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Abstract

The dependence of the proof strength of undeformed pearlite on its interlamellar spacing
is examined in detail, with a view to resolving the plethora of relationships that exist in
the research literature. It is found by the analysis of published data that the Hall-Petch
equation is best suited to explain the strength, not simply on the basis of empirical fit, but
even when examined in a Bayesian framework. Furthermore, it is the only relationship that
gives a physically meaningful value to the friction stress. The reasons why previous analyses
have failed to resolve this issue are examined and explained. It is discovered that ferrite in
interstitial-free iron is, at an identical length scale, stronger in yield than the ferrite within
pearlite.

1 Introduction

The strength σy of fully pearlitic steel that is in an initially undeformed state depends
mostly on the interlamellar spacing SI. However, the exact form of the function σy = f{SI}
has been the subject of debate for a number of reasons, the most common of which is related
to the unphysical value of the strength when the interlamellar spacing is set to be infinite
[e.g., 1]. Although the present work is limited to pearlite, the dilemma is generic. It often
is suggested that a variety of relationships can adequately represent measured strength data
assuming empirical fitting to a length parameter (e.g. [ p. 230, 2],[3]). There even has
been an effort to prove that all such relationships should really be described by a function
that involves the relaxation of an epitaxially deposited film, whence the space available for
dislocation sources to operate is the determining factor [4].

Pearlite, of course, is not a single phase, nor can it be described accurately as consisting of
alternating plates of cementite and ferrite [5]. Nevertheless, yielding must first begin in the
ferrite and therefore, the interlamellar spacing must be taken as the constraining feature
to the transmission of yield through the structure as a whole. In this work, we examine
whether f{SI} is simply an empirical function or is it possible to distinguish between the
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variety of models given the data. We begin by outlining the basis of some of the proposed
mechanisms and then analysing a compilation of data.1

2 Hall-Petch relationships

Slip does not occur homogeneously in a polycrystalline material; some crystals will be
better oriented than others for the resolved shear stress to initiate dislocation motion on
the relevant slip system. Macroscopic yielding is defined as the propagation of plastic
deformation between grains, indirectly by stress concentrations that accumulate at grain
boundaries rather than by dislocations in one grain navigating their way into adjacent
grains, a process that would require a large degree of crystallographic continuity.

Figure 1 illustrates the mechanism, whereby the crystal on the left happens to be favourably
oriented with respect to the applied shear stress τa, leading to a pile-up of like-dislocations
at the grain boundary. Assuming that the length of the slip plane is equal to the mean
lineal intercept L that defines the grain size, the number of dislocations involved in the
pile-up, at equilibrium with the stress, is given for large n by

n =
Lτa
2A

with A = Es|b| [sin2 φ+ (1− ν) cos2 φ]/2π(1 − ν) (1a)

where φ is the angle between the dislocation line and its Burgers vector b, Es is the shear
modulus and ν is the Poisson’s ratio [8, 9]. The pile-up has the effect of concentrating stress
to an extent nτa at the tip of the pile-up so substituting for n using Equation 1a gives the
stress there as

τtip = nτa =
Lτ2a
2A

so that τa =

√

τtip2A

L
. (1b)

If it is assumed that plastic deformation propagates when τtip reaches a constant critical
value τc and after accounting for the friction stress τ f which must also be overcome, the
form of the classical Hall-Petch equation [10–12] is recovered:

τy =
√

τc2A× (L)−
1

2 + τ f (1c)

where τa has been replaced by the shear yield strength τy. If, in a polycrystalline material,
the shear and uniaxial tensile stresses are related by the Taylor factor M [13], then it follows
that

σy = M
√

τc2A
︸ ︷︷ ︸

kHP

×(L)−
1

2 + σf (1d)

where kHP is the Hall-Petch coefficient. Dislocation pile-ups of the kind illustrated in Fig-
ure 1 are often not observed experimentally; instead, arrangements of dislocations described
as forests within grain interiors are more common in iron. The general form of Equation 1d
is nevertheless maintained when the forest-dislocations are under stress from grain bound-
ary steps [14, 15]. This is because the density ρf of such dislocations is proportional to the
grain boundary area per unit volume, i.e., 2/L and since the flow stress depends on

√
ρf ,

the net outcome remains the inverse square root dependence of flow stress on grain size.

1It is assumed throughout that the dislocation density of undeformed pearlite does not depend on the
interlamellar spacing. Data from [6, 7] indicate dislocation densities of 0.7 × 1014 m−2 and 1.1 × 1014 m−2

for SI equal to 0.09 and 0.13µm, respectively; these densities are well within typical errors associated with
such measurements.
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Irrespective of the detailed mechanism, we note that σf is well defined.

Figure 1: How the stress concen-
tration due to a pile-up of disloca-
tions due to a single-ended source
on a slip plane in the crystal on the
left activates a dislocation source in
an adjacent grain, thereby imple-
menting general yielding in a poly-
crystalline material.

2.1 Langford model for yield of pearlite

Langford’s interest in the severe deformation associated with the drawing of both ferritic
and pearlitic wires led him to develop a model for plastic deformation that incorporates
dislocation mechanisms on a scale that respects the fine structure of pearlite. The increment
of shear strain (γ) caused by the translation of a dislocation of Burgers vector bθ across a
cementite (θ) plate of length L1, assuming that the vector makes an angle of 45◦ with L1,
is [16]

∆γ =
|bθ|√
2L1

(2a)

and the work necessary to achieve this is the product of the shear stress and plastic shear-
strain, which consists of components due to the the friction shear stress and the line energy
Γθ of the dislocation, assuming that the latter has to be created:

τθ∆γ = τ fθ∆γ +
ΓθL2

L1L2Lθ

(2b)

where Li are the dimensions of the cementite plate, noting that for pearlitic cementite, the
thickness Lθ ≪ L1 or L2. It follows by combining these equations that

τθ = τ fθ +
√
2

Γθ

|bθ|Lθ

. (2c)

The ambient temperature Vickers hardness of almost pure cementite in cast iron is found
to be just over 1000HV corresponding to an ultimate strength in tension of about 3.3GPa
(hardness/3, [17]). Assuming that the friction stress in tension is smaller than this by about
10%, the shear friction strength τ fθ ≈ 1.5GPa.

Cementite has a primitive lattice with space group Pnma and given its large lattice pa-
rameters, the magnitude of any Burgers vector of a slip dislocation will inevitably be large.
Since the most commonly observed slip system is (010)[001] [18, 19], |bθ| = 0.45165 nm,
which is much larger than that of any slip dislocation in austenite or ferrite.

The energy per unit length of a dislocation in an average population of screw and edge
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characters is given by [20]

Γθ ≈ Eθ
s |bθ|2
4π

1− 0.5νθ
1− νθ

ln

{
L∞

|bθ|

}

+ Γ∗
θ (2d)

where Γ∗
θ is the core energy per unit length; in the absence of information, this is taken

here to be identical to that in ferrite, i.e., Γ∗
θ ≈ 3 × 10−10 Jm−1 [21]. The extent of the

elastic-strain field L∞ of the dislocation depends on stress screening by other dislocations;
assuming that there are more dislocations present in the adjacent ferrite (α), this length
could be approximated as the interlamellar spacing, typically a micrometre. The isotropic
shear modulus and Poisson’s ratio for cementite have been estimated using first principles
calculations and averaging to be 75GPa and 0.35 respectively [22, 23]. Using these values,
Γθ ≈ 1.2 × 10−8 Jm−1. With these data and assuming that the cementite thickness Lθ =
0.2µm and the value of the friction stress becomes τθ ≈ 1.7GPa.2

The shear yield strength of pearlite was then expressed using the Hall-Petch relation:3

τP = τ fα +

√

2Eα
s |bα|τθ

2− να
4π(1− να)

(
1

Lα

) 1

2

(2e)

where Lα is the thickness of ferrite, which under equilibrium conditions is related to the
cementite thickness Lθ by the equilibrium fraction of cementite in a eutectoid steel. The
term containing the Poisson’s ratio is determined by an assumption of a mixed population
of screw and edge dislocations orientations. Langford’s model never seems to have been
tested against data but Equation 2e leads to a gross overestimation of the yield strength of
pearlite, even when τθ is reduced from the estimated 1.7GPa to 0.2GPa. For example, with
Lθ = 0.02µm, Lα = 0.118µm (giving SI = 0.138µm), τ fα = 77/2MPa, τ fθ = 1700MPa, bθ =
0.452 nm, |bα| = 0.25 nm, the shear stress given by Equation 2e comes to τP = 2.5GPa, i.e.,
a tensile strength twice that value whereas the actual tensile strength for that interlamellar
spacing is 580MPa. Reducing τ fθ to 200MPa makes τP = 1.8GPa.

It is known from direct observations using transmission electron microscopy that the yield
strength of pearlite is that needed to move dislocations in ferrite between “impenetrable”
cementite walls; both yielding and work hardening are said to be controlled by dislocation
activity within the ferrite [1]. Therefore, the assumption in the Langford model that a pile-
up in ferrite will induce flow in the adjacent cementite, is not justified given the tremendous
disparity in the strengths of the two phases. Until the stress within the ferrite accumulates
to a sufficient level, the cementite must remain elastically strained or strained to fracture.

However, bearing in mind that a pearlite colony is an interpenetrating bicrystal of α and θ

[5], initial yielding may be determined by dislocation pile-ups at the α/θ interfaces stimu-
lating other adjacent ferrite to yield, in which case a Hall-Petch relation would prevail with
the cementite acting simply as a means to transmit stress. Given that the stress ahead of a
dislocation pile-up diminishes with distance beyond its tip, there is a special strengthening
effect because this intervening cementite makes it more difficult for yielding to be stimulated

2The magnitude of this stress contradicts the statement in the original work [16] that Equation 2c leads
to a flow stress of cementite that is less than that of pearlite. It is possible that Langford neglected to
consider τ f

θ since its value was not stated.
3The ratio |bθ|/|bα| in the original treatment is removed from this equation because it does not seem

justified. Langford also assumed that the cementite deformation occurs by the propagation of a partial
dislocation, which also is not justified so the Burgers vector corresponding to the common slip system, i.e.,
[001] is substituted. Similarly, Langford’s 2Lα term has also been replaced by just Lα.
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in the ferrite on the other side of the dislocation pile-up. This is separate from the usual
strengthening due to the density of α/θ interfaces.

3 Analysis

Here we compare the yield strength against a variety of functions of the interlamellar spac-
ing, with the data all associated with fully pearlitic steels containing similar concentrations
of manganese and silicon, Figure 2.

The yield strength is seen to correlate somewhat better with S
− 1

2

I than S−1
I ; furthermore, the

intercept for the latter function, representing the friction stress is too large at 397MPa when
compared against the strength of single-phase ferrite. The inverse square-root dependence
has previously been criticised as leading to a negative friction-stress at infinite interlamellar
spacing [e.g., 1]; however, this is a consequence of analyses depending on limited data based
on individual studies, a classic problem widely recognised in machine learning, of overfitting
[24, 25]; such relationships then do not generalise well on independent experiments as is
easily evident. This is illustrated in Figure 2a where data from individual experiments
are plotted separately to reveal the large differences in slopes and intercepts when each
plot covers a limited range of interlamellar spacing. Although the individual plots may
exhibit high levels of correlation, they clearly would not generalise well on data from other
experiments as is obvious by extrapolating any one of the straight lines.

Figure 2b shows an analysis based on the entire dataset, giving that σf = 128MPa for the

Hall-Petch S
− 1

2

I dependence. Iron containing 500 ppm of carbon has σf = 100MPa [26, 27];
this concentration agrees with an atom probe determination of the carbon concentration of
ferrite within pearlite [28]. Pearlitic steels typically contain 0.3Si and 0.4Mnwt%, which
using Leslie’s solution strengthening data [29] gives a combined contribution of 33MPa so
that σf estimated in this way is 133MPa, eminently consistent with the plot in Figure 2b
represented by

σy ≈ 174S
− 1

2

I + 128 MPa (3)

with SI in micrometres. It has to be concluded that one of the mistakes in fitting the Hall-
Petch equation to limited data is to assume that σf can take on any value determined by
best fit, whereas it is in fact easy to estimate its value independently. In regression analyses,
the friction stress should take on a fixed value based on independent strength data, with
the slope being the fitting parameter.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Yield strength of fully pearlitic, eutectoid, hypereutectoid and hypoeutectoid steels,
none of which were in a plastically-deformed state prior to testing. (a) Hall-Petch best fits to
individual datasets. (b) Plotted against the inverse of the square root of the interlamellar spacing,
with a correlation coefficient of 0.87. The intercept on the vertical axis for an infinite spacing,
corresponding to the friction stress in the Hall-Petch equation, is σf = 128MPa with the slope of
the regression line being 174MPaµm

1

2 . (c) Plotted against the inverse of the interlamellar spacing,
with a correlation coefficient of 0.83. The intercept in this case is σf = 397MPa and the slope,
24MPaµm

1

2 . (d) Correlation of strength against a more complex function originating in thin-film
theory; the units of both SI and the lattice parameter of ferrite are in µm, correlation coefficient
0.85. Data used in (b-d) from [1, 30–40]. (e) Proof strength calculated using Equation 5 against
measured data [1, 30–32, 34–36, 38, 40]. The line has a unit slope and zero intercept. (f) Polynomial
fit discussed later in the text.
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It is instructive to compare the Hall-Petch coefficient kHP from Equation 3 against data
from interstitial-free ferrite, where the grain size of the recrystallised ferrite is comparable
to the interlamellar spacing of pearlite. In Figure 3 the line fitted to the ferrite data [41]
had the intercept fixed at σf = 50MPa to be consistent with the value reported by Takaki
[27] and can be represented by the equation:

σy ≈ 413(L)−
1

2 + 50 MPa (4)

where L is the grain size defined by the mean lineal intercept in units of µm. The interesting
result is that the ferrite grains are stronger than the ferrite which yields within pearlite, at
the same length scale. It is noted, however, that the smallest of grains in the interstitial-free
steel were reported [41] to contain dislocation structures and were not isotropic in shape,
which may contribute to some additional strength to the intersitial-free steel. The sensitivity
of the ferrite grains to grain size is much greater (larger kHP) than is the case for pearlite as
a function of the interlamellar spacing. There are two reasons for this observation – first,
that in a mixture of a soft and hard phase, the soft phase naturally yields first, but at a
stress that is less than its yield strength in isolation [42, 43]. Secondly, fully pearlitic steels
yield continuously because the interfaces between ferrite and cementite have a modicum
of coherency, which means that they emit dislocations under stress [44]. The continuous
yielding persists even when the structure is subjected to low-temperature heat-treatment of
the kind associated with strain-ageing experiments. However, when the structure severely
annealed to induce a loss of coherency, discontinuous yielding and Lüders strains follow.
This kind of a partly coherent interface that emits dislocations under applied stress would
reduce the proof strength whereas the grain boundaries between the recrystallised-ferrite
crystals in the interstitial-free steel produced using accumulative roll bonding (as in [41])
are incoherent, large misorientation boundaries [45].

ferrite

pearlite

Figure 3: The ferrite data are
from Tsuji et al. [41], representing
interstitial free iron, and the line
for pearlite is that from Figure 2b.
The interstitial-free alloy has suf-
ficient titanium to justify the as-
sumption that the ferrite truly has
a negligible carbon concentration
in solution.

It is emphasised that there is no theoretical justification for σy ∝ S−1
I relationship.4 A

calculation of the lower-bound value of the critical stress necessary to push a dislocation in
ferrite between two non-deforming cementite particles of planar separation Lα, leads to the

4A composite model [15] in which cubic grains of size Lsoft are surrounded by a hard phase of thickness
Lhard predicts the strength to be a function of Lhard/Lsoft provided Lhard ≪ Lsoft, i.e., an inverse dependence
on the size of the soft phase. However, with the ratio for pearlite is fixed by its chemical composition so the
dependence of strength on interlamellar spacing vanishes in this scenario.
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relationship [46, 47]

σc = σf +
MEs|bα|
2πLα

(
1− 0.5να
1− να

)

ln

{
Lα

|bα|

}

(5)

where the term Lα = SIV
α
V is the thickness of the ferrite layer; V α

V is the volume fraction
of ferrite. With σf given by Equation 3, the Taylor factor M = 2.8, να = 0.29, Figure 2e
shows that a reasonable correlation is obtained between the calculated and measured proof
strengths; however, for data where SI < 50 nm, the strength is grossly overestimated. It
is important to note that Lα is not proportional to SI because the proportion of ferrite in
pearlite depends on its carbon concentration – fully pearlitic microstructures are generated
in hypoeutectoid or hypereutectoid steels by suppressing the transformation temperature
into the Hultgren extrapolation region [e.g., Figure 12.7, 48]; such data are included in the
present work.

An approach somewhat analogous to that of Langford has been claimed to pose a fundamen-
tal challenge to the Hall-Petch relationship. It has its origin in the semiconductor scenario,
with an equation derived to estimate the elastic misfit strain that can be supported by a
thin epitaxial layer deposited on a substrate of a different material. Beyond a critical thick-
ness for a given misfit, the deposited layer should relax by the introduction of dislocations.
With the assumption that a distance that is a multiple of this critical thickness must be
used to account for the operation of dislocation sources, the strength is supposed to vary
with grain size (here taken to be the interlamellar spacing) as [4]

σy ∝ ln{SI/aα}
SI/aα

(6)

where aα is the lattice parameter of ferrite to make the grain size dimensionless. Although
the original paper [4] uses grain size and dimensionless grain size interchangeably in de-
scribing the relationship with strength, this procedure in fact introduces two dependencies
on interlamellar spacing because

ln{SI/aα}
SI/aα

≡ aα

(
ln{SI}
SI

− ln{aα}
SI

)

. (7)

It isn’t surprising, therefore, that the correlation of the data using the spacing term in
Equation 6 is almost identical to that against S−1

I , cf. Figures 2c,d because the inverse
dependence is dominant in Equation 7 for SI & 0.2µm, which represents data for the
majority of fully pearlitic steels, with small differences between these two relationships
evident for the finest of spacings.

The proportionality constant in Equation 6 when converted into a dimensionless number
by dividing with the Young’s modulus (E) is expected to be of the order of unity [4]. The
fitted line in Figure 2d can be written as:

σy = 188.9

(
100 ln{SI/aα}

SI/aα

)

+ 339 MPa (8)

so that
σy
E

=
1.889 × 104

E
︸ ︷︷ ︸

coefficient

(
ln{SI/aα}
SI/aα

)

+
339

E
. (9)

Since E = 2.1 × 105 MPa, the coefficient has a dimensionless value 0.09, which is about a
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tenth of that expected from Equation 1.3 of [4]. It follows that if the coefficient is close to
unity then the theory should greatly overestimate the strength.

Notice that for the reason explained earlier, the form of the term ln{SI/aα}/(SI/aα) in
Equation 7 is not similar to that of ln{Lα/|bα|}/(Lα/|bα|) of Equation 5.

Equation 3 works rather well on independent data; Figure 4 illustrates careful measurements
made on simple, model eutectoid-alloys: Fe-0.78C, Fe-0.8C-0.99Si, Fe-0.82C-0.97Mn, Fe-
0.82C-2.01Si, Fe-0.77C-1.96Mn, Fe-0.79C-1Si-1Mn wt% [49]. Some of these alloys contain
up to 2wt% of substitutional solutes, and yet agreement is good even though σf is unchanged
from the value in Equation 3. This is because the strength due to interlamellar spacing
represent the largest proportion of total strength, more so at the smallest of interlamellar
spacings. Therefore, the error due to the neglect of solid solution effects will be reflected in
the noise, i.e., the scatter about the expectation. Solid-solution effects are in fact difficult
to account for given that only average concentrations are available, whereas there is some
partitioning expected between the ferrite and cementite at all transformation temperatures
[50].

Figure 4: Comparison of the yield
strength of pearlite as calculated
using Equation 3 against experi-
mental data due to Fu et al. [49].
The line has unit slope and zero in-
tercept.

It is tempting when looking at the plots in Figure 2 to suggest that trend for relatively
coarse interlamellar spacings is different to that at the finest of spacings. In other words,
that the strength is a non-linear function of SI. Figure 2f shows a polynomial fit (order 2)
where the slope becomes more gentle at large spacings. However, the correlation coefficient
at 0.88 is almost identical to that for the ordinary Hall-Petch linear fit at 0.87. Furthermore,
there is no theoretical backing to such a relationship.

3.1 Analysis in Bayesian framework

The regression analysis of strength data results in unique values of the best fit weights,
which in the case of linear analysis represent the slope and intercept, without commenting
on how these values depend, for example, on the size of the dataset. On the other hand, in a
Bayesian framework, each weight has a distribution of possible values, reflecting the level of
certainty about the weights given the dataset. The output is then not estimated as a single
value but as a probability distribution. A greater certainty in the prediction corresponds
to a narrow distribution of weights given the data. This is powerful because the method
permits the uncertainty of any prediction to be quantified. This uncertainty is separate
from the constant value of the perceived noise, σν , in the output; the Bayesian uncertainty
will vary with the location of the calculation in the input domain. Noise in this context
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refers to repeated experiments giving different outcomes because of missing variables in the
design of experiments or experimental error. The general principles have been described by
MacKay [51–53].

To ensure that an empirical fit to data does not model noise (i.e., the overfitting problem),
the data can be divided at random into a training and a test set, where the former is
used to create the model and the latter to assess how it generalises on unseen experiments.
Figure 5 shows two kinds of plots for fully pearlitic steels. It is evident that the Hall-
Petch relationship is best suited to represent the propagation of yield across the structure
of pearlite over a broad range of variation, with an an optimum fit to both the training and
test data. In contrast, the other two functions only show consistency between experiment
and calculations over a narrow range of strength, with the consequence that there are very
many outliers.
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(a)

(b)

(e)

Figure 5: Linear regression in a Bayesian framework using the training data for model creation
and the unseen test data to assess generalisation, using the method by MacKay [51, 52]. The
uncertainty illustrated is due to the distribution of weights; the noise σν has not been included in
the error bars, for reasons of clarity. (a) Assuming that the strength varies with ln{SI}/SI (units
µm), with σν = ±0.13. (b) The Hall-Petch relation, with σν = ±0.11. (c) The inverse relation, with
σν = ±0.11.

The same method can be applied to include all three functions in a multiple linear regression
within the Bayesian framework. Figure 6a shows an interesting consequence of the fact that
the S−1

I and ln{SI}/SI represent only a narrow range of strength; the error bars become
very large outside of this range because these two functions deviate so much from measured
data. On the other hand, the Hall-Petch relation nicely follows the general trend of the
multiple regression function.

Figure 6b shows the significance in the multiple regression analysis, of each of the three
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inputs S−1
I , S

−1/2
I and ln{SI}/SI. The term σw represents the values of the regularisation

constants, expressed as standard deviations of the implicit gaussians [51, 52]; in simple
terms, it is related to the effectiveness of a particular input in explaining the variation in
the output. The Hall-Petch parameter is again perceived to be the best at representing the
variation of the strength of pearlite as a function of the interlamellar spacing.

It is noted that Occam’s razor [54] is in the present case less useful as a method for distin-
guishing between the models because they all are linear functions with just the slope and
intercept as coefficients.

(a) (b)

Figure 6: (a) The curve that includes uncertainties associated with the distribution of weights
represents multiple linear regression, within an Bayesian framework, of predicted strength as a

function of S−1

I
, S

−1/2
I

and ln{SI}/SI. The perceived noise, not included in the plot, is σν = ±0.09.
The other three curves are predictions using the individual models illustrated in Figure 5a-c. (b)
The model perceived significance of each of the functions included in the multiple regression.

4 Conclusions

The Hall-Petch equation is found to be the most plausible representation of the proof
strength of fully pearlitic steels, assuming that deformation begins in the much softer ferrite.
The friction stress deduced with this equation is physically reasonable whereas that is not
the case when other relationships are considered. Some of the problems perceived with the
Hall-Petch equation in previous work are believed to be associated with overfitting the data
and/or the use of limited data. A discovery is that ferrite in interstitial-free iron is, at the
same length scale, stronger in yield than the ferrite within pearlite; its sensitivity to grain
size is also much greater than that of pearlite to interlamellar spacing. The data compiled
for the present work can be accessed so any future measurements can be added in order to
avoid the overfitting problem described in the text:

https://www.phase-trans.msm.cam.ac.uk/2022/HP.xlsx

and the origins of the data are listed in the text. In all cases, irrespective of model, the
perceived noise in the data is of the order ±0.1, i.e., 10%, which might represent reasonable
errors of measurement.
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