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Preface

This short book is an introduction. Each of the concepts covered is sufficient
and complete to the extent appropriate for an early semester of an undergraduate
course. There are worked examples that can stimulate absorption of the subject.
The book is suitable for second year students in any of the following disciplines:
materials science, engineering, chemical engineering, physics, chemistry, Earth
sciences and physical sciences in general. References are provided at the end for
anyone who wants, for whatever reason, to delve deeper.

People use materials routinely and without worrying about the structure within.
If the material functions reliably then there is no justification to think further.
There are 9 million scientists in the world today, of whom about 300,000 are
concerned with materials — i.e., a fraction 0.00004 of the world’s population.
This very special minority drives the creation of new materials by probing and
manipulating the structure of materials. Structure itself is as defined over length
scales that range from atoms to engineering dimensions so the subject is inher-
ently interdisciplinary like no other.

Countless variables can influence structure and therefore, properties. For this
reason, logic is needed to understand, and express quantitatively how such pa-
rameters work. One example is that every element in the periodic table can, to a
greater or lesser extent, dissolve in every other element. This represents far too
much work to explore experimentally. But the mixing and its consequences can
in principle be expressed using free energies and atomic mobilities to calculate
what should happen. This would then be validated experimentally and used to
inspire new materials and processes.

Throughout this book, braces are used to imply a functional relationship, i.e.,
f{x} means that f is a function with an argument x.

We are grateful to many who were kind enough to provide us with images and
information, as acknowledged appropriately in the text.
Harshad K. D. H. Bhadeshia and Haixue Yan

The year 2023
London.
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Chapter 1

Introduction

Ideally, a phase is a homogeneous and physically distinct region. It is distin-
guished by properties such as composition and the arrangement of atoms within,
or even readily measurable properties such as electrical resistance or density. A
phase transformation can be stimulated by changes in temperature, stress, mag-
netic fields, electrical stimuli and the pull of gravity. A transformation means
that the pattern in which atoms are arranged may change; this may even involve
a configuration of atoms that has no periodicity. A phase can be gaseous, liquid,
plasma or solid. Transformations can involve entities different from atoms, for
example, dipoles or magnetic moments.

The ability to control transformations plays a huge role in the design of materials
for specific purposes, or simply to satisfy curiosity. Transformations in particular
form the basis of structure control at a variety of length scales. We shall
attempt to address why phase changes occur and the mechanism by which they
occur.

1.1 MECHANISMS OF TRANSFORMATION

One of the reasons why there is a great number of microstructures at our dis-
posal is because the atoms can move in a variety of ways to achieve the same
change in crystal structure. The shape and packing of the resultant crystals will
depend on this mechanism. The transformation can occur either by breaking all
the bonds and rearranging the atoms into an alternative pattern (reconstructive
transformation), or by homogeneously deforming the original pattern into a new
crystal structure, i.e. displacive transformation, Figure 1.1.

In the displacive mechanism the change in crystal structure also alters the macro-
scopic shape of the sample when the latter is not constrained. The shape defor-
mation during constrained transformation is accommodated by a combination
of elastic and plastic strains in the surrounding matrix. The product phase then
grows in the form of thin plates to minimise the strains. The atoms are displaced
into their new positions in a coordinated motion. Displacive transformations,
therefore, occur at temperatures where diffusion is not possible during the time
scale of the experiment. Some solutes may be forced into the product phase, even
if under equilibrium they would prefer not to be there. Both the trapping of atoms
and the strains make displacive transformations less favourable from a thermody-
namic point of view. However, if atoms lack mobility, e.g., at low temperatures,
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FIGURE 1.1 Schematic illustration of the mechanisms of transformation. The parent crystal on
the left contains two kinds of atoms; the filled circles are solute atoms given their small concentration
relative to the open circles that identify solvent atoms. The figures on the right represent partially
transformed samples with the parent and product unit cells outlined in bold. The displacive trans-
formation is accompanied by a large change in shape that is consistent with the change in atomic
pattern, but the chemical composition remains unaltered. Whereas there is no change in shape during
the reconstructive transformation illustrated, the different atoms have partitioned between the two
phases depending on the equilibrium solubilities within those phases.

this is the only mechanism available to achieve the transformation.

It is the ability of atoms to diffuse that leads to the new crystal structure during
a reconstructive transformation. Imagine that the transformation proceeds as
by the displacive mechanism (Figure 1.2a,b), but that the resulting shape defor-
mation is eliminated by transporting the segment as in Figure 1.2c to recover
the overall shape shown in (d). This transport is the diffusion that is needed
in order that the strain energy term is essentially eliminated, as if there is fluid
flow in the surrounding matrix. The flow of matter is sufficient to avoid any
shear components of the shape deformation, leaving only the effects of volume
change. In alloys, the diffusion process may also lead to the redistribution of
solutes between the phases in a manner consistent with a reduction in the overall
free energy.

Figure 1.3a shows an atomic force microscope image taken from a steel sample
that was polished organically flat before it underwent a displacive transformation
from a face-centred cubic to a body-centred cubic crystal structure. The sample
changes its shape in the region where transformation happened, leading to sub-



reconstructive diffusion

FIGURE 1.2 Phenomenological interpretation of reconstructive transformation. The virtual opera-
tion that eliminates the shape change is the diffusion required during a reconstructive transformation,
irrespective of whether it occurs in a pure substance or in an alloy.

stantial upheavals of the surface, caused by the coordinated motion of iron atoms
without any diffusion. The upheavals can be characterised to consist of a shear
strain of about 0.26. There is also a small volume change (0.03) by dilatation
normal to the plane on which the shear occurs.

In contrast, Figure 1.3b shows a tomographic image of the profuse precipitation
of Ni4Ti3 in a solid solution of nickel and titanium; the precipitates have quite a
different chemical composition than the matrix so diffusion accompanied trans-
formation. The precipitation process is a reconstructive transformation with no
surface upheavals of the type observed in Figure 1.3a.

(a) (b)

FIGURE 1.3 (a) Atomic force image showing the upheaval of the initially flat surface due to
displacive transformation in steel, from face-centred cubic to body-centred cubic crystal structure.
The sample has been polished flat prior to transformation [1]. (b) Three-dimensional characterisation
showing precipitation of NigTiz in a Ni-Ti solid solution. Image courtesy of Dominique Schryvers
and Cao Sanshan of the Electron Microscopy for Materials Science section of the University of
Antwerp.



1.2 CONDITION FOR DISPLACIVE TRANSFORMATION

A displacive transformation occurs only when atomic mobility is limited. The
velocity of the interface during displacive transformation will be greater than
the ability of atoms to diffuse. This can be expressed quantitatively by com-
paring the rate at which the interface moves with the corresponding diffusion
velocity:

v > — (1.1)

—— A
——

interface velocity diffusion velocity

where A is the distance between adjacent atomic positions. Notice that a diffusion
coefficient has units of m?s~! so dividing by A gives a speed with units ms~!,
which is the fastest speed with which the atoms can diffuse since A is the smallest

distance that an atom can jump.

Example 1: barium titanate

The ceramic barium titanate has a variety of crystal structures, two of which are
illustrated in Figure 1.4. By working out the number of atoms of each kind in
the unit cell of the cubic form, determine the chemical formula of the oxide.
Bear in mind that atoms located at corners or faces of the unit cell will be shared
with other unit cells, i.e., they cannot be assigned completely to the unit cell
drawn.

In the tetragonal cell, the x and y axes are slightly smaller than in the case of
the cubic lattice, and the z-axis (vertical) is slightly elongated. Note particularly
that the titanium atom does not lie at the centre of the cell but is slightly elevated
along z. Because of this asymmetry, the centre of mass of the ions will move
when the crystal is deformed. Is there any consequence of this?

Would the transformation of the cubic to slightly tetragonal lattice during cooling
at 120 °C be displacive or reconstructive?

Solution 1

Each atom at a corner of the unit cell contributes just é to the cell; any at the
face-centres a %; the titanium atom is wholly enclosed by the cell, so the chemical
formula is BaTiOs3.

If the crystal is deformed homogeneously, the centre of mass shifts, leading to
the development of a voltage, i.e., piezoelectricity.

The transformation is displacive, first because the transformation temperature is
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FIGURE 1.4 Examples of the crystal structures of barium titanate. (a) Cubic lattice. (b) Tetragonal
lattice, with the titanium atom not located at the centre of the cell, but at elevated coordinates
(%, %, 0.52) along the z axis. Similarly, the oxygen atoms on the vertical faces have coordinates

equivalent to %, 1,0.52) and the oxygen atom on the horizontal faces are at coordinates equivalent
to (%, 1,0.96).

too low for diffusion to be possible during the time scale of the experiment — a
transition like this can occur in a microsecond or so [2]. The second reason is that
the distortion needed to change the cubic to tetragonal lattice is really quite small.
The lattice parameter of the cubic form close to the Curie point is 0.4009 nm
whereas the tetragonal form at the same temperature has ¢ = 0.4022 nm and
a = 0.4003nm [3]. The distortions are therefore slight. The volume of the
tetragonal cell is smaller than the cubic titanate at the same temperature.

In fact, there are two further even lower temperature transformations that occur
in barium titanate: at 0 °C it changes from tetragonal to orthorhombic, and then
below —90 °C from an orthorhombic to a rhombohedral crystal structure. All of
these are spontaneously polarised, along the (001), (110) and (111) along the
tetragonal, orthorhombic and rhombohedral directions, respectively.

Apart from its piezoelectric properties, the tetragonal BaTiO3 has a permanent
dipole that can be switched in an applied electric field, which also makes it
ferroelectric. In this state, the dipoles within the crystal can interact and become
aligned in the same direction over a part of the crystal. In other parts, the dipoles
can align on different (100) directions (different domains) so that in the absence
of a field, the material does not exhibit a net dipole moment. The application of
an electrical field favours the growth of those domains that best align to the field
so a net polarisation results.

Barium titanate also has a large relative permittivity. This means that when
placed in an electrical field, the magnitude of that field is greatly reduced within
the titanate. The relative permittivity is dimensionless and frequency dependent;



itis the ratio of the capacitance of a capacitor consisting of two conducting plates
separated by the barium titanate, to the capacitance when there is a vacuum
between those plates. The relative permittivity of barium titanate is found to be
in the range 7000-15000 at 1 kHz, which is much greater than common ceramics
or polymers that have values < 100. This means that it is an insulator, and hence
is used to make capacitors for electronic applications.

1.3 ELEMENTARY PRINCIPLES OF X-RAY DIFFRACTION

One of the characterisation methods used in the study of phase transformations is
X-ray diffraction. The method can help in the determination of crystal structures,
such as the cubic and tetragonal forms of barium titanate, the fractions of phases
present in a mixture of phases, and even the positions of atoms within the unit
cell. In a conventional laboratory, the penetration of X-rays into a metal is a
few micrometres; using synchrotron X-rays provided for academic studies by a
variety of national and international organisations, permits the use of far more
intense X-rays, capable of penetrating 10 mm of a metallic sample and allowing
a time-resolved study. Synchrotron facilities cost billions to construct, but can
be used free if a good scientific case is made and if the information obtained is
made openly available. However, here we deal with a simple case to illustrate
the diffraction.

Consider waves of length A incident on planes of atoms. The beams reflected
from different planes in the parallel set illustrated in Fig. 1.5 must be in phase
to avoid destructive interference. The path difference between beams a and b,
i.e. the distance xyz, must then be an integral number of wavelengths. Since
xyz = 2d sin 6, the diffraction condition is

nd =2dsiné (1.2)
where 7 is an integer; this equation is the Bragg law [4], with 6 designated the
Bragg angle.

Therefore, when a crystal is irradiated with X-rays, the intensity of diffracted
waves will only be significant at particular values of 6, from which it is possible
to deduce some information about the crystal structure of the sample.
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FIGURE 1.5 Electromagnetic waves incident on a set of parallel crystal planes with an interplanar
spacing d. The angle of emergence of the scattered waves is the same as that of incidence.



Example 2: X-rays from cubic & tetragonal barium titanate

(i) A crystal with a hexagonal unit cell has the parameters ¢ = 1 nm and
¢ = 2nm. Select the correct d-spacing of the {001} (= {0001} in four
index notation) planes: (a) 1.52 nm; (b) 1.71 nm; (c) 2 nm.

(ii)  We have seen that barium titanate can exist both in the cubic and tetrag-
onal crystal structures. Assuming that the lattice parameters are acypic =
0.404 nm, and Qtetragonal = btetragonal = 3.9nm with Ctetragonal = 4.1 nm,
use an X-ray wavelength of 0.15405 nm to calculate the positions 26 of
diffraction peaks resulting from {100}, {110}, {111} planes.

Explain why the {100}, (001) peaks separate in the case of the tetragonal
lattice, but the {111} does not. Note that the level of tetragonality has
been exaggerated for clarity.

(ili) Barium titanate undergoes a cubic to tetragonal transformation on cool-
ing below the Curie point of 120 °C. In the tetragonal cell, the titanium
atom no longer lies at the centre of the cell, but is displaced along either
[001] etragonal OF [OOT] tetragonal-  SUppose a large single crystal of cubic
titanate transforms on cooling below the Curie point, giving your reason-
ing, explain how many different orientations of the tetragonal cell could
in principle be observed?

Solution 2

(i)  2nm since we are dealing with basal planes.
(ii)  Bearing in mind that the d-spacing for a plane with Miller indices {hk{}
is, for an orthogonal cell, given by the equation

A A

==+—=+—
2 27 2 T
direy 4@ b= ¢

(1.3)

and using the Bragg Equation 1.2, the positions of the peaks on Figure 1.6
can be calculated; a, b and c are the lattice parameters.
For the tetragonal lattice the {100}, (001) planes must have different
spacings because ¢ > a = b. Therefore, the {100}.ypic peak splits into
two. Notice that {100} ciragonal is more intense than (001)¢etragonal because
{100} etragonat contains intensity from both (100)etragonat and (010)¢etragonal
whereas there is only one set of (001)eqagonal Planes normal to the ¢ axis.
The {111}etragonal Peak does not split because all such planes i.e.,
[( 11 l)tetragonal’ (1 1 l)tetragonala (1 1 l)letragonals (l 1 l)tetragonal] all have in-
dices that include the c-axis.

(iii)  Six orientations, accounting for all the axes of the cubic cell, and their
opposites.
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FIGURE 1.6 Barium titanate. (a) Cubic. (b) Tetragonal

Example 3: mechanism of transformation

)

(i)

(iii)

(iv)

Comment on each of these statements, giving reasons why they may or
may not be be correct.

o The strain energy accompanying a displacive transformation is much
greater than that associated with a reconstructive transformation.

e A displacive transformation product is as expected from equilibrium
considerations.

o Adequate diffusion is a necessary condition for displacive transforma-
tions.

After elastic deformation, a material exhibits an ideal plastic behaviour
(Figure 1.7a). Assuming that all the energy of both elastic and plastic
deformation is stored within the material, calculate the resulting stored
energy per unit volume. Show each step in your calculation.

Why do displacive transformations occur even though they lead to mi-
crostructures that are far from equilibrium? The diffusion coefficient in a
particular solid where the average interatomic spacing is 0.2 nm is given
by D = 107" m?s!. A phase transformation product in this system,
is observed to grow at 2 x 107" ms~! at 600 K. Giving reasons, explain
whether this product is likely to grow by a displacive or reconstructive
transformation mechanism?

What is the property change expected when cubic barium titanate un-
dergoes a displacive transformation into a tetragonal form? Figure 1.7b
shows the X-ray diffraction pattern from the tetragonal BaTiOs. Sketch
how the labelled peaks are expected to change when it transforms into the
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FIGURE 1.7 (a) Stress-strain curve. (b) An X-ray diffraction pattern from tetragonal BaTiOs3.

cubic form and justify your sketch.

(v)  Which mechanism of solid-state phase transformation is likely to result in
afiner structure (smaller individual crystals), displacive or reconstructive?
Give two reasons to justify your answer.

Solution 3

(i)  The first statement is correct because a displacive transformation leads to
a change in shape that is much greater than that associated with recon-
structive changes. This is because during a displacive transformation, the
pattern in which the atoms are arranged is forced to change into a new one
without diffusion. The second is wrong because not only is there a strain
energy due to the change in shape but the chemical composition does
not change even though some atoms would prefer to partition between
the phases. The third is incorrect, diffusion is entirely unnecessary for a
displacive transformation.

(ii)  The stored energy per unit volume is simply the total area under the curve,
0.5x0.003%600x 10%+(0.2-0.003) x600x 10% = 119x 10% I m~3. This
example illustrates the fact that a deformation occurring inside a material
due to a phase transformation will lead to strain energy. The product phase
can then adopt a shape that minimises that strain energy, for example a
plate shape.

(iii) They occur when the parent lattice is supercooled to such a temperature
that atomic mobility is limited. Given atomic mobility, they would not
occur. This is expressed formally using equation 1.1. The diffusion
velocity, i.e. the ability of atoms to jump out of the path of the interface,

10



(iv)

)

is
2 B 10—14
A 02x107°
1

which is much greater than the given growth-velocity of 2 x 1077 ms™!,
so the transformation mechanism is likely to be reconstructive.

Six orientations, accounting for all the axes of the cubic cell, and their
opposites.

All peaks in which the third index is non-zero split when the lattice is
tetragonal with ¢ > a. Therefore, in the cubic form, the [101] and [110]
peaks would combine, as would [002] and [200], and [112] and [211].

A displacive transformation would lead to a finer structure because the
strain energy associated with the transformation ensures thin plates. Stu-
dents will not know this, but the effective grain size of a thin plate is
just twice the thickness. So just by phase transformation, it is possible to
obtain grains that have an effective grain size of just 40 nm [5, 6].
Secondly, displacive transformations occur only at temperatures where
the atomic mobility is limited. Therefore, they cannot, for example, grow
across the grain boundaries of the parent phase.

Thirdly, displacive transformations occur at large driving forces (greater
undercooling), therefore, the nucleation rate is greater than reconstructive
transformations.

=5x 10_5ms‘1,
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Chapter 2

Elementary thermodynamics

2.1 INTRODUCTION

Thermodynamics facilitates the linking of many observable properties so they
can be seen to be a consequence of a few. It provides a firm basis for the rules
that macroscopic systems follow at equilibrium. Nothing more needs to be said
to justify its existence as a subject.

2.2 DEFINITIONS
2.2.1 Internal energy and enthalpy

The change in the internal energy AU of a closed system can be written as
AU =q—-w 2.1

where ¢ is the heat transferred into the system and w, the work done by the
system. The sign convention is that heat added and work done by the system
are positive, whereas heat given off and work done on the system are negative.
Equation 2.1 may be written in differential form as

dU =dq - dw. 2.2)

For the special case where the system does work against a constant atmospheric
pressure, this becomes
dU =dg - PdV (2.3)

where P is the pressure and V the volume.

The specific heat capacity of a material represents its ability to absorb or emit
heat during a unit change in temperature. Heat changes the distribution of
energy amongst the particles in the system (atoms, electrons, . . .) and it is these
fundamental mechanisms that control the heat capacity, defined formally as
dg/dT. Since dg = dU + PdV, the specific heat capacity measured at constant

volume is given by:
ou
Cv=|—]| .
=(ar),

A major contribution to the heat capacity of a solid comes from lattice vibrations.
Each atom can be considered to be a simple harmonic oscillator with three

12



degrees of freedom (three orthogonal directions along which it can vibrate).
Each such oscillator will therefore have an average kinetic energy 3 x %kT and
average potential energy 3 X %kT giving anet of 3kT. Suppose there are N atoms
in the solid then the energy is 3NkT and the contribution of lattice vibrations to
heat capacity is therefore C% = 3Nk. This supposes, however, that the vibrations
of each atom are independent, whereas they assume more collective modes as the
temperature is reduced. There are various methods of taking this into account,
but the essence of the behaviour is approximated by treating this as an elastic-
continuum problem, in Figure 2.1. It is only beyond the Debye temperature that
the heat capacity becomes 3Nk. The Debye temperatures of copper, iron and
lead are, respectively, 343, 470 and 105 K.

A
I :

| |
0 1 2
T/T

FIGURE 2.1 The Debye function showing how the heat capacity due to atomic vibrations varies
as a function of the absolute temperature, normalised by the Debye temperature 7 where the heat
capacity reaches 3N k.

It is convenient to define a new function H, the enthalpy of the system:
H=U+PV. 24

A change in enthalpy accounts for both the heat absorbed at constant pressure,
and the work done by the PAV term. The specific heat capacity measured at
constant pressure is therefore given by:

oOH
Cr = (a—T)P'

Heat capacity can be measured using a variety of calorimetric methods. The
data can then be used to estimate enthalpy changes as a function of temperature
and pressure:

T
AH = / CpdT. 2.5)

T

13



For solids that are not too compressible (i.e. have large bulk moduli), the
difference between Cy and Cp is small, simply because the effect of pressure on
volume is small. In the case of iron with a face-centred cubic crystal structure,
Cp~ (1+ 10‘4T)CV [7]. For gases, the difference can be large; in the case of
air, oxygen, carbon dioxide, and hydrogen, Cp/Cy is found to be 1.4025, 1.3977,
1.2995 and 1.4084, respectively [8].

We have thus far considered only lattice vibrations as contributing to the heat
capacity, but electrons make a contribution, albeit relatively small because the
Pauli exclusion principles prevents all but those able to change their energies,
from participating. Similarly, the paramagnetic to ferromagnetic transition can
make a large difference, as illustrated in Figure 2.2 for the case of body-centred
cubic iron.

Tt

100 - g
7
e 75
7
3
g 50 -
L)
= 0 =
PSR N — nu
E a5

0 | | |

° 400 800 1200

Temperature/K

FIGURE 2.2 Specific heat capacity of body-centred cubic iron. The dashed curve represents
contributions from lattice vibrations and electrons, whereas the continuous curve representing the
total heat capacity, additionally includes magnetic contributions. T¢ is the Curie point for the
paramagnetic to ferromagnetic transition. Data from [7].

Example 4:

Prove that

14



Solution 4
From Equation 2.4, H = U + PV so it follows that

[57), = (57, =),
{5, (5, (5,

——
Cp

2.2.2 Instrument to measure enthalpy

Calorimetric measurements in the distant past involved large instruments known
as bomb calorimeters [9] to characterise samples weighing 5-25g. Large
calorimeters designed for extreme stability and precision are still used but with
small samples, Figure 2.3.

(b)

FIGURE 2.3 (a) Anexceptionally precise, very stable, very large, thermopile calorimeter at Alexan-
dra Khvan’s laboratory at NUST-MISIS [10]. A thermopile converts thermal energy into electrical
energy. Essentially several thermocouples connected in series. An instrument like this is used in
research. (b) Illustration of the sample size used in the thermopile.

However, routine measurements are now possible on very small samples [11].
Differential scanning calorimetry (DSC) is a method for measuring the enthalpy
necessary to establish a nearly zero temperature difference between a substance
and an inert reference material, as the two specimens are heated or cooled at a
controlled rate, Figure 2.4.
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FIGURE 2.4 (a) Schematic of differential scanning calorimeter. (b) Desktop differential scanning
calorimeter that can sequentially and automatically characterise many pre-loaded samples.

The temperature difference AT depends on whether heat is released or absorbed
by the sample relative to the reference. It depends also on whether the ability of
the sample to absorb heat from the furnace is different from that of the reference,
because of its unalike heat capacity.
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FIGURE 2.5 DSC trace from a sample that initially is glassy, then crystallises and finally, melts
during heating. The vertical axis is the heat supplied to the sample, so an exothermic reaction would
require the sample to absorb less heat from the furnace, leading to a downward peak.

Figure 2.5 shows the DSC-output during heating at a constant rate, from a sample
that initially was in the glassy state with a sudden increase in heat capacity at
the glass transition temperature T,. In the glassy state, the randomly arranged
atoms are configurationally frozen so the structure cannot relax. Beyond Ty, the
atoms can relax over distances less than an average interatomic spacing, enabling
the still randomly arranged atoms to absorb more energy with each increment
of temperature, relative to the glassy state. The step in the DSC curve near T,
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reflects this change in heat capacity. There is a significant exothermic peak during
crystallisation, associated with the (—ve) “latent heat" of transformation from
random to the ordered state that crystals represent. When melting eventually
occurs, the latent heat is endothermic.

Transitions from a frozen glassy state to a more relaxed random state are common
in polymers but metals can also be made glassy. To achieve the cooling rate
necessary to avoid crystallisation in simple alloys, the melt is released on to
a spinning, water-cooled copper wheel, with the metallic glass coming off the
wheel in the form of a ribbon, as illustrated in Figure 2.6. Guess what such a
material could be used for.

(b)

FIGURE 2.6 (a) Snapshot of molten tin solidifying into a glassy state on the surface of a spinning
copper wheel. (b) The metallic glass ribbon that comes off the copper wheel. Images courtesy of
Mark Jolly.

Example 5: Metallic glass and differential scanning calorimetry

)

(i)

Describe how a metal could be forced into a glassy state. How do the
properties of a metallic glass vary with the direction in which the sample
is tested? Describe, with justification, how such a metal might be used in
an electrical application.

Figure 2.7 shows a differential scanning calorimetry (DSC) trace during
the heating of a sample of an iron-rich metallic glass at 10 K min~!.
Explain the step-like change at about 520 K. What does the inverted peak
that begins at about 700 K indicate is happening to the glass? If the sample
weight is 0.1 mg, calculate the latent heat per gram, associated with the
event beginning at 700 K and ending at 900 K.
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FIGURE 2.7 A DSC curve from a heated sample of metallic glass, with endothermic change
increasing along the y-axis.

Solution 5

)

18

In order for a material to be a glass, the random atomic-configurations
in the liquid must be frozen before crystallisation can occur. In the case
of a metal, this often necessitates rapid cooling, for example by allowing
liquid metal to pour on to a rotating, water-cooled copper wheel. There
are several other methods, the most recent being three-dimensional layer-
by-layer printing; a laser is applied to a layer of powder to fuse it, a fresh
layer of powder is deposited followed by the laser treatment, with the
process repeated until a solid object of the desired shape has evolved.
Iron-based metallic glass has been produced successfully in this manner
[12]. The rapid heating and cooling associated with the passage of the
laser is sufficient to make some alloys glassy.

A glass is isotropic because it has no periodic structure. The average
distance between atoms is identical in all directions. Therefore, it would
be expected to have the same properties irrespective of the direction of
testing.

Since there is no structure, the glass would be magnetically soft, i.e.,
it would be easy for magnetic domain boundaries to move and reverse
direction without much dissipation of energy, Figure 2.8. So, metallic
glass is used to make certain transformers where the the field reverses at
50-60 Hz. Such transformers therefore exhibit minimal heating.
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FIGURE 2.8 A single crystal of a ferromagnetic material, in the absence of an external field,
spontaneously divides itself into magnetic domains to minimise energy by reducing the extent of
its external field. When a field is applied, the domains best aligned to that field grow. The ease
of domain boundary motion that facilitates this change defines a magnetically soft material. In
an electrical transformer, the field changes frequently so a magnetically soft material avoids the
hysteresis loss as the domain boundaries move backwards and forwards in unison with the change
in field direction. This reduces heat generation as the transformer operates. Glasses do not have
structure that can interfere with domain boundary motion.

(ii) The step-like change represents the glass-transition temperature, where

atoms can relax so that the volume changes with temperature at a higher
rate than when the atoms were configurationally frozen. Therefore, the
heat capacity changes but there is no heat evolution or absorption.
The energy emitted (exothermic crystallisation) is given by the area of
the peak which is presented as a triangle. Therefore, its area is = 0.5 X
200 x 80mW K = mJs~! K. Dividing this by the heating rate which is
10K min~! = 10/60K s~! gives 48 J. Dividing this by the mass (0.1 mg=
107*g) gives 4.8 x 10° T g~ 1.

2.3 ENTROPY, FREE ENERGY

In Figure 2.5, melting during heating of the crystallised polymer is associated
with an endothermic event, i.e., Hyelt — Herystal = +ve so the enthalpy change
caused an increase in the free energy change AG accompanying melting. Since
reactions occur spontaneously only if AG = —ve, something else must be driving
the melting in a manner that allows the free energy to be reduced in spite of the
enthalpy change.

That ‘something else’ was defined by Clausius during the 19th century as the
entropy with the symbol S; even if there is no change in enthalpy, a reaction
can occur spontaneously and irreversibly in an isolated system if it leads to an
increase in entropy, i.e., AS > 0. This is because the free energy is a combination
of enthalpy and entropy,

G=H-TS. (2.6)

Entropy is often associated with the degree of disorder — during melting, the
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highly ordered crystal changes into a liquid with a random arrangement of
molecules, leading to an increase in entropy, which when multiplied by -T,
reduces the free energy.

There are many kinds of disorder, for example, the thermal entropy from the
vibration of atoms about their mean positions in a solid, the transition from
aligned magnetic spins to randomly pointing spins, and so on. To illustrate
entropy, we will consider one type, the configurational entropy. However, we
note that from an experimental perspective, a change in entropy can also be
measured using calorimetry, via the heat capacity:

T
AS = / & dr.
n T

Example 6: heat capacity of lead

The heat capacity of lead (Pb) is a function of temperature as follows:
Cp=23.6+98x107°T  Jmol'K™'  for300 < T < 600K

There are no phase or magnetic transitions in lead over the stated temperature
range. Showing the steps in your method, calculate the enthalpy and entropy
change when the sample is heated from 300 to 600 K.

Solution 6
If Cp = oc + BT, then the required changes are given by

1 600
of + -(3T2] = 8403 J mol !
2 300

T T
AH = deT:/ (ot + BT)dT =
T T

600
=19.3Jmol ' K~!

T CP
AS = / =Lar = [ocln{T} + BT
T T 300
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Example 7: bond pair probability

Explain why ordered crystals containing an equal mixture of ‘A’ and ‘B’ atoms
become disordered at a sufficiently high temperature. Note: an example of an
ordered crystal is equiatomic brass in which the copper atoms are at the corners
of the primitive cubic lattice and zinc atoms at the centre of the cube (or vice
versa). What is the probability of finding an A atom next to a B atom in a
disordered equiatomic solution?

Solution 7

In ordered crystals, A atoms prefer to be next to B atoms: the enthalpy of
ordering AH is negative. However, there is a decrease in entropy on ordering
so —TAS is positive. The latter term dominates at high temperatures, making
AG = Grdered — G disordered POsitive and hence favouring disorder, i.e. leading to
a random distribution of atoms.

In a random solution, the probability of finding an A atom next to a B atom (and
vice versa) in an equiatomic solution is pag = 2x(1 — x) = 0.5, where x is the
concentration as a mole fraction of A and (1 — x) of B. Here x is taken to be
the probability of finding an A atom and (1 — x) of a B atom. The factor of two
comes in because we must count both A-B and B-A bonds.

There is no case where an isolated, ordered crystal becomes disordered on
cooling. The ordered crystal would be in a state where AH = Hdered — Hdisordered
is negative so this would oppose disordering. Although entropy favours disorder,
its contribution to free energy diminishes linearly with temperature. So if a
crystal already is ordered, then there will be no tendency for it to disorder on
cooling.

Some ordered protein crystals do become less ordered on cooling, but this is
because they contain water which on freezing damages the crystals [13]. Obser-
vations dating back to the 1890s noted that some naturally-occurring crystalline
minerals became amorphous over time, but this is caused by radiation damage
[14].
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2.4 CONFIGURATIONAL ENTROPY

Figure 2.9a shows a mixture of two kinds of atoms, with like atoms segregated
with no mixing; there is only one way of achieving this arrangement. On the
other hand, if they are allowed to mix ideally then there are many more ways of
configuring them, three of which are illustrated in Figure 2.9c-d. A mixing of
the atoms is obviously more probable.

XXX XN (XX XN
ec0oceeoe cecoece
XXX XX XN X

(a)e0o0oo0ee (b)eeeeee
XX N NN (X XN N X
ec0ceooe eo0co0e0o0
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(c)eoecee (d)eeeocee

FIGURE 2.9 Four different configurations of a mixture of two kinds of atoms. (a) The two kinds
of atoms are partitioned into their own spaces, without mixing. (b-d) If the atoms are allowed to mix
then many more arrangements are possible, here only three of the many are illustrated.

Suppose there are N sites amongst which are distributed n atoms of type A and
N —n of type B, Figure 2.10. The first A atom can be placed in N different ways
and the second in N — 1 different ways. These two atoms cannot be distinguished
so the number of different ways of placing the first two A atoms is N(N — 1)/2;
similarly, for placing the first three A-atoms, the distinguishable configurations
is N(N — 1)(N - 2)/3!. The number of distinguishable ways of placing all the
A atoms is

NIN-1)...(N-n+2)(N-n+1)
n!

Since

NN=1)...(N=n+2)(N=n+ 1) (N=n)(N-n~-1)...(1) = N!

(N-n)!
It follows that

N(N-1)...(N-n+2)(N-n+1) N
n! T nl(N-n)!”

Q2.7)

So if the atoms behave ideally, i.e., they do not have a preference for the type
of neighbour, then the probability of a uniform distribution is much much more
likely than the ordered distribution.
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FIGURE 2.10 Schematic illustration of the placing of n A-atoms on a lattice with N sites. The
first can be placed on any site, but the second only on N — 1 sites. However, atoms 1 and 2 cannot
be distinguished because an arrangement 1,2 is identical to 2,1. When the third atom is placed, there
are 3! indistinguishable ways. The process is complete when N — n + 1 A-atoms have been located,
with the remainder being filled by B-atoms.

For a real system for which the number of atoms is very large, a parameter is
needed that expresses the likelihood as a function of the correspondingly large
number of configurations (w.) possible. Suppose that a term S is defined such
that S oc In w., where the logarithm is taken because it may be necessary to add
two different kinds of disorder (after Boltzmann [15, 16]), then the S is identified
as the configurational entropy S = k In w., where k, the proportionality constant,
is known as the Boltzmann constant which for a mole of atoms is the gas constant
R.

A simple example illustrates this. Suppose there are two identical particles, each
with N = 10° atoms of which n = 100 are A-atoms and the rest B-atoms. The
number of arrangements possible in each particle is therefore

10°!
T 1021(105 - 102)!
and In{1.02 x 10**?} = 788.

=1.02 x 10**? (2.8)

We

If the two particles are now combined,
2% 107!

2x 1021(2x 105 -2 x 10%)!
and In{1.85 x 109} = 1578

= 1.85 x 1083 (2.9)

We,total =
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so it is evident that if we simply add the number of configurations possible for
each particle, i.e. 1.02 x 103*? + 1.02 x 1032 £ 1.85 x 10% where this last
number is the configurations possible if we combine the two particles into one.
However, if the logarithms of w. are added, 788 + 788 = 1576 which is only
slightly different from 1578, but this difference diminishes as N becomes large,
bearing in mind that a mole contains some 6.023 x 10?3 atoms. The entropy is
a thermodynamic function of state and so it is additive, Figure 2.11.

S = kIn{w.}

We, -

We, + We, 7é We, total
In{we, } + In{we, } = In{we tota1 }

FIGURE 2.11 Entropy is a function of state so the individual entropies of separate particles can
be summed to give the total entropy of the combined particle.

When comparing scenarios, the one that is favoured on the basis of the degree
of disorder is that which has the greater entropy. In terms of solutions, entropy
favours mixing over separation. On this basis, it can be shown quite simply that
the change in entropy when atoms mix is given by

AS = -RZ, x;Infx;} (2.10)

where i = 1 ... j represents the atomic species and x; its mole fraction. Notice
that this configurational entropy of mixing always is positive.

Example 8: entropy of mixing

Prove the form of Equation 2.10.

Solution 8

Consider three identical objects, 1,2,3. There are 3! = 6 ways of arranging
them: 123, 132, 213, 231, 321, 312. However, if two of the objects are the
same, then the number of ways decreases to 3!/(1!2!) = 3. Say the 2 and 3 are
identical, then the possibilities are 122, 212, 221. We will use this to derive the
relationship that follows.

24



Consider a random mixture of a mole of atoms with a concentration (1 — x) of
A atoms and x of B atoms so the total number of atoms is given by Avogadro’s
number N,. The number of possible arrangements is

N,!
YT ING(T=2))! (Nx)!

(2.11)
For large numbers, In{y!} = yIn{y} — y so taking logarithms of Equation 2.11
gives
In{wc} = [NaIn{Na} = Na] = [Na(1 = x) In{N(1 = x)} = Na(1 - x)]
— [Nax In{Nyx} — N,x]
= NInfNoT — N = No(L=H (NG} - No(1 - ) In{1 - x}
+ Nath<x) — NaxInfNy} — Nax In{x} + Nax.
=—=N,[(1 —x)In{l — x} + xIn{x}] (2.12)

Notice that the derivation of equation 2.12 relies on a random mixture of the two
kinds of atoms. Such a mixture can only arise in three circumstances:

(i) when the temperature of the mixture is so high that thermal agitation
randomises the mixture;

(ii) when individual atoms are indifferent to their neighbours, i.e., when there
is no change in energy when breaking an A-A bond and a B-B bond to
make two A-B bonds;

(iii) when the material is produced by severely deforming a mixture of the
elemental powders of A and B at a temperature where they are unable
to diffuse. The deformation eventually breaks the particles into ever
decreasing size until the atoms of A and B are mixed together at random
[17]. This is the process of mechanical alloying [18].
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Example 9: shape of free energy curve

Equation 2.10 gives the entropy of mixing so the free energy of mixing is
AGy = —TASy. Differentiate this AGy to show that on a plot of free energy
versus mole fraction, the slope of the curve should be +coatx =0 orx = 1. In
practice, the slope will be large but finite — why is that?

Solution 9

The differential of ASy with respect to x is proportional simply to In{1—x}—In{x}
which gives +co at x = 0 or x = 1. However, this assumes that concentration is
continuous whereas it is in fact discrete since concentration is changed by adding
or removing an atom or atoms. Therefore, although the slope will be very large,
it will not be infinite [19]. One consequence is the care required when drawing
free energy curves, Figure 2.12. Another is that the shape of the curve explains
why it is so difficult to achieve extreme purity, because the free energy increases
sharply as the solute concentration reaches very small concentrations.

X v

|
B
(2) (b)

FIGURE 2.12 The diagram on the left is wrong because the free energy curve should intersect the
vertical axes of the pure elements at a slope +oo.
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Example 10: solutions, solubility, entropy

1.

Define what is meant by an ideal solution. For a binary A-B ideal-solution,
what would be the slope of the curve representing the free energy of mixing
versus concentration, at the pure A and pure B axes? Based on your answer,
comment on why it is very difficult to purify materials.

. Sometimes, solutions have very limited solute-solubility. How could you

force such atoms to mix and form a random solution with a solute concentra-
tion that is well above the solubility limit?

. Atoms of A and B are arranged in a straight line at random, with the mole

fraction of B equal to x. What is the probability of finding two A atoms
next to each other? How would your calculation be modified if this was a
two-dimensional array of A and B atoms?

An alloy is to be made, containing Fe, Mn, Al, Au and Mg. What are the
concentrations of these elements that result in a maximum configurational
entropy of mixing?

Solution 10

0]

(i)

The enthalpy of mixing is zero for an ideal solution, i.e., there is no change
in bond energy when A-A and B-B bonds are broken to form 2A-B bonds.
The atoms in such a solution will be randomly located at all temperatures.
The configurational entropy of mixing ASy, and hence the free energy of
mixing AGy has a term of the form x In{x} + (1 —x) In{1 —x}, which when
differentiated with respect to x gives In{1 — x} — In{x} — this in turn gives
+oo atx = 0 or x = 1. This means that the free energy changes sharply
at concentrations close to the pure elements when small concentrations of
impurities are added, making purification difficult.

To force elements to mix even when they do not prefer to mix, mechanical
forces are used. The elemental powder or elemental compounds are put
into a ball mill containing hard balls that severely deform the powders,
forcing mixtures to form on an atomic scale.

(iii) In a straight line, with a random arrangement, the probability is simply

the concentration of the element concerned, squared since the wish is to
discover near-neighbour pairs of like-atoms. In a two-dimensional array,
this would need to be multiplied by the coordination number z because
pairs can be formed along different directions.

(iv) The configurational entropy for any number of solutes involved, maximises

when their atomic concentrations are set to be equal.
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2.5 HIGH-ENTROPY ALLOYS

Equation 2.10 indicates that in ideal solutions, an equiatomic mixture of five
elements would have an entropy of mixing of AS = 1.61R whereas for an
equiatomic binary solution, AS = 0.69R. This is the basis of the so-called high-
entropy alloys [20, 21] where by maximising the entropy of mixing, the tendency
to precipitate phases is reduced and likewise, the tendency for a multicomponent,
concentrated mixture to form a single solid-solution is increased. One example
is the CrMnFeCoNi equiatomic alloy which solidifies as a single face-centred
cubic solid solution, even though it is only nickel which has the face-centred
cubic structure under ambient conditions.

The concept can be extended to ceramics [22]. In a thermoelectric material,
a temperature gradient leads to an electrical potential, with the ratio of the
latter to the former designated the Seebeck coefficient. A large value of this
coeflicient increases the utility of the thermoelectric material, but a low thermal
conductivity is also required so that the temperature gradient can be maintained.
This is the basis of the electricity source on satellites, where a plutonium heat
source is surrounded by a SiGe thermoelectric generator (Figure 2.13).

A novel high-entropy perovskite ceramic Srg gLag. | (Zrg.25Sng.25Tig 25Hfp.25) O3
prepared using ball milling of powders exhibits both a low thermal-conductivity
and a large Seebeck coefficient, Figure 2.13b [22]. The conductivity is reduced
because several types of atoms occupy the same lattice site at random, which
disrupt the thermal vibrations responsible for heat flow.
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