, with a fault between the
partials. This faulted region represents a three layer thick plate of ǫ-martensite. A
reduction in the fault energy therefore favours the formation of this kind of marten-
site. The addition of aluminium counters this because it raises the stacking fault
energy of the austenite. Silicon has the opposite effect of reducing the stacking fault
energy, but like aluminium, it leads to a reduction in the density of the steel; the
combination of Al and Si at the concentrations used typically reduces the overall
density from some 7.8 g cm−3 to about 7.3 g cm−3.

The alloys have a rather low yield strength at 200-300MNm−2 but the
ultimate tensile strength can be much higher, in excess of 1100MNm−2. This is
because the strain-hardening coefficient is large, resulting in a great deal of uniform
elongation, and a total elongation of some 60-95%. The effect of mechanical twin-
ning is two-fold. The twins add to plasticity, but they also have a powerful effect
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in increasing the work-hardening rate by subdividing the untwinned austenite into
finer regions (Fig. 44).

(a)

(b)

Figure 44. (a) Typical stress-strain curve for a TWIP steel. (b)
Optical microstructure of a TWIP steel following deformation, showing
profuse twinning (image and data courtesy of Frommeyer, G., Brüx,
U. and Neumann, P).

One major advantage of TWIP steels is that they are austenitic and they maintain
attractive properties at cryogenic temperatures (−150◦C) and high strain rates, e.g.,
103 s−1. They therefore have great potential in enhancing the safety of automobiles
by absorbing energy during crashes.
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10. Mitigation of Residual Stress

Residual stress is that which remains in a body which is stationary and at equilibrium
with its surroundings. It can be very detrimental to the performance of a material
or the life of a component.

Jones and Alberry conducted an elegant series of experiments to illustrate the role
of transformations on the development of residual stress in steels. Using bainitic,
martensitic and stable austenitic steels, they demonstrated that transformation plas-
ticity during the cooling of a uniaxially constrained sample from the austenite phase
field, acts to relieve the build up of thermal stress as the sample cools. By contrast,
the non-transforming austenitic steel exhibited a monotonic increase in residual stress
with decreasing temperature, as might be expected from the thermal contraction of a
constrained sample. When the steels transformed to bainite or martensite, the trans-
formation strain compensated for any thermal contraction strains that arose during
cooling. Significant residual stresses were therefore found to build up only after
transformation was completed, and the specimens approached ambient temperature
(Fig. 45).

The experiments contain other revealing features. The thermal expansion coefficient
of austenite (1.8 × 10−6K−1) is much larger than that of ferrite (1.18 × 10−6K−1),
and yet, the slope of the line prior to transformation is smaller when compared
with that after transformation is completed (Fig. 45). This is because the austenite
deforms plastically; its yield strength at high temperatures is reduced so much that
the sample is unable to accommodate the contraction strains elastically. Thus, the
high temperature austenite part of each curve is virtually a plot of the yield strength
as a function of temperature, as is evident from the comparison versus the actual
yield strength data also plotted on Fig. 45a.

In the region of the stress/temperature curve where transformation happens, the
interpretation of experimental data of the kind illustrated in Fig. 45 is difficult. In
the case of displacive transformations, the shape change due to transformation has a
shear component which is much larger than the dilatational term. This will give rise
to significant intergranular microstresses, part of which will be relaxed plastically.
This shear component will on average cancel out in a fine grained polycrystalline sam-
ple containing plates in many orientations so that the average type II microstress
component will be zero. However, the very nature of the stress effect is to favour
the formation of selected variants], in which case the shear component rapidly begins
to dominate the transformation plasticity. Fig. 45a shows that the stress can tem-
porarily change sign as the sample cools. This is because the stress selected variants
continue to grow preferentially until transformation is exhausted.
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Figure 45. (a) The axial macro stress that develops in uniaxially
constrained samples during cooling of a martensitic (9Cr1Mo), bainitic
(21

2
Cr1Mo) and austenitic steel (AISI 316). Also plotted are some

experimental data for the yield strength of austenite in a low-alloy
steel. (b) Interpretation of the Alberry and Jones experiments. The
thermal expansion coefficient of austenite is much larger than that of
ferrite.
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Notice that if transformation is completed at a higher temperature, then the ulti-
mate level of stress at ambient temperature is larger, since the fully ferritic sample
contracts over a larger temperature range. To reduce the residual stress level at ambi-
ent temperature requires the design of alloys with low transformation temperatures.
The sort of high strength welding alloys used for making submarine hulls tend to
have very low transformation temperatures (< 250◦C). This fact may be fortuitous,
but such alloys should be less susceptible to cracking induced by the development
of macro residual stresses. Fig. 46 illustrates one kind of distortion found in welds,
measured in terms of the angle θ through which the unconstrained plates rotate dur-
ing the cooling to ambient temperature. It has now been demonstrated that the use
of appropriate martensitic weld metal can dramatically reduce the distortion.

Figure 46. An illustration of the distortion caused when a pair of
coplanar plates are welded together and the joint is then allowed to
cool to ambient temperature.
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11. Bulk Nanostructured Steel

A nanostructured material is here defined as one containing an exceptionally large
density of strong interfaces, rather than one which simply contains a minor fraction of
features such as precipitates, which are small in size. The desire for such materials in
the engineering context comes from the expectation of novel mechanical properties,
particularly the stress that can safely be tolerated in service. It is difficult to invent
such materials because any design must address three basic issues:

(i): it should ideally be possible to make samples which are large in all dimensions,
not simply wires or thin sheets;

(ii): there are commercially available steels in which the distance between interfaces
is of the order of 250–100 nm. The novelty is in approaching a structural
scale in polycrystalline metals which is an order of magnitude smaller.

(iii): The material concerned must be cheap to produce if it is not to be limited to
niche applications. A good standard for an affordable material is that its cost
must be similar to that of bottled water when considering weight or volume.

These are formidable challenges and the process of design can begin with a consider-
ation of how strength can be achieved. The long–range periodicity which is assumed
to typify the crystalline state is in practice punctuated by defects, some of which
make a significant contribution to configurational entropy and hence can exist in
thermodynamic equilibrium. This kind of entropy scales with the number of entities
(atoms) in the crystal and hence it is only possible to approximate perfection in small
crystals. Such crystals can be strong because in the absence of defects, deformation
must occur by the wholesale glide of planes over each other, rather than by the prop-
agation of discontinuities such as dislocations. Micrometer sized crystals of pure iron
have achieved strength levels in excess of 10 GPa, although in principle the strength
can exceed 20 GPa. The crystals becomes weaker as they are made larger, both
because of the thermodynamically stabilised defects and also accidents of growth.
This is fundamentally why the impressive mechanical properties of carbon nanotubes
are not maintained (and indeed, should not be expected to be maintained) when the
tubes become long.

An alternative method for manufacturing sizeable strong materials is to introduce
large numbers of defects such as interfaces or dislocations, which interfere with the
ordinary mechanisms of slip or twinning. The defects can be introduced by deforma-
tion. Techniques which involve severe plastic deformation are limited in the shape
of the final product and in the quantity that can be produced at reasonable cost.
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Examples include fine nanostructured–wire with a strength in excess of 5 GPa; met-
als subjected to equal–channel angular extrusion in which redundant work is used
in order to achieve large plastic strains whilst maintaining the external shape of the
object being deformed. Accumulative roll–bonding involves the repeated rolling and
folding of sheet material in order to accomplish strain increments without thinning
the sample entering the rolls; the process is suited for large scale production but
does not lead to particularly fine grains, which tend to be closer to micrometers than
nanometers in size.

Thermomechanical processing is particularly suited to the large scale production
of fine–grained steels by phase transformation from the deformed parent austenite.
However, the minimum ferrite grain size achieved in practice is about 1µm, partly
because the speed of production and the thickness of the steel leads to recalescence
during transformation, and hence prevents the achievement of the large undercoolings
needed to refine the grain size.

There are a couple of further difficulties. The ductility decreases sharply as the grain
size in a polycrystalline metal is reduced. Secondly, there is often a requirement for
rapid heat–treatment which becomes impractical for large components.

A recent development seems to avoid all of these difficulties, and meets the criteria
outlined in the opening paragraph of this chapter. A nanostructure has been achieved
in large lumps of steel by phase transformation, with the design of the steel based on
an understanding of the atomic mechanisms of crystal growth in the solid state.

11.1. Alloy design. Suppose we now use theory to estimate the lowest temperature
at which bainite can form. Such calculations are illustrated in Fig. 47a, which shows
for an example steel, how the BS and MS temperatures vary as a function of the
carbon concentration. There appears to be no lower limit to the temperature at which
bainite can be generated. On the other hand, the rate at which bainite forms slows
down dramatically as the transformation temperature is reduced, Fig. 47b. It may
take hundreds or thousands of years to generate bainite at room temperature. For
practical purposes, a transformation time of tens of days is reasonable, corresponding
to a carbon concentration of about 1 wt%, in which case bainite can be generated
at a temperature as low as 125◦C, which is so low that the diffusion distance of an
iron atom is an inconceivable 10−17m over the time scale of the experiment!

A steel designed on this basis was manufactured and characterised; Fig. 48 shows
the structure obtained following isothermal transformation at 200◦C, consisting of
platelets of bainitic ferrite only 200–400 Å thick, with intervening regions of the
parent austenite (γ). This retained austenite is important because when it undergoes
stress or strain–induced martensitic transformation, it enhances the work–hardening
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(a) (b)

Figure 47. (a) Calculated transformation start temperatures in Fe-
2Si-3Mn steel as a function of the carbon concentration. (b) The cal-
culated time required to initiate bainite.

capacity of the material, thereby avoiding the usual problem of fine–grained metals
where ductility diminishes as the grain size is reduced.

Figure 48. Fe-0.98C-1.46Si-1.89Mn-0.26Mo-1.26Cr-0.09V wt%,
transformed at 200◦C for 15 days. Transmission electron micrograph.

The bainite obtained by low–temperature transformation is harder than ever achieved,
with values in excess of 700 HV. Some strength, ductility and toughness data are
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illustrated in Fig. 49. The simple heat treatment involves the austenitisation of a
chunk of steel (at say 950◦C), followed by a gentle transfer into an oven at the low
temperature (say 200◦C) to be held there for ten days or so. There is no rapid cooling
– residual stresses are avoided. The size of the sample can be large because the time
taken to reach 200◦C from the austenitisation temperature is much less than that
required to initiate bainite. This is an important commercial advantage.

(a) (b)

Figure 49. Some mechanical properties of two superbainitic steels.
(a) The ultimate tensile strength (UTS) and 0.2% proof strength as
a function of the volume fraction of bainitic ferrite (Vb) divided by
the ferrite platelet thickness t. (b) Ductility (points and curve) and
toughness KIC represented as crosses.
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12. Question Sheet

Please use this question sheet as a supplement to the on-line edX sets.

12.1. Martensite.

a. Give two examples of deformations that change the crystal structure and two
examples of those which do not. [20%]

b. A simple shear can transform the Cubic F structure of austenite into the hexag-
onal close-packed ε martensite. This consists of a displacement of a

6
〈112〉 on

successive close-packed planes. Calculate the shear strain associated with the
transformation. (a is the lattice parameter of austenite). [20%]

c. How many different crystallographic variants of ε-martensite can in principle
form within a single austenite grain? [20%]

d. Fig. 50 shows a stereographic projection of austenite showing the ε habit planes
of the form {111} and shear directions of the form 〈112〉. Which is the most
favoured crystallographic variant that is stimulated to grow by applying a
tensile stress along the direction [123]? [30%]

e. Which alloying element promotes the hexagonal close-packed form of iron, and
hence ε-iron, under ambient conditions? [10%].

Figure 50. Stereographic projection of austenite, showing also the
location of the tensile axis along [123].
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12.2. Bainite and Martensite.

a. Describe an experiment that can establish whether or not carbon diffuses during
the growth of bainite. [20%]

b. A particular steel has the chemical composition Fe-0.2C-2Si-2Mnwt%, the
T0 curve of which is presented below. Beginning with the fully austenitic
state, it is transformed isothermally to bainite at 400◦C until the reaction
stops. Calculate the volume fractions of the phases present, and the carbon
concentration of the austenite when the reaction ceases. Comment on the
role of the silicon and state any assumptions involved in your calculation.
[30%]

c. Describe what might happen when the mixture of phases generated by the
experiment above is cooled to ambient temperature. [10%].

d. In a second experiment, the steel is heated into the fully austenitic state un-
til the austenite grain size reaches 40µm. It is then quenched to produce
martensite. If the free energy change accompanying martensitic transforma-
tion is 1000 Jmol−1, and the shear and dilatational components of the shape
deformation are s = 0.26 and δ = 0.03, calculate the maximum thickness of
the martensite plates that form. [25%]

e. Explain how the thickness of the bainite plates produced in (b) might compare
against the calculated thickness of the martensite plates. [15%]
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[The strain energy per unit volume of an elastically accommodated plate of marten-
site is c

r
µ(s2 + δ2), where µ = 80GPa is the shear modulus of the austenite, and c

r

is the thickness to length ratio of the martensite plate. The molar volume of iron is
about 7× 10−6m3mol−1.]
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12.3. Ferrite.

a. The data given in the table below describe how the thickness of an allotri-
omorph of ferrite varies with time (t) during the isothermal transformation
of austenite of grain size 20µm. Plot the data, both as a function of t and√
t. Explain the form of the relationship between the thickness of the ferrite

and the transformation time. [30%]

Thickness of α layer / µm Time / s
0 0

0.47 2
0.64 4
0.90 8
1.28 16

b. Describe what is meant by hard impingement and soft impingement. [10%]

c. Illustrate the distribution of solute ahead of the transformation interface,
marking on your diagrams the equilibrium compositions of the parent (γ) and
product (α) phases (cγα and cαγ respectively) and the average composition c.
How would you expect the concentration profile to change as the thickness of
the ferrite layer becomes a substantial proportion of the austenite grain size?
[30%]

d. In a ternary steel containing both manganese and carbon as solutes, the austen-
ite is transformed isothermally into allotriomorphic under paraequilibrium
conditions. Sketch an isothermal section of the iron-rich part of the Fe-Mn-
C paraquilibrium diagram, indicating tie-lines within the α + γ phase field.
Draw on this diagram the equilibrium α+ γ phase field together will illustra-
tive tie-lines. By comparing the equilibrium and paraequilibrium ties lines,
indicate the solute that is trapped as ferrite grows. Explain why the phase
boundaries of these two diagrams meet when the Mn concentration is zero.
[30%]
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12.4. Ferrite, TRIP, Bainite.

a. Why does the common tangent construction, on plots of the free energy versus
composition curves in a binary system, lead to the equilibrium compositions
of the phases where the tangent touches the curves simultaneously? At a
constant temperature, the equilibrium compositions in a binary system are
connected by a unique tie-line. Why is the tie-line no longer unique in the
ternary case? [30%]

b. What is meant by paraequilibrium in the context of an Fe-Mn-C steel? Comment
on how the concentration of the solutes would be expected to vary across the
ferrite-austenite interface during paraequilibrium growth, assuming that you
can measure the composition with atomic resolution. [20%]

c. Explain qualitatively why the strain caused by deformation-induced martensitic
transformation in TRIP-assisted steel cannot explain the remarkably ductility
observed in spite of the high-strength of these alloys. What then is the cause
of this useful combination of strength and ductility? [20%]

d. Describe four conditions necessary to facilitate the production of tonnage
quantities of nanostructured steel. Given an interfacial energy per unit area
of 0.2 Jm−2, estimate the energy stored in a material where the interfaces are
spaced 20 nm apart. [30%]
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12.5. Pearlite.

a. Why does pearlite in an Fe-C alloy grow at a constant rate, whereas the rate of
growth of allotriomorphic ferrite decreases as the ferrite thickens? [10%]

b. Derive an expression relating the interlamellar spacing S, and the amount of
ferrite (α)-cementite (θ) and the interfacial area per unit volume SV . What
is the free energy consumed in creating these interfaces, as a function of
S? If the chemical free energy change available for transformation is 2.86 ×
107 Jm−3, and the α/θ interfacial energy per unit area is 0.6 Jm−2, find the
critical interlamellar spacing SC whence all the driving force is consumed in
creating the interfaces. [30%]

c. Show therefore, that the driving force available for transformation (∆G) after
accounting for the α/θ interfacial energy, can be expressed as ∆G ∝ (1 −
[SC/S]). [10%]

d. How does the gradient of concentration at the transformation front vary with
the interlamellar spacing? Assuming that the growth velocity is proportional
to ∆G, and to the gradient, show that the maximum in growth rate occurs
when S = 2SC . [30%]

e. Explain the microstructural features of pearlite that control (a) its strength and
(b) its toughness. [20%]
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