FactSage Practical MSE302

Practical 4. Equilib Module

Acknowledgements

- The teaching team of MSE302 is grateful to:
- Professor Mansoor Barati (UofT)
- Professor Elmira Moosavi (ETS)
- Professor Arthur Pelton (CRCT)
- Professors In-Ho Jung and M. A. Van Ende (Seoul National University)
- Dr. Sina Mostaghel (SNC-Lavalin)
- Professor Kinnor Chattopadhyay (UofT)
- Drs. Daigen Fukayama, Takahiro Sasaki (RCCM)
- Drs. Moritz to Baden and Guixuan Wu (GTT Technologies)

Outline

- 1. <u>Some Important Thermodynamic Terms</u>
- 2. Equilib Module: Basics
- 3. <u>H₂O Equilibrium</u>
- 4. Gasification of Coal
- 5. <u>Recovery of Tin from Tin Cans</u>
- 6. Oxidation of Fe
- 7. <u>Mixing Properties</u>
- 8. Equilib Module: General Tips

Some Important Thermodynamic Terms

Heat Capacity C_P The amount of heat required to raise the temperature of the system by 1 K during an isobaric process.Enthalpy HTotal energy of the system. The change in Enthalpy refers to the amount of heat that is exchanged with the surroundings during an isobaric process.Entropy SA thermodynamic function that is used to determine the process spontaneity. The entropy for an isolated system always increases for spontaneous processes.Gibbs Energy GA thermodynamic function that is used to determine the process spontaneity. The Gibbs energy of a closed system always decreases for spontaneous processes with constant temperature and pressure.Fugacity (Gas Species)A thermodynamic function that describes the deviation from the ideal gas behavior. It is sometimes named as effective partial pressure of gas species. For ideal gases, fugacity is numerically equal to partial pressure.Activity (Solution Species)A thermodynamic function that describes the deviation from the ideal solution behavior. It represents effective concentration of components in a solution. For ideal solutions, activity is numerically equal to mole fraction.	Term	Physical Meaning
Enthalpy HTotal energy of the system. The change in Enthalpy refers to the amount of heat that is exchanged with the surroundings during an isobaric process.Entropy SA thermodynamic function that is used to determine the process spontaneity. The entropy for an isolated system always increases for spontaneous processes.Gibbs Energy GA thermodynamic function that is used to determine the process spontaneous processes.Fugacity (Gas Species)A thermodynamic function that describes the deviation from the ideal gas behavior. It is sometimes named as effective partial pressure of gas species. For ideal gases, fugacity is numerically equal to partial pressure.Activity behavior. It represents effective concentration of components in a solution. For ideal solutions, activity is numerically equal to mole fraction.	Heat Capacity \mathcal{C}_P	The amount of heat required to raise the temperature of the system by 1 K during an isobaric process.
Entropy SA thermodynamic function that is used to determine the process spontaneous processes.Gibbs Energy GA thermodynamic function that is used to determine the process spontaneous processes.Gibbs Energy GA thermodynamic function that is used to determine the process spontaneous processes with constant temperature and pressure.Fugacity (Gas Species)A thermodynamic function that describes the deviation from the ideal gas behavior. It is sometimes named as effective partial pressure of gas species.Activity (Solution Species)A thermodynamic function that describes the deviation from the ideal solution. For ideal gases, fugacity is numerically equal to partial pressure.	Enthalpy <i>H</i>	Total energy of the system. The change in Enthalpy refers to the amount of heat that is exchanged with the surroundings during an isobaric process.
Gibbs Energy GA thermodynamic function that is used to determine the process spontaneous processes with constant temperature and pressure.Fugacity (Gas Species)A thermodynamic function that describes the deviation from the ideal gas 	Entropy S	A thermodynamic function that is used to determine the process spontaneity. The entropy for an isolated system always increases for spontaneous processes.
Fugacity (Gas Species)A thermodynamic function that describes the deviation from the ideal gas behavior. It is sometimes named as effective partial pressure of gas species. For ideal gases, fugacity is numerically equal to partial pressure.Activity (Solution Species)A thermodynamic function that describes the deviation from the ideal solution behavior. It represents effective concentration of components in a solution. For ideal solutions, activity is numerically equal to mole fraction.	Gibbs Energy <i>G</i>	A thermodynamic function that is used to determine the process spontaneity. The Gibbs energy of a closed system always decreases for spontaneous processes with constant temperature and pressure.
Activity (Solution Species) A thermodynamic function that describes the deviation from the ideal solution behavior. It represents effective concentration of components in a solution. For ideal solutions, activity is numerically equal to mole fraction.	Fugacity (Gas Species)	A thermodynamic function that describes the deviation from the ideal gas behavior. It is sometimes named as effective partial pressure of gas species. For ideal gases, fugacity is numerically equal to partial pressure.
	Activity (Solution Species)	A thermodynamic function that describes the deviation from the ideal solution behavior. It represents effective concentration of components in a solution. For ideal solutions, activity is numerically equal to mole fraction.

Sustainable Materials Processing Lab

Equilib Module: Some Important Terms

Term	Physical Meaning
	Theses terms are considered as "phase activity". When their
Fugacity_Total (Gas Phase)	value is 1, the phase is stable; otherwise, the phase is not stable.
Activity_Total (Solution Phase)	When their value is close to 1, this indicates that if the
Activity (Compound)	temperature and pressure change slightly, the phase might
	become stable.

The Equilib Module is the **most powerful module** of FactSage.

- The module calculates the equilibrium for multiphase, multicomponent equilibria, with a wide variety of tabular and graphical output modes, under a large range of constraints (for example, given temperature, pressure, composition, etc.).
- ✓ The module uses the "Gibbs energy minimization" principle to find the phases that exist at equilibrium and their respective compositions & amounts.
- $\checkmark~$ The module accesses both Compound and Solution databases.

Different from the Reaction Module, the Equilib Module does not require a welldefined reaction equation. The user only needs to tell the Equilib Module the input elements and the equilibrium conditions, and then the Equilib Module will calculate the products at equilibrium from the list of the **possible** phases the user has selected.

Equilib Module: Basics

Equilib Module in the home page.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Equilib Module: Basics

After you run the Equilib Module, you will see the following screen:

存 Equilib - Menu: Simple gas r	eaction			_		×
File Units Parameters Help						
	T(C) F	P(atm) Energy(J) Quantity(m	iol) Vol(litre)	[in 🗗 C	•
reactants [2]	[2 H2 + O2 (25C,g,#1) (25C,g,#1)				
Products						
Compound species	Solution phase	s Base-Phase Ful	l Name	Custom Solution 0 fixed activit 0 ideal solution	nis lies Deta ons	s
o pure liquids	Menu V	Vindow 🖛		- Pseudonyms-	Edit .	. []
pure solids 0	incina v			✓ Volume data assume mol solids and liv	ar volumes quids = 0	of
species: 9		Reactants	Window	and physics	ar volume a I properties	ata data
Target	Legend	🔽 Show 🗺		Virtual species:	an « Ginin j	10
Estimate T(K): 1000 Quantity(mol): 0		specie: solutions.	List Wind	OW plutions (r	nax 5000) max 200) max 1500)	9 0
				<u>i otal Phases (m</u>		
- Final Conditions	T(C)	P(stm) V Dalt	Results V	Window	mal + tran	sitions
	1000			transitions only	niai + tran	0100110
10 steps 🗖 Table	11000	л• ,	1 calculation	open	Calculate	>>
actSage 7.3						

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Equilib Module: Basics

A Note on "Initial Conditions"

The equilibrium that is calculated under given conditions is independent of the input species and only depends on the amounts of the various **elements** added (element matrix). For example, consider the following two scenarios:

(a) we add 1.0 mole of chalcopyrite (CuFeS₂) and 1.0 mole of oxygen (O₂) into the smelter; or,

(b) we add 0.5 mole of Cu_2O , 1.0 mole of hematite (Fe₂O₃), 1.0 mole of sulfur gas (S₂), and 0.25 mole of oxygen (O₂) into the smelter.

Note in both scenarios, the number of moles of elements added:

Cu: 1.0, Fe: 2.0, S: 2.0, and O: 2.0.

If the temperature and pressure in the smelter are maintained at the same level, the final products when the system reaches equilibrium must be same for the above two scenarios, although the heat of reaction will be different.

We will start with a simple example: H_2O .

Say we have 1 mole of H_2O . We would like to know when the system reaches equilibrium at 25 °C and 1 atm, what phase(s) are present and what are their compositions.

Before we use the Equilib Module, let us perform some manual calculations so we can better understand how FactSage works based on **the Gibbs energy minimization** principle.

[Problem] Find the equilibrium state for 1 mole of H_2O at 25 °C and 1 atm.

[Step 1] First, the system at equilibrium must meet the requirement of **mass conservation**, that is, **2 mole of hydrogen** and **1 mole of oxygen**. Clearly, there are an **infinite** number of ways (or, system configuration) so that this requirement can be met. **A few of them** are listed below:

- (1) 1 mole of $H_2O(s)$, i.e., ice
- (2) 1 mole of $H_2O(l)$, i.e., liquid water
- (3) 1 mole of $H_2O(g)$, i.e., water vapor
- (4) 1 mole of $H_2(g) + 0.5$ mole of $O_2(g)$ etc.

[Step 2] We can use the FactPS database to calculate the Gibbs energy for the above system configurations at 25 °C and 1 atm (**next page**).

(1) -306.09 kJ (2) -306.69 kJ (3) -298.10 kJ (4) -71.86 kJ

[Step 3] The system at equilibrium should possess the minimum Gibbs energy. Therefore, the equilibrium state should be configuration (2).

A Note: the Gibbs energy minimizer in FactSage employs an efficient algorithm (Lagrange's Multipliers, FactSage-Teach) that can find the system configuration with the minimum Gibbs energy under the constraints of mass balance.

Compound Module: FactPS

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Define Reactants

4	Equilib - Reactants	_		\times
File	Edit Table Units Data Search Data Evaluation Help			
D	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	11	1 🕠	N W
L	Don't forget the Directory.			
	Quantity(mol) Species Phase T(C) P(total)** Strea	m# Data	a
	H ₂ O molecule is introd	uced.		
	Do not check "Initial Conditions" because			
	we are NOT interested in the change in			
	the the second second in the change in			
	the thermodynamic properties.	🔲 Initial C	onditions	
	Next >>			
Fact	Sage 7.3 Compound: 1/14 databases Solution: 0/15 databases			11.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Database(s)

Q	Equilib - <mark>R</mark>	eactants]				_		\times	
File	Edit Ta	ible Un	its Data Searc	ch Data Evalua	tion Help					
D	🛎 🛨	· 🔳		T(C) P(atm) Energy(J) Quantity(n	nol) Vol(litre)	1			
	🗘 Data	a Search							×	
	– Data	abases -	1/14 compou	nd databases, (0/15 solution datab	Dases			-	
E	i	act	GactSage"	SGTE	compounds only	Private	Databa	ses		
Ē	F	actPS	FScopp		solutions only	EXAM				
		T salt	FSIead FSIead		no database	1				
		Tmisc	FSupsi	SGsold	Clear All					
		TOxCN		Other		-				
		Tfrtz			Add/Remove Data					
		T neig T pulp	FT demo	School	RefreshDatabases	1				
		Tlite	ETruct	TDmeph		1				
			T THUC							
	- Info	" H ₂	$0 \cos^2 \theta$	sists of i	H and O. '	These tw	o elem	ents	can	only form gaseous species
L		n	d nuro	solide		and nure	liquid	ί۵σ	1473	ter) Therefore only
		an	u purc	Sonus	(c.g., icc)	and pure	, iiquiu	(C.g.	, wa	ter j. Therefore, only
		Fa	ctPS is	require	ed.					
	0-1		L (-•						
	- upa	ons - sea	arch ror produ ⊢ Incl	ude compounds -		Limits				
FactS		Default		gaseous ions (pla	ismas) C	Organic species CxHy.	, X(max) = 2		11.	
				limited data comp	oounds (25C)	Minimum solution comp	oonents: O 1 💿	2 cpts		
		Care	al		Summary			ĸ		
		Call			Junnary					

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Choose Units and Input the Quantity of Species

Equilib - Reactants		_		×
File Edit Table Units Data Search Data Evaluation Help				
T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)		111	-	漸
Choos	se the u	nits.]	
Quantity(mol) Species Phase T(C. H20 We will consider 1 mole of H ₂ O.) P(total)**	Stream#	Data	
Specifying the quantity requires we choose	the uni	ts fir:	st.	
		Initial Cond	litions	
Next >>				
FactSage 7.3 Compound: 1/14 databases Solution: 0/15 databases				//

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Selection of Products (Compounds and Solution Phases)

存 Equilib - Menu:	$ \square$ \times
File Units Parameters H	Help
D 🖻 🖬	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)
Reactants (1)	H2D Choose the units.
Products Compound species + gas • ideal • real aqueous + pure liquids + pure solids species: Target	9 9 0 2 1 12 Solution phases Custom Solutions 0 fixed activities 0 deal solutions 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 15 16 17 18 19 10 10 10
rone - Estimate T(K): 1000 Quantity(mol): 0 Final Conditions	Choose all the Compound species. Normally, when only one compound database (FactPS) is selected, there is no need to screen the phases from the list. For the gas phase, we choose the ideal gas model because the gas species in the real gas model are quite limited and the assumption of ideal gas model is valid at low pressures.

FactSage 7.3

Menu Window: Set up the Final Conditions

Sustainable Materials Processing Lab

FactSage Team

Results: ChemSage Format

存 Equilib - Results 25 C				-		×	
Output Edit Show Pages Fir	Dutput Edit Show Pages Final Conditions						
Save or Print	>	T(C) P(atm) Energy(J)	Quantity(mol) Vol(li	itre)	111 🖳 🕞	汉	
Plot	>						
Equilib Results file	> -						
Stream File	>						
Format	>	FACT Format					
Fact-XMI	, ~	ChemSage Format					
		FACT + ChemSage					
Fact-Optimal	>	ChemSage + FACT		FUGACITY			
Fact-Function-Builder	>	Append list of inpu	It is recor	nmended to	use the (ChemSage format (just	
Refresh		0.0000E+00				8 8	
Swap loops		0.0000E+00	personal	preference).			
ноо		0.0000E+00 1	.8813E-43	5.8982E-45			
н		0.0000E+00 1	.2228E-48	3.8337E-50			
0		0.0000E+00 8	.9368E-54	2.8019E-55			
03		0.0000E+00 1	.1577E-69	3.6296E-71			
TOTAL:		0.0000E+00 1	.0000E+00	3.1352E-02			
		mol		ACTIVITY			
H2O_liquid(liq)	-	1.00008+00		1.0000E+00			
H20_ICe(s)	1	0.00002+00		2 24202-25			
***********************	*****	**************	******	3.34206-35			
Ср Н		S	G	v			
J.K-1 J		J.K-1	J	dm3			
*****	*****	*****	******	*****			
7.53754E+01 -2.85830	E+05	6.99500E+01 -3.0	6686E+05 0.	00000E+00			
						¥	
<					3		

Sustainable Materials Processing Lab

Results: ChemSage Format

🗘 Equilib - Results 25 C	$ \Box$ \times	
Output Edit Show Pages A	inal Conditions	
	These are the conditions under which the system reaches equilibrium. In mo	ost
	cases, the volume data for condensed phases are not considered, and only th	ıe
T = 25 C P = 1 atm	volume of gas phase will be shown.	
V = 0 dm3 STREAM CONSTITUENTS H2O	AMOUNT/mol 1.0000E+00 This is the input material and its amount.	
PHASE: gas ideal H20 H2 O2 OH HOOH HOO H O3 TOTAL: H20 liquid(liq)	EQUIL AMOUNT MOLE FRACTION mol 0.0000E+00 1.0000E+00 3.1352E-02 0.0000E+00 7.9733E-27 2.4998E-28 0.0000E+00 3.9867E-27 1.2499E-28 0.0000E+00 5.5710E-33 1.7466E-34 0.0000E+00 5.5710E-33 1.7466E-34 0.0000E+00 1.8813E-43 5.8982E-45 0.0000E+00 1.8813E-43 5.8982E-45 3.6837E-50 2.8019E-55 3.6296E-71 3.1352E-02 mol mol Mol ACTIVITY 1.0000E+00 1.000E+00 1.000E+00 Mol	
H20_Ice(s) HOOH_liquid(liq)	T 0.0000E+00 7.8723E-01 0.0000E+00 3.3420E-35 When activity of a phase is 1, this means that the phase is stable. T(C) P(atri 7 Product H(J) 1 calculation	
"T" mark mear	ns the thermodynamic data are no longer within the effective	
temperature r	ange.	21

Sustainable Materials Processing Lab

FactSage Team

Results: ChemSage Format

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Set up the Final Conditions

存 Equilib - Menu: last system		- 🗆 X
File Units Parameters Help	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	🕅 🗗 🖅
Products (1) Products pressure	e, let us calculate the equilibre is 0.031352 atm.	rium if the
Compound species + gas • ideal O real 9 aqueous 0 + pure liquids 2 + pure solids 1 species: 12 Target - none - Estimale T(K): 1000 Quantity(mol): 0	Image: solution phases Full Name Image: solution phases Full Name Image: solution phase phase Full Name Image: solution phase phase phase Full Name Image: solution phase phas	Custom Solutions Details 0 fixed activities Details 0 ideal solutions Pseudonyms apply Edit Volume data assume molar volumes of solids and liquids = 0 • include molar volume data and physical properties data • paraequilibrium & Gmin edit Virtual species: 0 • Total Species (max 5000) 12 • Total Phases (max 1500) 4
Final Conditions <a> 10 steps Table	T(C) P(atm) ▼ Product H(J) ▼ 25 0.031352	Equilibrium normal normal + transitions transitions only open Calculate >>

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Results: ChemSage Format

存 Equilib - Results 25 C		- 🗆 ×
Output Edit Show Pages Final	I Conditions T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	III 🖳 🕞 🔀
T = 25 C P = 3.1352E-02 atm V = 780.25 dm3	This time, we changed the pressur the system certainly contains gas.	re. Because the volume is not zero, this time
STREAM CONSTITUENTS H2O H2 O2 OH H0OH H0O H 0 O2	AMOUNT/mol 1.0000E+00 EQUIL AMOUNT MOLE FRACTION FUGACITY mol atm 1.0000E+00 1.0000E+00 3.1352E-02 7.9733E-27 7.9733E-27 2.4998E-28 0E-33 5.5710E-33 1.7466E-34 1.2298-28 0E-33 5.5710E-33 1.7466E-34 1.7E-36 2.0017E-36 9.4110E-28 3E-43 1.8013E-43 5.8982E-45 1.2228E-48 1.2228E-48 3.8326E-50 8.9366E-54 8.9368E-54 2.8019E-55 1.1577E-69 1.1577E-69 3.6296E-71	Total fugacity is 1 atm. This means the gas phase is stable.
TOTAL: System component O H H20 liquid(liq) H20_Ice(s) T H00H_liquid(liq) Cp H J.K-1 J 3.25886E+01 -2.41834E+05	1.0000E+00 1.0000E+00 1.0000E+00 Amount/mol Amount/gram Mole fraction 1.0000 15.999 0.32323 0.88810 2.0000 2.0159 0.66667 0.11190 mol ACTIVITY 0.0000E+00 9.99999E-01 0.0000E+00 7.8722E-01 0.0000E+00 3.3420E-25 S G V J.K-1 J dm3 2.17513E+02 -3.06686E+05 7.80351E+02 1.00351E+02	very close to 1. This means that liquid H_2O is very close to be a stable phase.
This is expecte	ed because when we reduce the pres	ssure, gas tends to be stable.

FactSage Team

The second example we will be looking at is the gasification of coal by steam. Say we inject the hot steam into a coal bed. The temperature of the coal bed is maintained at 1000 K, and the pressure at 10 atm. We would like to know what species are obtained at equilibrium as well as their respective amounts.

Reactants Window: Define Reactants

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Database(s)

😝 Equilib - Reactants	– 🗆 X
File Edit Table Units Data Search Data Evaluation Help	
Data Search	×
Databases - 1/14 compound databases, 0/15 solution databases Cact GactSage" SGTE Compounds only Solutions Solutions	abases
FThall FT0xCN FTfrtz FTfrtz FThelg ELEM SGnobl FTpulp FTdemo SpMCBN RefreshDatabases TDmeph FTlite FTnucl TDnucl	
There is no condensed solutions. Only p are considered. Therefore, only FactPS is	oure solids (carbon) and gas mixture is required.
FactS Options - search for product species Include compounds Limits Include compounds Organic species CxHy, X(max) Include compounds (25C) Minimum solution components: C]= 2 D 1 ⊙ 2 cpts
Cancel Summary	OK

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Choose Units and Input the Quantity of Species

C Equilib - Reactants	_		\times		
File Edit Table Units Data Search Data Evaluation Help					
T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)	<u>111</u>	9	*		
¹⁻² Choose the u	nits.				
Quantity(mol) Species Phase T(K) P(total)** 2 C	Stream	n# Data			
	1				
			-11		
We will consider a very simple case: 2 mole of	C re	acts			
with 1 mole of steam					
Specifying the quantity requires we choose the units first.					
	Initial Co	nditions			
Next >>					
FactSage 7.3 Compound: 1/14 databases Solution: 0/15 databases			//.		

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Selection of Products (Compounds and Solution Phases)

存 Equilib - Menu: last system		– 🗆 X
File Units Parameters Help		
D 😂 日	T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)	🚻 📑 💽 📧
Reactants (2)	2 C + H20 Choose th	e units.
Products		
Compound species + gas • ideal O real 41 aqueous 0 + pure liquids 9 + pure solids 3	Solution phases	Custom Solutions O fixed activities O ideal solutions Oseudonyms apply Edit Colume data
species: 53	Choose all the Compound sp	Decies.
Target - none - Estimate T(K): 1000 Quantity(mol): 0	Legend ✓ Show ● all ○ selected Virt species: 0 Select Iol solutions: 0 Select Iol Iol	paraequilibrium & Gmn <u>edit</u> ual species: 10 tal <u>Species (max 5000)</u> 53 tal <u>Solutions (max 200)</u> 0 tal Phases (max 1500) 13
Final Conditions	Equil	ibrium
<a> 	T(K) P(atm)	mal C normal + transitions
	1000 1 C trar	nsitions only
10 steps I Table	1 calculation	en Calculate >>
FactSage 7.3		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window: Set up the Final Conditions

存 Equilib - Menu: last system		- 🗆 X
File Units Parameters Help		
D 🚔 🖬	T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)	
Reactants (2)	2 C + H20	
Products		
Compound species	Solution phases	Custom Solutions
+ gas ● ideal ○ real 41 aqueous 0	▼ + Base-Phase Full Name	0 fixed activities Details 0 ideal solutions
F pure liquids 9	These are the equilibri	um conditions under which
species: 53	We want to calculate.	Image: Second Control of
		Total Phases (max 1500) 13
Final Conditions	T(c)	Equilibrium
	Product H(J) ▼ Product H(J) ▼	C hormal C hormal + transitions
10 steps Table	1 calculatio	Only 1 calculation will be performed
		under the given conditions.
FactSage 7.3		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Save the Equilib settings: ".dat" file

In the Equilib Module, we can save the settings for a calculation as a ".dat" file.

存 Equilib - Menu: last system			Save File in w:\MSE302\Exercise\Equi*.dat X			
File Units Parameters Help			Enter the file number			
	New C		(1 - 9999)			
	Open	Ctrl+O	or enter the file name, for example			
	Directories Ctrl+D		Mu veru favorite calculation			
	Save	Ctrl+S				
	Save As		- avoid the special characters 27 (10,00%); V			
ChemSage File		>	Coal gasification			
	FSReactor File	>	Save File w:\MSE302\Exercise\EquiCoal_gasification.DAT X			
1: File Ex_Fe-desulfurize Example : Desulfurizing steel by CaSi add			Saving file Coal_gasification OK			
	Exit		Enter one line of comments Cancel			
			- to add additional notes, terminate the line of comments with the character +			
			FactPS dayanase, 1000 K and 10 atm			

Open the ".dat" file

4	Equilib - Menu: comments		_		\times	
Fil	le Units Parameters Help					
		T(K) P(atm) Energy(J) Quantity(mol) Vol(litre)	ľ	11 🖳 🕻	•	
	Directory Equilib (My Files)	le w:\MSE302\Exercise\EquiCoal_gasification.DAT	—	×		
	File Edit Tools					
	🖻 🤂 😼	List sorted by File - see 'Edit'				
		- 1 / 1 files -				
	File Date Desc Coal gasification 22/u/22 Eact	ription PS davanase 1000 K and 10 atm / 2 C + H20				
		We can view and open all the	he save	d ".da	at" fi	les from the
		directory.				
					53	
					0	
Ц					13	
Г					itione	
					NUONS	
					>>	
Ч						
Fa						
	FactSage 7.3 w:\MSE302\	Exercise\EquiCoal_gasification.DAT				

Sustainable Materials Processing Lab

FactSage Team

Results: ChemSage Format

Pelton, Phase Diagrams and Thermodynamic Modeling of Solutions, 2019 (Chapter 5.12)

Sustainable Materials Processing Lab

FactSage Team

Save the Results: Spreadsheet Format

Sustainable Materials Processing Lab

FactSage Team

The third example is to recover tin from tin cans by chlorination, represented by the following reaction:

 $Sn + 2Cl_2 = SnCl_4$

Tin cans are made of tin-coated steel. Progressive chlorination of tin results in the exposure of iron. To avoid the chlorination of iron which would lower the grade of SnCl_4 , oxygen is introduced to form Fe_2O_3 . This means that we need to study the thermodynamics of the Fe-Sn-Cl-O system for this chlorination process if the steel is considered to consist of pure iron. Under the controlled conditions, the desired solid products should be SnCl_4 and Fe_2O_3 .

To help you better understand the underlying thermodynamic principle on which the above process is based, the predominance diagram of the Fe-Sn-Cl-O system was calculated.

Equilib Module: Recovery of Tin from Tin Cans

Predominance Diagram of the Fe-Sn-Cl-O System at 700 °C.

Predom	—	×
File Units Data Search Help	Massímoli	🕼 Data Search
Elements • 2-Metal Example • 2-Metal Example Metals: Fe Snon-metals: Clear Optional Next >> Metal Mole Fracti System components 2-Metal Diag R = Sn/(Fe + Sn) 0.0000 < R < 1.0000	Parameters Pressure Isobar: P(atm): Constants Temperature Z: T(C): 700 Y-axis log10[2): Y-axis log10[Y) Y: P(Cl2) max: 0 min: -12 step: 1 Labels and Display color chemical 12 number color none color Calculate invariant point Calculate >> invariant point	■ Databases - 1/14 compound databases, 0/15 solution database Image: Compound Stress Image: Compound Stress

FactSage Team
Predominance Diagram of the Fe-Sn-Cl-O System at 700 °C.

Sustainable Materials Processing Lab

FactSage Team

Part I.

Let us start with a simple calculation. Say we are recovering 1.0 mol of Sn, and the exposed iron is **assumed** to be 0.2 mol. Clearly, the minimum number of moles of Cl_2 is 2.0 mol when all Sn is recovered as $SnCl_4$; and the minimum number of moles of O_2 when all the exposed iron is oxidized to Fe_2O_3 is 0.15 mol.

 $1.0 \text{ mol Sn} + 2.0 \text{ Cl}_2 = 1.0 \text{ mol SnCl}_4$

 $0.2 \text{ mol Fe} + 0.15 \text{ O}_2 = 1.0 \text{ mol Fe}_2 \text{ O}_3$

Of course, if O_2 is supplied from air (21 vol. % O_2 + 79 vol. % N_2), then the number of moles of N_2 is 3.76 × 0.15 mol = 0.564 mol.

Also, we assume all the reactants are introduced into the reactor at room temperature.

Reactants Window: Define Reactants (Species)

👍 Equilib	- Reacta	nts								-		\times
File Edit	Table	Units	Data Searc	h Data E	valuation	Help						
D 🚔	+	==		T(C)	P(atm) Ene	rgy(J) Quantity(mol)	Vol(litr	e)		111	>	*
		_										
1.5												
	Quant	ity(mol)		Specie	es	Phase		T(C)	P(total)**	Stream#	Data	
1			Sn				-			1		
+ 1			Fe				-			1		
+ 1				2	— Г		-			1		
+ 1			/	1	— í		_		- <u></u>	1		
				1								
• 1			JN2				_]1		
										Initial Condi	tions	
		_					_					1
						Next >>						
FactSage 7.3	Co	mpound:	: 1/14 da	tabases	Solution:	0/15 databases						

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Select Database(s)

Q	Equilib - Reactants	$ \Box$ \times
File	Edit Table Units Data Search Data Evaluation Help	
	😰 🕂 🥅 T(C) P(atm) Energy(J) Quantity(n	nol) Vol(litre)
	存 Data Search	×
	-Datahases - 1/14 compound datahases_0/15 solution datahas	\$ 6 \$
	FactPS FScopp BINS Solutions only Solutions on Solution	Private Databases
	Floxid FSlead SGPS FTsalt FSstel SGTE FTmisc FSupsi SGsold ETball Clear All	Select FactPS only.
I	FT0xCN Other Add/Remove Data FTfrtz Add/Remove Data FThelg ELEM SGnobl	In this example, the major species we are interested in include $SnCl_2$, $SnCl_4$, SnO_2 , $FeCl_2$, $FeCl_3$, Fe_2O_3 , Cl_2 , O_2 , N_2 ,
l	FTpulp FTdemo SpMCBN RefreshDatabases TDmeph TDmucl TDnucl	etc. Since all these species are either pure solids/liquid or
	-Information -	gases, there is no need to choose any solution database.
l		
	-Options - search for product species	
Fac	Default Include compounds Incl	anic species $CxHy, X(max) = 2$ inimum solution components: $\bigcirc 1 \odot 2$ cpts
	Cancel Summary	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Choose Units and Input the Quantity of Species

存 Equilib - Reactants				_		
File Edit Table Units	Data Search Data Eva T(C) P(luation Help atm)Energy(J)Quantity(n	nol) Vol(litre)]
1-5			Choose	the un	its.	
Quantity(mol) 1 + 0.2 + 2 + 0.15 + 0.564	Species Sn Fe Cl2 02 N2 After choo quantity o	Phase	T(C) P(to	stream 1 1 1 1 1 1 1 1	m# Data	
				🔲 Initial Co	onditions	
		Next >>				
FactSage 7.3 Compound:	1/14 databases	Solution: 0/15 databas	es			/

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Choose "Initial Conditions"

Q	🗘 Equilib - Reactants						Once "In	nitial (Cone	ditions" is checked, we need to
File	Ed	it Table Units	Data Search Data Eval T(C) P(a	uation Help m)Energy(J)) Quantity(mol) Vol(lit	irej	specify	the ph	nase	(i.e., structure) of species (see
	1.5						next pag	ges for	r mo	ore information).
		Quantity(mol)	Species		Phase	T(C	;) P(total)**	Stream#	Data	
		1	Sn	solid-1	Solid(wh) 👤	25	1.0	1		
	+	0.2	Fe	solid-1	bcc 💌	25	1.0	1		
	+	2	C12	gas	–	25	1.0	2		
	+	0.15	02	gas	–	25	1.0	3		
	+	0.564	N2	gas	•	25	1.0	3		
L					Also, w	ze w	vant to a	ssign	Str	eam# to the reactants (Sn and Fe
					aro in	1 st C	Stroom	Cl in	7 nd	Stroom and air in 2rd Stroom) Vou
						1 J		¹² III	Δ	Stream, and an in 5 th Streamj. Tou
For a gaseous stream this is the						click "Sti	ream#	f" to	see more details.	
l	partial pressures of the species in that stream.									
				Nex	• > >					
Fact	Sage	7.3 Compound:	1/14 databases S	olution: 0/1	5 databases					
										42

Sustainable Materials Processing Lab

FactSage Team

View Data Module: Structure of Sn and Fe at 25 °C, 1 atm

View Data
View compounds - enter a list of elements or a compound or ALL
Examples: AI Ca 0 - compounds of AI, Ca and/or 0 Si02 - compound Fe2(S04)3 - compound Cu[++] - cation 0H[·] - anion ALL - all compounds ALL Fe - all compounds of Fe ALL S04 - all compounds with S04 ALL Fe S 0 - all compounds with Fe, S and 0
Pressure Energy Image: Compound Image: Compound I
Compound Databases (14)
Summary Add Remove FactPS 💌
C:\FactSage\FACTDATA\FS53base.cdb
FactPS - FACT pure substances database (2019)
Elements or Compound or ALL:
Exit Assessments Information OK
View Data Sn Units: T(K) P(atm) Energy(J) Quantity(mol)
File Edit Sort Compounds Summary Databases Units Atom
8 compounds, 14 phases FactPS - FACT pure substances of
Compounds ordered by alphabet (see 'Sort
Fe FactPS S1 S2 L G
Fe[+] FactPS G
Fe[2+] FactPS Aq
Fe[3+1 FactPS Aq
Sn FactPS S1 S2 L G
Sn[2+] FactPS Aq

File Edit Sort Compounds Summary Databases Units Atomic Wts. Table Graph Help << Back	<th>存 View Data 🛛 Fe 🛛 Uni</th> <th>ts: T(K) P(atm) Ene</th> <th>rgy(J) Quantity(m</th> <th>ol)</th> <th></th> <th>— 🗆</th> <th>×</th>	存 View Data 🛛 Fe 🛛 Uni	ts: T(K) P(atm) Ene	rgy(J) Quantity(m	ol)		— 🗆	×
FactPS - FACT pure substances database (2019) Phases Cp(T) H(T) G(T) File (Trans. Mol Wt.% Name: Iron Standard ref At 25 °C, S1 which is bcc is stable. Transition T(K) T(C) Delta H Delta S Delta Cp J/mol J/mol J/mol-K J/mol-K Standard ref Standard ref At 25 °C, S1 which is bcc is stable. Transition T(K) T(C) Delta Cp J/mol J/mol-K J/mol-K S1 1667.47 1394.32 825.8 0.4455 2.183 S1 1667.47 1394.32 825.8 0.4455 2.183 S1 Difter FACT pure substances database (2019) File Edit Sort Compounds Summary Databases Dilter Fefs <th< td=""><td>File Edit Sort Compo</td><td>ounds Summary</td><td>Databases Unit</td><td>ts Atomic Wts.</td><td>Table Graph</td><td>Help << Bac</td><td>k</td></th<>	File Edit Sort Compo	ounds Summary	Databases Unit	ts Atomic Wts.	Table Graph	Help << Bac	k	
Phases Cp(T) H(T) G(T) S(T) Volume Magnetic Refs. Trans. Mol Wt.Z Name: Iron Standard of At 25 °C, S1 which is bcc is stable. Transition T(K) T(C) Delta H Delta S Delta Cp J/mol J/mol J/mol J/mol-K J/mol-K S1 -> S2 1184.81 911.66 1012.9 0.855 -7.681 S2 -> S1 1667.47 1394.32 825.8 0.495 2.183 S1 -> L1 1810.95 1537.80 13806.9 7.624 4.653 L1 -> G1 (1 atm) 3131.33 2858.78 349631.2 111.635 -18.938 View Data Sn Units: T(K) P(atm) Energy(J) Quantity(mol) - × × FactPS -FACT pure substances database [2019] Phases Cp(T) H(T) G(T) S(T) Volume Magnetic Refs. Trans. Mol Wt.2 Name: Tin At 225 °C , S1 which is solid(wh) is stable Transition T(K) T(C)	4 Phases	Fac	tPS - FACT pure sub	bstances database (2	2019)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Value VMare		- N.		
Name: Iron Standard in Standard in At 25 °C, S1 which is bcc is stable. Transition T(K) Delta H Delta Cp J/mol J/mol-K J/mol-K STANDARD Delta Cp J/mol J/mol-K J/mol-K J/mol J/mol-K J/mol-K STANDARD Delta Cp J/mol J/mol-K J/mol-K J/mol J/mol-K J/mol-K STATURE STATUS STATURE STATUS STATURE STATUS STATURE STATUS STATURE STATUS FACT pure Status Mol WL 2 FACT pure substances database (2019) Phases Cp(T) Mol WL 2 FACT pure substances database (2019) Mol WL 2 Name: Tin Mol WL 2 Name: Tin At 25 °	Fnases Cp[1]	הנון מנו] [] []]	volume magn	euc ners.	Trans. Mor	₩1.4	
Standard R At 25 °C, S1 which is bcc is stable. Transition T(K) T(C) Delta H Delta S Delta Cp STandard R Delta Y Delta Cp Transition T(K) T(C) Delta H Delta Cp STANDARD R Delta H Delta Cp STANDARD R Delta Cp T(K) P(atm) Energy(J) Quantity(mol) C FACT pure substances database (2019) Phases Delta Cp <th colsp<="" td=""><td>Name: Iron</td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Name: Iron</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Name: Iron						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Standa	at 2	5 °C, S1	which i	s bcc is	stable.	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				•				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Transition	T(K)	T(C)	Delta H	Delta S	Delta Cp	I	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				J/mol	J/mol-K	J/mol-K]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S1> S2	1184.81	911.66	1012.9	0.855	-7.681		
S1> L1 1810.95 1537.80 13806.9 7.624 4.653 L1> G1 (1 atm) 3131.93 2858.78 349631.2 111.635 .18.938 View Data Sn Units: T(K) P(atm) Energy(J) Quantity(mol) - - × File Edit Sort Compounds Summary Databases Units: Atomic Wts. Table Graph Help << Back Phases Cp(T) H(T) G(T) S(T) Volume Magnetic Refs. Trans. Mol Wt.% Name: Tin At 255 °C, S1 which is solid(wh) is stable J/mol-K J/mol-K J/mol-K L1 -> S2 55.06 -218.09 93955.4 180.808 -421.031 S2 -> S1 296.56 23.41 2090.1 7.048 1.187 S1 -> L1 505.06 231.91 7029.1 13.917 -1.039	S2> S1	1667.47	1394.32	825.8	0.495	2.183		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S1> L1	1810.95	1537.80	13806.9	7.624	4.653		
View Data Sn Units: T(K) P(atm) Energy(J) Quantity(mol) - - × File Edit Sort Compounds Summary Databases Units: Atomic Wts. Table Graph Help << Back	L1> G1 (1 atm)	3131.93	2858.78	349631.2	111.635	-18.938		
Name: Tin At 25 °C, S1 which is solid(wh) is stable Transition T(K) T(C) Delta H Delta S Delta Cp Image:	View Data Sn Units: T(K) P(atm) Energy(J) Quantity(mol) File Edit Sort Compounds Summary Databases Units Atomic Wts. Table Graph Help << Back 4 Phases FactPS - FACT pure substances database (2019) Phases Cp(T) H(T) G(T) Volume Magnetic Refs. Trans.							
Transition T(K) T(C) Delta H Delta S Delta Cp Image: I	At 25 °C, S1 which is solid(wh) is stable.							
Image: Second	Transition	T(K)	T(C)	Delta H	Delta S	Delta Cn	T	
L1 -> S2 55.06 -218.09 9955.4 180.808 -421.031 S2 -> S1 296.56 23.41 2090.1 7.048 1.187 S1 -> L1 505.06 231.91 7029.1 13.917 -1.039		,		J/mol	J/mol-K	J/mol-K	1	
S2 -> S1 296.56 23.41 2090.1 7.048 1.187 S1 -> L1 505.06 231.91 7029.1 13.917 -1.039	L1> S2	55.06	-218.09	9955.4	180.808	-421.031	1	
S1 -> L1 505.06 231.91 7029.1 13.917 -1.039	S2> S1	296.56	23.41	2090.1	7.048	1.187		
	S1> L1	505.06	231.91	7029.1	13.917	-1.039		
L1> G1 (1 atm] 2872.94 2599.79 295769.0 102.950 -2.033	L1> G1 (1 atm)	2872.94	2599.79	295769.0	102.950	-2.033		

43

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Select the Products

😝 Equilib - Menu: last system	—		\times
File Units Parameters Help			
T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	111	9	
Sn + 0.2 Fe + 2 Cl2 + 0.15 0.2 + 0.564 N2 (25C,s1,#1) (25C,s1,#1) (25C,g,#2) (25C,g,#3) (25C,g,#3)			
Compound species Solution phases Custom	Solutions	D 1 7	
	activities solutions yms cies. hysical p quilibrium cies: cies (max tions (max	Edit Edit me so me da roperties & Gmin _ 5000) x 200)	s of ata data edit 10 73 0 33
Final Conditions Equilibrium <a> T(C) P(atm) Delta H(J)	C norm	nal + trans	itions
1000 1 C transitions 10 steps Table 1 calculation	only Ca	lculate :	>>
FactSage 7.3			

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window: Set the Final Conditions

🗘 Equilib - Menu: last system	- 🗆 ×
File Units Parameters Help	
T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	📊 🔜 💽 🐨
Sn + 0.2 Fe + 2 Cl2 + 0.15 02 + 0.564 N2 (25C,s1,#1) (25C,s1,#1) (25C,g,#2) (25C,g,#3) (25C,g,#3)	
Products Compound species + gas • ideal • real 41 aqueous 0 - pure liquids	stom Solutions fixed activities Details ideal solutions eudonyms
Set the temperature ran species: 73 Set the temperature ran and the total pressure in calculations at different	nge from 500 to 800 °C at 100 °C intervals, is 1 atm. This allows us to perform 4 t temperatures.
- none - Estimate T(K): 1000 Quantity(mol): 0	I <u>Species (max 5000)</u> 73 I <u>Solutions (max 200)</u> 0 I <u>Phases (max 1500)</u> 33
Final Conditions Equilibrit <a> T(C) P(atm) Delta H(J)	rium al O normal + transitions itions only Calculate >>
FactSage 7.3	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Results: (Here, we again use the ChemSage format)

🕞 Equilib - Results 500 C (page 1/4)						- 🗆 X
Output Edit Show Pages Final Con	ditions					
	unions	T(C) D(-ha) Energy()))		
		T(U) P(atm) Energy(J	j Quantity(molj Vol(litr	rej	_	🛄 💷 🕞 🧏
- 500 C - 600 C 700 C 800 C			_			
	Equi	lihrium	Conditi	ons		
T = 500 C	Lyun	indituini	conun	0115.	e 7.3	^
P = 1 atm					-	
V = 99.138 dm3						
STREAM CONSTITUENTS	AMOUNT/mol	TEMPERATURE/C	PRESSURE/atm	STREAM		Thermodynamic properties of the system at 1
Sn_Solid(wh)	1.0000E+00	25.00	1.0000E+00	1	· · · · · · · · · · · · · · · · · · ·	Thermoughanne properties of the System at
Cl2/gas_ideal/	2.0000E+00	25.00	1.0000E+00	2		
02/gas ideal/	1.5000E-01	25.00	1.0000E+00	3		the initial state.
N2/gas_ideal/	5.6400E-01	25.00	1.0000E+00	3		
*****	*****	*****	*****			
Cp_INI H_INI	S_INI	G_INI	V_INI			
***************************************	************	U ************	******			
1.20694E+02 -6.31482E-03	6.44404E+02	-1.92129E+05	6.63995E+01			Gas phase the total fugacity is 1 which means
					_	dus phase, the total tagaenty is I which means
	EQUIL AMOUNT	MOLE FRACTION	FUGACITY			the second case is stable. The main second
PHASE: gas_ideal	mol	C 215 CE 01	atm			the gas phase is stable. The major gaseous
N2	5 6400E-01	3 60938-01	3 60938-01			
FeC13	5.8786E-03	3.7620E-03	3.7620E-03			spacios aro SnCl and N This means Sn is
(FeC13)2	5.7030E-03	3.6496E-03	3.6496E-03			species are shere and N_2 . This means shifts
TOTAL:	1.5626E+00	1.0000E+00	1.0000E+00			
System component	Amount/mol	Amount/gram	Mole fraction	Mass fract	tion	I chlorinated and removed very efficiently
Sn Fo	1 72457-02	0 96964	2 02068-02	0.42489	-02	emormated and removed very emoteneity.
C1	3.9997	141.80	0.65228	0.51429	03	
0	1.4589E-11	2.3341E-10	2.3791E-12	8.4654E	-13	
N	1,1280	15,800	0.18395	5.7302E	-02	
	mol		ACTIVITY			Pure solids: Fe_2U_3 , SnU_2 , and FeU_1_2 are
Fe203_hematite(s)	9.1264E-02		1.00008+00			
FeCl2 solid(s)	1.2611E-04		1.0000E+00			stable Other compound species have an
FeCl2 liquid(liq)	0.0000E+00		3.0049E-01			stable. Other compound species have an
SnO2_L1(liq)	0.0000E+00		1.7599E-01			
FeCl3_liquid(liq)	0.0000E+00		2.7558E-02			l activity less than 1 which are not stable Also
SnCl4_liquid(liq) T	0.0000E+00		1.6389E-02			
Fe304_Magnetite(s)	0.00002+00		1.43688-02			
FeCl3 Molysite(s)	0 Final Cond	tions	2.01000 00			$ Fe_2 U_2 $ is the major species.
FeOC1_solid(s)	0 <a>		T(C)	P(atm)	Delta H(J)	
FeO_Wustite(s)	0		500 800 100	1		
**********************	****	,	-, ,			
<						

FactSage Team

Results: let us plot the data (this time we use Output\Plot)

Sustainable Materials Processing Lab

FactSage Team

Results: let us plot the data (this time we use Output\Plot)

Equilib - Results 500 C (page 1/4)	– 🗆 ×		
Output Edit Show Pages Final Conditions	Bassiles Des servers un MSE 202) Europia	-\ [:0	~
Save or Print > T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	File Heln	e/Equivires	^
Plot > Plot Results	Sn + 0.2 Fe + 2	Cl2 + 0.15 O2 +	•
Equilib Results file > Repeat Plot	Axes Variables	Minimum	Maximum
	activity	0	1
Stream File > + 0.15 02 +	mole	0	4
(25,1,g,#2) (25,1,g,#3)	mole fract. soln. species	0	0.652276
Pomat /	gram	0	275.73
	weight % soln. species	0	93.248
Fact-XML	Alpha	0	0
Pal	T(C)	500	800
Fact-Optimal > 1, 99.138 litre, 2.7812E-03 gram.cm-3)	P(atm)	1	1
a=1,0000)	Delta Cp(J/K)	25.765	115.19
Fact-Function-Builder > SrG14	Delta G(J)	-9.6921E+05	-7.7538E+05
	Vol(litre)	99.138	141.34
Perfect E.C.1.2	Delta H(J)	-4.8986E+05	-4.3610E+05
renesh	Delta V(litre)	32.738	74.936
Swap loops (ieclis) 2)	Delta S(J/K)	-26.607	31.403
	· page ·	1	4
+ 9 1264E-02 mol Fe2O3 hemavite	Axes Species	- Graph	
Feel free to use Fact-XML. However,	0 selected Select	Labels Disp size: 9 no: 4	color 🔽 full screen
come functions in the "Dlot" can not be		💽 💿 chemical 🛛 🗖	C Viewer
some functions in the Plot can not be		🔹 🔿 🖸 🖸 🖸	ile name 💿 Figure
	Axes Repeat	C none	
replaced by "Fact-XML".		offset 🔽	Plot >>
+ 1.26112-04 mol FeC12 S011d	FactSage 7.3 wr\MSF302\Evercise\Eg	uil res	26Jul22 A sets
(1.5984E-02 gram, 1.2611E-04 mol)	Tactodge 1.0	40.705	2000122 4 0010
- (508 Cm ²) 511 00000			
+ 0 (A> (B> T(C) P(atm) Delta H(J)	4 calculations ×		
500 800 100 1	Calculate >>		
<	>		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Results: let us plot the data (this time we use Output\Plot)

Choose "Sn_Gas" under the option of "ELEMENTS" (NOT the option of "Gas"). This is all the Sn contained in the gas phase. From the option of "Gas", you would see Sn exists as Sn, Sn₂, SnO, SnO₂, O_2Sn_2 , O_3Sn_3 , O_4Sn_4 , SnCl, SnCl₂, and **SnCl₄** (major species of Sn carrier).

Results: let us plot the data (this time we use Output\Plot)

Sustainable Materials Processing Lab

FactSage Team

Results: let us plot the data (this time we use Output\Plot)

Sustainable Materials Processing Lab

FactSage Team

Part II.

For Part II, we will be looking at what happens if the amount of oxygen supplied is not sufficient to oxidize the exposed iron.

Assume the amount of the exposed iron is a variable: for 1 mol of Sn, the amount of the exposed iron varies from 0.2 to 0.6 mol. The temperature is fixed at 600 °C.

Back to the Reactants Window:

🕼 Equilib - Reactants	- 🗆 ×
File Edit Table Units Data Search Data Evaluation Help	
🗅 🚄 🕂 🥅 T(C) P(atm) Energy(J) Qu	iantity(mo <mark>), Vol(litre) 🗰 📖 👞 😽 🔤</mark>
	🔷 Quantity — 🗆 X
1.5	
	Enterthe encount of the encoderst Encounters 10, 14207, 1 0245, 4
Quantity(mol) Species Pl	hase For example, the formation of water:
1 Sn solid-1 Sol	id(wh) 1 H2 + 0.5 O2
+ <a> Fe solid-1 box	C A composition veriable "A" (alpha) may be specified in the form (aA+b) or (a+bA) where a and b are
+ 2 Cl2 gas	constants, A is calculated or specified later.
+ 015 02 0as	Examples: <a> <-1+2A> <3.7A+6>. For example, a binary mixture between conner and nickel:
	A> Cu
* 0.5 <mark>64 N2 gas</mark>	+ <1-A> Ni
	A composition variable "B" (beta) may be specified in the form <aa+bb+cab+d> where a, b, c and d are constants. A and B are specified later in the Menu Window. Whereas you can specify or calculate a range [First Last, Step] of <a>, for example [0.0 1.0 0.1], only one constant value of can be specified. For example the oxidation of various quantities of hydrogen by oxygen diluted in nitrogen. Say you want to have 1 mole total of input gases you might enter: <a> H2 + <1-A-B> O2 + N2 If the fixed quantity of N2 is 0.1 mole, then in the [Menu Window] you would specify = 0.1 and give a range for alpha, say <a> = [0.0 0.9 0.1].</aa+bb+cab+d>
Next >>	
FactSage 7.3 Compound: 1/14 databases Solution: 0/15 d	latabases //
	53

Sustainable Materials Processing Lab

FactSage Team

Menu Window

存 Equilib - Menu: comments	🛊 Final Conditions – 🗆 🗙
File Units Parameters Help	
D 🗃 🖬 🛛 🖓	
Reactants (5)	In most cases you specify values of T and P (and <a> and if necessary). For example T = 1000 and P = 1.
Compound species	A range is indicated by [FIRST LAST (STEP, optional)]] For example '[500 1000]' in the T column means T = 500 and 1000; '[500 1050 100]' means T = 500, 600, 700 1000 and finally 1050.
u ga <mark>s t⊙ ideal C real 41 u u u u u u u u u u u u u u u u u u </mark>	Leave the column blank if it is not specified.
acueous 0 + pure liquids 10 + pure solids 22	When the reactant initial conditions have been specified ("Initial Conditions" box in [Reactants Window] is 'checked') a column for extensive variables (Delta H, Delta V, etc) is activated. Now you have the option specifying only one of T or P together with one of the extensive variables.
species: 73	If you only specify one variable, say P =1, then you can perform a Target Phase calculation i.e. that temperature is calculated when the Target Phase becomes stable. You must specify which compound or solution is the target phase. In the case of solutions, the target may be a Formation Target Phase (unit activity) or Precipitate Target Phase (unit activity, 100% moles). Click on the Target Phase frame with the mouse-right-button for details.
Final Conditions	Equilibrium
	Platmj _ Delta H[J] _ O normal O normal + transitions
10 steps Table	5 calculations C open Calculate >>
	Temperature
FactSage 7.3 w:\MSE302\Exercise\	Equil

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Sustainable Materials Processing Lab

FactSage Team

Sustainable Materials Processing Lab

FactSage Team

Results: plot the amounts of major species

Plot Species Selection - Equilib Results: mole vs Alpha P

File	Sho	w Select							
+	\checkmark	gas phase		Mole (max)	Fraction (min)	Fraction (max)	Activity (min)	Activity (max)	A
		aqueous specie							
	_	aqueous specie		6.7206E-26	4.2895E-26	4.5121E-26	4.2895E-26	4.5121E-26	
	\sim	pure liquids		0.564	0.359984	0.398307	0.359984	0.398307	
	\checkmark	pure solids		4.2531E-29	2.5807E-29	3.0036E-29	2.5807E-29	3.0036E-29	
	1			5.5443E-17	2.8856E-21	3.5387E-17	2.8856E-21	3.5387E-17	
	*	3010110143		5.4456E-10	2.3112E-18	3.4758E-10	2.3112E-18	3.4758E-10	
		ELEMENTS		7.2709E-27	2.5163E-39	4.6408E-27	2.5163E-39	4.6408E-27	
				3.1263E-10	1.7116E-14	1.9954E-10	1.7116E-14	1.9954E-10	
		A.II.		1.6598E-14	9.5586E-19	1.0594E-14	9.5586E-19	1.0594E-14	
		All		1.8696E-15	8.3464E-24	1.1933E-15	8.3464E-24	1.1933E-15	
		Clear		3 9870E-27	1 4514E-39	2 5448E-27	1 4514E-39	2.5448E-27	
	11	It is sug	acted th	at ELEN	IENTS not	ho chown	Mo E-42	2.7852E-30	
	It is suggested that ELEMEN IS not t		De Shown.	vve _{E-52}	3.8960E-36				
	13	want to	nlot the	snecies i	not elemen	te	E-64	5.3442E-44	
	14	want to	plot the	species			E-09	7.2154E-07	
	15	CI2	2.4340E-08	4.1771E-04	1.7189E-08	2.6661E-04	1.7189E-08	2.6661E-04	
	16	CIO	1.1542E-18	1.9504E-12	8.1510E-19	1.2449E-12	8.1510E-19	1.2449E-12	
	17	CI02	1 7585E-31	3 6443E-21	1 2419E-31	2 3260E-21	1 2419E-31	2 3260E-21	•
				Dis	play Mass	Order	Select T	op 15 🔺 1	species selected

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Х

Results: plot the amounts of major species

Plot Species Selection - Equilib Results: mole vs Alpha Doubl					Double left c	lick to sor	rt the speci	es. ×	
File	File Show Select								
+	#	Species	Mole (min)	Mole (max)	Fraction (min)	Fraction (max)	Activity (min)	Activity (max)	
	77	CI_GAS	2.8044	4	0.58613	0.651791	0	0	
	74	GAS	1.416	1.5667	0	0	1	1	
	79	N_GAS	1.128	1.128	0.183805	0.235757	0	0	
	75	Sn_GAS	0.85	0.973187	0.157411	0.177654	0	0	
+	41	SnCl4	0.549816	0.973153	0.38829	0.621135	0.38829	0.621135	
+	66	FeCl2	0	0.597804	0	0	0.434254	1	
	2	N2	0.564	0.564	0.359984	0.398307	0.359984	0.398307	
+	40	SnCl2	3.4256E-05	0.300184	2.1864E-05	0.211996	2.1864E-05	0.211996	
+	72	SnO2	2.6813E-02	0.15	0	0	1	1	
	59	Fe203	0	8.2125E-02	0	0	6.9173E-04	1	
	76	Fe_GAS	2.1963E-03	3.5750E-02	4.5903E-04	5.8254E-03	0	0	
	29	FeCl3	3.6469E-04	2.1823E-02	2.5755E-04	1.3929E-02	2.5755E-04	1.3929E-02	
	31	(FeCl3)2	2.0331E-06	6.5795E-03	1.4358E-06	4.1995E-03	1.4358E-06	4.1995E-03	
	28	FeCli	C	. 1	.1				
	15	15 C12 These four species have the most significant amounts (we are							
	30	FR not	aonaidan	ing "N "	Chasse	thogo four a	nadiaa		
	14 C not considering N ₂ J. Choose these four species.								
	39	I SnCl							•
Clear Display Mass Order Select Top 15 • 4 species selected Click on the '+' column to add or remove species. name G radii G radii <t< th=""></t<>									

Sustainable Materials Processing Lab

FactSage Team

Results: plot the amounts of major species

Sustainable Materials Processing Lab

FactSage Team

Results: plot the amounts of major species

- As seen from the graph, there is a complex chemistry occurring as more exposed iron is available for reaction **without adequate oxygen** to convert it to Fe_2O_3 .
 - (i) Some Sn forms solid SnO_2 and this would represent a Sn loss since SnO_2 is not volatile and will remain with the solid waste stream.
 - (ii) Some Cl₂ is wasted by reaction with iron to form solid FeCl₂.
 - (iii) The Sn volatilization does remain "respectable" because of the formation of stannous chloride $SnCl_2$ in the gas phase.

Sustainable Materials Processing Lab

FactSage Team

Part III (Process Control)

The above calculations can be used to guide the production. If significant quantities of $FeCl_2$ are detected in the outlet product stream, then this is a sign that we need to add more O_2 (i.e., air) to oxidize the metallic iron to Fe_2O_3 . The **secret** in operating this tin recovery process efficiently is to maintain the oxygen flow to keep the iron as Fe_2O_3 , but not to over-oxidize the metals, either.

Bearing this in mind, let us simulate the process in FactSage.

Note: in the actual tin recovery process, the amount of the exposed iron is unknown, and the assumption of 0.2 mol of the exposed iron for 1 mol of Sn in Part I calculation is not universally valid.

Back to the Reactants Window

🧔 Ec	quilib - Reactants					_	□ ×	
File	Edit Table Units	Data Search Data Evaluatio	n Help					
	i + 📰	T(C) P(atm) E	nergy(J) Quantity(mol) Vo	l(litre)		111	🗐 🕒 🔻	e
1-	5							
	Quantity(mol)	Species	Phase	T(C)	P(total)**	Stream#	Data	
	1	Sn	solid-1 Solid(wh)	25	1	1		
+	<a>	Fe	solid-1 bcc 🔹	· 25	1	1		
•	2	CI2	gas 🔹	25	1	2		
•	<0.75A>	02	gas 🗸	25	1	3		
•		N2	gas 🔻	25	1	3		
]]==	1.	1.		
	L	For every	mol of Fe, 0.7	75 mo	$1 \text{ of } 0_2$	is re	auirea	1 to form 0.5 mol of Fe_2O_3 .
		J	,		<u>L</u>		1	
		East arrange mail	of 0 276 m		'N iai	n two o	lugad	7
		For every mor	$010_2, 3.761$	101 01	N_2 IS I	ntroc	iucea.	
					V	Initial Cond	litions	
-								
			Next >>					
FactSa	ge 7.3 Compound:	1/14 databases Solutio	n: 0/15 databases					1.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window

🗘 Equilib - Menu: comments	- 🗆 ×	
File Units Parameters Help		
	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	
Reactants (5)		
Sn (25C,s1,#1	+ <a> Fe + 2 Cl2 + <0.75A> O2 + <2.82A> N2 #1) (25C,s1,#1) (25C,g,#2) (25C,g,#3) (25C,g,#3)	
Pro ducto		
- Compound encodes	- Solution phonon	
Compound species	Solution prosess	<u>ide</u> .
🗌 🗔 gas 🖉 ideal O real – 41	C ideal solutions	
	- Pseudonums	
pure liquids 10	applu Edit	
pure solids 22	Volume data	
	assume molar volumes of	
	solids and liquids = 0	
species: 73	C include molar volume data	
	anu prysical properties data	
- Target	paraequilibrium & Gmin edit	
- none -	Legend Show 👁 all 🔿 selected Virtual species: 0	
Estimate T(K): 1000	Total Species (max 5000) 73	
	species: U Select <u>Total Solutions (max 200)</u> 0	
Quantity(mol): JU	Total Phases (max 1500) 33	
<a> 	Platmj V Delta H(J) V normal C normal + transitions	
0.2 0.6 0.1	600 1 C transitions only	
10 steps 🗖 Table	5 calculations O open Calculate >>	
FactSage 7.3 w:\MSE3	1302\Exercise\EquiTin_Recovery.DAT	

Sustainable Materials Processing Lab

FactSage Team

Sustainable Materials Processing Lab

FactSage Team

Save the Graph and Equilib settings: ".dat" file

Save the Graph with the name "Tin_Chlor_Part III". Also, go back to the Menu Window, save the Equilib settings as a ".dat" file.

Save File in w:\MSE302\Exercise\Equi*.dat	×
Enter the file number (1 - 9999)	ОК
or enter the file name, for example	Cancel
My very favorite calculation	
- avoid the special characters $??"^1\!\!\sim\!\!\!\infty\&:\!\!\wedge$	
Tin_Recovery_Variable Fe	

A Note on the Real-world Production

In the actual production, with the majority of Sn being recovered as $SnCl_4$ to the gas phase, Fe_2O_3 that forms on the exposed iron will become a "protective" layer. Consequently, the amount of O_2 required will be difficult to predict ahead of time, and we will need to monitor the process for free Cl_2 and $FeCl_2$ to ensure that we:

- (a) add enough chlorine we will need to keep the free Cl_2 at around 2% in the gas phase; and,
- (b) add enough air to prevent iron chlorination.

For the commercial-scale production, an effective operating strategy that has been proven successful is to monitor the **oxygen** level in the off-gas and to control the feed rates of **chlorine** and **oxygen** (in air) to match the amounts of iron and tin that are actually reacting.

The following exercise focuses on the tin chlorination process with variable **oxygen** and **chlorine**.

Exercise 1. A Small Excess of Both Chlorine and Oxygen

In the first exercise, we will supply **excess chlorine** and **oxygen** to the reactor. In doing so, we will have some oxygen that can be measured in the product stream and some excess chlorine (that we can absorb and reuse). By having a (small) excess of both the reacting gases, we ensure that there will always be a driving force for the reactions we want.

For simplicity, we shall assume chlorine and oxygen that are supplied have the same excess ratio.

Exercise 1. A Small Excess of Both Chlorine and Oxygen

存 Equilib - Reactants	$ \square$ \times
File Edit Table Units	We are again calculating the tin recovery based on 1 mol of Sn.
1.5	
	The number of moles of the exposed iron are variable.
Quantity(mol)	Species Phase T(C) P(total)** Stream# Data Sn solid-1 Solid(wh) Image: Solid Solid(wh) Image: Solid So
+ <a> + <2B> + <0.75AB> + <2.821AB>	Fe To recover 1 mol of Sn as $SnCl_4$, 2 mol of Cl_2 are required. By multiplying a factor greater than 1, we are providing excess Cl_2, and the excess ratio is calculated as $(B - 1) \times 100\%$. If you need help regarding B (beta), right click to open "Help".
	To oxidize <a> mol of Fe to Fe_2O_3, at least <0.75A> mol of O_2 are required. If
	we use the same excess ratio as Cl_2 , then the number of moles of O_2 that are
	supplied are <0.75AB>.
	✓ Initial Conditions
	For every mole of O_2 introduced, 3.76 mol of N_2 is introduced.
FactSage 7.3 Compound:	1/14 databases Solution: 0/15 databases
ractoage r.o compound.	68

Sustainable Materials Processing Lab

FactSage Team

Exercise 1. A Small Excess of Both Chlorine and Oxygen

存 Equilib - Menu: comments	- 🗆 X
File Units Parameters Help	
T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	🕂 🖳 🔁 🐨
Reactants (5)	
Sn + <a> Fe + <2B> Cl2 + <0.75AB> O2 + (25C,s1,#1) (25C,s1,#1) (25C,g,#2) (25C,g,#3)	<2.821AB> N2 (25C,g,#3)
Products	
Compound species Figas I ideal C real 41	Custom Solutions O fixed activities Details Details Details Details Details Details
pure liquids 10	apply Edit
+ pure solids 22	Volume data
	🧐 antida and liquida – O
We are considering the effect of	the amount of the iron that is reacting.
	J_ paraequilibrium & Limin _edit
Estimate T(K): 1000 A small excess ratio (~10%	%) is used for both the input chlorine and oxygen.
Quantity(mol): 0 solutions: 0	<u>Total Phases (max 1500)</u> 33
Final Conditions	Equilibrium
	• normal • normal + transitions
10 steps Table 5 calculations	
FactSage 7.3 w:\MSE302\Exercise\EquiTin R We are conside	ring the process at 500 °C.

Sustainable Materials Processing Lab

FactSage Team

Exercise 1. A Small Excess of Both Chlorine and Oxygen

After the calculation, plot the total amount of Sn in the gas phase. For varying amounts of iron reacting, is the recovery of Sn efficient? What are the levels of oxygen and chlorine in the off-gas?

Exercise 2. Adding Too Much Air

In the second exercise, we will consider the situation if the process is out of control and too much air is introduced to the reactor.

We will consider the fixed amount of the exposed iron: for 1 mol of Sn, 0.2 mol of the exposed iron. For the input chlorine, the excess ratio is set as 10%.

Let us vary the amount of oxygen supplied.

Exercise 2. Adding Too Much Air

存 Equilib - Reactants	- 🗆 X
File Edit Table Units	We are again calculating the tin recovery based on 1 mol of Sn.
1.5	The number of moles of the exposed iron are 0.2.
Quantity(mol) 1 + 0.2 + (20)	Species Phase T(C) P(total)** Stream# Data Sn solid-1 Solid-1 Solid-1 I I Fe solid-1 bcc 25 I I
+ <0.15A> + <0.564A	Excess Cl_2 is supplied, will be set as 1.1 (Menu Window) to give 10% excess ratio.
	To oxidize 0.2 mol of Fe to Fe_2O_3 , at least 0.15 mol of O_2 are required. If excess O_2 are supplied, a factor, <a>, greater than 1, is multiplied. The excess ratio of O_2 is then $(A - 1) \times 100\%$.
	For every mole of O_2 introduced, 3.76 mol of N_2 is introduced.
FactSage 7.3 Compound	Next >> 1/14 databases 0/15 databases 72

Sustainable Materials Processing Lab

FactSage Team
Exercise 2. Adding Too Much Air

存 Equilib - Menu: comments	– 🗆 X
File Units Parameters Help	
T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	111 💷 🔁
Sn + 0.2 Fe + <28> Cl2 + <0.15A> 0.2 + <0.564/	A> N2 g.#3)
Products Compound species + gas • ideal • real 41 aqueous 0 + pure liquids 10	Custom Solutions 0 fixed activities Details 0 ideal solutions Pseudonyms apply Edit
The excess ratio of O ₂ is between 0 to from 1 to 2.	o 100%, which means <a> varies
Target - none - none <th>paraequilibrium & Gmin edit S used for the input chlorine. Total Phases (max 1500) 33</th>	paraequilibrium & Gmin edit S used for the input chlorine. Total Phases (max 1500) 33
Final Chaditions Equilibrium <a> T(C) P(atm) Delta H(J) • n	arilibrium Inormal - transitions Inormal - t
FactSage 7.3 We are considering	the process at 500 °C.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Exercise 2. Adding Too Much Air

After the calculation, plot the number of moles of $SnCl_4(g)$, $Cl_2(g)$, $Fe_2O_3(s)$ and $SnO_2(s)$ against <A>. With increasing the excess oxygen supplied, is Sn efficiently recovered to the gas stream? Why?

Also, plot the mole fraction of oxygen in the off-gas against <A>. If the oxygen level in the off-gas is measured and it reaches ~150 ppm, you would know to cut back on the air feed to the reactor. This means that it would be possible, at least in principle, to use an oxygen analyzer to drive an air flow control valve.

Note that the partial pressure of oxygen does not rise very steeply with excess air, because it is "buffered" by the formation of SnO_2 . The formation of SnO_2 means that less chlorine is used for chlorination of Sn so that chlorine will rise in tandem with oxygen, and the chlorine is present at much higher concentrations (please plot the mole fraction of chlorine in the off-gas against <A>).

Exercise 2. Adding Too Much Air

In an actual process, the excess Cl_2 supplied to the reactor would result in the presence of free Cl_2 in the off-gas. It would be necessary to keep the free Cl_2 in the off-gas in a range of 11~20 vol.%, or even higher, to provide the driving force for the chlorination process. This requires a careful control of the addition rate of chlorine. The free Cl_2 in the off-gas can be recovered and recycled.

Exercise 3. Changing the Amounts of Both Chlorine and Iron to the Reactor In the third exercise, we will be looking at the effects of the varying amounts of both Cl_2 and the exposed iron that reacts on the chlorination process. This can be done by setting the amounts of Cl_2 and iron as variables (next page). Note: when is used, the calculations are repeated for each value.

Exercise 3. Changing the Amounts of Both Chlorine and Iron to the Reactor

存 Equilib - Reactants	- 🗆 X
File Edit Table Units	We are again calculating the tin recovery based on 1 mol of Sn.
1.5	The number of moles of the exposed iron are variable .
Quantity(mol)	Species Phase T(C) P(total)** Stream# Data Sn solid-1 Solid(wh) 25 1 1 Fe solid-1 bcc 25 1 1
+ <2A> + <0.825B> + <3.102B>	Different levels of input Cl_2 are tested by changing $\langle A \rangle$: $A = 1$ means stoichiometric addition of Cl_2 .
	To oxidize $\langle B \rangle$ mol of Fe to Fe ₂ O ₃ , at least $\langle 0.75B \rangle$ mol of O ₂ are required. If we assume the excess rate of O ₂ is 10%, then $\langle 0.825B \rangle$ mol of O ₂ are added.
Ļ	For every mole of O_2 introduced, 3.76 mol of N_2 is introduced.
EastErge 7.2 Concernent	I 1/14 databases Solution: 0/15 databases
r accolage 7.5 Compound.	77

Sustainable Materials Processing Lab

FactSage Team

Exercise 3. Changing the Amounts of Both Chlorine and Iron to the Reactor

存 Equilib - Menu: comments		_		×			
File Units Parameters Help							
	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	11	1 🖳 🕒	*			
Reactants (5)							
Sn + (25C,s1,#1)	<pre></pre>	3> N2 1,#3)					
Products							
Compound species	-Solution phases	Custom Solution 0 fixed activitie 0 ideal solution Pseudonyms 	s Details is Edit				
+ pure solids + pure solids Specie: Cl ₂ (i	over the range from under-supple., $A > 1$).	y of Cl ₂	(i.e.,	A <	1) to o	ver-sup	ply of
		paraequilibrium	n & Grmin ∈e	edit			
- none - Estimate T(K): 1000	For every mole of Sn recovered	, <mark>0.2</mark> mo	ol of F	e rea	acts.		
Quantity(mol):	solutions: 0	ital Phases (max	: 1500)	33			
Characteristics <a> 0.8 2 0.2 0.2 10 steps	T(C) P(atm) Delta H(J) € qui 500 1 C tra	librium rmal C nor nsitions only en C.	mal + transit alculate >	ions			
FactSage 7.3 w:\MSE30	I2\Exercise\EquiTin_R, We are considering	the pro	cess a	t 50	0 °C.		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Exercise 3. Changing the Amounts of Both Chlorine and Iron to the Reactor

存 Equilib - Menu: comments		—	×
File Units Parameters Help			
	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	111 🔛 🖻	· · · · · · · · · · · · · · · · · · ·
Reactants (5)	+ Fe + <2A> Cl2 + <0.825B> O2 + (25C,s1,#1) (25C,g,#2) (25C,g,#3)	<3.102B> N2 (25C,g,#3)	
Products Compound species + gas ● ideal ○ real 41 aqueous 0 + pure liquids 10	-Solution phases	Custom Solutions O fixed activities Details O ideal solutions Pseudonyms apply Edit	s
specie Cl ₂ (i	over the range from under-su.e., $A > 1$).	upply of Cl ₂ (i.e.,	A < 1) to over-supply of
		📃 🔲 paraequilibrium & Gmin	edit
- none - Estimate T(K): 1000	For every mole of Sn recove	ered, 0.6 mol of F	Fe reacts.
Quantity(mol): 0	solutions: 0	Total Phases (max 1500)	33
Final Conditions <a> 0.8 2 0.2 0.6 10 steps Table	T(C) P(atm) ▼ Delta H(J) ▼ 500 1	Equilibrium Image: marked strength of the strengt	sitions >>
FactSage 7.3 w:\MSE3	D2\Exercise\EquiTin_R We are consider	ing the process a	at 500 °C.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Exercise 3. Changing the Amounts of Both Chlorine and Iron to the Reactor

After each calculation with different , plot the levels of oxygen and chlorine in the off-gas (e.g., mol fraction) against <A>.

Save the three graphs and use the Figure Module to superimpose them. Make sure you use different line types so that the conditions can be differentiated.

- (a) From the superimposed graph, can you see the correlation between the oxygen level in the off-gas and the chlorine supplied to the reactor?
- (b) Can you suggest proper operating conditions (i.e., <A> and values) based on the total Sn recovered to the gas phase?
- (c) Given B = 2, if we wish to increase the recovery of Sn to the gas phase, should we increase or decrease the excess rate of O_2 ?

Final Thought

You need to be aware that all the above calculations that have been performed using FactSage are equilibrium calculations. The real process may behave differently, because of kinetics. The oxidation of metals is one of the very important chemical reactions. Take the oxidation of iron for example. The species that may exist at equilibrium include metallic iron (bcc, fcc) and various types of iron oxides. The thermodynamic data for metallic iron are stored in FactPS, and the data for oxides can be found in both FactPS and FToxid. (You should use the View Data Module to check the Compounds and Solutions for the Fe-O system)

Reminder: when multiple thermodynamic databases are selected, special care must be taken so that the same compound is selected only once.

For iron oxides, iron can take the oxidation state of Fe^{2+} and Fe^{3+} . To aid your understanding, we can view Fe^{2+} and Fe^{3+} as two separate species. The relative amounts of Fe^{2+} and Fe^{3+} depend on the oxygen potential (i.e., oxygen partial pressure). Therefore, when calculating the equilibrium involving the metal oxides with different oxidation states, the oxygen partial pressure, P_{0_2} , must be specified. The input amount of the gas component will be automatically adjusted so that the desired P_{0_2} is met.

Sustainable Materials Processing Lab

Let us study the oxidation of iron by looking at the dependence of the oxidation state of iron on the oxygen partial pressure. We will adjust P_{O_2} and see what iron oxide is stable. We will fix the temperature at 1400 °C, the pressure at 1 atm.

Reactants Window

存 Equilib - Reactants	- 🗆 X
File Edit Table Units Data Search Data Evaluation Help T(C) P(atm) Energy(J) Quantity(mol) Vol(litre) Don't forget the Directory. Select the	e units.
Quantity(mol) Species Phase T(C) 1 Fe • 0	P(total)** Stream# Data 1 2
We will oxidize 1 mole of iron. For the quant automatically adjusted when we define P_{0_2} contains oxygen).	ntity of O_2 , we set the value to 0 since it will be Q_2 (we only need to tell FactSage that the system
We don't need to check "Initial Conditions" because we are not calculating the changes in the thermodynamic properties.	T Initial Conditions
Next >> FactSage 7.3 Compound: 1/14 databases Solution: 0/15 databases	84

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Database(s)

🕞 Equi	lib - Reactants	$ \Box$ \times	
File Ed	it Table Unit	ts Data Search Data Evaluation Help	
	Data Search		
FactSa	- Databases - Cact FactPS Froxid FTsalt FTsalt FTsalt FThall FTOxCN FTfitz FThelg FTpulp FTIite - Information Compound: C: FTlite - FACT Solution: C:\Fa - FTlite - FACT Solution: C:\Fa	FactSes Selected because we need to consider O ₂ (g). FToxid contains models for some solid solutions of iron oxide, for example spinel and wustite. FTmisc contains the model for liquid Fe with limited solubility of oxygen. (Same database selection when calculating the Fe-O ₂ phase diagram.) Freder of Magaloy compounds (2019) FeedSage(FACTDATAFTIke60base.ord) Aladoy and Mg-aloy solutions (2019) Incled date compounds (2019) Incled date compounds (2019) Limits Unclude compounds (2019) Limits Incled date compounds (2019) Limits Incled date compounds (2019) Limits Incled date compounds (2019) Limits Unclude compounds (2019) Limits Incled date compounds (2019) Limits Unclude compounds (2019) Limits Unclude compounds (2019) Limits Incled date compounds (2019) Limits Unclude compounds (2010) Limits Limits Unclude compounds (2010) Limits Limits Unclude compounds (2010) Limits L	<u>۲</u>
			85

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Set P₀₂

存 Equilib Menu last system	🕼 Selection - Equilib - no results - 🛛 🚽 🗸
File Units Parameters Help	File Edit Show Sort
	Selected: 5/5 GAS X denotes species excluded by default
Reactants (2)	+ Code Spe We set P_{O_2} from 10^{-12} to $10^{-0.1}$ atm at $10^{0.1}$ atm intervals. + 1 0(g) FactPS gas + 3 03(g) 2 02(g) FactPS gas + 4 Fe(g) 2 02(g)
Compound species Compound species Gaueous Compound species Compound specie	 Fe0(g) - clear - standard stable phase - standard stable phase - standard stable phase - dormant (metastable) phase F - formation target phase P - precipitate target phase C - cooling gas phase I deal Solution a Activity Help
Final Conditions	permit selection of X' species Help Suppress Duplicates Edit priority list :
(A) 	Show Selected Select All Select/Clear Clear OK
10 steps Table	1 calculation C open Calculate >>
All gaseous spec	ies are selected, and
the ideal gas mo	del is used.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window: Select Pure Solids

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Select Solution Phases

存 Equilib Menu last system	− □ × Custom Solutions	×
File Units Parameters Help	Eixed Activ	ity: 1 Species
🗅 😅 🖬 T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	1: O2(g):	Log10(a) = -12 -0.1 0.1 (i.e. 120 values)
Reactants (2)	Ideal Solut	ions: 0 Phases
Fet 0.02		
		ОК
Products		•
Compound species Solution phases	Custom Solutions 1. fixed activities Details	
+ Base-Friase Full Name + gas € ideal C real 5 + FTmisc-FeLQ Fe-lig	0 ideal solutions	
aqueous 0 I FToxid-SLAGA A-Slag-liq all oxides + S	- Pseudonyms	
pure liquids 0 + FT oxid-SPINA A-Spinel	apply 🗖 🔄 Edit	
* + pure solids 5 + FToxid-MeO_A A-Monoxide	Volume data	
* - custom selection	 solids and liquids = 0 	
species: 10	 include molar volume data and physical properties data 	
Select all the solution phases: t	wo liquid	
solutions and two solid solutions	ns. <u>200</u> ⁵	
	Total Phases (max 1500) 11	
Final Conditions	auilibrium	
<a> T(C) P(atm) ▼ Product H(J) ▼ (normal O normal + transitions	
2500 1	transitions only	
10 steps Table 120 calculations C	open Calculate >>	
FactSage 7.3		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window: Set Final Conditions

Fquilib Menu last system		– 🗆 X	
File Units Parameters Help	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	III 🖳 🔚 💌	
reactants [2]	Fe + 0 02		
Products Compound species + gas ● ideal C real 5 aqueous 0 pure liquids 0 * + pure solids 5 * - custom selection species: 10	Solution phases * + Base-Phase Full Name + FTmisc-FeLQ Fe-liq I FToxid-SLAGA A-Slag-liq all oxides + S + FToxid-SPINA A-Spinel + FToxid-MeO_A A-Monoxide	Custom Solutions 1 fixed activities Details 0 ideal solutions Pseudonyms apply Edit Volume data • assume molar volumes of solids and liquids = 0 • include molar volume data and physical properties data	
- none - Estimate T(K): 1000	Legend I - immiscible 1 + - selected 3 This option between diff	permits us to find a Ferent oxidation pro	Ill the transition temperatures oducts.
Quantity(mol): 0 Final Conditions (A) 10 steps Table	T(C) P(atm) Product H(J) (1400 1 120+ calculations)	Total Phases (max 1500) 11 Equilibrium Image: Contrast of the second	
FactSage 7.3	idation of iron occurs at 1400	°C.	89

Sustainable Materials Processing Lab

FactSage Team

Results: When $P_{0_2} = 10^{-4}$ atm

Sustainable Materials Processing Lab

FactSage Team

Results: Plot the masses of oxidation products, i.e., gram~ P_{0_2} .

Sustainable Materials Processing Lab

FactSage Team

Results: Plot the masses of oxidation products, i.e., gram $\sim P_{0_2}$.

Sustainable Materials Processing Lab

FactSage Team

Recall we studied the **solution** properties by looking at an **isothermal mixing process** (Chapter 4.3). Now let us calculate some mixing properties using the Equilib Module.

Say we would like to mix varying amounts of liquid Pb and liquid Fe at 2500 °C and 1 atm. We assume the total amount of Pb and Fe is 1 mole.

The mixing process can be described as the following:

 $X_{\text{Pb}}\text{Pb}(l) + (1 - X_{\text{Pb}})\text{Fe}(l) \xrightarrow{2500 \text{ °C,1 atm}} 1 \text{ mole Solution}$

Reactants Window: Define Reactants

🗘 Equilib Reactants				_		×
File Edit Table Units Data	Search Data Evaluation	Help				
	T(C) P(atm) Ene	ergy(J) Quantity(g) Vol(litre)		<u>111</u>	9	1
Don't	forget the Dir	ectory.				
Quantity(g)	Species	Phase T(C) P(total)**	Stream	# Data	
1	РЬ	v		1		
+ 1	Fe	v				
					_	
	Sr	becies that are b	being mi	ixed.		
			0		_	
				Initial Cor	nditions	
			-			
		Next >>				
FactSage 7.3 Compound: 1/	/14 databases Solution:	1/15 databases				///

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Reactants Window: Database(s)

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Choose Units and Input the Quantity of Species

Equilib - Reactants	- 🗆 ×
File Edit Table Units Data Search Data Evaluation Help	
T(C) P(atm) Energy(J) Quantity(mol)	Vol(litre)
1-2	Choose the units. Use mol for quantity.
Quantity(mol) Species Phase (A> Pb	T(C) P(total)** Stream# Data
	Initial Conditions
Next >>	
FactSage 7.3 Compound: 1/14 databases Solution: 1/15 databases	

Sustainable Materials Processing Lab

FactSage Team

Reactants Window: Specify the Initial Conditions

存 Equilib Re	actants						_	×
File Edit Tak	ole Units Da	ata Search Data Evaluatio	on Help					
□ 🗃 +		T(C) P(atm) I	Energy(J) Quantity(mol)) Vol(lii	tre)	•		
1-2				Ch	oose	the ur	nits.	
Qu (<a>	Jantity(mol)	Species Ph	Phase liquid	•	T(C) 2500	P(total)** 1.0	Stream# Dat	a
+ <1-A>		Fe	liquid	•	2500	1.0	2	
	L.	We are mixin B at	g liquid Pb oth liquid I : 2500 °C a:	an Pb a nd	d liq and l 1 atr	uid Fe. iquid F n.	Fe are ini	itially
		** P(total) is the hydros For a gaseous str partial pressures of	tatic pressure above th eam this is the sum of t the species in that stre	e phas he eam.	e.			
						V	Initial Conditions	
			Next >>				Che	eck "Initial Conditions"
FactSage 7.3	Compound:	1/14 databases Solutio	on: 1/15 databases					

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Menu Window: Select Products and Define Final Conditions

存 Equilib 🛛 Menu last system		– 🗆 X		
File Units Parameters Help				
	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	🚻 🗗 🔁		
Reactants (2)	<a> Pb + <1-A> Fe (2500C,liq,#1) (2500C,liq,#2)			
Products Compound species gas © ideal © real 0 aqueous 0	Solution phases * Hease Full Name I FTlite-Liqu Liquid FTlite-A1 FCC-A1	Custom Solutions 0 fixed activities Details 0 ideal solutions Pseudonyms Edit		
Choose FTlite-Liqu only, and use the default [I]-option. From the Pb-Fe phase diagram (Documentation), it is seen that the immiscibility exists for liquid Pb and liquid Fe.				
Target - none - Estimate T(K): 100 Quantity(mol): D pu	e would like to perform the c re Fe to pure Pb using the st	calculations from ep of 0.005.		
Final Conditions <a> 0 1 0.005 10 steps Table FactSage 7.3	T(C) P(atm) Delta H(J) 2500 1	Equilibrium • normal • transitions • transitions only transitions is isotherma	l.	

Sustainable Materials Processing Lab

Results

Sustainable Materials Processing Lab

FactSage Team

Sustainable Materials Processing Lab

FactSage Team

Sustainable Materials Processing Lab

FactSage Team

Menu Window: Select Products and Define Final Conditions

存 Equilib 🛛 Menu last system		– 🗆 X	
File Units Parameters Help			
D 🚅 🖶	T(C) P(atm) Energy(J) Quantity(mol) Vol(litre)	M 🗗 🕞	
Reactants (2)	<a> Pb + <1-A> Fe (2500C,liq,#1) (2500C,liq,#2)		
Products Compound species gas () ideal () real () aqueous ()	-Solution phases	Custom Solutions 0 fixed activities 0 ideal solutions Pseudonyms E dit	
^{pure soli} This time	, we do not consider the imr	niscibility. The single	e-phase setting is chosen.
species: 0 Target - none - Estimate T(K): 1000 Quantity(mol): 0	Legend + · selected 1 species: 2 solutions: 1	solids and ilgulds = 0 include molar volume data and physical properties data paraequilibrium & Gmin edit Virtual species: 1 <u>Total Species (max 5000)</u> 2 <u>Total Solutions (max 200)</u> 1 <u>Total Phases (max 1500)</u> 1	
Final Conditions		Equilibrium	
<a> 0 1 0.005 	ILU P(atm) Image: Delta H(J) 2500 1 201 calculations	rormal C normal + transitions transitions only open Calculate >>	
FactSage 7.3			

102

Sustainable Materials Processing Lab

FactSage Team

Results: Make Plots $\Delta_{\min} g_{2500 \circ C} \sim X_{Pb}$

MSE Department, University of Toronto

103

Sustainable Materials Processing Lab

FactSage Team

Results: Use the Figure Module to superimpose the two figures

FactSage Team

Results

Use the [I]-option for FTlite-Liqu, please plot other mixing properties

 $\Delta_{\min} h_{2500 \circ C} \sim X_{Pb}$ and $\Delta_{\min} s_{2500 \circ C} \sim X_{Pb}$.

Then, please go back to the Menu Window, and save the solution properties for FTlite-Liqu.

(It is also recommended that you use Fact-XML to plot all the solution properties)

Some general tips for the Equilib Module are summarized in a Q&A format

Q1: How to perform calculations when the mass of the reactant changes?

A1: You can use <A> or <aA + b> or <a + bA> where "a" and "b" are constants and <A> (alpha) is a variable to represent the quantities of the reactants.

Q2: How to calculate the adiabatic flame temperature?

A2: After inputting the initial temperature, you can leave the final temperature blank, and set 0 for the Enthalpy change .

Q3: I saw in the FToxid database, the slag is modeled as SLAGA, SLAGB, SLAG?, which one should I select?.

A3: On the Menu window, right click on FToxid-SLAGA, FToxid-SLAGB, FToxid-SLAG?, and then check the phase information. You should find the description which details the elements that are considered in the phase model, and then choose the model which contains the elements of interest.

Some general tips for the Equilib Module are summarized in a Q&A format

Q4: I want to perform some calculations about high-temperature treatment of solid wastes (slag, fly ash, mine tailings, municipal solid wastes...)?

A4: Sine the solid wastes are mostly high-order systems, trial-and-error calculations are required to find the optimal phase selection. If the molten oxide slag is expected, "FToxid-SLAG?" can be used for preliminary calculations; if you are interested in the chlorine behavior, you should select the FTsalt database.

Q5: How to control the oxygen partial pressure?

A5: You need to use the FactPS database. Right click on the gas (Compound species on the Menu Window), then right click on the "+" column of O_2 to set the activity which is numerally identical to partial pressure of O_2 in the ideal gas mixture. The oxygen input amount will be automatically calculated.

Some general tips for the Equilib Module are summarized in a Q&A format

Q6: How to calculate the equilibrium composition of slag by specifying the activity of the slag components?

A6: Right click on the FToxid-SLAGA, and use the [C]-option. This will permit us to specify the activity of the slag component.

Q7: How to determine the solidus temperature and liquidus temperature?

A7: Right click on the liquid phase (e.g., FTlite-Liqu), and use the [P]-option for the calculation of liquidus temperature and [F]-option for the calculation of solidus temperature. Also, you need to leave the temperature (Final Conditions) blank. However, for a complicated system, these two temperatures may not be obtained by this approach. In this case, it is suggested to activate the "normal + transitions" option, and generate the graph to find these two temperatures (We will discuss this in the advanced applications).
Some general tips for the Equilib Module are summarized in a Q&A format

Q8: What should I do if the solution model does not contain the species I want to calculate? For example, TiO_2 is not included in the FToxid-SLAG.

A8: If the amount of the species is low, we can consider using the dilute solution model. Instructions can be found in the help file (Select/Slide Show/Advanced Features).

Q9: Based on the information shown in the Documentation Module, the system I am investigating has not been optimized by any of the available FactSage databases? What should I do?

A9: Please consider building a private database for the system of interest using the assessment papers that have been published.

Some general tips for the Equilib Module are summarized in a Q&A format

Q10: I want to analyze a system containing metastable phases, for example, Fe-C system. What should I do?

A10: Do not select C(s) (Graphite), but select $Fe_3C(s)$ (Cementite), and then perform the calculation.

Q11: I am experiencing "Abort" issue (no solution) even though it is a simple problem?

A11: You can try to add a small amount of argon (e.g., 1E-6) to the list of reactants.

Question 1. Use the Equilib Module to solve the following questions.

(1) 1 mole of H_2O becomes a gas mixture at 2500 °C and 1 atm. Calculate the equilibrium partial pressure of H_2 in the gas mixture.

(2) For a gas mixture containing 2 mole of H_2O , 0.79 mole of N_2 , and 0.21 mole of O_2 , calculate at 25 °C and 1 atm the equilibrium partial pressure of H_2O .

(c) Heating of LVDS 3 (NaHCO₃) results in the formation of Na₂CO₃, CO₂, and H₂O, find the minimum temperature for this reaction.

(d) Find the Enthalpy for 1 mole of $H_2O(s)$, 1 mole of $H_2O(l)$, and 1 mole of $H_2O(g)$ when the temperature is 150 °C and the pressure is 1 atm.

(e) Find the composition and temperature of the system when 10 J of energy is supplied to 1 gram of water at 25 °C.

(f) Calculate the final temperature when 1 gram of ice (0 °C) and 2 gram of hot water (90 °C) are mixed. Assume no heat exchange with the surroundings.

Question 2. Mixing Properties

(1) Use FTlite database to calculate the Al-Mg phase diagram. $T(^{\circ}C) \sim X_{Mg}$

(2) From the diagram, you should see that at 800 °C, the system exists as liquid over the entire composition range, i.e., X_{Mg} varies from 0 to 1. Calculate and plot for the liquid phase $\Delta_{mix}g_{800 \ ^{\circ}C} \sim X_{Mg}$ and $\Delta_{mix}h_{800 \ ^{\circ}C} \sim X_{Mg}$.

(3) From the diagram, you should see that at 500 °C, the system may exists as two coexisting phases or single phase over the entire composition range. Calculate and plot the molar Gibbs energy of the system when X_{Mg} varies from 0 to 1.