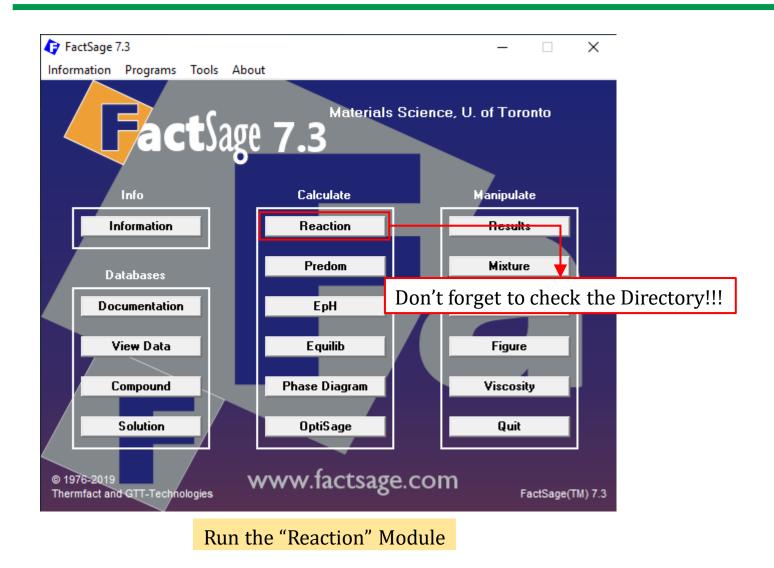
FactSage Practical MSE302

Practical 2. Reaction Module

Basics

Acknowledgements


- The teaching team of MSE302 is grateful to:
- Professor Mansoor Barati (UofT)
- Professor Elmira Moosavi (ETS)
- Professor Arthur Pelton (CRCT)
- Professors In-Ho Jung and M. A. Van Ende (Seoul National University)
- Dr. Sina Mostaghel (SNC-Lavalin)
- Professor Kinnor Chattopadhyay (UofT)
- Drs. Daigen Fukayama, Takahiro Sasaki (RCCM)
- Drs. Moritz to Baden and Guixuan Wu (GTT Technologies)

The **Reaction** Module can do the following:

- ✓ **Reaction** calculates the thermodynamic properties of **a species** ($C_{P,i}$, H_i , S_i , V_i , G_i) at given temperature and pressure.
- ✓ Reaction calculates the thermodynamic properties of a mixture of species (mechanical mixture or solution) (*C_P*, *H*, *S*, *V*, *G*) at given temperature and pressure.
- ✓ **Reaction** calculates the thermodynamic properties of **a chemical reaction** $(\Delta_r c_P, \Delta_r h, \Delta_r s, \Delta_r v, \Delta_r g)$ at given temperature and pressure.

Alert:

- ✓ Reaction accesses both compound and solution databases.
- ✓ Reaction assumes all gases are ideal and ignores expansivities and compressibilities of solids and liquids.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

A Note on **Pressure**:

- ✓ For a gas phase, **Pressure** is its partial pressure.
- ✓ For a condensed phase (solid, liquid or aqueous), Pressure is the hydrostatic pressure (unimportant except at very high pressures).
- $\checkmark~$ All the species may have the same or different pressure.

A Note on **Pressure**:

Image: Provide the section - Reactants File Edit Units Data Search Help Image: Provide the section - Reactants T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)	- • ×
1.3 Pressure 2 + 0.5 = 1 For a gas phase, this is its partial pressure. For a condensed phase (solid, liquid or aqueous) this is the hydrostatic pressure (unimportant except at very high pressures). All the species may have the same or different pressures. = 1 Enter a numerical value (ex: 0.5 or 1.123e-10, 1.0 for the standard state) if the pressure is constant. Specify "P" if the pressure of a species is to be calculated or entered later in the Tabular Output. OK	P[atm]** Activity Data 1.0 1.0 1.0 Hover your mouse near "P(atm)", and right click. Then you will see the explanation about Pressure. This is a very useful feature
** For a gas species, P(atm/bar/psi) is its ideal partial pressure. For a liquid or solid, P is the hydrostatic pressure above the phase. Select 'apply volume data' to include molar volume and compressibility da in the 'VdP' term - this does not apply to gases which are treated as idea in the 'VdP' term - this does not apply to gases which are treated as idea ✓ non standard states □ apply volume data Next >>	of FactSage. Try this about Activity and, Temperature, Phase

Sustainable Materials Processing Lab

FactSage Team

Clear the Reactants:

🚺 Re	action - Reactants					- [×
File E	Edit Units Data Search Help							
	Add a new Reactant	Ctrl+R	gy(J) Quantity(mol) Vol(l	itre)				
	Add a new Product	Ctrl+P						
1	Insert new reactant before							
	Delete reactant							
	Delete all blank reactants		Phase	T(K)	P(atm)**	Activity	Data	
	Miktures and Streams	>	- Hubb				Data	
	Re-order the reactants	>	ost stable	T	1.0			
	Export list of reactants	>	ost stable 💌	T	1.0			
	Clear							
	Example		-	I				
v	For a liquid or so Select 'apply volume in the 'VdP' term - th	lid, P is the hydr data' to include	ar/psi) is its ideal partial pro rostatic pressure above th smolar volume and compr ly to gases which are trea ume data	e phase. essibility dai	ia			
			Next >>					
FactSag	ge 7.3 Compound: 1/17 databases							1

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Let us first perform **standard state** calculations.

存 Reaction - Reactants		_		×		
File Edit Units Data Search He	elp					
D 🚅 + = +	T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)					
Quantity(mol)	Species Phase T(K) P(at	m]** Activ	ity Data			
	DO NOT check this. Standard so the reactants/products are in to species, the standard state press species, the standard state refer i.e., pure substance and 1 atm).	heir st ssure is rs to R	anda s 1 at	rd sta m; for	te (for a gas · a condense	ed
non standard states	apply volume data					
	Next >>					
FactSage 7.3 Compound: 1/17 d	databases			//		

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: define a reaction using "Edit"

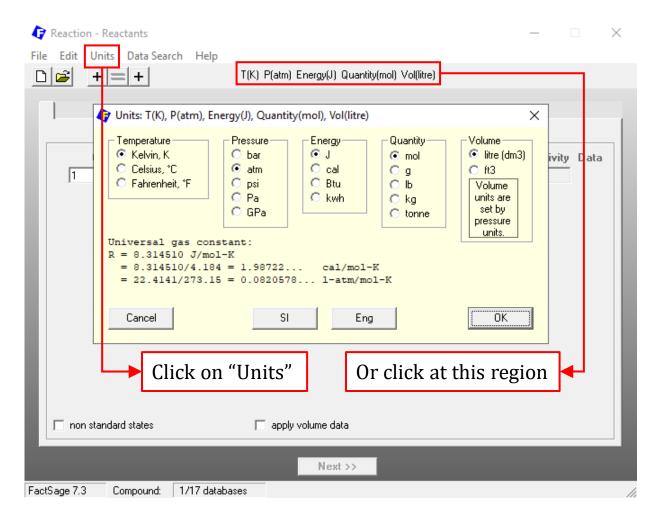
File Edit Units Data Sea					
Add a new Produ Insert new reacta Delete reactant . Delete all blank re Mixtures and Stre Re-order the reac	ct Ctrl+P nt before cactants ams >	nergy(J) Quantity(mol) Vol(litre) Phase T(K) P(atm)**	Activity	, Data	
Export list of read Clear Example		e a reaction.			
non standard states	n apply	volume data Next >>		_	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

ine a reaction	using "+"
	ine a reaction


Reactic New Reaction					- (×
File Edit Units Data Search H	elp T(K) P(atm) Ene	ergy(J) Quantity(mol) Vol(litre)				
	Add a Reac	tant					
Quantity(mol)	Species	Phase	T(K) F	o(atm)**	Activity	Data	
	l a Product		•				
_		-					
non standard states	🔲 apply volu	ume data					
		Next >>					
FactSage 7.3 Compound: 1/17	databases						11.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: set the Units

Sustainable Materials Processing Lab

FactSage Team

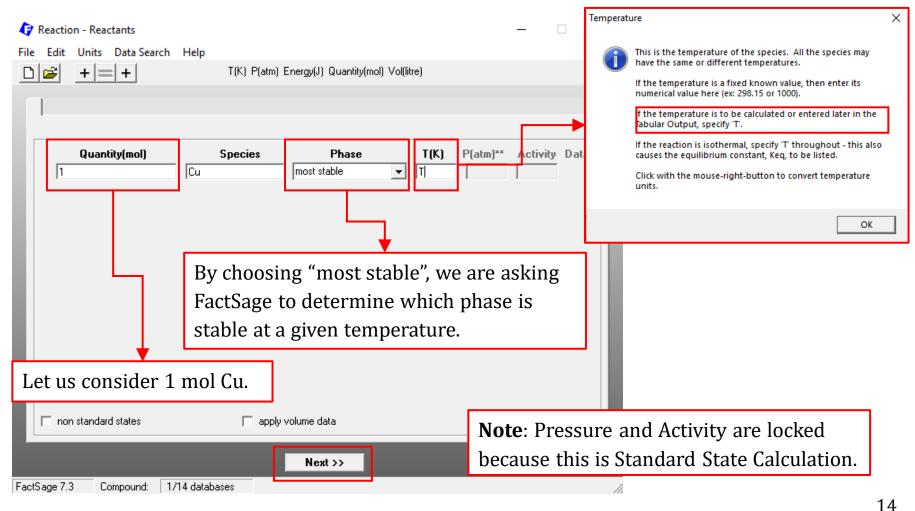
MSE Department, University of Toronto

Reactants Window: choose the database

Q	Reaction - Reactants Choose Database
File	Edit Units Data Search Help
	-Databases - 1/14 compound databases, 0/15 solution databases
	✓ FactPS FScorp BINS solutions only FToxid FSlead SGPS no database FTsalt FSstel SGIE FTmisc FSups SGsold
	FThall FT0xCN FTftz FTfrtz Add/Remove Data FThelg ELEM SGnobl FTpulp FTdeno SpMCBN RefreshDatabases
l	FTlite FTnuc TDnucl Information - Reaction only accesses COMPOUND databases Reaction only accesses COMPOUND databases
l	The first example we will be discussing is to calculate the thermodynamic properties of pure Cu. Therefore,
	-Options - search for product specie FactPS can be used for this purpose.
Fac	Default gaseous ions (plasmas) Organic species CxHy, X(max) = 2 aqueous species Minimum solution components: O 1 O 2 cpts
	Cancel Summary OK

FactSage Team

Reactants Window: Help Document


🗘 Reaction - Reactants		- 🗆 ×
File Edit Units Data Search Help	1	
	Directory of examples	
	Slide Show >	Reaction
	More information	
	FactSage version, directories, etc	
Quantity(mol)	About Reaction	() P(atm)** Activity Data
		This is the tutorial document provided by
		CRCT. In this class, we use this as the
		supplementary material.
non standard states	apply volume data	
FactSage 7.3 Compound: 1/14 dat	Next >>	
FactSage 7.3 Compound: 1/14 dat	anases	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Set Reactants (Phase and Temperature)

Sustainable Materials Processing Lab

FactSage Team

Table Window: Set Conditions

存 Reaction - Tab	le					_	×			
File Units Outp	out Figure	e Help								
🗅 🚔 日	×	T(K) F	'(atm) Energy(J) Quantity	y(mol) Vol(litre)						
Reactant(s): —	[Cu (T)							
T(K)	н(,)	G(J)	Vol(litre)	S(J/K)	Cp(J/K)	Α(Reaction Table			×
		thermod	ws we are ca ynamic prop know tempe	perties o	f 1 mol Cı	1	the te then of lf the value Back") "most Examp 1000 1000 1000 1000 1000	ext boxes at the bottom click on "Calculate". text box is inactive (gra you must return to the) and specify a phase for stable" is not present. ples of T:) - T = 100) 2100 - T = 100) 2100 - T = 100 (2100 - T = 100) 2100 - T = 100) 2100 - T = 100	00 00 and 2100 00, 1250, 1500, 1750, 2000, 2100 mitted: s, ex: 1000 2000 1000	<
300 3500 500		Click on Window	Back to retu	rn to Rea	actants		- 0	se decimal points for f	OK	
Calculate			<< Back			Cle	ar			

15

Sustainable Materials Processing Lab

FactSage Team

Reaction - Ta	Vindow: ble put Figure Hel	lp	tm) Energy(J) Qua	are s	hown. No	ote the vo	c properties against <i>T</i> for 1 mol Cu olume data is zero because we umetric data (Reactant Window).
T(K)	н(ј)	៤(រ)	Vol(litre)	S(J/K)	Cp(J/K)	A(J)	т
	Cu(s)						
300.00	45.2	-9949.3	0.0000E+00	33.315	24.468	-9949.3	
800.00	13120.4	-33868.0	0.0000E+00	58.736	27.481	-33868.0	
1300.00	27758.9	-66968.7	0.0000E+00	72.867	32.201	-66968.7	
1358.00	29659.9	-71236.5	0.0000E+00	74.298	33.362	-71236.5	
	Cu(l)						
Cu(1 mol):	DH = 13138.0	DG = 0		DS = 9.674			
1358.00	42797.9	-71236.5	0.0000E+00	83.972	32.844	-71236.5	
1800.00	57314.9	-110493.4	0.0000E+00	93.227	32.844	-110493.4	
2300.00	73736.9	-159201.7	0.0000E+00	101.278	32.844	-159201.7	FactSage helps us find the phase
2800.00	90158.9	-211508.7	0.0000E+00	107.738	32.844	-211508.7	
2846.16	91675.0	-216494.2	0.0000E+00	108.275	32.844	-216494.2	transition points.
	Cu(g)						
Cu(1 mol):	DH = 300653.1	DG = 0		DS = 105.635			
2846.16	392328.1	-216494.2	2.3355E+02	213.910	24.400	-240158.6	
3300.00	403914.1	-314439.8	2.7079E+02	217.683	26.675	-341877.7	
3500.00	409349.5	-358136.9	2.8720E+02	219.282	27.674	-387237.7	
00 3500 500							
Calculate			<< Back			Clear	1

Sustainable Materials Processing Lab

MSE Department, University of Toronto

Table Window: Output Results

存 Reaction - Tal	ble						_		×
File Units Out	put Figure	Help							
0 🛩 🖬 🗸	G or Delta(G)			Quantit	ty(mol) Vol(litre)				
Reactant	Eh(volt) = -D)elta(G)/nF, n = 0							
	n (electons)			1				👌 Save As	×
	Save Tabular	Output						Save in:	Exercise 💽 🔶 📸 🕶
T(K)	Print Tabular	Output			S(J/K)	Cp(J/K)		Name	^ Date modified Ty
300.00	Print and for		>	0	33.315	24.468	-		No items match your search.
800.00 1300.00	Сору		Ctrl+C	0	58.736 72.867	27.481 32.201			
1358.00	29659.9	-71236.5	0.0000E+0	00	74.298	33.362			
	Cu(l)								
Cu(1 mol):	DH = 13138.	.0 DG = 0			DS = 9.674				
1358.00	42797.9	-71236.5	0.0000E+0	00	83.972	32.844		<	>
1800.00	57314.9	-110493.4	0.0000E+0	00	93.227	32.844			
2300.00	73736.9	-159201.7	0.0000E+0	00	101.278	32.844		File name:	Cu (1atm).txt Save
2800.00	90158.9	-211508.7	0.0000E+0	00	107.738	32.844			
2846.16	91675.0	-216494.2	0.0000E+0	00	108.275	32.844		Save as type:	E Text (*.txt)
	Cu(g)								
Cu(1 mol):	DH = 300653	3.1 DG = 0			DS = 105.635				
2846.16	392328.1	-216494.2	2.3355E+C	02	213.910	24.400		-240158.6	
3300.00	403914.1	-314439.8	2.7079E+0		217.683	26.675		-341877.7	
3500.00	409349.5	-358136.9	2.8720E+0	02	219.282	27.674		-387237.7	
300 3500 500									
Calculate			<< Back					Clear	

Table Window: Output Results

🧾 Cu (1atm).	txt - Notepad								_	· [) X
File Edit Fo	rmat View Help										
u											
(T)											
Г(К)	H(J)	G(J)	Vol(litre)	S(J/K)	Cp(J/K)	A(J)	т				
							-				
	Cu(s)										
300.00	45.2	-9949.3	0.0000E+00	33.315	24.468	-9949.3					
800.00	13120.4	-33868.0	0.0000E+00	58.736	27.481	-33868.0					
1300.00	27758.9	-66968.7	0.0000E+00	72.867	32.201	-66968.7					
1358.00	29659.9	-71236.5	0.0000E+00	74.298	33.362	-71236.5					
	Cu(1)										
Cu(1 mol):	DH = 13138.0	DG = 0		DS = 9.674							
1358.00	42797.9	-71236.5	0.0000E+00	83.972	32.844	-71236.5					
1800.00	57314.9	-110493.4	0.0000E+00	93.227	32.844	-110493.4					
2300.00	73736.9	-159201.7	0.0000E+00	101.278	32.844	-159201.7					
2800.00	90158.9	-211508.7	0.0000E+00	107.738	32.844	-211508.7					
2846.16	91675.0	-216494.2	0.0000E+00	108.275	32.844	-216494.2					
	Cu(g)										
Cu(1 mol):	DH = 300653.1	DG = 0		DS = 105.635							
2846.16	392328.1	-216494.2	2.3355E+02	213.910	24.400	-240158.6					
3300.00	403914.1	-314439.8	2.7079E+02	217.683	26.675	-341877.7					
3500.00	409349.5	-358136.9	2.8720E+02	219.282	27.674	-387237.7					
C							_				>
					Windows	(CRLF)	Ln 1, C	ol 1	100%		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

The second example we will be looking at is the heating of Cu from 300 K. This process can be described by the following reaction:

Cu(300 K) = Cu(T)

Let us determine the amount of heat (strictly speaking, enthalpy) required to melt 1 mole Cu from 300 K.

Reactants Window: Choose the database

F ile	Reaction - Reactants Edit Units Data Search Hele	Choose Database
4	Data Search	×
	- Databases - 1/14 compound databases, 0/15 solution d	Private Databases
l		need FactPS because the system exists solid pure Cu or liquid pure Cu.
Fac	Options - search for product species Include compounds gaseous ions (plasmas) aqueous species imited data compounds (25C)	Limits Organic species CxHy, X(max) = 2 Minimum solution components: O 1 O 2 cpts
	Cancel Summary	OK

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Set Reactants (Phase and Temperature)

Reaction - Reactants	Again, by choosing "most stable", we are
File Edit Units Data Search Help	Again, by choosing most stable, we are
🗅 😂 🕂 😑 🕂 T(K) P(atm) Energy(J) Qua <mark>ntity(mol) Vol(litre) 🕨</mark>	asking FactSage to determine which
1.2	phase is stable at a given temperature.
Quantity(mol) Species Phase T(K)	P(atm)** Activity Data
1 Cu solid 🗾 300	
= 1 Cu most stable T	The initial temperature is 300 K.
	The initial temperature is 500 K.
Do not check this option because there is no	solution phase
· ·	solution phase
for this heating process.	
non standard states 🔽 apply volume data	
Next >>	
FactSage 7.3 Compound: 1/14 databases	h.

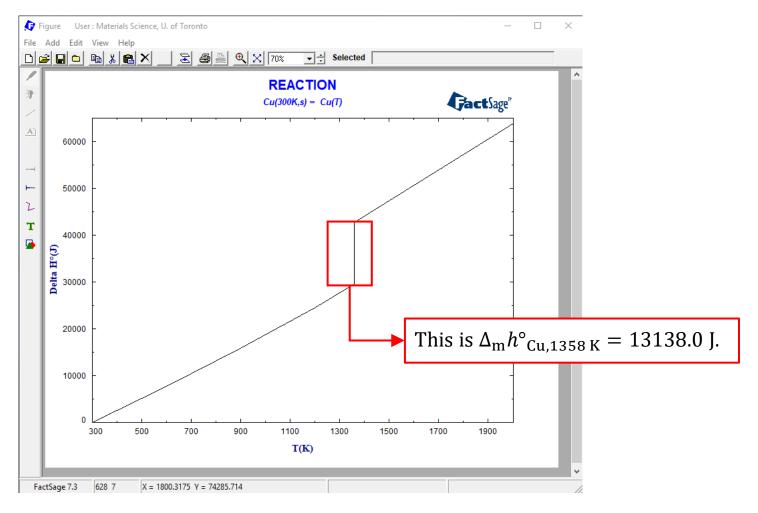
Sustainable Materials Processing Lab

FactSage Team

Table Window: Set Conditions and Results

存 Reaction - Tal	ble					_	×					
File Units Output Figure Help												
D 🚅 日	\mathbf{X}	T(K) P(a	atm) Energy(J) Qu	antity(mol) Vol(litre)								
Non-Isotherma	l Standard State	Reaction: ——										
Cu = Cu (300K,s) (T)												
T(K)	Delta H*(J)	Delta G*(J)	Delta Vol(litre) Delta S*(J/K)	Delta Cp(J/K)	Delta A(J)	T					
	Cu(s)	Cu(s)										
300.00	0.0	0.0	0.0000E+00	0.000	0.000	0.0						
600.00	7681.2	-12914.4	0.0000E+00	17.668	2.008	-12914.4						
900.00	15851.3	-29958.4	0.00005.00									
1200.00	24583.8 29614.6	-49857.3 -61287.2	$\frac{0.0}{0.0}$ This	s column s	shows the	e amount	t of l	heat required to heat				
1358.00	29614.6 Cu(s)	-61287.2 Cu(l)	0.0					•				
Cu(1 mol):	DH* = 13138.0	DG°=0	Cu.	At 1358 K	L Cu starts	s to melt	: Rig	ght before melting,				
1358.00	42752.6	-61287.2										
1500.00	47416.5	-73447.0	0.0 296	14.6 J are	required	to heat s	SOLIC	d Cu from 300 to the				
1800.00	57269.7	-100544.1	0.0		- 	1	201					
2000.00	63838.5	-119541.6	_{0.0} mei	ting temp	erature. I	nen 131	.38.0	0 J are required to				
			con	vert solid	Cu to liqu	id Cu. T	here	fore, the minimum				
	total amount of heat required to melt Cu is (29614.6 +											
	total amount of near required to melt of 15 (2)011.0											
			131	38.0) J =	42752.6	J.						
300 2000 300												
Calculate			<< Back			Clear						

Table Window: Plot Results


Q	Reaction - Ta	able									-	-	×
File	Units Ou	tput	Figure	Help									
Ľ	🖻 🖬		Axe	is		n) Energy(J) Quar	ntity(mol) N	Vol(litre)				
	on-Isotherma	al Sta	Plo										
			Ful	Screen			Cu = Cu						
							(300K,s) (T)						
			Sav	e Figure									
	T(K)	D	elta H*(J)	De	elta G*(J)	G	Axes: Delta H°(J)	vs T(K)		×	:	Delta A(J)	T
			Cu(s)		Cu(s)	Ŷ٠	-variable X-variab	le Swap A	xes				
	300.00		0.0		0.0		-Y-axis		-X-axis-			0.0	
	600.00		7681.2	-	12914.4		Delta H°(J)		-A-axis	T(K)		-12914.4	
	900.00		15851.3	-	29958.4		D GROTT [0]					-29958.4	
	1200.00		24583.8		49857.3		maximum 65000	1	maximum	2000		-49857.3	
	1358.00		29614.6	-	61287.2		minimum ()		minimum	300		-61287.2	
			Cu(s)		Cu(l)		tick every 5000		tick ever	/ 100			
	Cu(1 mol):	DH	ł° = 13138.	0	DG° = 0								
	1358.00		42752.6	-	61287.2							-61287.2	
	1500.00		47416.5	-	73447.0		Cancel	Refr	esh	OK		-73447.0	
	1800.00		57269.7	-1	00544.1	Ļ						-100544.1	
	2000.00		63838.5	-1	19541.6		0.0000E+00	63.3	372	8.376		-119541.6	
000		_											
1300	2000 300							ļ					
	Calculate						<< Back					Clear	1
						-					-		_

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Table Window: Plot Results

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

The third example we will be discussing is to calculate the thermodynamic properties of the oxidation of Cu by pure oxygen.

First, let us look at the standard state calculation in which all reactants and products are in their standard state.

Reactants Window: Choose the database Choose Database Reaction - Reactants \times Edit Units Data Search File 👌 Data Search × -Databases - 1/14 compound databases, 0/15 solution databases Private Databases GactSage" SGTE Gact compounds only solutions only FactPS BINS no database FSIe п SGPS FT oxid FT salt FSste FTmisc SGsold Clear All FThall FT0xCN Other Add/Remove Data FTfrtz FThelg ELEM SGnobl FTpulp **FTdemo** SpMCBN RefreshDatabases FTlite FTnuc Information - Reaction only accesses COMPOUND databases Reaction only accesses COMPOUND databases Because all the reactants and products are in their standard state, FactPS can be used for this purpose. Options - search for product species Include compounds Limits Organic species CxHy..., X(max) = 2 gaseous ions (plasmas) Default aqueous species Minimum solution components: O 1 O 2 cpts Iimited data compounds (25C) Summary .. OK Cancel

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Set Reactants (Phase and Temperature)

🕼 Reaction - Reactants			- 🗆 ×					
File Edit Units Data Search		Energy(J) Quantity(mol) Vol(litre)	By choosing "most stable", we are asking FactSage to determine which phase is stable at a given temperature.					
Quantity(mol)	Species Cu 02 Cu20	Phase T(K) most stable ▼ most stable ▼ most stable ▼	P[atm]** Activity Data					
Let us consider the following oxidation reaction at an unknow temperature when all the reactants and products are in their standard state: $4Cu + O_2 = 2Cu_2O$.								
FactSage 7.3 Compound: 1/	14 databases	Next >>						

Sustainable Materials Processing Lab

FactSage Team

Table Window: Set Conditions

存 Reaction - Table	$ \sim$ \times							
File Units Output Figure Help								
	T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)							
Isothermal Standard State Reaction:	Delta G* = Delta H* - T.Delta S* = - RT.In(Keq) where (T/K) 4 Cu + 02 = 2 Cu20 (T) (T) (T)							
T(K) Delta H*(J) Delt	a G*(J) Delta Vol(litre) Delta S*(J/K) Delta Cp(J/K) Keq T 🔺							
	We are calculating the thermodynamic properties for an							
	isothermal standard state reaction:							
	$4Cu + O_2 \xrightarrow{T} 2Cu_2O$							
	Delta G* = Delta H* - T. Delta S* = -RT. Ln(Keq)							
	In MSE302, we use the following format:							
	$\Delta_r g^\circ = \Delta_r h^\circ - T \Delta_r s^\circ = -RT \ln(K)$							
300 2000 300								
Calculate	<< Back Clear							

Sustainable Materials Processing Lab

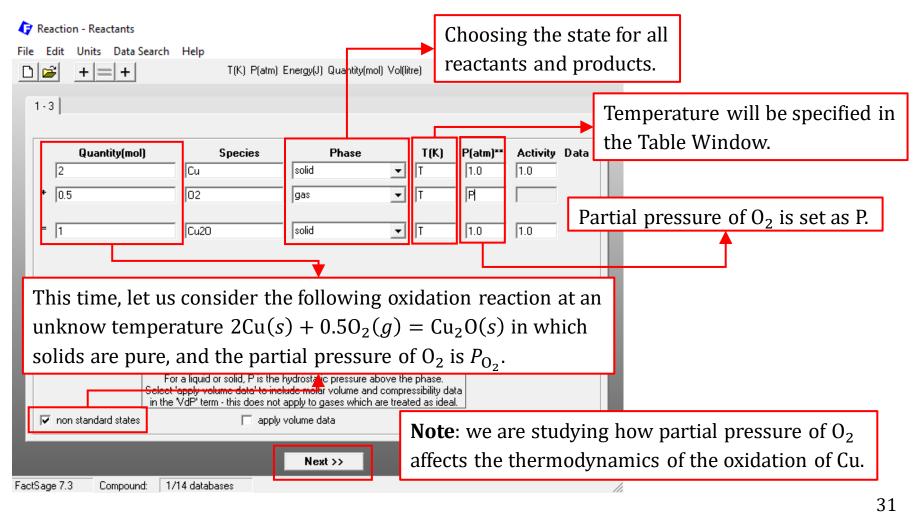
FactSage Team

Table W		ŧlp	S atm) Energy(J) Quai	n ity(mol) Vol(litre)	All the thermodynamic properties against <i>T</i> for 1 mol reaction shown below. Also, check if $\Delta_r g^\circ = \Delta_r h^\circ - T \Delta_r s^\circ = -RT \ln(K)$				
	 ndard State Rea		i* = Delta H* - 1 4 Cu + O2 = 2 (T) (T)		RT.In(Keq) whe	ere (T7K)			
T(K)	Delta H*(J)	Delta G⁺(J)	Delta Vol(litre)	Delta S*(J/K)	Delta Cp(J/K)	Keq	T		
	Cu(s)	02(g)	Cu20(s)						
300.00	-341417.7	-295521.9	-2.4617E+01	-152.986	-1.9223E+00	2.8421E+51			
600.00	-339925.3	-249958.6	-4.9235E+01	-149.945	8.9231E+00	5.7581E+21			
900.00	-336636.3	-205643.5	-7.3852E+01	-145.548	1.2414E+01	8.6087E+11			
1200.00	-332624.3	-162561.9	-9.8469E+01	-141.719	1.4604E+01	1.1911E+07			
1358.00	-330450.9	-140311.2	-1.1143E+02	-140.015	1.2551E+01	2.4937E+05			
	Cu(l)	- 82(g)	Cu20(s)						
Cu(1 mol):	DH1 = 13138.0	DG* = 0		DS* = 9.675				Note the state change of Cu and	
1358.00	-383002.9	-140311.2	-1.1143E+02	-178.713	1.4623E+01	2.4937E+05		Note the state change of Cu anu	
1500.00	-380261.0	-115060.9	-1.2309E+02	-176.800	2.4076E+01	1.0155E+04		Cu_2O (please record these two	
1516.70	-379849.5	-112110.6	-1.2446E+02	-176.527	2.5211E+01	7.2603E+03		cu ₂ 0 (please record these two	
 Cu20(1 mell)	Cu(l) DH* = 64768.0	02(g) DG° = 0	Cu20(l)	DS* = 42.703				temperatures).	
Cu20(1 mol): 1516.70	-250313.5	-112110.6	-1.2446E+02	-91.121	3.1880E+01	7.2603E+03	<u></u> ⊢L		
1800.00	-250313.5	-87085.8	-1.4770E+02	-91.121	3.1181E+01	3.3659E+02	+		
2000.00	-235193.2	-70274.4	-1.6412E+02	-82.459	3.0706E+01	6.8444E+01			
							the	e results as ".txt"	
300 2000 300									
Calculate			<< Back			Clear			
	Note	e: the obt	tained Δ_r	g°∼T is tl	he Ellingh	am Diag	rai	n. 29	

Sustainable Materials Processing Lab

FactSage Team

Non-standard State Calculation (Part 1)


This time, let us calculate non-standard state reactions. The first scenario is that the oxidation reaction occurs at an unknow temperature when Cu and Cu_2O are pure substance while the partial pressure of O_2 is a variable.

For non-standard state reactions, we **have to specify the state of reactants and products** because defining activity requires the definition of standard state which either is pure solid or pure liquid. From the preceding calculation of the standard state reaction, we have,

 $\begin{aligned} &2{\rm Cu}(s) + 0.5{\rm O}_2(g) = {\rm Cu}_2{\rm O}(s); T < 1358~{\rm K} \\ &2{\rm Cu}(l) + 0.5{\rm O}_2(g) = {\rm Cu}_2{\rm O}(s); 1358~{\rm K} < T < 1516.7~{\rm K} \\ &2{\rm Cu}(l) + 0.5{\rm O}_2(g) = {\rm Cu}_2{\rm O}(l); ~T > 1516.7~{\rm K} \end{aligned}$

Therefore, we need to perform 3 calculations for 3 different temperature ranges. Here, we only demonstrate the calculation for the first temperature range.

Reactants Window: Set Reactants (Phase and Temperature)

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Set Reactants (Phase and Temperature)

Reaction - Reactants					– 🗆 X					
File Edit Units Data Search	Help									
□ 🗃 +=+	T(K) P(atm)	Energy(J) Quantity(mo	l) Vol(litre)		Don't forge	et right click				
1-3					to get more	e info.				
Quantity(mol)	Species	Phase	т(к)	P(atm)**	Activity Data					
2	Cu	solid	_ ⊺ L	h.0	Hydrostatic pressure	over Cu(solid) = 1.0 (atm)				
+ 0.5	02	gas	▼ T	P	atm, P(atm)					
= 1	Cu20	solid	▼ T	1.0	bar, P(bar)					
					Pa, P(Pa)					
					GPa, P(GPa)					
					psi, P(psi)					
					Help					
 ** For a gas species, P(atm/bar/psi) is its ideal partial pressure. For a liquid or solid, P is the hydrostatic pressure above the phase. Select 'apply volume data' to include molar volume and compressibility data in the 'VdP' term - this does not apply to gases which are treated as ideal. Image: mon standard states 										
	Next >>									
FactSage 7.3 Compound: 1/	'14 databases				1					

Sustainable Materials Processing Lab

FactSage Team

Table Window: Set Conditions

存 Reaction - T	able						_	×		
File Units Ou	utput Figure		T(K) P(atr	n) Energy(J) Quar	ntity(mol) Vol(litre)					
Isothermal No	on-Standard S	tate Reactio		Cu + 0.5 02 = s) (T.P.g)	Cu2O (T,s)					
T(K)	P(atm)	Delta	H(J)	Delta G(J)	Delta Vol(litre)	Delta S(J/K)	Delta Cp	(J/K) T 🔺]	
			We a	are calcu	lating the	e thermo	lynam	nic pro	perties for ar	
			isot	hermal :	non-stan	dard sta	te rea	iction		
					2Cu(<i>s</i>) +	- 0.50 ₂ (g	$(q) \xrightarrow{T} C$	u ₂ 0(s)	
			Delta	a G = Del	lta G* + R'	T. Ln(Q)				
			In M	(SE302, v	we use the	e followir	ng for	mat:		
					$\Delta_r g$:	$= \Delta_r g^\circ +$	<i>RT</i> ln	(Q)		
					The nu	umber of	varia	oles th	nat need to be	specified
					📋 is dete	ermined b	by the	Gibbs	phase rule.	
Calculate	Spe	cify 2 variables		<< Back			Clea	r		

Table Window: Results

Reaction - Table	- 🗆 ×					
File Units Output Figure Help Image: Second S						
Isothermal Non-Standard State Reaction: 2 Cu + 0.5 02 = Cu20 (T,s) (T,P,g) (T,s)	Variables which are highlighted are the conditions we provided.					
T(K) P(atm) Delta H(J) Delta G(J) Delta Vol(litre) 1000.00 1.0359E-10 -167690.6 0.0 -3.9608E+11	Delta S(J/K) Delta Cp(J/K) T -167.691 6.385					
This is the equilibrium	partial pressure of O ₂ .					
Let us study the reaction at 1000 K.						
	ting Delta G = 0, we are performing the calculation the reaction reaches equilibrium.					
1000 0 Calculate << Back	Clear					

Table Window: Results

存 Reaction - Table			- 🗆	×						
File Units Output Figure He	lp									
	T(K) P(atm) Energy(J) Quar	tity(mol) Vol(litre)								
Isothermal Non-Standard State	Reaction:									
2 Cu + 0.5 02 = Cu20 (T.s) (T.P.g) (T.s)										
T(K) P(atm)	Delta H(J) Delta G(J)	Delta Vol(litre) 🛛 Delta S(.	J/K) Delta Cp(J/K)	T						
1000.00 1.0000E-11	-167690.6 9718.9	-4.1029E+12 -177.41	6.385							
		r								
		Since $\Delta_r g > 0$	0, the oxidati	on is not						
		thermodynan	nically possi	ble.						
		enermouynan	fically possi	5101						
Let us stud	ly the reaction									
at 1000 K.										
at 1000 K.										
				6.0.16						
	Let us study un	der a given par	tial pressure	e of O_2 , if pure						
	Cu can be oxidiz	zed.								
1000 IE-11				1						
		1								
Calculate										

Sustainable Materials Processing Lab

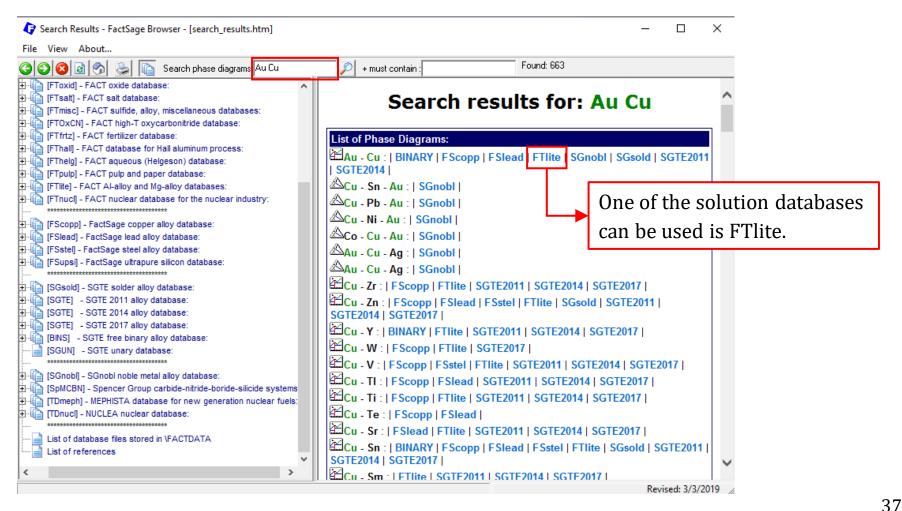
FactSage Team

Non-standard State Calculation (Part 2)

Now let us consider the removal of impurity Cu from a gold bath by blowing pure oxygen at 1 atm. The operation temperature is 1400 K, and the product is pure Cu_2O .

The above reaction can be described as:

 $2Cu(l, solute in liquid Au) + 0.5O_2(g, 1 atm) = Cu_2O(s)$


To study the equilibrium of this reaction, we use $\Delta_r g$.

$$\Delta_r g = \Delta_r g^\circ + RT \ln \left(\frac{\left(a_{Cu_2 0}^{(s2)} \right)^1}{\left(a_{Cu}^{(l)} \right)^2 \left(P_{O_2} \right)^{0.5}} \right) \text{ where } a_{Cu_2 0}^{(s2)} = 1 \text{ and } P_{O_2} = 1$$

 $a_{Cu}^{(l)}$ depends on the liquid Au-Cu model. Therefore, we need to choose a solution database in which the Au-Cu system has been optimized (using Documentation or View Data).

Sustainable Materials Processing Lab

Documentation: determine which solution database for the Au-Cu system

FactSage Team

MSE Department, University of Toronto

View Data: determine which solution database for the Au-Cu system

	Database evaluation	- 🗆 X
View Data	Elements: Au Cu	Search
View solutions - enter a list of elements or ALL Examples: Ca AI O S - solutions with Ca, AI, O and/or S H O Fe S - solutions (including aqueous) of H, O, Fe and/or S ALL - ALL solutions Pressure e atm bar Data C compound e solution minimum solution components e 1 C 2 cpts Solution Databases (16) Summary Add Remove FTlite C:\FactSage\FACTDATA\FTlite60soln.sdc	FScopp (binaries) FSlead (binaries) 79 29 Au Cu 79 Au 79 Au 29 Cu BW U Note that these are only for bina ry evaluations, ternary evaluations may differ from database to data	Filte (binaries) Standol (binaries) Sport (winaries) id Ideal Bragg-Williams Treatment Q Modified Quasichemical Model BW Bragg-Williams Model (liquid sc Top quality Good quality (maybe a missing Rough estimate, probably missin Noble gas system (use FACTPS D abase. Computed using pure substance
FTlite - FACT Al-alloy and Mg-alloy solutions (2019) Elements or ALL: Cu Au Exit Assessments Information	system is of good qua which the liquid mod	e liquid model for the Au-Cu lity, compared with SGnold in el is of top quality, we choose n't have the access to SGnold.

Sustainable Materials Processing Lab

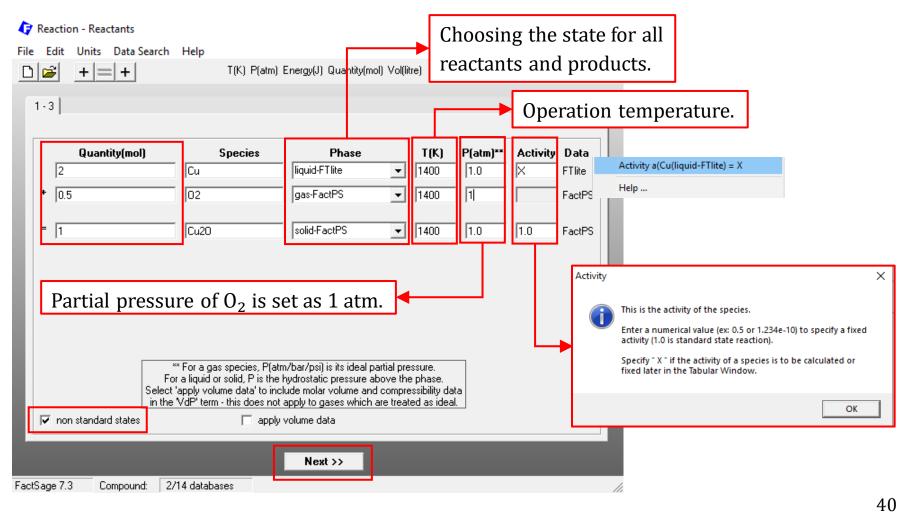
FactSage Team

 $\mathbf{\Omega}$

Reactants	Window:	Choose	the database
Reaction - Reactants	[C	hoose Database 💿 🛛 🛛
File Edit Units Data Se	earch Help		×
	compound databases for actSage" SGTE Scopp BINS 'Slead SGPS	1/15 solution database compounds only solutions only no database	Private Databases
🗆 FTsalt 🗌 F	Stel SGTE Supsi SGSold	Clear All	FactPS contains the models for gaseous O_2 and pure solid Cu_2O .
FThelg E	LEM SGnobl Tdemo SpMCBN TDmeph Tnucl TDnucl	RefreshDatabases	
- Information - Re			the model for
- Options - search fo	or product species Include compounds – gaseous ions (pla: aqueous species imited data comp	Min	nits anic species CxHy, X(max) = 2 imum solution components: O 1 ⊙ 2 cpts
Cancel		Summary	<u>ОК</u>

. 1

1


. 1

39

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Set Reactants (Phase and Temperature)

Sustainable Materials Processing Lab

FactSage Team

Table Window: Set Conditions

存 Reaction - Tab	ble					_	×	
File Units Out	put Figure He		atm) Energy(J) Qua	ntity(mol) Vol(litre)				
Isothermal Non		Reaction: 2 Cu 400K,liq-FTliteX)	+ 0.5 02 (1400K,g-FactF	= Cuź ?S <u>) (1400K,s-</u>				
Activity X	Delta H(J)	Delta G(J)	Delta Vol(litre)	Delta S(J/K)	Delta Cp(J/K)	Delta A(J)	<u></u>	
				The n	umber of	variable	s tha	at need to be specified
				🛑 is dete	ermined b	y the Gil	obs	phase rule.
Calculate	Specify 1	variable.	<< Back			Clear		

Sustainable Materials Processing Lab

FactSage Team

Table Window: Results

存 Reaction - Tab	le			_	×	-	
File Units Outp	ut Figure Help						
D 🖻 🔒	×	T(K) P(atm) Energy(J) Quar	ntity(mol) Vol(litre)				
-Isothermal Non-	Standard State Reaction	on:					
	2 C (1400K,liq-f		= Cu20 'S) (1400K,s-FactPS)				
Activity X 5.8106E-02		a G(J) Delta Vol(litre) 0.0 -5.7440E+01		Cp(J/K) Delta A 610 5820.3		[
0.01062.02	100002.0	3.14462.101	130.130				
		5		5		the system reaches equ	
	, $a_{Cu}^{(l)}$. Unfort	unately, we ar	e not able to	obtain the	conce	ntration of Cu, $X_{Cu}^{(l)}$ bec	ause of
	the lack of a	ctivity coeffici	ent.				
		By set	ting Delta G =	• 0, we are	perfor	ming the calculation	
		when	the reaction r	eaches equ	uilibriu	ım.	
	0					-	
Calculate		<< Back		Clea			

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Table Window: Results

存 Reaction -	Table					_ 🗆	×
File Units C	Dutput Figure H		tm) Energy(J) Quar	ntity(mol) Vol(litre)			
sothermal N	Ion-Standard State	e Reaction: ——					
		2 Cu 1400K,liq-FTlite,X)	+ 0.5 02 (1400K,g-FactP	= Cu2 S <u>) (1400K,s</u> -f	-		
Activity X		Delta G(J)	Delta Vol(litre) -5.7440E+01	Delta S(J/K)	Delta Cp(J/K) 11.610	Delta A(J) 5073.3	T
6.0000E-02	-190582.0	-746.8	-5.7440E+01	-135.597	11.610	5073.3	
					_r g < 0, tł dynamica		
	Let us stu	dy if pure	Cu can b	e oxidize	d when th	ie activi	ity
	of Cu in th	e liquid A	u-Cu allo	y is 0.06.			
	-	-		-			
0.06							
Calculate			<< Back			Clear	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Non-standard State Calculation (Part 3)

The third part of non-standard state calculation is to include a slag phase. That is, instead of forming pure solid Cu_2O , a liquid slag consisting of SiO_2 and Cu_2O is in contact with the gold bath.

In this case, the activity of Cu_2O in the liquid slag should be used, and FToxid contains the model for the liquid SiO_2 - Cu_2O slag.

The set up would be very similar to the previous calculation, except for Cu_2O of which the activity must be used.

Question 1.

Solve Question 1 and 2 from the first problem set using the Reaction Module.

Question 2.

Carry out the following calculations using the View Data and/or Reaction Module (not identical, since you will need to tailor conditions to your particular metal) on one or as many metals as you wish from the following list:

Nickel, Chromium, Lead, Iron, Manganese, Vanadium, Magnesium, Zinc, Titanium, Sodium, Cobalt.

(1) Create a data table for the most stable species of the M over a suitable temperature range.

(2) Find the available solution phases the Metal-Fe-S system.

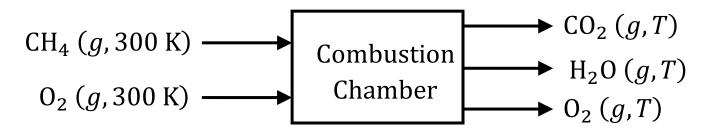
(3) Create a data Table for the reaction between Metal, oxygen, and the lowest oxide. The maximum temperature should be at least 2000 K, or as appropriate.

(4a) Create a data Table for the above oxidation reaction for at least five different conditions at equilibrium (always isothermal and always at equilibrium). For example, you could choose to calculate *T* in three runs with different defined *X* and *P*. Then you could calculate *X* at defined *P* and *T*, and then *P* at defined *X* and *T*.

(4b) Next, assume that the reaction needs some super-saturation to nucleate the oxide, so set Delta G = Delta G^o/100 (which will be a negative number) and find the P_{O_2} needed compared to one of your above equilibrium conditions. Include this result in your data Table and add a written comment.

(5) Create a plot showing the Enthalpy required to heat Metal up to and beyond the boiling point (or as close as you can get).

Note: you should annotate all your five sheets by hand as appropriate - to make everything clear to the reader.


FactSage Practical MSE302

Practical 2. Reaction Module

Advanced Applications

The first application is the combustion of gaseous methane in the pressure of **excess oxygen**. In this case, the combustion products would be CO_2 , H_2O and unused O_2 (note: because of the excess of O_2 , no CO would form).

Consider the following combustion process.

Let us calculate the adiabatic flame temperature (AFT) in the Reaction Module, and how AFT is affected by the excess ratio of oxygen.

Note: we assume the gas phase behaves ideally, and thus standard state calculations could be performed when calculating enthalpy change associated with the combustion process.

Reactants Window: Choose the database Choose Database Reaction - Reactants \times Edit Units Data Search File 👌 Data Search × -Databases - 1/14 compound databases, 0/15 solution databases Private Databases GactSage" SGTE Gact compounds only solutions only FactPS BINS no database FT oxid FSIe SGPS FT salt FSste SGTE FTmisc FSups SGsold Clear All FThall FT0xCN Other Add/Remove Data FTfrtz FThelg ELEM SGnobl FTpulp **FTdemo** SpMCBN RefreshDatabases FTnuc FTlite Information - Reaction only accesses COMPOUND databases Reaction only accesses COMPOUND databases All the species considered are gaseous. FactPS should be used. Options - search for product species Include compounds Limits Organic species CxHy..., X(max) = 2 gaseous ions (plasmas) Default aqueous species Minimum solution components: O 1 O 2 cpts Iimited data compounds (25C) Summary .. Cancel OK

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

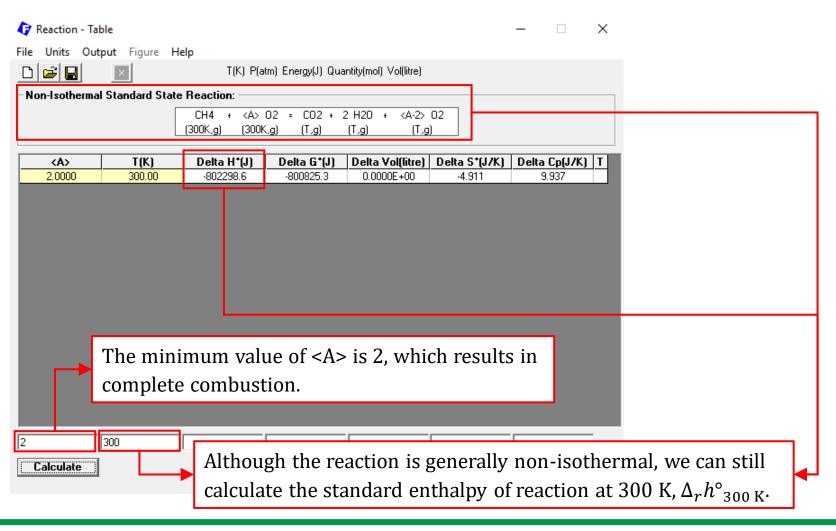
Reactants Window: Set Reactants (Phase and Temperature)

 Reaction - Reactants File Edit Units Data Searce E E + 		Energy(J) Quantity(m	ol) Vol(litr	_ L	Check	the	units]
1 - 5 Quantity(mol) 1 + (A) = 1 + 2 + (A-2)	Species CH4 02 CD2 H20 02	Phase gas gas gas gas gas Steam gas	•	T (K) 300 300 T T T	P(atm)**	Activi	Quantity	Enter the amount of the reactant. Examples: 10 14.307 1.234e-4 For example, the formation of water: 2 H2 + 1 O2 = H2O The reaction need not be balanced. A composition variable "A" (alpha) may be specified in the form <aa+b> or <a+ba> where a and b are constants. A is</a+ba></aa+b>
The state must want to calculat happen if "most	te AFT (see w t stable" is cho	hat will						calculated or specified later. Examples: <a> <-1+2A> <3.7A+6>. For example the oxidation of methane in excess oxygen: 1 CH4 + <a+2> O2 = 1 CO2 + 2 H2O + <a> O2 After the quantity has been entered, click with the mouse-right-button to convert quantity units. OK</a+2>
FactSage 7.3 Compound:	1/14 databases							50

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Set Conditions


存 Reaction - Table			×
File Units Output Figure Help			
🗋 📂 🔛 🛛 🔣 T(K) P	(atm) Energy(J) Quantity(mol) Vol(litre)		
-Non-Isothermal Standard State Reaction: —			
	> 02 = C02 + 2 H20 + <a-2> 02 0K.g) (T.g) (T.g) (T.g)</a-2>		
<a> T(K) Delta H*(J)	Delta G*(J) Delta Vol(litre) Delta S	*(J/K) Delta Cp(J	<u>I/K) T 🔺 </u>
Non-isothermal: "Kequ" h	nas no meaning.		
Non-isothermai. Requir	las no meaning.		
			_
Calculate Specify 2 variables.	<< Rack	Clear	
	Here, we will choose fr	om <a>, T	" and Delta H*

51

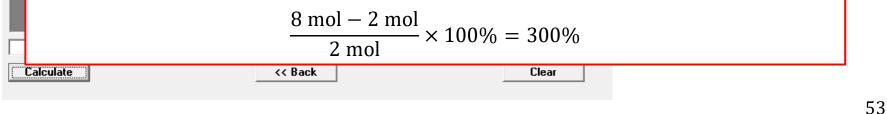
Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Results

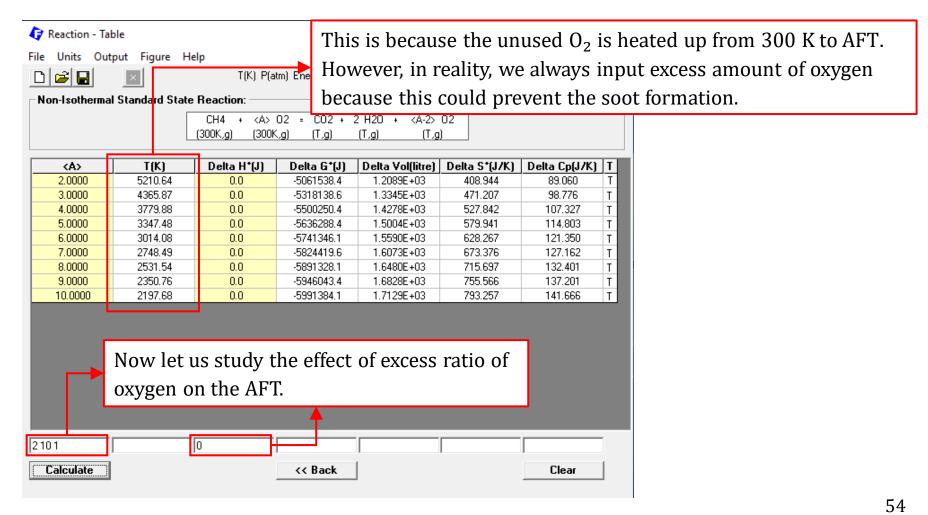
Sustainable Materials Processing Lab

FactSage Team


MSE Department, University of Toronto

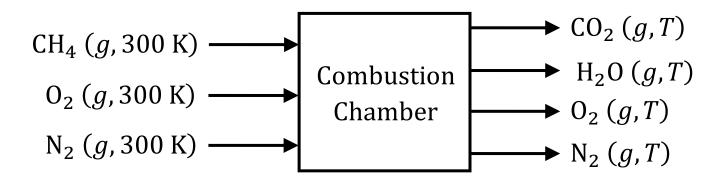
Reactants Window: Results

存 Reaction - Tal	ble					- 🗆	×
File Units Out	put Figure He	lp					
D 🚅 日	×	T(K) P(atm	n) Energy(J) Qua	antity(mol) Vol(litre)			
-Non-Isotherma	Standard State	Reaction:					
		CH4 + <a> 0 (300K,g) (300K,g		2 H2O + <a-2> (T,g) (T,g</a-2>			
<a>	T(K)	Delta H⁺(J)	Delta G⁺(J)	Delta Vol(litre)	Delta S*(J/K)	Delta Cp(J/K)	T
< <u><</u> A> 2.0000	T(K) 300.00	Delta H*(J) -802298.6	Delta G*(J) -800825.3	Delta Vol(litre) 0.0000E+00	Delta S*(J/K) -4.911	Delta Cp(J/K) 9.937	T
				· · ·			T
2.0000	300.00	-802298.6	-800825.3	0.0000E+00	-4.911	9.937	T
2.0000 8.0000	300.00 300.00	-802298.6 -802298.6	-800825.3 -800825.3	0.0000E+00 0.0000E+00	-4.911 -4.911	9.937 9.937	T
2.0000 8.0000 2.0000	300.00 300.00 2000.00	-802298.6 -802298.6 -565472.0	-800825.3 -800825.3 -2063652.8	0.0000E+00 0.0000E+00 4.1849E+02	-4.911 -4.911 241.810	9.937 9.937 68.217	T
2.0000 8.0000 2.0000 8.0000	300.00 300.00 2000.00 2000.00	-802298.6 -802298.6 -565472.0 -210752.9	-800825.3 -800825.3 -2063652.8 -4563182.2	0.0000E+00 0.0000E+00 4.1849E+02 1.2555E+03	-4.911 -4.911 241.810 622.315	9.937 9.937 68.217 118.372	


Note: for each calculation (row), the two highlighted cells are the variables specified. When Delta $H^* = 0$, this corresponds to adiabatic process, and the AFT can be calculated for a given excess ratio of oxygen.

Calculation of excess ratio of oxygen:

Sustainable Materials Processing Lab

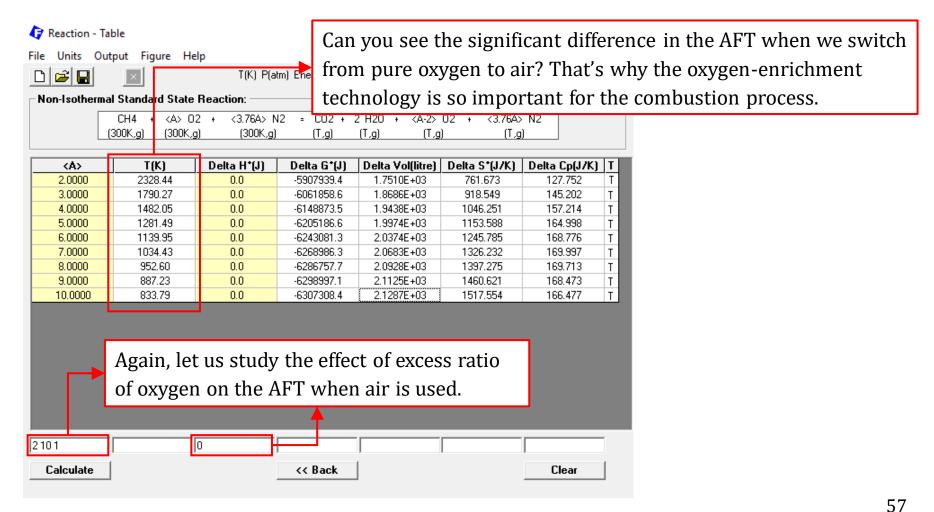

Reactants Window: Results

Sustainable Materials Processing Lab

FactSage Team

We can also calculate the AFT for a burner that uses air instead of pure oxygen. In this case, equivalent amounts of nitrogen accompanying oxygen should be entered in the reaction.

Note: since the air composition (mole fraction) can be approximated as "0.79 N₂ + 0.21 O₂", for every mole of O₂ input, there are 3.76 mol N₂.


Reactants Window: Set Reactants (Phase and Temperature)

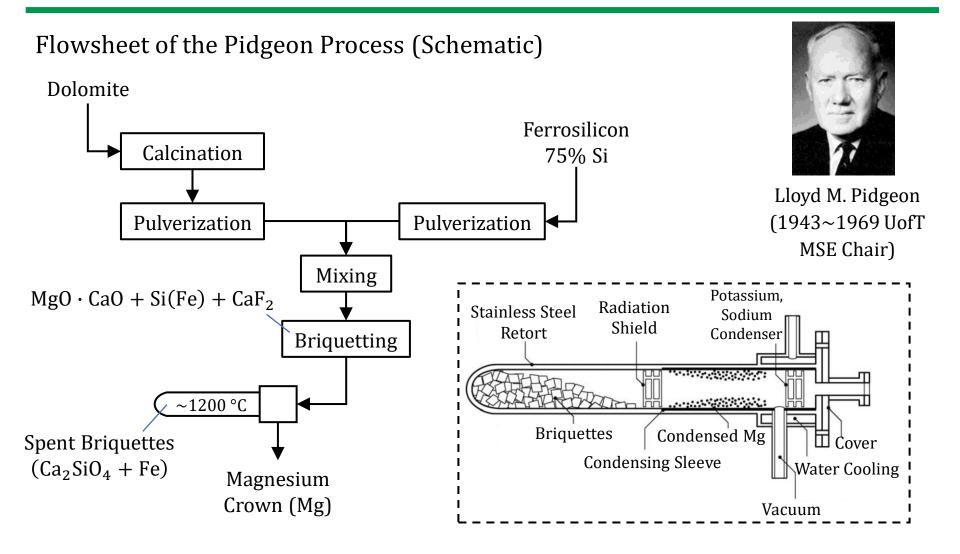
Reaction - Reactants File Edit Units Data Search	Help		→[Check	the u	nits
		nergy(J) Quantity(mol) Vol(li	tre)			
	-					
1.7						1
Quantity(mol)	Species	Phase	T(K)	P(atm)**	Activity	Data
1	CH4	gas 🔻	300			
* <a>	02	gas 💌	300			
+ <3.76A>	N2	gas 💌	300			
= 1	C02	gas 🔻	Т			
+ 2	H20	gas Steam 💌	T			
	-					
108-27	02	gas 💌		1.0	1.0	
+ <3.76A>	N2	gas 🗸	T	I	I	
non standard states	🔲 apply v	olume data				
		Next >>				
FactSage 7.3 Compound: 1/	14 databases	HOM //				

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Results

Sustainable Materials Processing Lab


FactSage Team

Magnesium can be produced by reducing MgO with ferrosilicon at low pressures and in the solid state. This is called the Pidgeon Process and was developed by UofT MSE's Professor Pidgeon in Canada in WWII to produce much-needed magnesium metal then. The essential reaction can be described as:

 $MgO(s) + Si(s) = Mg(g) + SiO_2(s)$

By controlling the system's pressure, solid charge composition (which affects the activity of SiO_2), etc., the above reduction can be shifted to improve the productivity of Mg.

The flowsheet of the Pidgeon Process is shown on the next slide.

Kipouros and Sadoway, The Chemistry and Electrochemistry of Magnesium Production.

59

Sustainable Materials Processing Lab

FactSage Team

For the purpose of illustration, let us assume that **pure solid MgO** (not MgO \cdot CaO) and **pure solid Si** (not ferrosilicon) are charged into the Pidgeon reactor. Then, the simplified Pidgeon process can be described as:

 $2MgO(s) + Si(s) = 2Mg(g) + SiO_2(s)$

First, let us study the **standard-state reaction** using the Reaction Module. The temperature is 1423 K.

Standard-state Calculation:

存 Reaction -			FactPS is used.]◀───	×
File Edit Un	its Data Search		ı) Energy(J) Quantity(mol) Vol(litre	e)	
1 · 4					
Q	uantity(mol)	Species	Phase	T(K) P(atm)**	Activity Data
2		MgO	most stable	1428	
+ 1		Si	most stable	1423	
= 2		Mg	most stable 🗸	1423	
+ 1		SiO2	most stable 🗨	1423	
		Ţ	, ,		
	Let Fac	ctSage decid	le which state		
	should	be used.			
🗖 non star	ndard states	🗆 арр	ly volume data		
			Next >>		
FactSage 7.3	Compound: 1	/14 databases 🚽			

Team MSE Department, University of Toronto

61

Sustainable Materials Processing Lab

FactSage Team

Standard-state Calculation:

存 Reaction - Table — 🗆 🗙	
File Units Output Figure Help	
T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)	
r Isothermal Standard State Reaction: Delta G* = Delta H* - T.Delta S* = - RT.In(Keg) where (T.K)	
^{2 MgO} + Si = 2 Mg + SiO2 (1423K) (1423K) (14	
	ulej
Delta H*(J) Delta G*(J) Delta Vol(litre) Delta S*(J/K) Delta (p(J/K)) Denta A (J) MgD(s) Si(s) Mg(g) SiO2(s4)	
572578.9 220849.2 2.3354E+02 247.175 -19.712 197186.1	
Delta $G^* > 0$, which means the reduction is not	
possible under the standard-state conditions.	
possible under the standard-state conditions.	
Dalta U* . O subjet measure the meastion is an dethermois	
Delta H* > 0, which means the reaction is endothermic.	
No variables are required to be specified.	
rio variables are required to se specifical	
Clear Clear	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

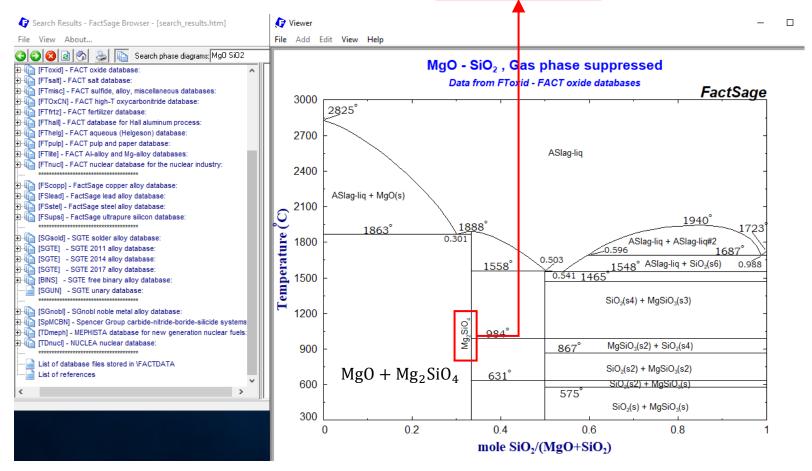
Now, let us go back to the reaction and assume that all reactants/products are not necessarily in their standard state:

$$2MgO(s1) + Si(s2) = 2Mg(g) + SiO_2(s3)$$

To study the direction of this reaction, $\Delta_r g$ should be used:

$$\Delta_r g = \Delta_r g^{\circ} + RT \ln \frac{\left(P_{\mathrm{Mg}(g)}\right)^2 \times \left(a_{\mathrm{SiO}_2}^{(s3)}\right)}{\left(a_{\mathrm{MgO}}^{(s1)}\right)^2 \times \left(a_{\mathrm{Si}}^{(s2)}\right)}$$

Clearly, to drive this rection to the right, we can consider the following.


1. Increase the reaction temperature (because the reaction is endothermic).

2. Reduce a_{SiO_2} by fluxing.

3. Reduce $P_{Mg(g)}$ by employing vacuum.

Note: you probably know the Le Chatelier principle, and its mathematical basis is the expression of $\Delta_r g$.

 a_{SiO_2} : from the MgO-SiO₂ phase diagram, it is seen that MgO(s) and SiO₂(s) cannot coexist because they react to form $(MgO)_2 \cdot SiO_2$.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

 a_{SiO_2} : from the MgO-SiO₂ phase diagram, it is seen that MgO(s) and SiO₂(s) cannot coexist because they react to form $(MgO)_2 \cdot SiO_2$ or Mg₂SiO₄, known as forsterite.

The MgO-SiO₂ phase diagram indicates that given excess MgO(s) in the Pidgeon reactor, the formed SiO₂(s) will react with MgO(s) to form $(MgO)_2 \cdot SiO_2$, and thus, $a_{SiO_2}^{(s3)} < 1$. In other words, SiO₂(s) is not stable.

The next page shows the calculation of a_{SiO_2} for a system consisting of MgO(s) and Mg₂SiO₄(s). You can also consider a_{SiO_2} as the activity of solid SiO₂ when it exists as solid (MgO)₂ · SiO₂. To do this, the following reaction which contains SiO₂(s) is considered.

$$2MgO(s) + SiO_2(s) = Mg_2SiO_4(s)$$

Calculation of a_{SiO_2} :
Image: Provide the search of the search o
T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)
¹⁻³ MgO exists as pure solid.
Quantity(mol) Species Phase T(K) P(atm)** Activity Data 2 Mg0 solid Periclase 1423 1.0 1.0 + 1 Si02 solid-4 Tridymite(h) 1423 1.0 X
= 1 Mg2SiO4 solid-1 forsterite • 1423 1.0 1.0 Mg2SiO4 also exists as pure solid.
SiO_2 is not stable, and $a_{SiO_2} < 1$.
 ** For a gas species, P(atm/bar/psi) is its ideal partial pressure. For a liquid or solid, P is the hydrostatic pressure above the phase. Select 'apply volume data' to include molar volume and compressibility data in the 'VdP' term - this does not apply to gases which are treated as ideal. non standard states
Next >> FactSage 7.3 Compound: 1/14 databases

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Calculation of a_{SiO_2} :

File	File Units Output Figure Help										
	T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)										
_ Is	Isothermal Non-Standard State Reaction:										
	2 MgO + SiO2 = Mg2SiO4 (1423K,s) (1423K,s4×) (1423K,s1)										
F	Activity X	Delta H(J)	Delta G(J)	Delta Vol(litre)	Delta S(J/K)	Delta Cp(J/K)	Delta A	IJI T			
-	6.6139E-03	-65869.2	0.0	0.0000E+00	-46.289	6.880	0.0				
		This is	$a_{\rm SiO_2}$. Th	is small n	umber s	hows the	strong	5			
	fluxing effect of excess MgO which greatly reduce										
	the activity of SiO_2 .										
			0								
(Calculate			<< Back			Clear				

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Also, in our simplified Pidgen Process:

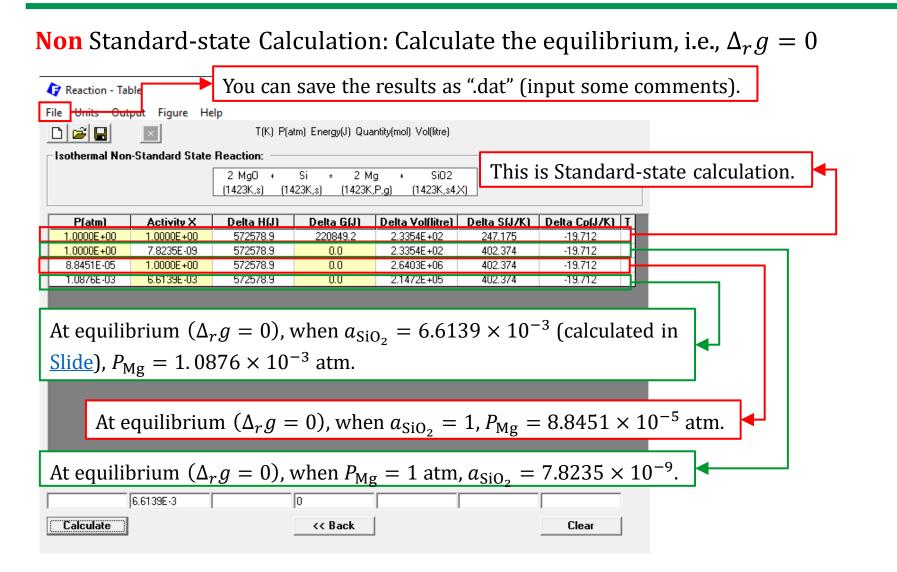
 $a_{Mg0}^{(s1)}$: because MgO exists as a pure solid, $a_{Mg0}^{(s1)} = 1$.

 $a_{Si}^{(s2)}$: because Si exists as a pure solid, $a_{Si}^{(s2)} = 1$.

Non Standard-state Calculation: Calculate the equilibrium, i.e., $\Delta_r g = 0$

存 Reaction - R		Agair	, only FactP		-						
·		,	, only Pacti	5 15 0500	1.		^				
	ts Data Search		Energy(J) Quantity(mol)) Vol(litre)							
1 - 4					P	This is	P _{Mg} .				
	antity(mol)	Species	Phase	T(K)	P(at <mark>n)**</mark>	Activity Data					
2		MgO	solid Periclase	▼ 1423	1.0	1.0					
+ 1		Si	solid	▼ 1423	1.0	1.0					
= 2				- 1422	P	1.0					
2		Mg	gas	▼ 1423			↓				
+ 1		SiO2	solid-4 Tridymite(h)	▼ 1423	1.0	М	This is a				
							This is a_{SiO_2} .				
The state must be specified so that activity is meaningful.											
** For a gas species, P(atm/bar/psi) is its ideal partial pressure.											
For a liquid or solid, P is the hydrostatic pressure above the phase. Select 'apply volume data' to include molar volume and compressibility data											
in the 'VdP' term - this does not apply to gases which are treated as ideal.											
🔽 non stand	dard states	appl	y volume data								
			Next >>								
FactSage 7.3	Compound: 1/	/14 databases					1.				

Sustainable Materials Processing Lab


FactSage Team

MSE Department, University of Toronto

Non Standard-state Calculation: Calculate the equilibrium, i.e., $\Delta_r g = 0$

eaction - Table	e					—		\times
Units Outpu	ut Figure He	elp						
🖻 🔒	\times	T(K) P(a	tm) Energy(J) Qua	antity(mol) Vol(litre)				
thermal Non-S	Standard State	Reaction:						
2 MgD + Si = 2 Mg + SiD2 (1423K,s) (1423K,s) (1423K,P,g) (1423K,s4,X)								
P(atm)	Activity X	Delta H(J)	Delta G(J)	Delta Vol(litre)	Delta S(J/K)	Delta	Cp(J/K)) T 🔺
								\square
Thoro	aro an ii	nfinito nu	mbor of	(P_{Mg}, a_{SiO})) combi	nati	one	whi
$\Delta_r g =$	0 and K	Z _{equ} . Here	we will s	select thr	ee specia	l cas	ses (r	next
								_
			1		1			
Calculate	Specify 2	2 variables.	<< Back			0	Clear	

Sustainable Materials Processing Lab

Sustainable Materials Processing Lab

MSE Department, University of Toronto

The above calculation verified that the magnesium production at a certain temperature can be enhanced by:

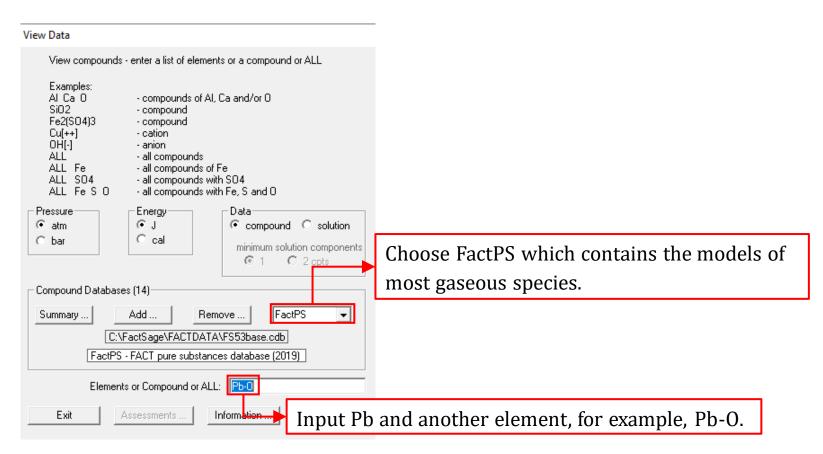
1. Reduce the total pressure (< 1.0876 × 10^{-3} atm).

2. Reduce a_{SiO_2} by fluxing – this is done automatically due to the formation of Mg₂SiO₄(s), and the presence of CaO can reduce a_{SiO_2} further.

Application 2: Pidgeon Process

Another way of studying this simplified Pidgeon process is to write the reaction as:

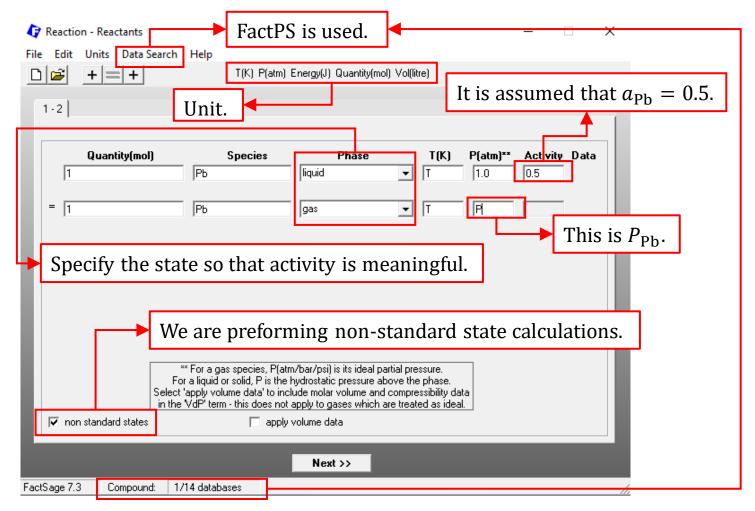
 $4MgO(s) + Si(s) = 2Mg(g) + Mg_2SiO_4(s)$


In doing so, we don't need to consider the unstable phase – solid SiO_2 . Please perform the equilibrium calculations using this reaction.

Recall from Chapter 4.1 that for any **condensed** phase, there is a vapor pressure above it.

Say we are interested in the vapor pressure of lead above a <u>lead-based solder</u> bath (Sn-Pb) so that we can determine the safety precautions for the workers. Assume we have already known that **the activity of lead** in a eutectic solder is around 0.5 relative to the pure liquid ($a_{Pb}^{(solder)} = 0.5$). The solder temperatures of interest are from 480~530 K (207~257 °C).

Gaseous Species of Lead. First, let us use the View Data Module to find what gaseous species of lead are modeled in the FactSage databases.



Gaseous Species of Lead. First, let us use the View Data Module to find what gaseous species of lead are modeled in the FactSage databases.

🗘 View Data Pb-O Units: T(K) P(atm) Energy(J) Quantity(mol) — 🗆 🗙								
File Edit Sort Compounds	Summary Databa	ases Units	Atomic Wts.	Table Graph	Help	<< Back	c	
15 compounds, 21 phases			ances database			8/1		
	-				_			
L	Compounds ordered b	<mark>by alphabet (se</mark>	ee 'Sort Compou	nds') - All Phases				
0	FactPS G							
02	FactPS G	Aq	Тиго		maciac	oflog	ם ה	h and Dh
02[+]	FactPS G		IWO	gaseous s	pecies	o or rea	u: Pi	b and Pb ₂ .
02[-]	FactPS G							
03	FactPS G							
0[+]	FactPS G							
0[-]	FactPS G							
Pb	FactPS S	L G						
Pb2	FactPS G							
Pb304	FactPS S							
PbO	FactPS S1	S2 L	G					
PbO2	FactPS S							
Pb[+]	FactPS G							
Pb[-]	FactPS G							
Pb[2+]	FactPS Aq							
			020	rand auto				
FactSage 7.3 C:\FactSage	e\FACTDATA\FS53ba	se.cdb 7.3 43	920 compounds	read-only			//.	

Sustainable Materials Processing Lab

Lead Monomer Vapor Pressure.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Lead Monomer Vapor Pressure.

存 Reaction - Tak	ble					_	×		
File Units Out	put Figure Hel	р							
	×	T(K) P(a	atm) Energy(J) Qua	ntity(mol) Vol(litre)					
Isothermal Non	-Standard State	Reaction: ——							
		Γ	Pb =	РЬ					
			(T,liq,a=0.5) (1	[,P,g]					
	_					-			
T(K)	P(atm)	Delta H(J)	Delta G(J)	Delta Vol(litre)	Delta S(J/K)	Delta Cp(J/K)	Τ		
480.00	1.9804E-16	189422.2	0.0	1.9889E+17	394.630	-10.199			
490.00	5.2156E-16	189320.4	0.0	7.7093E+16	386.368	-10.163			
500.00	1.3207E-15	189218.9	0.0	3.1065E+16	378.438	-10.127			
510.00	3.2233E-15	189117.8	0.0	1.2983E+16	370.819	-10.091			
520.00	7.5978E-15	189017.1	0.0	5.6161E+15	363.494	-10.057			
530.00	1.7331E-14	188916.7	0.0	2.5094E+15	356.447	-10.022			
								7	
		The le	ad mono	mer vapoi	r pressur	e is verv	low	,	
				inor terpor	P-0000		10.11		
1									
	Tempera	ture ran	ge and st	en.					
	rempera		80 ana 50	ep:					
	Wee wish to calculate the equilibrium vapor								
				nress	sure, whi	ch mean	sΛ	a = 0	
				prese	Juie, wiii	en mean	$S \Delta_r$	<i>y</i> - 0	
480 530 10			0				-		
				, , , , , , , , , , , , , , , , , , ,	,				
Calculate	Specify 2	variables.	ZZ Rack			Clear			

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Lead Monomer Vapor Pressure: plot the data.

存 Reaction - Tab	le					- 🗆	×
File Units Out	out Figure He	elp					
0 🖻 🖬	Axes		m) Energy(J) Quar	ntity(mol) Vol(litre)			
- Isothermal Non	-Sta Plot						
	Full S	creen	Pb =	Pb			
				.P.g)			
	Save F	Figure					
T(K)	P(atm)	Delta H(J)	Delta G(J)	Delta Vol(litre)	Delta S(J/K)	Delta Cp(J/K)	T
480.00	1.9804E-16	189422.2	0.0	1.9889E+17	394.630	-10.199	
490.00	5.2156E-16	189320.4	0.0	7.7093E+16	386.368	-10.163	
500.00	1.3207E-15	189218.9	0.0	3.1065E+16	378.438	-10.127	
510.00	3.2233E-15	189117.8	0.0	1.2983E+16	370.819	-10.091	
520.00	7.5978E-15	189017.1	0.0	5.6161E+15	363.494	-10.057	
530.00	1.7331E-14	188916.7	0.0	2.5094E+15	356.447	-10.022	
480 530 10			0				
Calculate			<< Back			Clear	

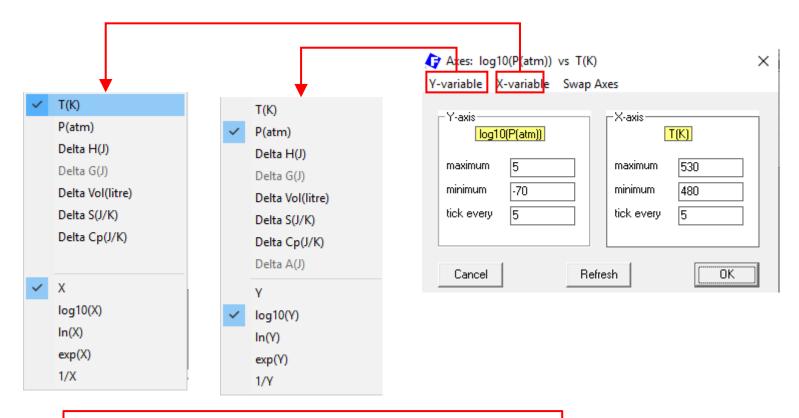
Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Lead Monomer Vapor Pressure: plot the data.

存 Reaction - Tak	ble					_	□ ×
File Units Out	put Figure H	elp					
D 🖻 🖬	Axes.		m) Energy(J) G	(uantity(mol) Vol(li	tre)		
- Isothermal Non	Full	c reen Figure	Axes: P(atr Y-variable X		ap Axes		×
T(K)	P(atm)	Delta H(J	-Y-axis		- X-axis		
480.00 490.00 500.00 510.00 520.00 530.00	1.9804E-16 5.2156E-16 1.3207E-15 3.2233E-15 7.5978E-15 1.7331E-14	189422.2 189320.4 189218.9 189117.4 189017.1 188916.7	Pi maximum minimum tick every Cancel	(atm) 3.5E-26 0 2.5E-27	maximum minimum tick every Refresh		
480 530 10		[0 << Back		[C	lear

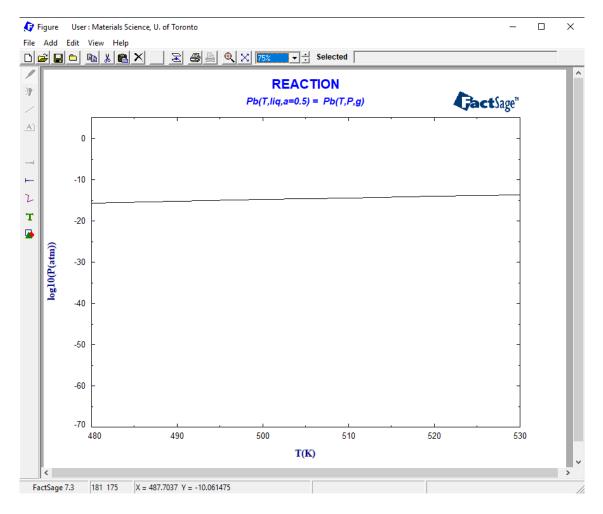

MSE Department, University of Toronto

80

Sustainable Materials Processing Lab

FactSage Team

Lead Monomer Vapor Pressure: plot the data.



You can choose the variable of axes and their format.

Sustainable Materials Processing Lab

MSE Department, University of Toronto

Lead Monomer Vapor Pressure: plot the data.

82

Sustainable Materials Processing Lab

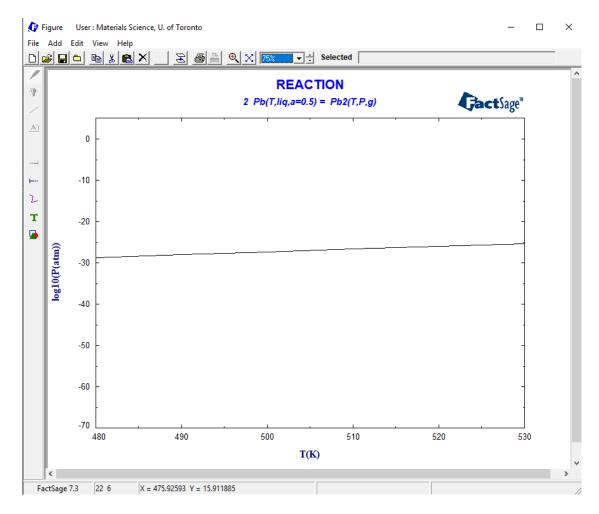
FactSage Team

Lead Dimer Vapor Pressure.

 Reaction - Reactants File Edit Units Data Se 	arch Help	tPS is used.		×
1·2	Τ(Κ) Ρ	atm) Energy(J) Quantity(m	ol) Vol(litre)	It is assumed that $a_{\rm Pb} = 0.5$.
Quantity(mol) 2 = 1	Species Pb	Phase liquid gas	1)⊺ ⊤ ▼	() P(atm)** Activity Data 1.0 0.5 P This is P_{Pb_2} .
₹ Inon standard states	For a liquid or solid, P Select 'apply volume data' in the 'VdP' term - this doe	P(atm/bar/psi) is its ideal p s the hydrostatic pressure a to include molar volume and s not apply to gases which apply volume data	bove the phase compressibility	e. y data
FactSage 7.3 Compound:	1/14 databases	Next >>		

Sustainable Materials Processing Lab

FactSage Team


MSE Department, University of Toronto

Lead Dimer Vapor Pressure.

Reaction - Tal File Units Out	ble put Figure Hel	'n				-	×
			tm) Energy(J) Quai	ntity(mol) Vol(litre)			
	-Standard State		,				
Isotrieninal Nor			2 Pb =	Pb2			
T(K)	P(atm)	Delta H(J)	Delta G(J)	Delta Vol(litre)	Delta S(J/K)	Delta Cp(J/K)	T
480.00	1.7321E-29	320327.8	0.0	2.2739E+30	667.350	-24.203	
490.00	8.9064E-29	320086.2	0.0	4.5145E+29	653.237	-24.109	
500.00	4.2841E-28	319845.6	0.0	9.5769E+28	639.691	-24.017	
510.00	1.9354E-27	319605.9	0.0	2.1623E+28	626.678	-23.925	
520.00	8.2421E-27	319367.1	0.0	5.1771E+27	614.168	-23.834	
530.00	3.3197E-26	319129.2	0.0	1.3101E+27	602.131	-23.744	
	Ľ,	The lea	ad dimer	vapor pre	essure is	even low	er.
	Tempera	ture rang	ge and ste	ep.			
480 530 10			0				1
Calculate			<< Back			Clear	

Sustainable Materials Processing Lab FactSag

Lead Dimer Vapor Pressure: plot the data

MSE Department, University of Toronto

85

Sustainable Materials Processing Lab

FactSage Team

Question 1.

Plot the "liquidus line" for **ideal** nickel alloys.

Tip: perform the equilibrium calculation for the melting reaction Ni(s) = Ni(l)and note Ni(s) is pure solid whereas Ni(l) is in the solution state, i.e., $a_{Ni} < 1$ relative to pure liquid Ni.

(You can find help from the supplementary materials: "02 FACTSage_Raction Module_Supplementary")

Question 2.

Calculate the AFT for combustion of propane (C_3H_8) in air (0 to 100% excess air – meaning from stoichiometric air to twice as much).

Question 3.

In each case below, is the metal recovery possible from the slag and what is the effect of temperature?

Note: for reduction by Fe, the FeO activity in the oxide melt will be assumed to be 0.4; and for reduction by Si, the SiO_2 activity will be 0.3. Activities in molten alloys and slags are relative to pure liquid (i.e., Raoultian pure substance standard state). If no data for liquid oxide, then choose solid.

(3a) Treatment of arc furnace dust. Look at the reduction of ZnO, initially with an activity of 0.1, by solid iron scrap. Temperature range is 1200~1600 °C. The zinc must come off as vapor at 1 atm (partial pressure of zinc).

(3b) Recovery of cobalt from scrap superalloys. Look at the reduction of CoO initially with an activity of 0.01 in a molten slag, by iron scrap. The cobalt will form as a liquid in a molten alloy and should have an activity of 0.2. Temperature range is $1500 \sim 1700$ °C.

Question 3.

(3c) Recovery of cadmium from "NiCad" battery scrap. Look at the reduction of CdO, initially with an activity of 0.002 in a molten slag, by solid iron scrap. Temperature range is 1200~1600 °C. The cadmium must come off as vapor at 1 atm (partial pressure of cadmium).

Question 4.

Look at the vapor species for a metal (Fe, Ni, Zn, etc.) using the View Data Module. Then use the Reaction Module to plot $\log(P)$ vs. 1/T (K) for the **monomer** species above the pure liquid. Choose Y-axis numbers between 10 and 0.0001 initially [log(P) between 1 and -4] and use that to help you find the appropriate temperature range. (Choose one metal)