FactSage Practical MSE302

Practical 3. Phase Diagram Calculation

Acknowledgements

- The teaching team of MSE302 is grateful to:
- Professor Mansoor Barati (UofT)
- Professor Elmira Moosavi (ETS)
- Professor Arthur Pelton (CRCT)
- Professors In-Ho Jung and M. A. Van Ende (Seoul National University)
- Dr. Sina Mostaghel (SNC-Lavalin)
- Professor Kinnor Chattopadhyay (UofT)
- Drs. Daigen Fukayama, Takahiro Sasaki (RCCM)
- Drs. Moritz to Baden and Guixuan Wu (GTT Technologies)

Phase Diagram Calculations in FactSage

We have already shown in the *FactSage Overview* that there are three modules which are available in FactSage 7.3 for the calculation of phase diagrams:

✓ Predom Module.

- ✓ EpH Module.
- ✓ Phase Diagram Module.

In MSE302, since our focus is mainly on the **non-aqueous system**, the EpH module will not be discussed. However, you should be aware that in fields of electrochemistry and hydrometallurgy, the EpH module has found wide applications.

Phase Diagram Calculations in FactSage

Predom Module and Phase Diagram Module

Sustainable Materials Processing Lab

FactSage Team

FactSage Practical MSE302

Practical 3. Phase Diagram Calculation

Predom Module

The **predominance diagrams** are a particularly simple type of phase diagram that have many applications in the fields of hot corrosion, chemical vapor deposition, etc.

Let us discuss the construction of a predominance diagram using the $Cu-SO_2-O_2$ system.

Pelton, Phase Diagrams and Thermodynamic Modeling of Solutions, 2019 (Chapter 2.4.3)

Predominance Diagram: Theoretical Basis

Pelton, Phase Diagrams and Thermodynamic Modeling of Solutions, 2019 (Chapter 2.4.3)

Sustainable Materials Processing Lab

FactSage Team

A **predominance diagram** can be constructed by calculating the lines which indicate the coexistence of two solid compounds. The detailed procedure has been discussed by Bale et al.

We formulate a reaction for the formation of each solid phase, always from 1.0 mol of Cu and involving the gaseous species whose pressures are used as the axes; here, we use SO_2 and O_2 .

$$Cu + 0.5O_{2} = CuO; \ \Delta_{r}g = \Delta_{r}g^{\circ} + RT\ln\left[\left(P_{O_{2}}\right)^{-0.5}\right]$$

$$Cu + 0.25O_{2} = 0.5CuO; \ \Delta_{r}g = \Delta_{r}g^{\circ} + RT\ln\left[\left(P_{O_{2}}\right)^{-0.25}\right]$$

$$Cu + SO_{2} = CuS + O_{2}; \ \Delta_{r}g = \Delta_{r}g^{\circ} + RT\ln\left[\left(P_{O_{2}}\right)^{1}\left(P_{SO_{2}}\right)^{-1}\right]$$

$$Cu + SO_{2} + O_{2} = CuSO_{4}; \ \Delta_{r}g = \Delta_{r}g^{\circ} + RT\ln\left[\left(P_{O_{2}}\right)^{-1}\left(P_{SO_{2}}\right)^{-1}\right]$$
At equilibrium, $\Delta_{r}g = 0$, and $\log(P_{SO_{2}}) \sim \log(P_{O_{2}})$ can be calculated.

Pelton, Phase Diagrams and Thermodynamic Modeling of Solutions, 2019 (Chapter 2.4.3)

Sustainable Materials Processing Lab

FactSage Team

Bale et al. Can. Metall. Q. 25, 107-112

You can repeat the above procedure for the formation of Cu_2S , Cu_2SO_4 , and Cu_2SO_5 .

You may note that in some equilibrium equations, there is no P_{O_2} or P_{SO_2} . This means that the equilibrium between two solid compounds are independent of P_{O_2} or P_{SO_2} , and the lines would be horizontal or vertical.

Also, by reformulating the reaction for the formation of each solid phase, in terms of, for example, S_2 and O_2 rather than SO_2 and O_2 , a predominance diagram with logarithms of P_{S_2} and P_{O_2} as axes can be constructed.

Application I of Predominance Diagram

Say we introduce a large amount of SO_2 and O_2 into a system, the gas mixture reacts with a small amount of Cu. Because the amount of Cu is small, the change in the gas composition is negligible. If we adjust P_{SO_2} and P_{O_2} , different products would result. A predominance diagram of Cu-SO₂-O₂ can be used to study this problem.

Application II of Predominance Diagram

You may notice from the predominance diagram of the $Cu-SO_2-O_2$ system, there is a curve shown by the crosses. Along this curve, the **total (hydrostatic) pressure** is 1.0 bar.

We can fix a constant **hydrostatic** pressure of 1 bar by placing the system in a cylinder fitted with a piston (left graph). Under this condition, if the gas phase is present, then the gas phase consists not only of SO₂ and O₂, but also of other species such as S₂, S₃, O₃, etc. whose equilibrium partial pressures can be calculated.

It is noted that when the total (hydrostatic) pressure is controlled, P_{SO_2} and P_{O_2} can not be independently varied.

Application II of Predominance Diagram

The cross line is used to study the system's equilibria when we have a closed system and the total (hydrostatic) pressure is controlled. Above the total pressure line, the total pressure is greater than 1.0 bar even though the sum of the partial pressures of SO₂ and O₂ might be less than 1.0 bar. Caution must therefore be exercised using such diagrams. If the total pressure is **no** greater than 1.0 bar, states above the $P_{\text{total}} = 1.0$ bar are inaccessible. In other words, the calculated diagram for a total (hydrostatic) pressure of 1.0 bar terminates at this line.

¹²

The Predom Module allows you to calculate predominance diagrams. These diagrams are calculated under quite restrictive conditions.

- ✓ Only compound databases are accessed.
- ✓ Temperature is fixed (isothermal calculation).

The partial pressures are permitted to vary for non-metallic species, and the total pressure which is the sum of the partial pressures of all species can also vary.

Again, before you work on your project, check the Directory!!!

Database Selection

G	Predom			– 🗆 X	
Fi	le Units Data Search	Help			
	🗘 Data Search		se FactPS.	×	
	-Databases - 1/14 co	mpound databases, ()/15 solution databas	es	
	Gact Gac	t Sage" SGTE	compounds only	Private Databases	
	FactPS FSc	copp 🔲 BINS	solutions only	EXAM	
	FToxid FSI	ead SGPS	no database		
		stel StallE	Class All		
	FThall				
		Other		i his might be the defa	uit database
	Fintz		Addriftelilove by	for examples	
	FTpulp	demo SpMCBN	RefreshDatabases	tor examples.	
		huci 🛄 i Dhuci		_	
	Information - Predom only accesses COMPOUND databases				
	Predom only accesses COMPOUND databases			1	
			The max	ximum number of Met	tals is 3.
F	- Options - search for product species				
		Include compounds –	Lim	its	
	Default	gaseous ions (pla	smas) Orga	anic species CxHy, X(max) = 2	
		□ aqueous species □ □ limited data comp	ounds (25C)	imum solution components: O 1 💿 2 cpts	
	Cancel		Summary	OK	

14

Sustainable Materials Processing Lab

FactSage Team

Define **Elements**: Metals and Non-metals

Sustainable Materials Processing Lab

FactSage Team

Define **Parameters**: Pressures and Temperature

Sustainable Materials Processing Lab

FactSage Team

Define **Parameters**: Pressures and Temperature 🚺 Figure User : Materials Science, U. of Toronto х Add Edit View Help 🗅 🚅 🖬 🗅 🖻 🐰 💼 🗙 Z 9 🗙 🔂 Selected 9 Cu-S-O, 973 K '+' = 1.0 atm P(total) isobar For a given total hydrostatic pressure of 1 .(s) Aì atm, when P_{O_2} is low, P_{SO_2} is also low. This is because that P_{S_2} is high. As P_{O_2} increases, S_2 CuS₂(s) is gradually converted to SO_2 and the **H**----CuSO₄(s) Cu₂S(s₂) og10(P(SO2)) (atm) condensed phases go from a sulfide to oxide, Т td,0(s) and to sulfate. (CuQ)(CuSO₄)(s) CuO(s) Cu(s) -3 You are suggested to perform the calculations -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 at other temperatures and use the Figure $\log_{10}(\mathbf{P}(\mathbf{O}_2))$ (atm) Module to impose these diagrams (See the 22 449 X = -21.481481 Y = -3.9461538 FactSage 7.3 Supplementary material).

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

The second example we will look at is the Cr-C-O system at 1800 K.

T(K) P(atm) Mass(mol) Flements 2-Metal Avetal Metal T(K) P(atm) Mass(mol) Parameters Pressure P(atm): Pressure P(atm): Pressure P(atm): P(atm): P(atm): P(atm): P(atm): P(atm): P(atm): P(atm): P(atm): P(atm): P(atm): P(at	File Units Data Search Help	
Elements 2-Metal 2-Metal Example Metals: Cr Non-metals: C Clear optional Metal Mole Fractions 2-Metal Diagram Metal Diagram Ametal Diagram Ametal Diagram Parameters Pressure Image: Diagram Parameters Pressure Image: Diagram Parameters Pressure Image: Diagram Parameters Pressure Image: Diagram Parameters Parameters Pressure Parameters Parameters	□ 😂 🖬 T(K) P(a	tm) Mass(mol)
	Elements • 1-Metal Example • 2-Metal Example • 3-Metal Example Metals: • Cr Non-metals: • Diagram	Parameters Pressure Isobar: P(atm): Isobar: P(atm): Constants Z: Temperature Z: T(K): 1800 Isobar: Isop10(Z): Y-axis Iog10(Y) Y: a(C(s)) max: 1 min: -5 step: 1 Labels and Display x

Here, the maximum carbon activity is set as 10. In reality, the carbon activity cannot exceed unity. The program permits one to calculate the diagram under the conditions that cannot be achieved in practice. **However**, we should never use ridiculously high values for activities and partial pressures.

full screen titles	
Calculate >>	

– 🗆 X

Sustainable Materials Processing Lab

Predom

FactSage Team

MSE Department, University of Toronto

The second example we will look at is the Cr-C-O system at 1800 K.

Sustainable Materials Processing Lab

FactSage Team

The second example we will look at is the Cr-C-O system at 1800 K.

– 🗆 X

Sustainable Materials Processing Lab

Predom

FactSage Team

MSE Department, University of Toronto

The second example we will look at is the Cr-C-O system at 1800 K.

Sustainable Materials Processing Lab

FactSage Team

FactSage Practical MSE302

Practical 3. Phase Diagram Calculation

Phase Diagram Module: Unary and Binary System Phase diagrams are a **graphical representation of phase equilibria**, showing the phases at equilibrium with respect to temperature, pressure, etc. We have already shown various types of phase diagrams for systems containing stoichiometric compounds as well as solution phases in lectures. For binary systems, the most common type is $T \sim X_B$ diagram.

The **Phase Diagram Module** is a very powerful module and is superior to the Predom Module in many ways. However, it takes a lot of care to use it correctly. The general rules of constructing **single-valued** phase diagrams is thoroughly discussed by Pelton.

Like the Equilib Module, selection of databases, especially, solution database, and selection of the phases that may exist at equilibrium are quite challenging for high-order systems. Always consult the Documentation Module!!!

Let us start with a simple example: unary phase diagram of H_2O . We would like to know how the equilibrium between **water vapor**, **liquid water** and **ice** is shifted when the system's pressure and temperature are varied.

We would like to plot a diagram that is the similar to the graph below.

Components Window: Define Components

Sustainable Materials Processing Lab

FactSage Team

Components Window: Choose Units

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Components Window: Choose Database(s)

👍 Pł	nase Diagram - Cor	nponents – 🗆 X			
File	Edit Units Data	Search Data Evaluation Help			
	存 Data Search	×			
	- Databases - 1 FactPS Floxid Flo	/14 compound databases, 0/15 solution databases FactSage SGTE compounds only Private Databases FScopp BINS solutions only no database FSlead SGPS SGTE EXAM FSstel SGTE FSupsi SGsold Clear All Clear All Other Add/Remove Data FT demo SpMCBN TDmeph FTnucl			
L	-Information -	We are considering the equilibrium between water vapor, liquid water and ice. Therefore, only FactPS is required.			
FactS	Options - search for product species Include compounds gaseous ions (plasmas) queous species imited data compounds (25C)				
	Cance	Summary			

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

存 Phase Diagram - Menu: last sys	ystem	- 🗆 X				
File Units Parameters Variable	le 🕼 Selection - Phase Diagram - no results -	Selection - Phase Diagram - no results - File Edit Show Sort				
Components (1)	Selected: 1/9 GAS	Selected: 1/2 LIQUID				
Products Compound species	+ Code Species Data Phas 1 H(g) FactPS gas 2 H2(g) FactPS gas	e Lode Species Data Phase 10 HOOH(liq) FactPS liquid + 11 H2O(liq) FactPS liquid				
 ★ agas ● ideal ○ real 1 aqueous 0 ★ pure liquids 1 	3 O(g) FactPS gas 4 O2(g) FactPS gas 5 O3(g) FactPS gas 6 OH(g) FactPS gas	Image: Provide the second s				
← pure solids 1 * - custom selection species: 3	+ 7 H2O(g) FactPS Steam 8 HOO(g) FactPS gas 9 HOOH(g) FactPS gas	Selected: 1/1 SOLID + Code Species Data Phase				
Target - none - Estimate T(K; 1000	/e need to tell FactSage which p	paraequilibrium & Gimn edit				
Variables mo	performing equilibrium calculations. Then FactSage will only retrieve the models of the selected phases from the chosen database, and then					
-20 300 -3 pe	be specified later. Choose $H_2O(a)$, $H_2O(l)$ and $H_2O(s)$					
FactSage 7.3						

Sustainable Materials Processing Lab

Menu Window: Choose Variables

Sustainable Materials Processing Lab

FactSage Team

Results

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

The second example guides you through the calculation of the $T \sim X_B$ diagrams for binary alloy system.

Say we would like to calculate the Fe-Cr phase diagram. We are aware that in this system, both **stoichiometric compounds** and **solution phases** could exist. Therefore, we need to determine which database(s) should be used. To do this, we could either use the search function in the **Documentation** Module, or use the **View Data** Module.

Search the Fe-Cr system in the Documentation Module.

Sustainable Materials Processing Lab

FactSage Team

View the model quality for the Fe-Cr system in the View Data Module.

View Data

The above information from the Documentation Module and View Data Module indicates that FTlite could be used to calculate the Fe-Cr system.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Components Window: Define Components

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Components Window: Choose Units

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto
Components Window: Choose Database(s)

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

🗘 Phase Diagram - Menu: last system	- 🗆 ×
File Units Parameters Variables Help	
Components (2) T(C) P(atm) Energy(J) Quantity	Image: Title-A2 Image: Title-A2 BCC-A2 Prototype-W Strukturbericht = A2; Pearson = cl2; Space Group = Im-3m (229); [I] C, H, N and B interstitial on tetrahedral sites
Fe + Cr Products Compound species Solution phases	The components in FTite-A2 for the current calculation are: Cr. Fe-alpha Custom Solutions Output Details
gas © ideal O real 0 aqueous 0 pure liquids 0 pure solids 0 FTlite-A1 FTlite-A2 FTlite-A3 FTlite-D8b Sigma	Liquid <u>FCC-A1</u> <u>BCC-A2</u> HCP-A3 <u>Prototype-FeCr</u> Left click on the column of "Base-Phase" or "Full Name" to display the solution description.
Target - none - Estimate T(K): 1000 Image: Contract of the second secon	We need to tell FactSage which phases should be considered before performing equilibrium calculations. Then FactSage will only retrieve the models of the
Variables T(C) Fe/(Fe+Cr) 1000 0 (min) · vs · .	selected phases from the chosen database, and then perform the minimization of Gibbs energy under the conditions that will be specified later.
FactSage 7.3	

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

存 Phase Diagram - Menu: last sy	/stem	-		
File Units Parameters Variab	Selection - Phase Diagram - no 1	. There is no need to choose pure liquids because we will		
Components (2)	File Edit Show Sort	hoose liquid alloy.		
componente (L)	Selected, 12/12	- no results -		
	L Cada Cassion Data Phase T M Astivity Minimum Maximum			
Products	+ 3 Cr(s) FTlite + 4 Cr(s2) FTlite	2. Select all the pure solids.		
Compound species	+ 5 Cr(s3) FTlite + 6 Cr(s4) FTlite	Cr(s3) FTlite Right click to open the "Selection Window". All the pure		
aqueous 0	+ 7 Cr(s5) FTlite + 8 Fe(s) FTlite	FTIRe solids that are considered are indicated by a sign "+". You		
+ pure solids 12	+ 9 Fe(s2) FTlite + 10 Fe(s3) FTlite	can remove some of solids manually. However, there is no		
species: 12	+ 11 Fe(s4) FTlite + 12 Fe(s5) FTlite	need to do so in this simple binary system . Screening of		
	+ 13 Fe(s6) F1lite + 14 Fe(s7) F1lite	the pure solids is normally required when multiple		
- none - Estimate T(K): 1000		databases are used or when we want to include some		
		meta-stable phases in the calculation (for example, Fe_3C		
Variables T(C) Fe/(Fe+Cr)		in the Fe-C phase diagram)		
1000 0 (min)				
· VS ·	permit selection of "X" species Help	Help Suppress Duplicates Edit priority list :		
FactSage 7.3	Show Selected Select /	All Select/Clear Clear OK		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

	🗘 Phase Diagram	- Menu: last system	X
	File Units Paran	neters Variables Help T(Note: the [I]-option only means we are considering the possibility of immiscibility, and it might not appear in the calculation results.
	Solution FTlite-Liqu		
> > >	 clear all end-members custom select end-members m - merge dilute solution from + - single phase l - possible 2-phase immiscibility J - possible 3-phase immiscibility standard stable phase 	C real 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Full Name Custom Solutions FTlite-Liqu Liquid 0 fixed activities Details FTlite-A1 FCC-A1 0 ideal solutions Pseudonyms FTlite-A2 BCC-A2 Pseudonyms E dit Volume data FTlite-D8b Sigma Prototype-FeCr solids and liquids = 0 o include molar volume data and physical properties data paraequilibrium & Gmin edit
-	 dormant (metastable) phase 	I - immiscil	ble 5 Show C all C selected <u>Total Species (max 5000)</u> 32
	 F - formation target phase P - precipitate target phase O - Only plot this single phase S - Scheil cooling target phase Z - iso-activity lines Help 	[+] - single phase: Species of the phi off lower limit (click Fev [I] - possible 2-phi option for FACT-S be OK - the phase speed of the calcu	: the solution phase is included as a possible product in the equilibrium calculation. ase will not appear the [Results Window] if their concentrations are below the Print Cut- k on Parameters in the Menu Window). ase immiscibility: the solution phase may be immiscible. For example select this SLAG when SiO2 > 50%. If the phase is not immiscible the results of the calculation will a will appear twice with the same composition. Note this option tends to slow down the ulation.
	FactSage 7.3		1.

FactSage Team

MSE Department, University of Toronto

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

A Note: for the calculation of phase diagrams of a **binary** system which has been optimized in the FactSage databases, we normally use the default settings when choose phases, that is, all pure solids and all solutions (some default setting is [I]-option). However, when calculating higher-order systems which requires the selection of multiple databases, caution must be exercised and screening of certain phases is necessary.

Menu Window: Choose Variables

Sustainable Materials Processing Lab

FactSage Team

Results: Click on "Calculate" to generate the phase diagram.

Sustainable Materials Processing Lab

FactSage Team

Results: Click on "Calculate" to generate the phase diagram.

......

Stab	ole Phases	×	
	a n	All the stable phases (compounds and solutions) are listed. Also	
		included are the structural information of these phases.	
	Stable Phas	es - solutions and compounds (pure substances PS)	
1 2 3 4	FTlite-Liqu FTlite-A2 FTlite-A1 FTlite-D8b	Liquid metal BCC-A2 Prototype-W Strukturbericht = A2; Pearson = cI2 FCC-A1 Prototype-Cu Strukturbericht = A1; Pearson = cI Sigma Prototype-FeCr Strukturbericht = D8b; Pearson = tP30; Space g1	
	Stochiometr mole	All the invariant reactions (the number of degree of freedom is zero) are listed.	
	- none -	Please note the number of components for these]
	Phase Equil	two equilibria is 1.	
1 2 3	1906.84 C 1537.81 C 511.94 C	Liquid#1(0.0) <=> BCC-A2#1(0.0) Liquid#1(1.0) <=> BCC-A2#1(1.0) Sigma#1(0.486) <=> BCC-A2#1(0.1535) + BCC-A2#2(0.808)	-

Results: 2-phases tie-lines mode

Sustainable Materials Processing Lab

FactSage Team

Results: phase equilibrium mode

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Results: phase equilibrium mode

Sustainable Materials Processing Lab

FactSage Team

Save Results

 FactSage 7.3
 3
 1
 X = -0.10962963
 Y = 2280.3279
 BCC-A2 + Liquid
 C:\FactSage\Equilib.fig

The third example guides you through the calculation of the $T \sim X_B$ diagrams as well as two-potential phase diagrams. We will use the Fe-O₂ system as the example.

First, let us calculate the $T \sim X_B$ diagram for the Fe-O₂ system.

Search the Fe-O (not Fe-O₂) system in the Documentation Module.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Components Window: Define Components

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Before we choose the database(s), let us check the pre-made phase diagram.

Sustainable Materials Processing Lab

We use the View Data Module to determine which other databases are needed.

First, check the Liquid Solution.

Sustainable Materials Processing Lab

FactSage Team

We use the View Data Module to determine which other databases are needed.

Note: there is no need to check the FTdemo database.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

We use the View Data Module to determine which other databases are needed. First, check the Liquid Metal.

The above information shows that FTmisc-FeLQ is probably the best candidate for the liquid metal phase. Therefore, FTmisc database should be chosen.

For the solid **metallic Fe** phases, since the solubility is very low, you can choose either FactPS database which ignores the solubility of oxygen, or FSstel database which considers the dissolution of oxygen (FSstel-BCC and FSstel-FCC). Here, we choose FactPS.

Now let us reproduce the Fe-O phase diagram before we calculate the Fe-O₂ phase diagram.

Components Window: Choose Database(s)

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

Phase Diagram - Menu: last sy	stem — 🗆 X
File Units Parameters Variabl	es Help
	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)
Components (2)	Select all the solutions and use the default settings of immiscibility gaps.
Products Compound species gas ● ideal ○ real 0 aqueous 0 pure liquids 0 + pure solids 5 * - custom selection	Solution phases Custom Solutions * Base-Phase Full Name 0 fixed activities Details + FTmisc-FeLQ Fe-liq 0 ideal solutions I FToxid-SLAGA A-Slag-liq all oxides + S Pseudonyms Edit + FToxid-SPINA A-Spinel Volume data • FToxid-MeO_A A-Monoxide Volume data
species: 5	Selection - Phase Diagram - no results - File Edit Show Sort Selected: 5/13 SOLID Duplicatest selected: X denotes species exclude -no results - -
T(C) O/(Fe+0) 400 1800 0 0.6 T(C) vs O/(Fe+0)	 13 Fe203(s3) 14 Fe203(s3) 15 Fe304(s) 16 Fe304(s2) 17 Fe304(s3) 18 Fe304(s3) 18 Fe304(s4) 19 Fe203(s3) FactSage will suppress the duplicates. You can edit the priority.
,	+ 21 Fe2D3(s3) FToxid High-Pressure-H V

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Choose Variables

Phase Diagram - Menu: last system -	- 🗆	\times
File Units Parameters Variables Help		
- Componente (2)		
Fe + 0		
Variables: Fe-O T(C) vs composition #1.	×	
Produ Variables -T and P Comp Y • compositions 1 Temperature • Pressure or Volume Y • compositions 1 • T(C) Y-axis • P(atm) constant * • compositions 1 • T(C) • P(atm) constant * • compositions 1 • T(C) • P(atm) constant * • compositions 2 • O • O * • compositions 1 • O • O * • compositions 2 • O • O * • compositions 2 • O • O • for the composition 2 • O • O • O • for the composition 3 • O • O • O • for the composition 3 • O • O • O • for the composition 3 • O • O • O • for the composition 3 • O • O • O • for the composition 4 • O • O • O • for the composition 4 • O • O • O • for the composition 4 • O • O • O • for the composition 4 •		a ata
Targe Targe Torpositions Quantity(mol) Fe + 1 0 = X-axis #1. D Fe + 1 0 = 0.6 (max) #1. D Fe + 1 0 = 0.6 (max) T torposition D (min) #1 log10(composition) Cancel $n_{Fe} + n_0 = X_0$	OK	dit 19 5 10
FactSage 7.3		

Sustainable Materials Processing Lab

FactSage Team

Results: Fe-O Phase Diagram ($T \sim X_0$ Phase Diagram)

A Note on the Fe-O Phase Equilibrium: "Gas Suppression" Condition

It is worth noting that the Fe-O phase diagram shown on <u>Slide</u> does not include the gas phase. That is, the gas phase is suppressed.

Say we fix a constant **hydrostatic** pressure of 1 atm by placing the condensed phases in a cylinder fitted with a piston (left graph). If the total gas pressure at equilibrium (i.e., sum of the partial pressures exerted by the gaseous species in the vapor phase generated by incomplete vaporization of the components) is less than 1 atm, there will be no gas phase present. This condition is referred to as "gas suppression" condition. Clearly, if we heat or cool the system, the **overall** composition of the condensed phases remain constant.

Pelton, Phase Diagrams and Thermodynamic Modeling of Solutions, 2019 (Chapter 7.8)

A Note on the Fe-O Phase Equilibrium: Fixed Oxygen Potential

Different from the previous condition under which the composition of the condensed phases remains unchanged, another condition is to control the oxygen content in the gas phase, i.e., constant partial pressure P_{O_2} .

Note: the mass ratio of gas to condensed phases is large enough so that the composition of gas-in and that gas-out is same.

When the above system reaches equilibrium, the condensed phases (solid and/or liquid) are equilibrated with a gas phase with fixed P_{O_2} . Say we wish to fix P_{O_2} in the range of 10^{-24} to 1 atm. Now let us plot the oxygen isobars on the Fe-O phase diagram.

Back to the Menu Window (Slide)

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Sustainable Materials Processing Lab

FactSage Team

A Note on the Fe-O Phase Equilibrium: Fixed Oxygen Potential

The calculated Fe-O phase diagram with the P_{O_2} isobars can be used to study a heating or cooling process.

Say we are controlling the oxygen partial pressure $P_{O_2} = 10^{-8}$ atm. From the calculated Fe-O phase diagram, it is seen that along the line of $P_{O_2} = 10^{-8}$ atm, the highest temperature is > 1800 °C, and the condensed phase should be pure iron. Now, if we cool this system while keeping the oxygen partial pressure constant (10^{-8} atm), the composition of the condensed phase will be changed along the line of $P_{O_2} = 10^{-8}$ atm because of the oxidation.

The above simple analysis shows that the variables, i.e., temperature, composition of the condensed phases and P_{O_2} are correlated. As West and Saunders commented that the partial pressure of oxygen is a function of both temperature and composition.

West and Saunders, Ternary Phase Diagrams in Materials Science, 3rd Edition, 2002

Now, we have successfully reproduce the Fe-O phase diagram shown in the Documentation. To calculate the Fe-O₂ phase diagram, we need to change the component "O" to "O₂", but do not change the phase selection.

You can calculate either the condition under which the gas phase is suppressed, or the condition of fixed P_{O_2} . Here, we only show the calculation when the gas phase is suppressed.

Results: Fe-O₂ Phase Diagram ($T \sim X_{O_2}$ Phase Diagram)

Sustainable Materials Processing Lab

MSE Department, University of Toronto

Next, let us look at two-potential phase diagrams. We will again use the Fe-O₂ system as the example to calculate $T \sim \mu_{O_2}$ (thermal potential~chemical potential) for the Fe-O₂ system.

You might ask why we want to use μ_{0_2} as a variable? From the master equation, we know,

$$\mu_{O_2} = \mu^{\circ}_{O_2} + RT \ln(P_{O_2})$$

This means that, the topology of the $T \sim \mu_{O_2}$ diagram is same to that of the $T \sim RT \ln(P_{O_2})$ diagram. **Clearly**, we are very interested in the effect of P_{O_2} on the phase equilibria. However, you should note that the topology of the $T \sim \mu_{O_2}$ diagram is different from that of the $T \sim \ln(P_{O_2})$ diagram.

Pelton, Phase Diagrams and Thermodynamic Modeling of Solutions, 2019 (Chapter 7)

Back to the Menu Window, and activate the Variables Window

存 Phase Diagram - Menu: last system	– 🗆 ×
File Units Parameters Variables Help	
T(C) P(atm) Energy(1) Quantity(mol) Vol(litre)	
Components (2) You don't have to choose the gas s	pecies.
Variables: Fe-O2 T(C) vs R(T/K)In p(O2)/bar (J)	×
Products Y c compositions O T and P Compound species Y c compositions O Temperature gas < ideal C eal	Pressure or Volume
* + pure solids	e RTIn(a) as a variable.
default selection -	
Target - none - Estimate T(K): 1000	OK
Variables Y T(C) RTIn(p(02)) Y 400 1800 -500000 0 X T(C) vs RTIn p(02)	Calculate >>
FactSage 7.3	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

FactSage Team

FactSage Practical MSE302

Practical 3. Phase Diagram Calculation

Phase Diagram Module: Ternary System

The phase diagram for a ternary system requires a space model. Because of this, we normally calculate **isothermal sections** and **liquidus projections** which are easier to view in a 2D space.

The Phase Diagram Module can be used to calculate above phase diagrams for ternary systems. Two examples will be presented, one is metallic system and the other is oxide system.

A Note: most binaries have been critically assessed using existing experimental data and therefore the binary phase diagrams reported by different accessors (or model developers) generally agree with each other. However, this is not true for ternary and higher-order systems. Since the amount of work in measuring even one isothermal section of a relatively simple **ternary** phase diagram is enormous, most of ternary phase diagrams and higher-order phase diagrams are estimates extrapolated from critically evaluated binaries, and validated using limited amounts of experimental data.

Phase Diagram Module: Al-Mg-Zn System

Let us review the FTlite database. Go to the Documentation Module, navigate to "[FTlite] – FACT Al-Alloy and Mg-alloy databases", and open the PDF document of "general description and list of optimized systems".

Al Alloys	
Ag, Al, <u>As, Au</u> , B, Ba, Be, Bi, C, Ca, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, <u>Ga</u> , Gd, Ge, H, <u>Hf</u> , Ho, In, K,	
La, Li, Lu, Mg, Mn, N, Na, Nb, Nd, Ni, P, Pb, Pr, Sb, Sc, Si, Sm, Sn, Sr, <u>Ta</u> , Tb, Ti, Tm, V, <u>w</u> , Y,	
Yb, <mark>Zn</mark> , Zr	
Mg Alloys	
Ag, Al, B, Ba, Be, Bi, C, Ca, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, H, Ho, In, K, La, Li,	
Lu, Mg, Mn, Na, Nb, Nd, Ni, Pb, Pr, Sb, Sc, Si, Sm, Sn, Sr, Tb, Ti, Tm, V, Y, Yb, Zn, Zr	
Color codes	
Red : Al or Mg	
Blue : Major alloying elements (full optimisations of binary systems with Al and Mg and with several	
minor alloying elements, Al-Mg-Xx ternary systems evaluated (good for Al+Mg-rich regions), several	
quaternary systems included);	
Green : Minor alloying elements (full optimisations of binary systems with AI and Mg);	
Black : Optimized for the AI-Zz system and few AI-Xx-Zz and AI-Yy-Zz systems;	
The above description shows that the FTlite database could be used to calculate the Al-Mg-Zn system.

Note: for the FTlite database, no pre-made phase diagram for ternary systems by CRCT (only binary systems) is available. That is, you won't be able to find the Al-Mg-Zn phase diagrams calculated using the FTlite database from the Documentation Module. You might be able to find a few Al-Mg-Zn phase diagrams calculated using the SGTE (alloy) database. Unfortunately, we do not have the access to the SGTE database.

Components Window: Define Components

Phase Diagram - Components	- 🗆 X	
File Edit Units Data Search Data Evaluation Help <td <td="" <td<="" td=""><td>Don't forget to check your Directory.</td></td>	<td>Don't forget to check your Directory.</td>	Don't forget to check your Directory.
1.3 Components Al Mg Zn Zn	fault) ties, and iso-Eh & iso-pH lines tions and 2 anions jagram	
Next >> FactSage 7.3 Compound: 1/14 databases Solution: 1/15 databases		

Sustainable Materials Processing Lab

FactSage Team

Components Window: Choose Database(s)

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

📭 Phase Diagram - Menu: last system			- 🗆 X		
File Units Parameters Variables Hel <u>p</u>					
🗅 🚅 🖬 👘 Т	(C) P(atm) Energy(J) Quantity(m	nol) Vol(litre)	🚻 📑 💽		
Components (3)	Al + Mg + Zn 	Select all of immise	the solutions and u cibility gaps.	use the default settings	
Products	-hanna		Custom Solutions		
Lompound species gas ⊙ ideal C real 0 aqueous 0 pure liquids 0 ↓ pure solids 35 1 species: 35 1 Legend- 1. immisc + select + select	Base-Phase Full FTlite-Liqu L FTlite-A1 Fri FTlite-A2 Bit FTlite-A3 H FTlite-A3'' HCP-Zn FTlite-A12 CBCC-A12 FTlite-C14 C14 Prot FTlite-C36 C36 Prot sible 9 ✓ ted 6 Species:	II Name	Custom Solutions O fixed activities Details O ideal solutions Pseudonyms apply Edit Volume data osolids and liquids = 0 include molar volumes of solids and liquids = 0 include molar volume data and physical properties data paraequilibrium & Gmin edit [otal Species (max 5000) 153	Add all solutions containing > Add all solutions from database > Select all solutions > Make all unselected solutions dormant Change all [I] to [+] (2-phase to 1-phase) > Change all [J] to [I] (3-phase to 2-phase) > Clear all solutions containing > Clear all solutions from database > Clear all solutions Clear all solutions Clear all solutions >	
	solutions:	24 Select	Fetal Solutions (Inax 200) 24		
Choose all the pure solids. You should know that selection of some of the pure solids is not necessary, e.g., Mg(hcp_A3), Mg2Zn(C36) etc., because there are corresponding solution phases which include these pure solids as endmembers. For example, ETlite-A3 (HCP-A3)					
Phases which menute these pure solids as enumeribers. For example, Finte-AS (IICF-AS)					
Fact in the Solution phase	s, if $X_{Mg} = 1$, FT	Tlite-A3 be	comes Mg(hcp_A3)	. However, in most	
cases it does no harn	n if these nhase	s are select	ted		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

A Note on the Selection of Products/Phases

To make FactSage more user-friendly, the developers of **commercial** databases have added some key features to the databases, for example:

- ✓ [+], [I], and [J] indicate the possibility of miscibility, two-phase immiscibility, and three-phase immiscibility.
- \checkmark All the endmembers of solution phases are included in the pure solids.

These features permit the FactSage users who do not have a good knowledge of thermodynamics to perform relatively reliable calculations for simple systems. **However**, for complex real-world problems, an advanced FactSage user always performs screening of products to avoid the appearance of unreasonable phases in the equilibrium calculations.

Menu Window: Set up the Variables (Liquidus Projections)

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

	Phase Diagram - Menu: last system File Units Parameters Variables Help T(C) P(atm) Energy(J) Quantity(mol) Vol(litre) Components (3)	
Right click to chang Solution FTlite-Liqu	e FTlite-Liqu to the option of "P – precipitate targ	get phase".
 clear all end-members custom select end-members m - merge dilute solution from single phase possible 2-phase immiscibility possible 3-phase immiscibility standard stable phase dormant (metastable) phase 	Solution phases Solution phases I FTlite-A1 FCC-A1 FCC-A1 FTlite-A2 BCC-A2 BCC-A2 BCC-A2 I FTlite-A3 HCP-A3 I FTlite-A12 CBCC-A12 Prototype-Mg FTlite-A12 CBCC-A12 Prototype-Mg Solution phases Solution phases We are calculating the liquid means other solids phases (solids) are precipitating fro	Custom Solutions O fixed activities O ideal solutions Pseudonyms apply Edit Volume data C assume molar volumes of solids and liquids = 0 dus projection, which (primary crystallization om the liquid.
 F - formation target phase P - precipitate target phase O - Only plot this single phase S - Scheil cooling target phase Z - iso-activity lines Help 	FactSage { The options of "univariants" and "isotherms" must be selected. They are important elements of liquidus projection diagrams	Phase Diagram Projection Zn Mg Al - no time limit - Calculate >>

Sustainable Materials Processing Lab

FactSage Team

Results: Liquidus Projection of the Al-Mg-Zn System (FTlite Database)

FactSage Team

Comparison with the diagrams from <u>SGTE2017</u> and <u>ASM Handbook</u>.

Don't be surprised if you find that the discrepancy exists for the liquidus Al-Mg-Zn projections from different sources. After all, they are all just estimates!!!

Back to Variable Window (<u>Slide</u>): Isothermal Sections

👍 Pl	nase Diagram - Menu: last system —	X
File	Units Parameters Variables Help	
	Variables: Al-Mg-Zn composition #1. vs composition #1.	Now we want to calculate the jesthermal
- Cor	Variables T and P Y C compositions 2 X b C a b C b C A C B C XY steps 11 Next >>	section of the Al-Mg-Zn system at 20 °C.
Ta - Ta	Compositions Quantity(mol) #1. 0 AI + 0 Mg + 1 Zn = A-Corner #1. 1 AI + 1 Mg + 1 Zn = 1 (max) 0 0 0 0 0 0 0 0	of lata data edit
Var	#2. $\frac{1}{1}$ Al + 0 Mg + 0 Zn $\frac{C-Comer}{1}$ Al + 1 Mg + 1 Zn $\frac{C-Comer}{0}$ (min)	24 59
Α=	Image: Barrier with the second sec	>>
FactSa	Cancel OK	

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

Sustainable Materials Processing Lab

FactSage Team

Results: Isothermal Section of the Al-Mg-Zn System (FTlite Database)

Sustainable Materials Processing Lab

FactSage Team

Comparison with the diagrams from <u>SGTE2017</u> and <u>ASM Handbook</u>.

Again, there is a discrepancy between different phases diagrams reported from different sources.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Now let us calculate an oxide system which consists of SiO_2 , CaO, and Al_2O_3 . It is worth mentioning that the ternary SiO_2 -CaO-Al₂O₃ phase diagram is actually an isopleth of the quaternary Si-Ca-Al-O system along the line:

$$n_0 = 2n_{\rm Si} + n_{\rm Ca} + 1.5n_{\rm Al}$$

This relationship is met in every condensed phases. Therefore, strictly speaking, the ternary SiO_2 -CaO-Al₂O₃ phase diagram is a "**quasi-**" ternary phase diagram.

You also should note that the pressure, more specifically, P_{O_2} , has a negligible effect on the phase equilibria of the SiO₂-CaO-Al₂O₃ system because all the metals have only one oxidation state.

First, let us search this system in the Documentation Module.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Components Window: Define Components

Phase Diagram - Components	- 🗆 🗙
File Edit Units Data Search Data Evaluation Help T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	Don't forget to check your Directory.
Choose Units.	
Components SiO2 CaO AI2O3	
Classical phase diagram (def aqueous diagram with molalit reciprocal diagram with 2 cat Scheil-Gulliver constituent dia	ault) ies, and iso-Eh & iso-pH lines ions and 2 anions agram
Next >> FactSage 7.3 Compound: 1/14 databases Solution: 1/15 databases	

Sustainable Materials Processing Lab

FactSage Team

Components Window: Choose Database(s)

4	Phase	Diagram -	Component	5			- 🗆	×
File	Edit	Units D	ata Search	Data Evaluation	Help			
	(ata Search						׼
		atabases - FactPS FToxid FTsalt FTsalt FThall FThall FThall FThelg FThelg FThelg FThelg FThelg FThelg FThelg FThelg	1/14 comp FScop FScop FStea FSstel FSups ELEM FTden FTnuc	ound databases, ge" SGTE D BINS d SGPS SGTE i SGsold Other SGnobl SpMCBN TDmeph I TDnucl	1/15 solution databo compounds only solutions only no database Clear All Add/Remove Data RefreshDatabases	ases Private Data	abases	
l			Cho wit	oose FTo h oxides	xid only bo (solid and	ecause we are l/or liquid).	e only de	ealing
Fact	- 01	ptions - se	arch for pro	duct species Include compounds gaseous ions (p aqueous specie limited data com	lasmas) 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	.imits rganic species CxHy, X(max) inimum solution components: C]= 2) 1 ⊙ 2 cpts	
		Cano	el		Summary		OK	

MSE Department, University of Toronto

89

Sustainable Materials Processing Lab

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

存 Phase Diagram - Mer	iu: last system	– 🗆 X	
File Units Parameters	Variables Help		
D 🖻 🖬	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	M 📑 👘	
Components (3)			
	SiO2 + CaO + Al2O3		
Products			
Compound species	Solution phases	Custom Solutions	
🔲 🗖 nas 🚱 ideal O re	* + Base-Phase Full Name a 0 L ETovid-SLAGA A.Slag-lig all ovides + SLAGA	0 ideal solutions	
aqueous	0 I FToxid-MeO_A A-Monoxide	- Pseudonyms	
pure liquids	0 + FToxid-Mel_A A-Melilite	apply 🗖 🔤 Edit	
+ pure solids	30 I FToxid-Mull Mullite	Volume data	
		 splids and liquids = 0 	
species:	30	and physical properties data	
Target	Legend	Virtua species: 6	
Estimate T(K): 1000	I inmiscible 3	<u>Total Species (max 5000)</u> 50	
Estimate r(N). proce	species: 20 solutions: 7	Total Solutions (max 200) 7	
	Lature changes all nume collide and	all colution phases	For colution phases
	Let us choose all pure solius and	an solution phases.	For solution phases,
1200	choose the default setting of imm	niscibility. If the thre	e isothermal sections
A = SiO2, B = CaO, C = A	found from the Documentation Module can be reproduced, then probably		
F 10 F 70	no phase is required to be remov	red.	
FactSage 7.3	re prese to required to be remov		

Menu Window: Set up the Variables (Isothermal Sections)

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window: Set up the Variables

🗘 Phase Diagram - Menu: last system - 🗆 🗙				
File Units Parameters Variables Help				
T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	111 📑 📑			
Components (3) Si02 + Ca0 + Al203				
Products				
Compound species Solution phases gas € ideal O real 0 aqueous 0 pure liquids 0 + pure solids 30 species: 30 Target - none - Estimate T(K): 1000 Legend I I - immiscible 3 + - selected 1 species: 20 Stimate T(K): 1000	Custom Solutions 0 fixed activities 0 ideal solutions Pseudonyms apply Edit Volume data • assume molar volumes of solids and liquids = 0 • include molar volume data and physical properties data • paraequilibrium & Gmin edit Virtual species: 6 Total Species (max 5000) 50 Total Solutions (max 200) 7 Total Phases (max 1500) 37			
Variables T(C) Si02/ Al203/ F 1200 0.1 0.1 Image: Contract of the second sec	Phase Diagram			
[A = SiO2, B = CaO, C = Al2O3]	Calculate >>			
FactSage 7.3				

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Results: Isothermal Section of the SiO₂-CaO-Al₂O₃ System (FToxid Database)

Sustainable Materials Processing Lab

FactSage Team

Results: Isothermal Section of the SiO₂-CaO-Al₂O₃ System (FToxid Database)

Sustainable Materials Processing Lab

FactSage Team

Results: Isothermal Section of the SiO₂-CaO-Al₂O₃ System (FToxid Database)

Sustainable Materials Processing Lab

FactSage Team

Comparison with the three pre-made isothermal sections indicates that choosing all the pure solids and solution phases from the FToxid database permits one to generate reliable phase diagrams for the SiO_2 -CaO-Al₂O₃ system.

Now, we can calculate the isothermal sections at other temperatures using the same selection of the phases. Please try to calculate the isothermal sections at 1800 °C, 1500 °C, and 1100 °C.

Before we calculate the liquidus projection of the SiO_2 -CaO-Al₂O₃ system, let us think about the following question:

Who critically assessed the SiO_2 -CaO-Al₂O₃ system?

The development of CALPHAD databases (e.g., FactSage databases) is based on numerous thermodynamic assessment work for binaries, ternaries, etc. These work was either published in journals or communicated internally.

For FactSage, the references of thermodynamic assessments are complied as "List of references" in the Documentation Module. Then the next question is how can we find the references which were used to build the FactSage databases?

What are the references used for the SiO₂-CaO-Al₂O₃ system?

存 Phase Diagram - Menu: last sy	ystem	- 🗆 ×			
File Units Parameters Variables Help					
D 🗃 🖬	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🔢 🔁 🔁			
Components (3)	Solution Phase FToxid-Mull Mullite [AI,Fe]2[AI,Si,B,Fe][0,Va]5, accounts for non-stoichiomet Replaces MULL and MulF. Use [1] option.	netry.			
Products Compound species	The components in FT oxid-Mull for the current calculation are: Al2Al105[-1], Al2Al1Va5[+9], Al2Si105[0], Al2Si1Va5[+10]	Custom Solutions			
aqueous	IP FToxid-SLAGA A-Slag-liq all oxides + S I FToxid-MeD_A A-Monoxide	♦ FToxid-Mull – □ × File Edit	<		
\mathbf{F} Right click	FToxid-Mull Mullite	₽, - - -			
One way to find th	e references of assessments	[FToxid-Mull] Mullite OXIDE solution - mullite with borate in solution	^		
for a given system	is to look at the "Information"	Solid solution of non-stoichiometric mullite with B2O3 and Fe2O3 in solution.			
of solution phases.	It is recommended to choose	Replaces former FToxid-MulF and FToxid-MULL.			
the solid solutions	which are unique to the	[Al,Fe]2[Al,Si,B,Fe][O,Va]5			
system of interest.	Here, we use Mullite.	Possible miscibility gap. (Use I option.)			
The references num	mbers are shown at the	End-members in pure compound database FToxidBase.cdb: Al ₆ Si ₂ O ₁₃ solid.			
bottom.		References: 2004, 2025, 2044, 2047, 2055, 6009, 6020			

What are the references used for the SiO_2 -CaO-Al₂O₃ system?

FACT reference list - FactSage Browser - [FACT_reference_List.htm] × View About... File 🕘 🙆 🔕 🚳 Search phase diagrams: <chemical formula> + must contain : <ex: CaO> Diagram Assessment of the Kare Earth Oxide - Animinum [FToxid] - FACT oxide database: Oxide Binary Systems", J. Alloys and Compounds, 179, 259-[FTsalt] - FACT salt database 287 (1992). [FTmisc] - FACT sulfide, alloy, miscellaneous databases: [FTOxCN] - FACT high-T oxycarbonitride database [FTfrtz] - FACT fertilizer database [2002] P. Wu, G. Eriksson and A.D. Pelton, "Critical Evaluation and [FThall] - FACT database for Hall aluminum process: Optimization of the Thermodynamic Properties and Phase [FThelg] - FACT aqueous (Helgeson) database: Diagra [FTpulp] - FACT pulp and paper database: A complete thermodynamic assessment for the MgO, [FTlite] - FACT Al-alloy and Mg-alloy databases: Soc., [FTnucl] - FACT nuclear database for the nuclear industry: SiO_2 -CaO-Al₂O₃ system was detailed in this paper. [2003] P. Wu [FScopp] - FactSage copper alloy database: 📄 [FSlead] - FactSage lead alloy database: Also included are the calculated phase diagrams. Optim [FSstel] - FactSage steel alloy database: Diagra [FSupsi] - FactSage ultrapure silicon database: Ceram. Soc., 76, 2059-64 (1993). [SGsold] - SGTE solder alloy database: [SGTE] - SGTE 2011 alloy database: G. Eriksson and A.D. Pelton, "Critical Evaluation and [2004] [SGTE] - SGTE 2014 alloy database: Optimization of the Thermodynamic Properties and Phase Link [SGTE] - SGTE 2017 alloy database Diagrams of the CaO-Al2O2, Al2O2-SiO2 and CaO-Al2O2-[BINS] - SGTE free binary alloy database SiO₂ Systems", Metall. Trans., 24B, 807-816 (1993). [SGUN] - SGTE unary database: [SGnob] - SGnobl noble metal alloy database G. Eriksson and A.D. Pelton, "Critical Evaluation and [2005] [SpMCBN] - Spencer Group carbide-nitride-boride-silicide systems Optimization of the Thermodynamic Properties and Phase [TDmeph] - MEPHISTA database for new generation nuclear fuels: Diagrams of the MnO-TiO2, MgO-TiO2, FeO-TiO2, Ti2O2-[TDnucl] - NUCLEA nuclear database: TiO2, Na2O-TiO2 and K2O-TiO2 Systems", Metall. Trans., List of database files stored in VFACTDATA 24B, 795-805 (1993). List of references < Done Revised: 3/3/2019

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

What are the references used for the SiO_2 -CaO-Al₂O₃ system?

Fig. 5-Optimized CaO-Al₂O₃-SiO₂ phase diagram. Temperature in °C.

Eriksson and Pelton, Metallurgical Transactions B, Vol.24, No. 5, pp807-816 (1993)

Sustainable Materials Processing Lab

FactSage Team

This liquidus projection calculated by the accessors used wt.% as compositional scale. Now let us use FactSage – FToxid to reproduce this phase diagram.

MSE Department, University of Toronto

Back to the Menu Window (<u>Slide</u>): Change the mass unit to gram.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Back to the Variables Window (Slide)

Sustainable Materials Processing Lab

FactSage Team

Menu Window (<u>Slide</u>): Choose Liquid (Slag) as the precipitate target phase.

	🗘 Phase Diagram - Menu: comr	nents	– 🗆 X
	File Units Parameters Variab	les Help	
		T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	111 🖳 🐨
	Components (3)		
		(gram) SiO2 + CaO + Al2O3	
	Solution FToxid-SLAGA	┌─ Solution phases	Custom Solutions
	- clear	* + Base-Phase Full Name	0 fixed activities Details
\checkmark	- all end-members	IP FToxid-SLAGA A-Slag-liq all oxides + S	
	* - custom select end-members	+ FToxid-MeLA A-Melilite	apply 🗖 🔄 Edit
	m - merge dilute solution from	I FToxid-Mull Mullite	Volume data
	+ - single phase		solids and liquids = 0
~	I - possible 2-phase immiscibility	We are calculating th	e liquidus projection which
	J - possible 3-phase immiscibility	Legend manage other solids n	hasse (primary switchlightion
	- standard stable phase	I - immiscible IIIeans ouner sonus p	mases (primary crystallization
	! - dormant (metastable) phase	solids) are precipitat	ing from the liquid.
	F - formation target phase		
\checkmark	P - precipitate target phase	AI203/	sio2 univariants
	O - Only plot this single phase	01	isotherms (13
	S - Scheil cooling target phase	, , , , , , , , , , , , , , , , , , , ,	Projection Calculate >>
	Z - iso-activity lines		
	Help	Sage\PhasSCA.DAT	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Results: the Liquidus Projection of the SiO_2 -CaO-Al₂O₃ System

SiO₂ - CaO - Al₂O₃ Projection (A-Slag-liq), 1 atm

You may notice there are lines which cross with each other. As the equilibrium state shown on a phase diagram must be uniquely defined, the crossing of lines is not permitted. If you manually label the phase regions, you will find that there is a region which is labeled both as Melilite and Ca₂Al₂SiO₇.

104

Sustainable Materials Processing Lab

FactSage Team

The issue of having crossing or redundant lines when calculating the liquidus projection is usually because we choose both the solution phase and its **endmembers** from pure solids.

It is worth mentioning that the topology of the space model for a ternary system like the SiO₂-CaO-Al₂O₃ system is quite complex. When FactSage is performing the "Gibbs energy minimization" calculation, if there are two Gibbs energy functions of which the values are close (e.g., the Gibbs energy of a solution phase and its endmembers), the calculation which gives single-value solutions might be challenging. Furthermore, the algorithm of the "Gibbs energy minimization" is based on numerical methods (not analytical!!!). Because of this, if we rearrange the A, B, and C corner, the complexity of the "Gibbs energy minimization" might be different, and the diagrams might look slightly different. Actually, one strategy of resolving the issue when the calculated phase diagram contains crossing and redundant lines is to switch the components at the A, B, and C corner.

Hack, FactSage Tech (FactSage\Information\FactSage-Tech)

Results: the Liquidus Projection of the SiO₂-CaO-Al₂O₃ System

Sustainable Materials Processing Lab

MSE Department, University of Toronto

Results: the Liquidus Projection of the SiO₂-CaO-Al₂O₃ System

SiO₂ - CaO - Al₂O₃ GactSage" Projection (A-Slag-liq), 1 atm Al₂O₃ After we swapped SiO_2 and Al_2O_3 , crossing and intersecting lines still are present. SiO₂ 0.6 0.5 0.4 0.1 CaO 0.9 0.8 0.7 0.3 0.2 mass fraction

Sustainable Materials Processing Lab

FactSage Team

Results: the Liquidus Projection of the SiO₂-CaO-Al₂O₃ System

SiO₂ - CaO - Al₂O₃ GactSage" Projection (A-Slag-liq), 1 atm CaO After we swapped SiO_2 and CaO, crossing and intersecting lines still are present. 0.5 0.4 0.3 0.2 0.1 SiO, 0.8 0.7 0.6 Al₂O₃ mass fraction

108

Sustainable Materials Processing Lab

FactSage Team
Results: the Liquidus Projection of the SiO₂-CaO-Al₂O₃ System

Projection (A-Slag-liq), 1 atm Al₂O₃ After we swapped SiO₂ and Al₂O₃, then SiO₂ and CaO, crossing and intersecting lines still are present.

SiO₂ - CaO - Al₂O₃

109

Sustainable Materials Processing Lab

FactSage Team

Results: the Liquidus Projection of the SiO₂-CaO-Al₂O₃ System

 $SiO_2 - CaO - Al_2O_3$ Projection (A-Slag-lig), 1 atm

CaO

After we swapped SiO_2 and CaO, and then SiO_2 and Al_2O_3 , crossing and intersecting lines still are present.

110

Sustainable Materials Processing Lab

FactSage Team

The above phase diagram calculations show that the process of "Gibbs energy minimization" might be impeded when both the solution phases and some pure solids which are the endmembers of these solution phases are selected.

How to resolve the issue of having crossing and intersecting lines? The solution is very simple: remove all the pure solids which are the endmembers of the solution phases.

Find the endmembers of solid phases

Phase Diagram - Men	I' comments	– 🗆 X		
File Units Parameters	Variables Heln			
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	👖 📑 🕒 🕷		
Components (3)	Solution Phase FToxid-Me0_ -Monoxide Rocksalt-str. Fe(2),Ca,Sr,Ba,Mg,Ni,Co,Mn(2);dilute Zn,Al,Cr,Fe Cu,Zr, Na. Mis. gap if CaO, SrO or BaO is present (use I option). Replace:	(3),Mn(3), s MONO.		
- Producte	FToxid-MeO_A sub-system		•	
Compound species	The components in FToxid-MeD_A for the current calculation are:	🔷 FToxid-MeO_A		– 🗆 X
Encirc		File Edit		
aqueous				
pure liquids ★ pure solids * - custom selection	0 + FToxid-Mel_A A-Melilite 28 I FToxid-Mull Mulite	[FToxid-MeO_A] A-Monoxide OXIDE monoxide (rocksalt structur	e) solution	^
		Approved sub-system of FToxid-M	[eO_	
1. Show the l	nformation of a solid phase.	Note that the former phase FToxid-	MONO has now been combined	with FToxid-MeO and merged into it.
2. Click on "I	nformation", and find the		1)O, NO, COO at all composition	S + (AI, Fe(III), CI(III), IVa, II(IV), ZII, ZI +
costion which	h dogarihaa tha Endmombara in	Mineralogical names: Wustite (Fe _x C), Lime (CaO), Periclase (MgO)	, Magnesiowustite (MgO-Fe _x O), Manga
Section which	il describes the Endinembers in	End-members in pure compound da	tabase FToxidBase.cdb: <mark>CaO,</mark> M	IgO, SrO, BaO, MnO, NiO, and CoO s
pure compou	ınd database.	Evaluated and optimized at all comm	ositions	
The endmem	ber of FToxid-MeO_A for the	Can be used for wustite (Fe _x O) solution	utions at all oxygen contents. How	wever, Mn(III) is not included in FT oxid- \swarrow
current SCA	system is CaO.	<		>
	•			

FactSage Team

Find the endmembers of solid phases

存 Phase Diagram - Menu: co	omments	- 🗆 X
File Units Parameters Var	iables Help	
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🔢 🖳 🔛 🖳 🐨
Components (3) S	iolution Phase FToxid-Mel_ Melilite (Ca,Sr,Ba,Pb,Na)2[Zn,Mg,Ni,Fe2+,Fe3+,AI,B]{Fe3+ lever use Mel_? Toxid-Mel_A sub-system	AI,B,Si)207
Products	be components in ET quid Mol. A for the ourrent colouistion are:	
Compound species	Ca2Al307[1+], Ca2Al1Si207[1+]	m Solutions Details
gas () ideal () real aqueous pure liquids * + pure solids	Information 0 I 0 + FToxid-MeD_A A-Monoxide 0 + FToxid-MeLA A-Melilite 28 I FToxid-Mull Mullite	FToxid-MeLA −
		[FToxid-Mel_A] A-Melilite OXIDE solution melilite
The endmember	of FToxid-Mel_A for the	Distribution of cations over the three cation sites are taken into account as follows:
current SCA syst	em is Ca ₂ Al ₂ SiO ₇ .	$(Ca,Pb)_2[Mg,Fe(III),Fe(III),A1,Zn]{A1,Fe(III),S1}_2O_7$
		Mineralogical names: Akermanite (Ca2MgSi2O7), Iron-akermanite (Ca2FeSi2O7), Gehlenite (Ca2Al2SiO7), Iron-gehle
		End-members in pure compound database FToxidBase.cdb: Ca2MgSi2O7, Ca2FeSi2O7 Ca2Al2SiO7, Ca2ZnSi2O7, 1
		Evaluated and optimized at all compositions where data are available.
		× · · · · · · · · · · · · · · · · · · ·

113

Sustainable Materials Processing Lab

FactSage Team

Find the endmembers of solid phases

存 Phase Diagram - Menu: comm	nents	- 🗆 X
File Units Parameters Variabl	es Help	
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	III 🖳 🔁 🐨
Components (3)	Solution Phase FT oxid-Mull Mullite [AI,Fe]2[AI,Si,B,Fe][(D,Va]5, accounts for non-stoichion Replaces MULL and MulF. Use [I] option. The components in FT oxid-Mull for the current calculation are	netry.
Products	Al2Al105[-1], Al2Al1Va5[+9], Al2Si105[0], Al2Si1Va5[+10]	Curter Colutions
Compound species gas ideal real 0 aqueous 0 pure liquids 0 ★ pure solids 28 × - custom selection	Information IP FToxid-SLAGA A-Slag-liq all oxides + S I FToxid-MeO_A A-Monoxide + FToxid-MeI A A-Melilite I FToxid-Mull Mullite	FToxid-Mull - X File Edit End-members in pure compound database FToxidBase.cdb: Al4Fe2Si5O18 and Al4Mg2Si5O18 solids.
The endmember o	f F'loxid-Mel_A for the	OXIDE solution - mullite with borate in solution
current SCA syster	n is Al ₆ Si ₂ O ₁₃ .	Solid solution of non-stoichiometric mullite with B2O3 and Fe2O3 in solution.
		Replaces former FToxid-MulF and FToxid-MULL. [A1,Fe]2[A1,Si,B,Fe][O,Va]5
		Possible miscibility gap. (Use I option.)
		End-members in pure compound database FToxidBase.cdb: Al6Si2O13 solid.

114

Sustainable Materials Processing Lab

FactSage Team

Remove the endmembers of solid phases from pure solids

存 Phase Diagram - Menu: comme	ents						_ □	×			
File Units Parameters Variable	A s	election	- Phase Diagram	- no resul	ts -				— D	Х	
D 😂 日	File	Edit 9	Show Sort		_				_		
Components (3)	The	Luit 2									
	Selec	ted: 28/3	IO SOLID								
					- r	no results	•				
	+	Code	Species	Data	Phase	TV	Activity	Minimum	Maximum		
- Products	+	13	SiO2(s6)	FToxid	Cristobalite(h)	V					
Compound species	+	14	SiO2(\$7)	FToxid	coesite	V					
	+	15	SiO2(\$8)	FToxid	stishovite	V					
gas 💿 ideal 🔿 real 🛛 🛛	+	16	Al2Si207(s)	FToxid	solid	V					
aqueous 0		17	CaO(s)	FToxid	Lime	V					
pure liquids 0	+	18	CaAl204(s)	FToxid	solid	V					
★ pure solids 28	+	19	CaAl407(s)	FToxid	solid	V					
	+	20	CaAl12019(s)	FToxid	solid	V	_				
* - custom selection	+	21	Ca3Al206(s)	FToxid	solid	V	Remo	ve these	two pure s	solid	lS.
species: 28	+	22	CaSiO3(s)	FToxid	Wollastonite	V			I		
	+	23	CaSiO3(s2)	FToxid	Ps-wollastonite	V	(Igno)	re Al ₄ Si ₂	012 becaus	se it	is not found.)
- Target	+	24	Ca2SiO4(s)	FToxid	Gamma(olivine)	V	(-80-	0110012	013 000ddd	00 10	ie nee reanaly
- none -	+	25	Ca2SiO4(s2)	FToxid	Alpha-prime	V					
Estimate T(K): 1000	+	26	Ca2SiO4(s3)	FToxid	Alpha	V					
	+	27	Ca3SiO5(s)	FToxid	Hatrurite	V					
	+	28	Ca3Si207(s)	FToxid	Rankinite	V					
Variables	+	29	CaAl2SiO6(s)	FToxid	Ca-Tschermak	V					
	+	30	CaAl2Si2O8(s)	FToxid	Hexagonal	0					
	+	31	CaAl2Si2O8(s2)	FToxid	Anorthite	V					
j 800 2000 j 01		32	Ca2Al2Si07(s)	FToxid	Gehlenite	V					
$\Delta = SiO2 B = \Delta I2O3 C = CaO$	+	33	Ca3Al2Si3O12(s)	FToxid	Grossularite	V				-	
A - 0.02, 8 - A200, 0 - 000		permit se	lection of 'X' species	Help	Suppress Du	plicates	Edit priority	list :			
FactSage 7.3 C:\FactSa		Show	w Selected	Select A	ll Se	lect/Clea	ar	Clear	ОК		

115

Sustainable Materials Processing Lab

FactSage Team

Then, perform the phase diagram calculation again.

SiO₂ - CaO - Al₂O₃

Projection (A-Slag-liq), 1 atm SiO, Melilite 0.8 0.4 0.3 0.1 Al₂O₃ 0.7 0.6 0.5 0.2 CaO mass fraction

GactSage"

The issue of having crossing and intersecting lines is resolved. You can try other component arrangements at the A, B, and C corner.

116

Sustainable Materials Processing Lab

FactSage Team

Results: the Liquidus Projection of the SiO₂-CaO-Al₂O₃ System.

Sustainable Materials Processing Lab

FactSage Team

A Note on the Phase Selection:

Although the selection of CaO and $Ca_2Al_2SiO_7$ from the list of pure solids did not produce any redundant lines when the isothermal sections were calculated, it is still recommended that all the endmembers of the solutions phases be removed.

Comparison with the phase diagram reported by Eriksson and Pelton:

You might notice that the liquidus projection of the SCA system calculated by the current FToxid database is not exactly same to the one reported by Eriksson and Pelton (CRCT Team). This is because FToxid is being constantly updated by CRCT to improve the accuracy of models and to include other oxides.

Eriksson and Pelton, Metallurgical Transactions B, Vol.24, No. 5, pp807-816 (1993)

From previous examples, it is seen that the FactSage databases (e.g., FTlite, FToxid) always contain a model for **liquid solution**. The model usually gives a quite accurate description of the interactions between solution constituents. In most cases, the model is non-ideal solution model. However, the Phase Diagram Module permits one to choose instead of non-ideal liquid solution from the FactSage databases, an ideal liquid solution.

Say we are looking at a simple eutectic system, MgF_2 -Ca F_2 . Let us calculate the phase diagram of the MgF_2 -Ca F_2 system using both the ideal solution model and the non-ideal solution model for the liquid MgF_2 -Ca F_2 solution.

Note: for these two scenarios, only the liquid phase is different.

First, find the FactSage database that can be used to calculate the phase diagram of the MgF_2 -CaF₂ system.

FactSage Team

Components Window: Define Components

存 Phase Dia	agram - (Component	s					_		×
File Edit U	Units D	ata Search	Data Evaluati	on Help						1 1
	+		T(C)) P(atm) Ener	gy(J) Quantity(mol) ^v	Vol(litre)		<u> 111</u>]9	
1.2										_
							Choose t	the	units	5.
				Con MgF2 CaF2	nponents					
L	_		_	_	Classical pha aqueous diag reciprocal dia Scheil-Gullive	se diagrar gram with i agram with er constitu	n (default) molalities, and iso-El 2 cations and 2 an ent diagram	h & iso-p ions	H lines	
FeelCone 7.2	C		11 detelors -	Calution	Next >>	_				
FactSage 7.3	Lomp	ound: 17	14 databases	Solution:	1715 databases					11.

121

Sustainable Materials Processing Lab

FactSage Team

Components Window: Choose Database(s)

(7 P	Phase Diagram - Components - 🗌 🗙	C
File	Edit Units Data Search Data Evaluation Help	
	↓ The part of the]
1	Databases - 1/14 compound databases, 1/15 solution databases CactSage" SGTE FactPS FScopp FToxid FSlead FToxid FSlead FTsalt FSstel FToxid FSupsi SG rold Clear All FThall FToxCN FTfriz Add/Remove Data FThelg ELEM SG rold RefreshD atabases	
	Information - Click on a box to compound and	
FactS	Options - search for product species Include compounds gaseous ions (plasmas) aqueous species limited data compounds (25C)	1
	Cancel Summary OK	

122

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Choose Products/Phases (Compounds and Solution Phases)

Phase Diagram - Menu: last sys	stem	Choose all nurs colids and all colution phases		
File Units Parameters Variable	es Help	choose all pure solius and all solution phases		
	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	(use default immiscibility settings).		
Components (2)	MgF2 + CaF2	Note: FTsalt-SALTA is the non-ideal solution model for the MgF_2 -CaF ₂ liquid.		
Products				
Compound species gas ideal O real 0 aqueous 0 pure liquids 0 + pure solids 3 species: 3	Solution phases	Custom Solutions 0 fixed activities Details 0 ideal solutions Pseudonyms apply Edit Volume data • assume molar volumes of solids and liquids = 0 • include molar volume data and physical properties data • paraeguilibrium & Gmin edit		
Target - none - Estimate T(K): 1000	Legend I - immiscible 3 J - 3-immiscible 1 Select solutions: 9	Image: Total Species (max 5000) 21 Image: Total Solutions (max 200) 9 Image: Total Phases (max 1500) 12		
Variables		Phase Diagram		
800 2000 0 1		Y ↓ Frivananis x isotherms (13)		
MgF2/(MgF2+CaF2) vs -		Projection Calculate >>		
FactSage 7.3				

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

123

Menu Window: Set up the Variables

存 Phase Diagram - Menu: last system	$ \sim$ \times
File Units Parameters Variables He	lp
	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)
Components (2) Variables: MgF2-CaF2 T(C) vs	We wish to calculate $T \sim X_{\rm B}$ type of phase diagram.
VariablesProcY \bigcirc compositions1Cor $\stackrel{a}{\leftarrow}$ $\stackrel{b}{\leftarrow}$ $\boxed{\log 10(a)}$ \bigcirc $\stackrel{a}{\leftarrow}$ $\stackrel{b}{\leftarrow}$ \bigcirc $\boxed{\log 10(a)}$ \bigcirc	Tand P Temperature T(C) Y-axis P(atm) C Max: 1500 Min: 0 V(litre) 0 log V of
- Compositions Quantity(mol)	ata data
Vari MgF2/(MgF2+CaF2) vs -	Cancel n_{MgF_2} $= X_{MgF_2}$ $n_{mgF_2} + n_{CaF_2}$

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

124

Menu Window: Calculate

存 Phase Diagram - Menu: last system			– 🗆 X
File Units Parameters Variables Help			
	(C) P(atm) Energy(J) (Quantity(mol) Vol(litre)	👖 📑 💽 🕷
Components (2)	MgF2 +	CaF2	
Products			
Compound species gas © ideal © real 0 aqueous 0 pure liquids 0 + pure solids 3 species: 3 Target - none - Estimate T(K): 1000	bhases Base-Phase FTsalt-SALTA FTsalt-C1 FTsalt-C4 FTsalt-C23 Sible 3 iscible 1	Full Name A-Salt-liquid Fluorite Rutile Cotunnite	Custom Solutions O fixed activities O ideal solutions Pseudonyms apply Edit Volume data Solids and liquids = 0 include molar volumes of solids and physical properties data and physical properties data Total Species (max 5000) 21
	sc	olutions: 9 Select	Total Phases (max 1500) 12
Variables			Phase Diagram
T(C) MgF2/ 01500 01			Y X
T(C) vs MgF2/(MgF2+CaF2)			Calculate >>
FactSage 7.3			11

125

Sustainable Materials Processing Lab

FactSage Team

Results: the MgF₂-CaF₂ Phase Diagram

Sustainable Materials Processing Lab

FactSage Team

Results: Invariant Reactions

Sustainable Materials Processing Lab

FactSage Team

Now, let us choose the MgF_2 -Ca F_2 liquid which is modeled as an ideal solution. Back to the Menu Window.

ile Units Parameters Variables Help T(C) P(atm) Energy(J) Quantity(mol) Vol(litre) T(C) P(atm) Energy(J) P(atm) Energy(J) Quantity(mol) Vol(litre) T(C) P(atm) Energy(J) P	🚺 Phase	Diagra	m - Men	u: last syste	m						_		<
Image: Components (2) Image: Components (2) <td< td=""><td>File Units</td><td>s Para</td><td>ameters</td><td>Variables</td><td>Help</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	File Units	s Para	ameters	Variables	Help								
Components (2) MgF2 + CaF2 Products Compound species gas © ideal C real 0 aqueous gas © ideal C real 0 FTsalt-SALTA A-Salt-liquid FTsalt-C1 Fluorite J FTsalt-C2 Fluorite Pseudonyms apply Edit Volume data Volume data Volume data Volume data Volume data File Edit Show Sort File Edit Show Sort File Edit Show Sort Variable Target Selected: 1/1 UQUD - no results- File Market Market Market Market Market MgF2(liq) FTsalt liquid V Variable Tory selectors Custom Solutions Pseudonyms apply Edit Volume data Volume dat					Т	(C) P(atm	i) Energy(J)	Quantit	y(mol)	Vol(litre)	1	M 🖳 🕒	
MgF2 + CaF2 Remove FTsalt-SALTA. Products Custom Solutions etails gas © ideal C real 0 I FTsalt-SALTA A-Salt-liquid Pseudonyms etails pure liquids 1 FTsalt-C4 Rutile Pseudonyms pure solids 3 I FTsalt-C23 Cotunnite Volume data Volume data 3 I FTsalt-C23 Cotunnite Volume data Volume data 9 Selected: 1/1 LiQUID - non results - - - - - File Edit Show Sort - - - Variable - - - - - Variable - - - - - Variable - - - - -	Compon	ents (2) ——										
Products Custom Solutions Compound species Solution phases gas G ideal C real 0 FT salk-SALTA acueous 0 + pure liquids 1 + pure solids 3 I FT salk-C1 Fluente Pseudonyms apply Edit Selection - Phase Diagram - none - no results - File Edit Selected: 1/1 LIQUID - no results - - none - no results - - solid Variable Ti MgF2[iq] FT salk liquid Variable - more							MgF2 +	CaF2		Remov	e FTsalt-S	SALTA.	
Compound species Solution phases Custom Solutions Details gas © ideal C real 0 I FTsalk-SALTA A-Salk-liquid + pure liquids 1 FTsalk-C4 Rutile Pseudonyms + pure solids 3 I FTsalk-C23 Cotunnite Volume data + pure solids 3 I FTsalk-C23 Cotunnite Volume data + pure solids 3 I FTsalk-C23 Cotunnite Volume data + pure solids 3 I FTsalk-C23 Cotunnite Volume data + pure solids - no results - - - - File Edit Show Sort - - - - + Code Species Data Phase T V Activity Minimum + 1 MgF2(liq) FTsalk liquid V - - - - - - - - - - - - - </td <td>- Product</td> <td>s</td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- Product	s			:								
+ pure liquids 1 J FTsalk-C4 Rutile apply Edit + pure solids 3 I FTsalk-C23 Cotunnite Volume data Volume data Volume data Volume data Volume data Volume data File Edit Show Sort Image: Non results - Image: Non results - - no results - - no results - - no results - - no results - Estin + Code Species Data Phase T V Activity Minimum Maximum Variable T 01 T T NgF2(liq) FTsalt liquid V		und spec s	eal O rea			hases Base FTsa	e-Phase		F ull N A-Salt Flue	lame Iguid	Custom Solution 0 fixed activiti 0 ideal solutio	ns Details ns	
+ pure solids 3 I FT salt-C23 Cotunnite Volume data File Selection - Phase Diagram - no results - File Edit Show Sort Target: Selected: 1/1 LIQUID • no results - •	+ pur	re liquid:	;	1	J	FT	salt-C4		Ru	tile	apply 🗖	Edit	
Variable TIC: vs	+ pur	re solids		3	<u> </u>	FTs	alt-C23		Cotu	nnite	Volume data		i.
- noresults - - no results - - no resu	- Target-	File	election Edit Si	- Phase Dia how Sort	gram -	no result	ts -						
+ Code Species Data Phase T V Activity Minimum Maximum • 1 MgF2(liq) FTsalt liquid V V V • 011 T(C) vs T(C) vs V V V V	- none -		00. 11 1					- no	result:	s -			
+ 1 MgF2(liq) FTsalt liquid V Variable T(01 T(T(<th>Estin</th> <th>+</th> <th>Code</th> <th>Spec</th> <th>ies</th> <th>Data</th> <th>Phas</th> <th>e '</th> <th>r V</th> <th>Activity</th> <th>Minimum</th> <th>Maximu</th> <th>Im</th>	Estin	+	Code	Spec	ies	Data	Phas	e '	r V	Activity	Minimum	Maximu	Im
Variable T(01 T(C) vs		+	1	MgF2(liq)		FTsalt	liquid		۷				
	-Variable												
	TI												
	01												
	T(C) vs												

To define an ideal liquid MgF_2 -CaF₂ solution, we need both pure liquid MgF_2 and pure liquid CaF₂. However, the FTsalt database does not include the model for pure liquid CaF₂. Therefore, another database (normally FactPS) must be used.

Sustainable Materials Processing Lab

FactSage Team

Bac to Components Window: Add FactPS

Q	hase Diagram - Co	mponents				-	_	\times
File	Edit Units Data	a Search Data	Evaluation H	elp				
D	🚔 🕂		T(C) P(atm)) Energy(J) Quantity(mo	ol) Vol(litre)		111 🗔 (-
	存 Data Search							×
1	– Databases - J	2/14 compour	d databases 1	1/15 solution datab	2926			-
L.	Gact	GactSage"	SGTE	compounds only	Private	Datab	ases	
	FactPS	FSlead	BINS SGPS	no database				
	FTsalt ☐ FTmisc ☐ FTball	FSstel	SGTE SGsold	Clear All				
L			Other	Add/Remove Data				
L	FThelg	ELEM FTdemo	SGnobl	RefreshDatabases				
L	🔲 FTlite	FTnucl	TDmeph					
	-Information ·					_		-88
		Ch	oose bo	oth FactPS	and FTs	alt.		
	Options - sea	rch for produc	ct species					
FaabC			gaseous ions (pla	ismas)	imits rganic species CxHy	, X(max) =	2	
racio	Default		aqueous species limited data comp	ounds (25C)	inimum solution comp	ionents: O 1	• 2 cpts	
			mmed data comp					
	Cance	el		Summary			OK	

129

Sustainable Materials Processing Lab

FactSage Team

Pure Solids: Remove all the pure solids from the FactPS database

存 Phase Diagram - Menu: last s	aystem — — X
File Units Parameters Variab	bles Help
D 📽 🖬	🗘 Selection - Phase Diagram - no results - 🛛 🗆 🗙
Components (2)	File Edit Show Sort
	Selected: 7/10 SOLID Duplicates Selected. X denotes sp - no results - Because we included the FactPS database, more
- Products	+ Code Species Data Phase IV pure colide wore added to the colection list We
Compound species	+ 17 Mg(s) FactPS solid V pure sonus were added to the selection list. We
	X 18 MgF2(s) FactPS Sellaite_(TiO2_r V can manually remove all the pure solids from
	+ 20 Ca(s2) FactPS Solid Beta V D
* + pure liquids 3	× 21 CaF2(s) FactPS Solid-alpha V the FactPS database. However, you don't have to
* ∓ pure solids 7	X 22 CaF2(s2) FactPS Solid-beta V do a co
* - custom selection	+ 23 Mg2Ca(s) FactPS Laves_C-14 V CO SO.
species: 10	+ Z4 MgF2(s) Fisalt Sellate_(HUZ_N V
	+ 26 CaF2(s) FTsalt beta C23 oP12 V
- Target - none - Estimate T(K): 1000	
	Add all species containing >
	Add all species from database >
Variables T(C) MgF2/	Remove all species containing >
0 1500 0 1	Remove all species from database > FactPS
T(C) vs MgF2/(MgF2+CaF2)	FTsalt
FactSage 7.3	permit selection of X' species Help Suppress Duplicates Edit priority list :
	Show Selected Select All Select/Liear Liear UK

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

130

Pure Liquids: Define Ideal Liquid MgF₂-CaF₂ Solution

存 Phase Diagram - Menu:	last system — 🗆 🗙				
File Units Parameters	Variables Help				
D 🖻 🖥	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)				
Components (2)	存 Selection - Phase Diagram - no results - 🛛 🚽 🗸				
	File Edit Show Sort				
	Calculated 2/E UDUID Durification calculated M devices associate available for default				
Products					
Compound species	Cada Cassian Data Dhara T.V. Asticity Minimum Maximum				
E nas @ ideal O real	12 Mallia) EactPS liquid V				
	+X 13 MgF2(liq) FactPS liquid				
* ∓ pure liquids	14 Callia) FactPS liquid				
* + pure solids	+X 15 CaF2(iq) FactPS liquid V CITOUSE pure riquids of Migr2 and Car2.				
* - custom selection	16 MgF2(liq) F1salt liquid V				
species:					
Target					
- none - Estimate T(K): 1000					
Variables	Permit selection of "X" species.				
T(C) MgF					
0 1500 0 1	Note: X species are those with a lower priority.				
T(C) vs MgF2/(MgF2+CaF2					
<u> </u>					
FactSage 7.3					
	I permit selection of X' species Help Suppress Duplicates Edit priority list : FactPS FTsalt				
	Show Selected Select All Select/Clear Clear OK				

131

Sustainable Materials Processing Lab

FactSage Team

Pure Liquids: Define Ideal Liquid MgF₂-CaF₂ Solution

Sustainable Materials Processing Lab

FactSage Team

Pure Liquids: Define Ideal Liquid MgF₂-CaF₂ Solution

	🕼 Selection - Phase Diagram - no results - 🛛 🚽 🕹				
Repeat for CaF_2	File Edit Show Sort				
1 2	Selected: 2/5 LIQUID Duplicates selected. X denotes species excluded by default				
	- no results -				
	+ Code Species Data Phase T V Activity Minimum Maximum				
	12 Mg(liq) FactPS liquid V				
	14 Callin) FactPS liquid V				
	+X 15 CaF2(lig) FactPS liquid V				
	16 MgF2(liq) FTsalt liquid V				
15 CaF2(liq)	15 CaF2(liq) - Henrian activity coefficient, gamma log10(gamma) = A/TK + B A =				
- clear	$B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$				
+ - select	Ideal Solution #2				
 - standard stable phase ! - dormant (metastable) phase 	Ideal Solution #4 #1 Ideal Solution name: Ideal-1 (max 10 chars) Ideal Solution #5 Ideal Solution name: Ideal-1 (max 10 chars)				
F - formation target phase	Ideal Solution #6 For ideal behaviour A = 0, B = 0, P = 1.				
P - precipitate target phase	Ideal Solution #7 Click on [Help] for an explanation of P.				
16	Ideal Solution #8 Click on [Cancel] to remove this species from the ideal				
L - cooLing calculation	Ideal Solution #9 solution.				
Ideal Solution	Ideal Solution #10 ies Help Supp Cancel Help OK				
Z - isobars	Clear Select All Select/Clear OK				
Help					

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Calculate when the liquid solution is ideal

🗘 Phase Diagram - Menu: last system - 🗆 🗙						
File Units Parameters Variable	es Help					
	T(C) P(atm) Energy(J)	Quantity(mol) Vol(litre)	111 🔛 🕒 💌			
Components (2)	MgF2 +	CaF2				
Products Compound species Solution phases						
gas ideal real 0 aqueous 0 * + pure liquids 2 * + pure solids 3 * - custom selection species: 5 Target - none - Estimate T(K): 1000	★ Base-Phase FTsalt-SALTA I FTsalt-C1 J FTsalt-C23 I FTsalt-C23 Legend I I - immiscible 2 J J - 3-immiscible 1 s	Full Name A-Salt-liquid Fluorite Rutile Cotunnite Cotunnite species: 14 species: 14 species: 7	0 fixed activities Details 1 ideal solutions Pseudonyms apply Edit Volume data solids and liquids = 0 include molar volumes of solids and liquids = 0 include molar volume data and physical properties data paraequilibrium & Gmin edit <u>Total Species (max 5000)</u> 19 <u>Total Solutions (max 200)</u> 8 <u>Total Phases (max 1500)</u> 12			
Variables T(C) MgF2/ 0 1500 0 1 T(C) vs MgF2/(MgF2+CaF2) 0			Phase Diagram			
FactSage 7.3						

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

134

Results: the MgF₂-CaF₂ Phase Diagram (when the liquid solution is ideal)

Sustainable Materials Processing Lab

FactSage Team

Results: Invariant Reactions (when the liquid solution is ideal)

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

136

Comparison: Open the Figure Module

Sustainable Materials Processing Lab

FactSage Team

Comparison: Open the first phase diagram

138

Sustainable Materials Processing Lab

FactSage Team

Comparison: Open the first phase diagram

Before we superimpose the second phase diagram, let us change the color of lines on the first phase diagram (FTsalt-SALTA) to red.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

139

Comparison: Superimpose the second phase diagram

140

Sustainable Materials Processing Lab

FactSage Team

Comparison: Superimpose the second phase diagram

It is seen that the real liquid solution model (FTsalt-SALTA, labeled as red) gives lower liquidus lines and eutectic temperature than if ideal liquid solution model is used. This means that liquid MgF_2 and liquid CaF_2 exhibit negative deviation from ideality. (Reason?)

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

141

Question 1.

Calculate the predominance diagram of the Mo-C-O system at 1400 K. Use $\log_{10}(P_{CO_2}/1 \text{ atm})$ as Y-axis, and $\log_{10}(P_{CO}/1 \text{ atm})$ as X-axis.

For a total hydrostatic pressure of 1 atm, what are the pressures of CO_2 and CO when metallic Mo is stable with its carbide phase at 1400 K?

Question 2.

Calculate the Al-Mg phase diagram. Label all the liquid and all solid phases. Then answer the following questions:

- (a) What is the lowest melting point in the system?
- (b) What is the maximum solubility of Mg in solid FCC Al?
- (c) What is the maximum solubility of Al in solid HCP Mg?

(d) At 350 °C, what is the solubility limit of Mg in solid FCC Al? What is the solubility limit Al in solid HCP Mg?

- (e) Over what range of temperature is the $Al_{30}Mg_{23}$ phase stable?
- (f) What is the non-stoichiometric range of the gamma phase (CBCC-A12)?

Question 3.

Calculate the phase diagram for the Fe-Cr-O₂ system at 1300 °C.

Use $\log_{10}(P_{O_2}/1 \text{ atm})$ as the Y-axis which varies from from -20 to 0, and use the mole fraction of Cr X_{Cr} as the X-axis which varies from 0 to 1. For an Fe-Cr alloy with the composition of $X_{Cr} = 0.18$, what is the maximum P_{O_2} that will permit this alloy to remain free of oxidation at 1300 °C?
Question 4.

Calculate the "**quasi-**" binary phase diagram of the MgO-Al₂O₃ system. Find the temperature and specify the co-existing phases and reactions at all the invariant points.

Question 5.

Choose FTlite database to calculate the liquidus projection of the Al-Mg-Si and isothermal sections at 500 and 1000 K (1 bar). Then compare them with the diagrams calculated by SGTE2017 database (available from Documentation).