FactSage Practical MSE302

Practical 5. Equilib Module

Advanced Applications

Acknowledgements

- The teaching team of MSE302 is grateful to:
- Professor Mansoor Barati (UofT)
- Professor Elmira Moosavi (ETS)
- Professor Arthur Pelton (CRCT)
- Professors In-Ho Jung and M. A. Van Ende (Seoul National University)
- Dr. Sina Mostaghel (SNC-Lavalin)
- Professor Kinnor Chattopadhyay (UofT)
- Drs. Daigen Fukayama, Takahiro Sasaki (RCCM)
- Drs. Moritz to Baden and Guixuan Wu (GTT Technologies)

Outline

- 1. <u>Databases in FactSage for Steelmaking Applications</u>
- 2. Example 1: Desulfurization (Background)
- 3. <u>Example 1: Desulfurization (Basic Example)</u>
- 4. Example 1: Desulfurization (Advanced Example)
- 5. <u>Example 2: Slag: Enthalpy, Melting Temperature</u>

Databases in FactSage for Steelmaking Applications

In this section, we will use the Equilb Module of FactSage to solve some realworld questions regularly faced in the steel industry. While here we present you the steelmaking applications, you should be aware that FactSage has also found wide applications in the fields of alloy design/development, extraction of base metals, etc. Please review the Documentation Module to find the applications of different FACT databases. The Help Files also include a number of advanced industrial examples.

First, let us review the FactSage databases which are particularly developed for **steelmaking** applications (pyrometallurgical extraction and solidification) as well as some key phase models.

Databases in FactSage for Steelmaking Applications

Database	Description			
FactPS	All gaseous species, stoichiometric solids and liquids.			
FToxid	Frequently updated oxide database containing (i) a large number of condensed solution phases (slag, spinel, monoxide, olivine, etc.); and (ii) pure solids and liquids, but no gaseous species.			
FTmisc	FeLq solution which is the most reliable liquid steel database for steelmaking calculations, for example, slags/refractories/gases/ molten iron .			
FSStel	Solid and liquid steel phases (also includes small number of gases, oxides, sulfides, nitrides, etc.) and is used for: (i) steel solidifications and alloy design; and (ii) liquid steel: reasonable calculations for steelmaking applications.			

Database priority for steelmaking calculations:

(a) FToxid > FTmisc > FactPS: without FSStel for pyrometallurgical calculations.

(b) FToxid > FSStel > FactPS: with FSStel for steel solidification related calculations.

Sustainable Materials Processing Lab

Main solution phases when T > 1550 °C (steelmaking)

Note: these phases may still exist even when T < 1550 °C.

Phase	Description			
	Major oxide components Al ₂ O ₃ -CaO-FeO-Fe ₂ O ₃ -MgO-SiO ₂			
Slag [I]-option	If the system contains other oxide components, for example, MnO, Mn_2O_3 , CoO, NiO, PbO, ZnO, TiO ₂ , Ti ₂ O ₃ , etc. please consult Documentation for the limitations. Also, the gas solubility such as S (SO ₂), P, H (OH), N, C, F, is considered.			
Spinel [I]-option	(SPIN) can be described as (Mg, Fe, Mn, Co, Ni, Zn)[Al, Fe, Cr, Co, Mn, Va] ₂ SiO ₄ , extensive solid solution containing MgAl ₂ O ₄ , MgCr ₂ O ₄ , MgFe ₂ O ₄ , FeCr ₂ O ₄ , Fe ₃ O ₄ , FeAl ₂ O ₄ , Cr ₃ O ₄ , MnAl ₂ O ₄ , MnCr ₂ O ₄ , MnFe ₂ O ₄ , etc.			
Monoxide	(MeO_) can be described as CaO-MgO-FeO-Fe ₂ O ₃ -MnO-NiO-Al ₂ O ₃ -Cr ₂ O de Covering most famously: lime (CaO), periclase (MgO) and wüstite (FeO) [I]-option should be considered especially when CaO and MgO exist togo			

Main solution phases when T > 1550 °C (steelmaking)

Note: these phases may still exist even when *T* < **1550** °C.

Phase	Description			
α-, α'-Ca2SiO4	(aC2S, bC2S) Ca_2SiO_4 (CS2) rich solution with limited solubility of Mg_2SiO_4 , Fe_2SiO_4 , Mn_2SiO_4 , etc.			
Olivine	(Oliv) can be described as (Mg, Fe, Ca, Mn, Ni, Zn, Co, Cr, etc.) ₂ SiO ₄ , covering forsterite (Mg ₂ SiO ₄), fayalite (Fe ₂ SiO ₄), γ -Ca ₂ SiO ₄ , monticellite (CaMgSiO ₄), tephroite (Mn ₂ SiO ₄), [I]-option is used when Ca ₂ SiO ₄ , exists.			
Corundum [I]-option	(CORU) can be described as $(Al, Cr, Fe, Mn)_2O_3$. Solid miscibility gaps exist between the constituents.			
Mullite(Mull) non-stoichiometric $Al_6Si_2O_{13}$ with possible solubility (MulF) stoichiometric $Al_6Si_2O_{13}$ with dilute $Fe_6Si_2O_{13}$.				

Main solution phases when T > 1550 °C (steelmaking)

Note: these phases may still exist even when T < 1550 °C.

Phase	Description			
Mn/Ti oxides	 ✓ ilmenite (ILME): FeTiO₃ (ilmenite)-Ti₂O₃-MgTiO₃-MnTiO₃ + Al₂O₃ ✓ pseudo-brookite (PSEU): Ti₃O₅-FeTi₂O₅-MgTi₂O₅-MnTi₂O₅ ✓ Ti-spinel (TiSp): (Mg, Fe, Mn)[Mg, Fe, Mn, Ti, Al]₂O₄ ✓ Rutile (TiO2): TiO₂ + Ti₂O₃-ZrO₂ solid solution 			

Main solution phases when T < 1550 °C (solidification of slag)

Phase	Description
Wollastonite	(Woll) can be described as (Ca, Mg, Mn)SiO ₃ which is a CaSiO ₃ -rich phase stable below 1300 °C.
	Pseudo-wollastonite is stoichiometric CaSiO ₃ stable below 1550 °C.
Pyroxene	(pPyr, oPyr, cPyr) (Mg, Ca, Fe ^{II}) [Mg, Fe ^{II} , Fe ^{III} , Al]{Al, Fe ^{III} , Si}SiO ₆ , which is a MgSiO ₃ -rich phase stable below 1560 °C. proto-, ortho-, low-clino-pyroxene exist. Clino-pyroxene is a CaMgSi ₂ O ₆ -rich phase which is stable below 1390 °C.
Rhodonite	(Rhod) (Mn, Ca)SiO ₃ which is a MnSiO ₃ -rich solid solution stable below 1300 °C.

Main solution phases when T < 1550 °C (mould flux, Na₂O-containing system)

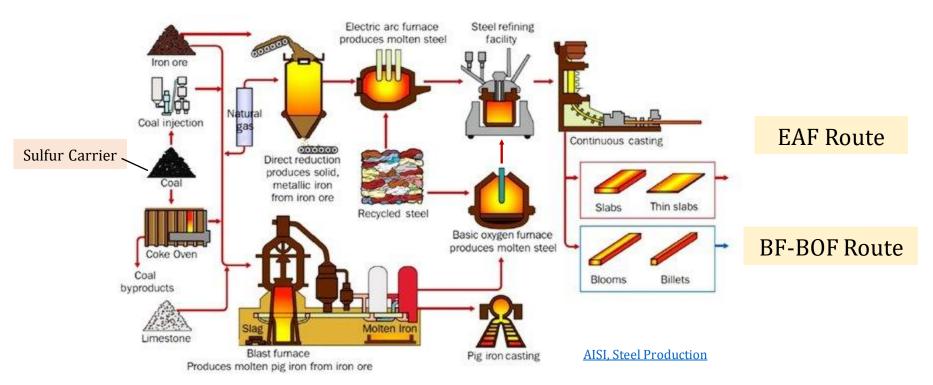
Phase	Description			
Nepheline	(Neph) NaAlSiO ₄ with excess SiO ₂ .			
Carnegeite	(Carn) NaAlSiO ₄ with excess SiO ₂ .			
NaAlO2	(NASI) low temperature-NaAlO ₂ with excess NaAlSiO ₄ .			
NaAlO2	(NASh) high temperature-NaAlO ₂ with excess NaAlSiO ₄ .			
Combeite	(NCSO) Na ₄ CaSi ₃ O ₉ (bombeite) - Na ₂ Ca ₂ Si ₃ O ₉ solid solution.			
Feldspar	(Feld) complete solution between Anorthite (CaAl ₂ Si ₂ O ₈) and Albite (NaAlSi ₃ O ₈)			
NCA2	The structure can be described as $(Na_2, Ca)O \cdot Na_2O \cdot 2Al_2O_3$.			
C3A1	The structure can be described as $Ca_3Al_2O_6$ dissolving Na_2O_6 .			

Main solution phases in the CaO-Al₂O₃-SiO₂-FeO-Fe₂O₃ system with high oxygen partial pressure (e.g., Air)

Phase	Description
CAFS	The structure can be described as $Ca_2(Al, Fe^{III})_8 SiO_{16}$.
CAF6	The structure can be described as $Ca(Al, Fe^{III})_{12}O_{19}$.
CAF3	The structure can be described as $Ca(Al, Fe^{III})_6 O_{10}$.
CAF2	The structure can be described as $Ca(Al, Fe^{III})_4 O_7$.
CAF1	The structure can be described as $Ca(Al, Fe^{III})_2 O_4$.
C2AF	The structure can be described as $Ca_2(Al, Fe^{III})_2O_5$.
C3AF	The structure can be described as $Ca_3(Al, Fe^{III})_2O_6$.

Sustainable Materials Processing Lab

FTmisc Database


Phase	Description
FeLQ	Liquid Fe containing Ag, Al, B, Ba, C, Ca, Ce, Co, Cr, Cu, H, Hf, La, Mg, Mn, Mo, N, Nb, Nd, Ni, O, P, Pb, Pd, S, Si, Sn, Ta, Th, Ti, U, V, W, Zr. This phase is better suited for calculations involving iron and steelmaking processes (optimized for iron-rich solutions only).

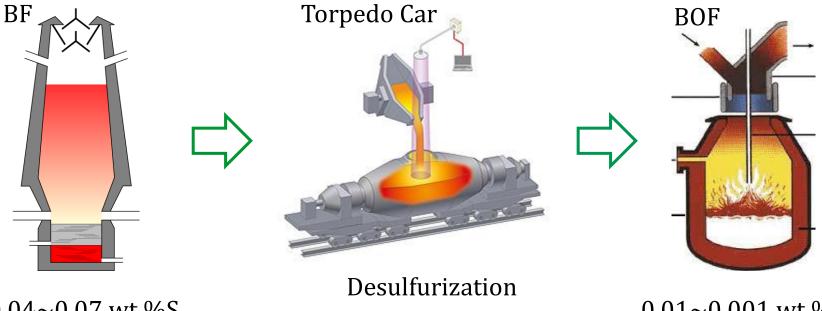
FSStel Database

Phase	Description
FCC/BCC	 Fe, Carbide, and Nitride are all treated as FCC phases. ✓ Fe with N and C: use [J]-option (3-miscibility gaps) ✓ Fe with N or C: use [I]-option (2-miscibility gaps) For BCC phase, [I]-option is recommended.
FCC ordered phase BCC ordered phase	(FCC_L12) and (BCC_B2) normally slow down the calculations significantly. If you are not really interested in order/disorder transitions, do not select these ordered phases.
Carbon	When the C content is lower than ~1%, metastable Fe_3C is normally formed instead of stable solid carbons. Therefore, in the selection of solid phases, "unselect" solid carbon phases to permit the appearance of metastable Fe_3C .

Example 1: Desulfurization (Background)

Background: How Steel is Made

For the BF-BOF Route, there are two "spots" for desulfurization:


(a) Hot Metal (Liquid Iron): after BF in torpedo car or desulfurization station(b) Liquid Steel: during ladle treatment

Sustainable Materials Processing Lab

FactSage Team

Example 1: Desulfurization (Background)

Background: Desulfurization of Hot Metal

0.04~0.07 wt.%S

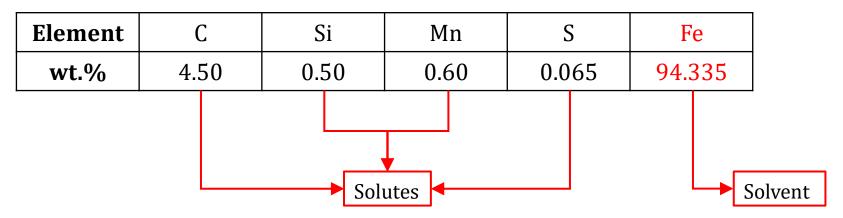
0.01~0.001 wt.%S

15

The hot metal tapped out of the BF typically contains $0.04 \sim 0.07$ wt.%S; the BOF must be charged with de-sulfurized hot metal containing $0.01 \sim 0.001$ wt.%S. The sulfur removal is performed at a desulfurization station, e.g., torpedo car.

Background: Desulfurization of Hot Metal

To remove sulfur from the hot metal, a suitable desulfurizing agent is added. The following agents are usually considered (highlighted in yellow):


 $Mg(s) + [S] \rightarrow MgS(s)$ $CaC_{2}(s) + [S] \rightarrow CaS(s) + 2[C]$ $Mg(s) + CaO(s) + [S] \rightarrow CaS(s) + MgO(s)$

Note: [Element] represents the element dissolved in the hot metal.

In the following pages, we will use the Equilib Module to compare the efficiency of these desulfurizing agents and to calculate the exact amount of desulfurizing agent that is required to achieve the desired sulfur content.

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

Let us assume the composition of hot metal (wt.%):

Note: the main difference between hot metal and liquid steel is the content of carbon.

Now, we will add varying amounts of Mg to this hot metal to remove S as solid MgS. Our calculation will be based on 100 g hot metal.

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

🚺 Equilib	- Reactants					_		Х
File Edit	Table Units	Data Search	Data Evaluati	on Help				
🗅 🖻	+		T(C) P(atm)	Energy(J) Quantity(mol) Vol(litre)		11		*
1 - 6				Reactants Window	v			
	Quantity(mol)		Species	Phase T(C)	P(total)**	Strea	m# Data	
1		C		Common on to of h				
+ 1		Si		Components of h	ot mei	tal.		
+ 1		Mn				1		
+ 1		S				1	_	
+ 1		Fe				1	_	
+ 1						2	_	
 Desulfurizing agent. 								
						Initial Co	onditions	
Next >>								
FactSage 7.3	Compound	1/14 datab	ases Soluti	ion: 0/15 databases				//.

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

🚺 Equ	uilib - Reactants — 🗌 🗙
	idit Table Units Data Search Data Evaluation Help
1.	FactPS is selected so that we have thermo data for some pure solids, for example, MgS.
	□ FToxid □ FSlead SGPS No docabase □ FTsalt □ FSstel SGTE □ FTmisc □ FSupsi SGsold Clear All □ FThall □ FTOxCN □ FTOxCN □ FTOxCN
	FTfriz FTpulp FTpulp FTdemo FTdemo FTdemo FTdemo FTdemo
11	
	- Information -
	Options - search for product species Include compounds Limits
FactSa	Default gaseous ions (plasmas) Organic species CxHy, X(max) = 2 imited data compounds (25C) Minimum solution components: O 1 • 2 cpts
	Cancel Summary OK

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

🗘 Equilib - Reactants	- 🗆 ×
File Edit Table Units Data Search Data Evaluation Help	
T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	
1-6 Selec	ct Units. Use "g" for Quantity.
	T(C) P(total)** Stream# Data
4.50 C Masses of component	s of hot metal.
+ 0.60 Mn	
+ 0.065 S	
+ 94.335 Fe	
+ <a> Mg	2
Varying amounts of Mg.	
varying amounts of Mg.	We are not considering the change in thermo
	properties. No need to check "Initial Condition".
	Initial Conditions
Next >>	
FactSage 7.3 Compound: 2/14 databases Solution: 1/15 databases	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

😝 Equilib - Menu: last system	Selection - Equilib - no results -
File Units Parameters Help	File Edit Show Sort Although we know the desulfurization product
	Selected: 40/52 SOLID Duplicates selected. is MgS, we choose to select all the pure solids.
Reactants (6)	This does not mean and have to do so TootCoord
(mm) 450.0	+ Code Species Data Phase This does not mean we have to do so. FactSage
(gram) 4.50 C	+ 40 C(s) FactPS Graphite will determine which solid(s) should exist
	+ 41 C(sz) Paces ulanonu
Products	+ 42 Mg(s) FactPS solid under the given conditions based on the "Gibbs
Compound species	
🗖 gas 💿 ideal 🔿 real 🛛 0	+ 44 Mg2C3(s) FactPS solid energy minimization" principle.
pure liquids 0	+ 46 SiC(s) FactPS Solid_Alpha + 47 SiC(s2) FactPS Solid_Beta Of course, you can select MgS only.
* + pure solids 40	+ 48 Mg2Si(s) FactPS cF12-Fm(3)m V
	X 49 S(s) FactPS alpha orthorhorr V
* - custom selection species: 40	X 50 S(s2) FactPS beta monoclinic V
species. 40	+ 51 MgS(s) FactPS solid V
	+ 52 SiS(s) FactPS solid V
Target	+ 53 SiS2(s) FactPS solid V
- none -	+ 54 Mn(s) FactPS Solid_Alpha
1000	+ 55 Mn(s2) FactPS Solid_Beta You can eidt the priority list. Here, we follow
Quantity(g): 0	+ 56 Mn(s3) FactPS Solid_Gamma + 57 Mn(s4) FactPS Solid_Delta the sequence: FTmisc > FactPS
	+ 57 Mn(s4) FactPS Solid_Delta the sequence: FTmisc > FactPS.
Final Conditions	+ 59 Mn7C3(s) FactPS M7C3 o
(A) (D)	+ 60 MnSi(s) FactPS cP8-P2(1)3 o
10 steps Table	permit selection of X' species Help Suppress Buplicates Edit priority list : FTmisc FactPS
	Show Selected Select All Select/Clear Clear OK
FactSage 7.3	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

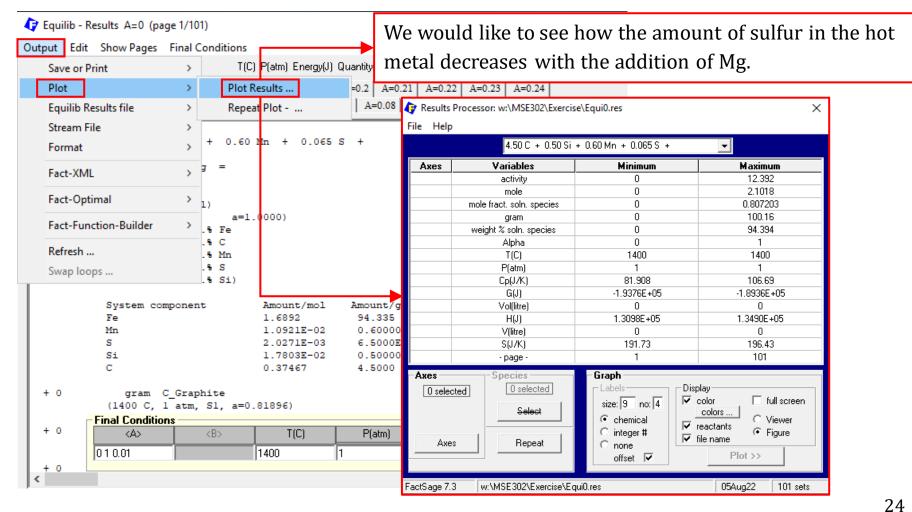
Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

存 Equilib - Menu: last system			- 🗆 X
File Units Parameters Help			
	T(C) P(atm) Energy((J) Quantity(g) Vol(litre)	🔢 🔁 🔁 🔁
Reactants (6)			
(gram) 4.50 C	: + 0.50 Si + 0.60 Mn	This is	hot metal.
Products			
Compound species	Solution phases		Custom Solutions
🔲 🗖 gas 💿 ideal 🔿 real 🛛 0	+ Base-Phase + FTmisc-FeLQ	Full Name Fe-lig	O fixed activities Details Solution Phase FTmisc-FeLQ
aqueous 0	FTmisc-MATT	Matte	Fe-lig steel(I-H Jung model). Don't use with any other lig metal phase. For
pure liquids 0	FTmisc-FeS_	FeS-liq	Iron/Steelmaking Processes, not solidification. Fe-rich(not for stainless)
 + pure solids 40 	FTmisc-MAT2C	C-Liq(Matte/Metal)	The components in FTmisc-FeLQ for the current calculation are:
* - custom selection	FTmisc-PYRRC	C-Pyrrhotite	Fe, C, Mn, S, Si, Mg
species: 40	FTmisc-BCCS FTmisc-FCCS	bcc fcc	
	FTmisc-PCLS FTmisc-MS-c	MeS_cubic	Information
Target - none - Estimate T(K): 1000 Quantity(g): 0	Legend +-selected 1	Show • all C selected species: 6 solutions: 1	Total Species (max 5000) 46 Total Solutions (max 200) 1 Total Phases (max 1500) 41
Final Conditions			E quilibrium
<a> 	T(C) P(atm)	Product H(J)	normal O normal + transitions
0.5	1000 1		C transitions only
10 steps 🗖 Table		1 calculation	C open Calculate >>
FactSage 7.3			

Sustainable Materials Processing Lab

FactSage Team

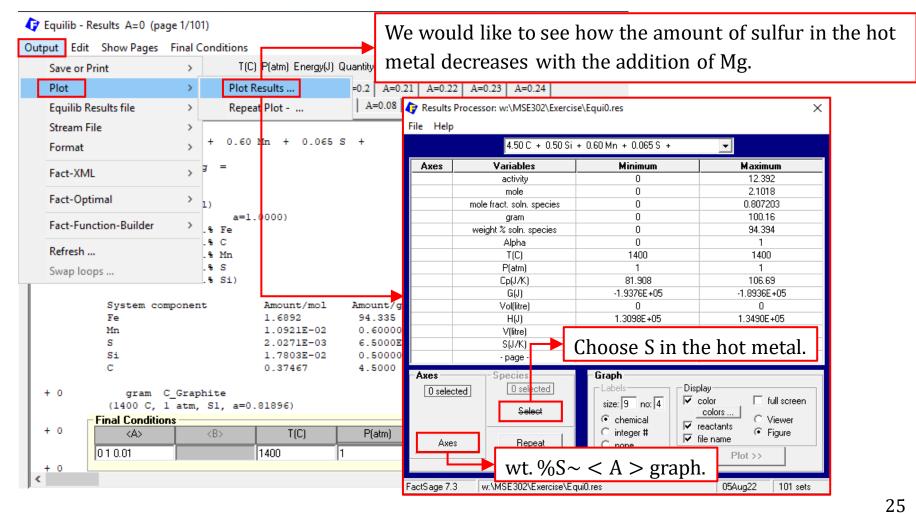
Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg


存 Equilib - Menu: last system			– 🗆 ×						
File Units Parameters Help									
T(C) P(atm) Energy(J) Quantity(g) Vol(litre)									
Reactants (6) (gram) 4.50 C + 0.50 Si + 0.60 Mn + 0.065 S + 94.335 Fe + <a> Mg									
Products									
Compound species Solution p	phases		Custom Solutions						
	Base-Phase	Full Name	0 fixed activities Details						
gas 💿 ideal 🔿 real 🛛 🔤 🛶	FTmisc-FeLQ	Fe-liq	0 ideal solutions						
aqueous 0	FTmisc-MATT FTmisc-FeS	Matte	Pseudonyms Edit						
pure liquids 0 * + pure solids 40	FeS-liq C-Liq(Matte/Metal)	apply Edit							
T+ pare solids 40	assume molar volumes of								
* - custom selection	FTmisc-PYRRC FTmisc-BCCS	C-Pyrrhotite bcc	solids and liquids = 0						
species: 40	FTmisc-FCCS	fcc	and physical properties data						
Target The mass of desulfurization agent Mg • none • none • stimate T(K): is from 0 to 1 g in steps of 0.01 g. Quantity • otal Species (max 5000) • otal Solutions (max 200) 1 • otal Phases (max 1500) 41									
Final Conditions			Equilibrium						
<a> T(C	C) P(atm)	▼ Product H(J) ▼	 normal normal + transitions 						
0 1 0.01 1400	1		C transitions only						
10 steps Table	,	,	C open Calculate >>						
FactSage 7.3									

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto


Basic Example: Desulfurization of Hot Metal Using Mg

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of Hot Metal Using Mg

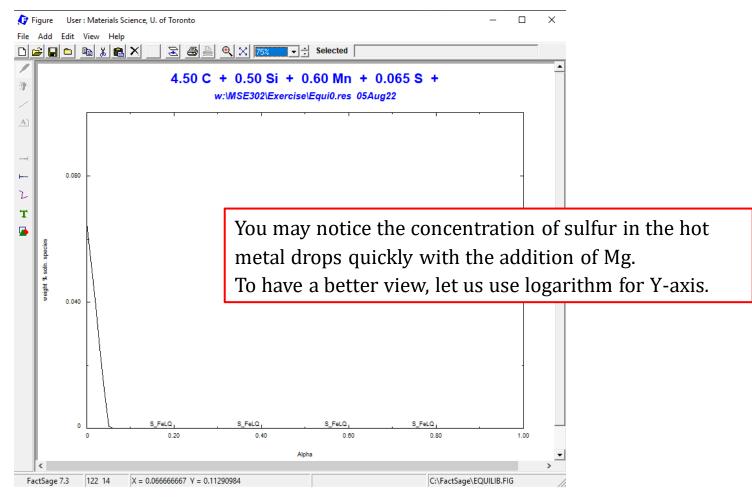
Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

Plot Species Selection - Equilib Results: vs

File Show Select


Fe10S11 Fe11S12 GAS FeLQ ELEMENTS Fe_GAS Mn_GAS S_GAS Si_GAS Mg_GAS C_GAS	0 0 2.0927 0 0 0 0 0 0 0 0 0	0 0 2.1018 0 0 0 0 0 0 0 0						
SOLUTIONS GAS FeLQ ELEMENTS Fe_GAS Mn_GAS S_GAS Si_GAS Mg_GAS C_GAS	0 2.0927 0 0 0 0 0 0 0	0 2.1018 0 0 0 0 0						
GAS FeLQ Fe_GAS Fe_GAS Mn_GAS S_GAS Si_GAS Mg_GAS C_GAS	2.0927 0 0 0 0 0 0 0	2.1018 0 0 0 0 0	0 0 0 0 0 0					
FeLQ ELEMENTS Fe_GAS Mn_GAS S_GAS Si_GAS Si_GAS Mg_GAS C_GAS	2.0927 0 0 0 0 0 0 0	2.1018 0 0 0 0 0	0 0 0 0 0 0					
ELEMENTS Fe_GAS Mn_GAS S_GAS Si_GAS Mg_GAS C_GAS	0 0 0 0 0	0 0 0 0	0 0 0 0					
Fe_GAS Mn_GAS S_GAS Si_GAS Mg_GAS C_GAS	0 0 0 0	0	0 0 0 0					
Mn_GAS S_GAS Si_GAS Mg_GAS C_GAS	0 0 0 0	0	0 0 0 0					
S_GAS Si_GAS Mg_GAS C_GAS	0 0 0 0	0	0					
Si_GAS Mg_GAS C_GAS	0	0	0					
Mg_GAS C_GAS	0	-	-					
C_GAS		0						
_	0	0	0					
	U	0	0					
Fe_FeLQ	1.6892	1.6892	0.803704					
Mn_Fel Q	1.0921E-02	1.0921E-02	5.1962E-03					
S FeLQ	1.2586E-07	2.0271E-03	5.9881E-08					
Si_FeLQ	1.7803E-02	1.7803E-02	8.4702E-03					
Mg_FeLQ	0	9.1863E-03	0					
C_FeLQ	0.374666	0.374666	0.178259					
Clear Display Ma:								
		C_FeLQ 0.374666	C_FeLQ 0.374666 0.374666 Disp					

Choose wt.%S. The amount of Mg.	←
Axes: weight % soln. species vs Alpha × Y-variable X-variable Swap Axes	
Y-axis weight % soln. species	
maximum 0.1 maximum 1 minimum 0 minimum 0	
tick every 0.02	
Cancel Refresh OK	
You may need to manually adjust the maximum and minimum values.	

Sustainable Materials Processing Lab

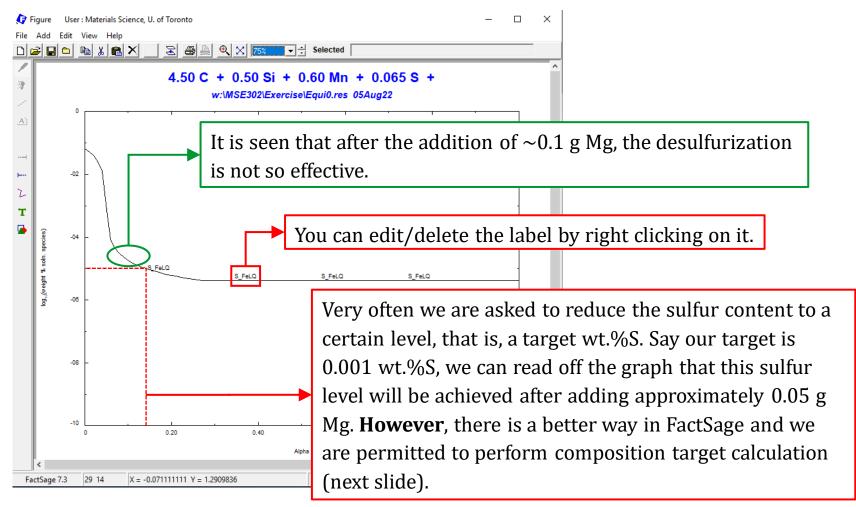
FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

Sustainable Materials Processing Lab

FactSage Team

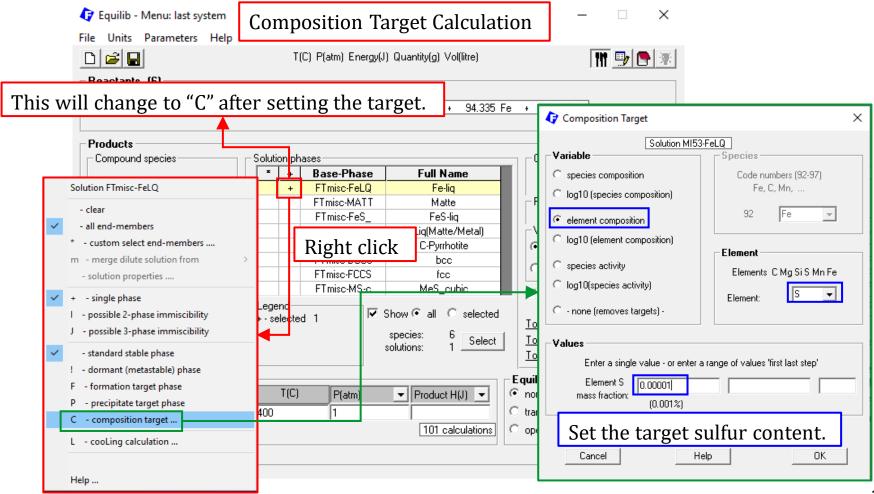
MSE Department, University of Toronto


Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

	activity		🕼 Axes: log10(weight % soln. s	pecies) vs Alpha 🛛 🗙		log10(weight % soln. species)	vs Alpha	×
	mole		Y-variable X-variable Swap A	Axes	File Help)		
	mole fract. soln. spec	cies				4.50 C + 0.50 Si	+ 0.60 Mn + 0.065 S +	•
	gram		- Y-axis	-X-axis	Axes	Variables	Minimum	Maximum
~	weight % soln. specie	~	log10(weight % soln. species)	Alpha		activity	0	12.392
~		5	maximum 0	maximum 1		mole	0	2.1018
	Alpha					mole fract, soln, species	0	0.807203
	T(C)		minimum -10	minimum ()		gram	0	100.16
	P(atm)		tick every	tick every 0.1	Y-axis	weight % soln, species	0	94.394
				0.1	X-axis	Alpha	0	1
	Cp(J/K)					T(C)	1400	1400
	G(J)					P(atm)	1	1
	Vol(litre)		Cancel Refr	resh OK		Cp(J/K)	81.908	106.69
		l				G(J)	-1.9376E+05	-1.8936E+05
	H(J)					Vol(litre)	0	0
	V(litre)					H(J)	1.3098E+05	1.3490E+05
	S(J/K)					V(litre)	0	0
	- page -					S(J/K)	191.73	196.43
	- page -				I	- page -		101
	γ				-Axes	Species	- Graph	
\sim	log10(Y)				0(weight %	soln. sper 1 selected		play
Ť.,					Vs		size: 9 no: 4 🗹	color 👘 full screen
	ln(Y)				Alpł	na Select	💿 chemical 🛛 🚍	C Viewer
	exp(Y)						I ⊂ 1010000 H	reactants
	1/Y				- Axe	es Repeat	C none	file name
							offset 🔽	Plot >>
	phase distribution							
					FactSage 7.	3 w:\MSE302\Exercise\Ed	qui0.res	05Aug22 101 sets
	Deal- to the					,		, - ,
- 1	васк to th	е.	Plot window. Clie	CK ON AXES.				

Sustainable Materials Processing Lab

FactSage Team


Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

存 Equilib - Menu: last system							
File Units Parameters Help	Composition Target Calculation						
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)						
Reactants (6)							
(gram) 4.50 C + 0.	50 Si + 0.60 Mn + 0.065 S + 94.335 Fe + <a> Mg						
(gram) 4.55 C 1 C.							
Products	Now we are performing composition target calculation.						
Compound species Solution	phases Custom Solutions						
aqueous 0 pure liquids 0 * + pure solids 40 * - custom selection species: 40	Base-Phase Full Name 0 fixed activities Details C FTmisc-FeLQ Fe-liq 0 ideal solutions FTmisc-MATT Matte Pseudonyms apply Edit FTmisc-MAT2C C-Liq(Matte/Metal) Volume data volumes of solids and liquids = 0 FTmisc-PYRRC C-Pyrrhotite solids and liquids = 0 include molar volume data FTmisc-FCCS fcc include molar volume data and physical properties data ve this blank because we are calculating the required amount the required amount						
	gives the target sulfur content in hot metal.						
Quantity(g): J0	solutions: <u>Total Phases (max 1500)</u> 41						
Final Conditions <a> Image: A state of the state	C P(atm) Product H(J) 1 ○ normal ○ normal + transitions 1 ○ transitions only ○ open Calculate >>						
FactSage 7.3	1.						

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Basic Example: Desulfurization of <u>Hot Metal</u> Using Mg

Equilib - Results 1400 C, A=0.0494 Output Edit Show Pages Final Conditions] [Composition	Target Calculation]
™ ™ ™ ™ ™ ™ ™ ™ ™ ™	P(atm) Energy(J) Qua	antity(g) Vol(litre)	111 🕞 🕒 😿	
T = 1400 C			FactSage 7.3 🔺	
P = 1 atm $V = 0 dm3$			Mg required to ach	
	T/gram desi	red sulfur con	tent in the hot meta	al.
Mn 6.00	00E-01 00E-01			
Fe 9.43	00E-02 35E+01			
	05E-02			
PHASE: Fe-liq g	, AMOUNT MASS FF gram			
		95E-01 6.6655E-01 28E-02 8.2029E-01		
		38E-03 2.8711E-03 00E-05 3.0200E-06		
		32E-03 4.6699E-05		
	28E-04 8.938	84E-06 4.9659E-02		
		00E+00 1.0000E+00		
System component Amou Fe 1.68		t/gram Mole fractio 35 0.80721	n Mass fraction 0.94395	
Ma 1.00	01E 00 0 C00		C 00007 00	
s (A) (B)	T(C)	D(stes) Draduat U(1)	1 selectrics X	
Si	T(C)	P(atm) Product H(J)		
Mg C	1400 1		Calculate >>	
<			×	

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of Hot Metal Using CaC₂

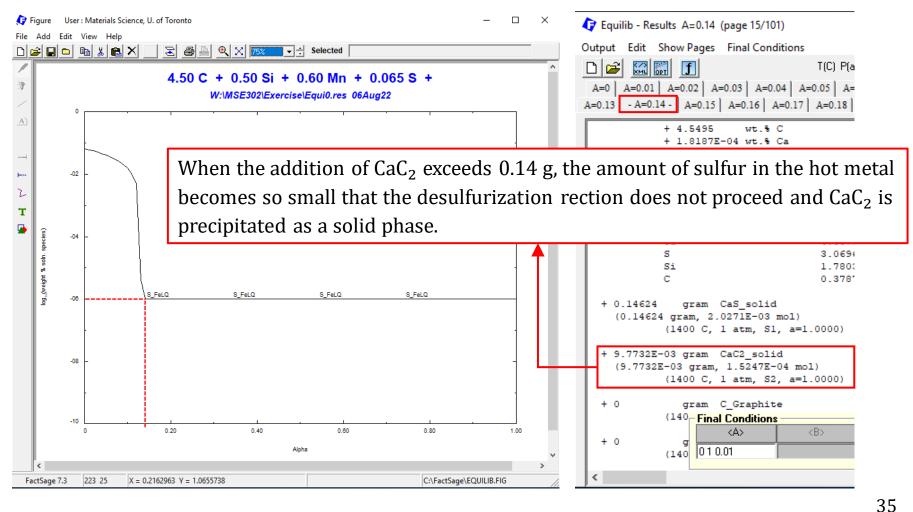
🚺 Eq	uilib	- React	ants												_		×
File E	Edit	Table	Units	Data Sea	arch	Data Eva	aluation	H	lelp								
	2	+				T(C) F	P(atm) E	nerg	gy(J) Quant	ity(g) V	ol(litre)			111	90	-
_	_																
1.	6																
			ntity(g)			Species	\$		Phase	;		T(C)	P(tota	l)**	Stream	n# Da	ta
	4.50)			С						-				1		
+	0.50)			Si						$\overline{\mathbf{v}}$				1		
+	0.60)			Mn						Ŧ				1		
+	0.06	65			S		_				-			_	1	_	
+	94.3	335		— í	Fe		_	, 						_	1	_	
+	(A)			r	CaC2	1					Ţ	, 		_	1	_	
	1.04				0004							1	1				
													_				
					We	ren	lace	Ь	Mg w	ith	Ca	C_					
				Ĺ	***	rep	face	u	1.16	IUII	Gu	<u>u</u> 2.					
														_			
															Initial Cor	nditions	
								N	ext >>								
FactSag	je 7.3	C	Compound	: 2/14	databas	ses	Solution	c 🗌	1/15 datab	ases							/

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaC₂


存 Equilib - Menu: last system		- 🗆 ×	
File Units Parameters Help			
□ 🔁 🖬 T(C) P(atr	n) Energy(J) Quantity(g) Vol(litre)	🚻 📑 💽	
Reactants (6) (gram) 4.50 C + 0.50 Si + 0.	60 Mn + 0.065 S + 94.335 Fe + <a;< th=""><th>> CaC2</th><th></th></a;<>	> CaC2	
Products			
gas ⊙ ideal C real 0 aqueous 0 pure liquids 0 * + pure solids 43 * - custom selection FTmis snecies: 43	Phase Full Name 0 sc-FeLQ Fe-liq 0 sc-MATT Matte Pse sc-FeS_ FeS-liq Volu c-MAT2C C-Liq(Matte/Metal) Volu c-PYRRC C-Pyrrhotite S	tom Solutions fixed activities udonyms apply Edit ume data ussume molar volumes of olids and liquids = 0 nelude molar volume data	
	sc-MS-c M Show • conditions s solutions: 1 Select Total	the settings, i.e., phase ame to the case where Phases (max 1500) 44	
Final Conditions <a> T(C) F 0 1 0.01 1400 1 10 steps Table	P(atm) Product H(J) Product H(J)	ium	
FactSage 7.3			

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Basic Example: Desulfurization of Hot Metal Using CaC₂

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaC₂

存 Equilib - Menu: last system	Composition Target Calc	ulation ×		
File Units Parameters Help	r U		- Mar Transf	Х
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	👖 👖 Compo	osition Target	
Reactants (6) (gram) 4.50 C Products	+ 0.50 Si + 0.60 Mn + 0.065 S + 94.335 Fe +		(species composition)	
Compound species	Solution phases		nt composition 95 Fe	
🔲 gas 💿 ideal 🔿 real 🛛 0	Finisc-FeLQ Fe-liq	0 fixed activities _ C log10 (r 0 ideal solutions	(element composition)	
aqueous 0	FTmisc-MATT Matte	Pseudonyms C species	es activity Elements CSiSCa Mn Fe	
pure liquids 0	FTmisc-FeS_ FeS-liq FTmisc-MAT2C C-Lig(Matte/Metal)	apply 🔽 🔄 🖸 log10(s	species activity)	
* - custom selection	FTmisc-PYRRC C-Pyrrhotite	 assume molar volu 	(removes targets) -	
species: 43	FTmisc-FCCS fcc FTmisc-MS-c MeS_cubic	and physical prop paraeguilibrium & G		
Composition target	Legend Show 🕫 all O selected	Virtual species:	nter a single value - or enter a range of values 'first last step'	
Element S - FT misc-FeLQ Estimate ALPHA: Quantity[g	t Blank.	Total Species (max 50 E Total Solutions (max 2 ^{mass}	Element S 0.00001 (0.001%)	
		Total Phases (max 15)		
Final Conditions (A) (B)	T(C) P(atm) Product H(J)	uilibrium normal © normal Can transitions only	ncel Help OK	
10 steps 🗖 Table	1 calculation	open Calculate >>		
FactSage 7.3				

36

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaC₂

Equilib - Results 1400 C, A=0.		sition Tar	get Calcula		<
Output Edit Show Pages Fin	al Conditio		Set Galeala	cion	
🗅 🗃 🖾 📓 🗊	T(C) P(atm) En	ergy(J) Quantity(g) Vo	ol(litre)	11 🖳 🕒	<u>Q:</u>
				FactSage 7.3	^
T = 1400 C				-	
P = 1 atm					
V = 0 dm3					
		This is the	e mass of (CaC ₂ required	l to achieve the
STREAM CONSTITUENTS	AMOUNT/gram				
C Si	4.5000E+00 5.0000E-01	desired si	ilfur conte	nt in the hot	metal
Mn	6.0000E-01	ucon cu or		ine ini ene noe	metan
s	6.5000E-01				
Fe	9.4335E+01				
*CaC2	1.2794E-01				
	EQUIL AMOUNT	MASS FRACTION	ACTIVITY		
PHASE: Fe-liq	gram				
Fe	9.4335E+01	9.4350E-01	6.6285E-01		
с	4.5479E+00	4.5487E-02	8.4085E-01		
Ca	1.7895E-07	1.7898E-09	4.6917E-07		
Mn	6.0000E-01	6.0010E-03	2.8460E-03	-	
S	9.9984E-04	1.0000E-05	3.0379E-06		
Si	5.0000E-01	5.0008E-03	4.7231E-05		
TOTAL:	9.9984E+01 Amount/mol	1.0000E+00	1.0000E+00	Mass fraction	
System component Fe	1.6892	Amount/gram 94.335	0.80568	0.94350	
Ma	1.00317.03	94.335	5 30007 03	0.94350	
Final Londitions				v	
s <a>	 T(C)	P(atm)	Product H(J)	1 calculation 🗡	
Si	1400	1		Caladara	
c	1	1.	1	Calculate >>	~
<				>	
P					

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

File Edit Table Units Data Search Data Evaluation Help Image: Im
🗅 🚘 🕂 🥅 T(C) P(atm) Energy(J) Quantity(g) Vol(litre) 🛛 👫 💷 🧖 💢
1-7
Quantity(g) Species Phase T(C) P(total)** Stream# Data
4.50 C
+ 0.50 Si 1
+ 0.60 Mn 1
+ 0.065 S
+ 94.335 Fe 1
+ <a> Mg 2
+ <a> CaO 2
This time, we are adding varying amounst of Ca
remove the sulfur in the hot metal.
Next >>
FactSage 7.3 Compound: 2/14 databases Solution: 1/15 databases

38

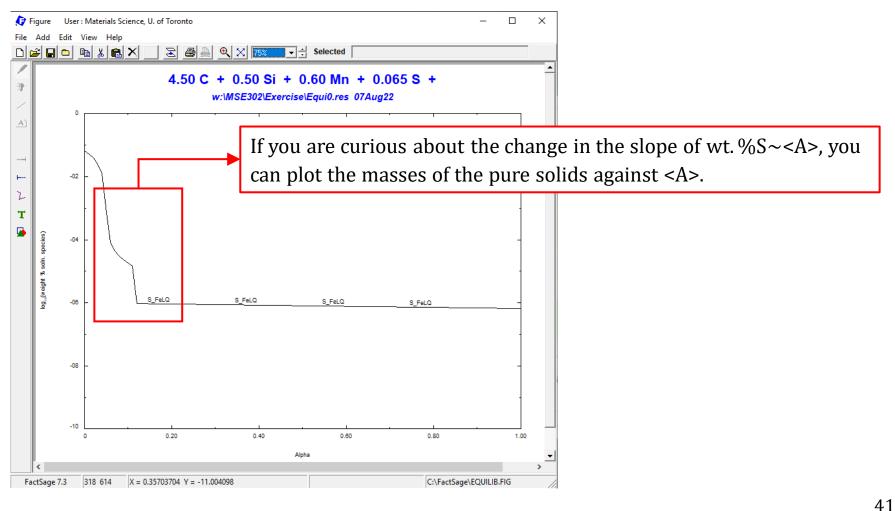
Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

存 Equilib - Menu: last system	🞝 s	Selection	- Equilib - no resu	ults -					— 🗆	×	
File Units Parameters Help	File	Edit S	how Sort								
	Selec	:ted: 130/	142 SOLID	Duplicates	selected. X d	enotes	species exclud	led by default			
Reactants (7)					- no) results	:-				
(gram) 4.50 C +	+	Code	Species	Data	Phase	τV	Activity	Minimum	Maximum	-	
(gidin) 4.00 C	+	74	C(s)	FactPS	Graphite	V					
-	+	75	C(s2)	FactPS	diamond	V					
Products	+	76	Mg(s)	FactPS	solid	V				_	
Compound species	+	77	MgC2(s)	FactPS	solid solid	0					
🗖 gas 💿 ideal O real 🛛 0	+	78 79	Mg2C3(s) MgO(s)	FactPS FactPS	Periclase	0 V				_	
aqueous 0	Ť	80	MgCO3(s)	FactPS	magnesite CaC(V					
pure liquids 0	+	81	Sife)	FactPS	solid	v V					
* + pure solids 130			1 . 11.1		1 • 1	,	1 1		1	. 1	
		WACA	alact all th	n niir							
* - custom selection				e pui	e sonus a	ana	ask fa	ctSage to o	uetermine	e the	stable
* - custom selec <mark>t</mark> ion species: 130			solids afte	-				•			
species: 138	l I	pure	solids afte	er rea	ction. Ag	ain,	, you do	on't have t	o do so be		
Target	l I	pure proba	solids afte ably alread	er rea ly kn	ction. Ag ow what	ain,	, you do	on't have t	o do so be		
Target	l I	pure proba	solids afte ably alreac	er rea ly kn	ction. Ag ow what Liistobalite[1]	ain, pui	, you do	on't have t	o do so be		
Target - none - Estimate P(atm): 1.0	l I	pure proba	solids afte ably alread	er rea ly kn FactPS FactPS	ction. Ag ow what Cristobalite(1) Cristobalite(h)	ain,	, you do	on't have t	o do so be		
Target	l I	pure proba	solids afte ably alread ^{SIU2(85)} SIO2(86) SIO2(87)	er rea ly kn	ction. Ag ow what Liistobalite[1]	ain, pui	, you do	on't have t	o do so be		
Target - none - Estimate P(atm): 1.0 Quantity(g): 0	l I	pure proba	solids afte ably alread sid2(\$5) sid2(\$6) sid2(\$7) sid2(\$8)	er rea ly kn FactPS FactPS FactPS FactPS FactPS	ction. Ag ow what Cristobalite(I) Cristobalite(h) coesite	ain, pu	, you do	on't have t	o do so be		
Target - none - Estimate P(atm): 1.0 Quantity(g): 0 Final Conditions	l I	oure oroba 88 89 90 91	solids afte ably alread ^{SIU2(85)} SIO2(86) SIO2(87)	er rea ly kn FactPS FactPS FactPS FactPS	ction. Ag ow what Cristobalite(I) Cristobalite(h) coesite stishovite	ain, pu	, you do	on't have t	o do so be		
Species. 138 Target - none - Estimate P(atm): 1.0 Quantity(g): 0 Final Conditions <a> 	+ + + + + + +	pure proba 88 89 90 91 92	solids afte ably alread sid2(s5) sid2(s6) sid2(s7) sid2(s8) Mg2Si(s)	er rea ly kn FactPS FactPS FactPS FactPS FactPS FactPS	ction. Ag ow what Cristobalite(I) Cristobalite(h) coesite stishovite cF12-Fm(3)m	ain, pu	, you do	on't have t	o do so be		
Species. 130 Target - none - - none - Estimate P(atm): Quantity(g): 0 Final Conditions <a> 0 1 0.01	• F • F • F • F • F • F • F • F • F	pure proba 88 99 91 92 93 94	solids afte ably alread sid2(s5) sid2(s6) sid2(s7) sid2(s7) sid2(s8) Mg2Si(s) MgSid3(s) MgSid3(s2)	er rea ly kn FactPS FactPS FactPS FactPS FactPS FactPS FactPS FactPS FactPS	ction. Ag ow what Cristobalite(I) Cristobalite(h) coesite stishovite cF12-Fm(3)m low-clinoenstatite	ain, pu v v v v v v v v v v v v v v v v v v	, you do re solid	on't have t s will forn	o do so be n.	ecaus	
Species. 138 Target - none - Estimate P(atm): 1.0 Quantity(g): 0 Final Conditions <a> 	• F • F • F • F • F • F • F • F • F	pure proba 88 99 91 92 93 94	solids afte ably alread sid2(s5) sid2(s6) sid2(s7) sid2(s7) sid2(s8) Mg2Si(s) MgSid3(s)	er rea dy kn FactPS FactPS FactPS FactPS FactPS FactPS FactPS FactPS	ction. Ag ow what Cristobalite(I) Cristobalite(h) coesite stishovite cF12-Fm(3)m low-clinoenstatite	ain, pu v v v v v v v v v v v v v v v v v v	, you do re solid	on't have t	o do so be n.	ecaus	
Species. 130 Target - none - - none - Estimate P(atm): Quantity(g): 0 Final Conditions <a> 0 1 0.01	• F • F • F • F • F • F • F • F • F	pure proba 88 90 91 92 93 94 permit sel	solids afte ably alread sid2(s5) sid2(s6) sid2(s7) sid2(s7) sid2(s8) Mg2Si(s) MgSid3(s) MgSid3(s2)	er rea ly kn FactPS FactPS FactPS FactPS FactPS FactPS FactPS FactPS FactPS	ction. Ag ow what Unstobalite(I) Cristobalite(h) coesite stishovite cF12-Fm(3)m low-clinoenstatite ortho-enstatite	ain, pu v v v v v v v v v v v v v v v v v v	, you do re solid	on't have t s will forn	o do so be n.	ecaus	

FactSage Team


Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

存 Equilib - Menu: last system	- 🗆 X
File Units Parameters Help	
D 🗃 🖬	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)
Reactants (7) (gram) 4.50 C +	+ 0.50 Si + 0.60 Mn + 0.065 S + 94.335 Fe + <a> Mg + <a> CaO
- Products	Select FeLQ for the hot metal.
Compound species	Custom Solutions
gas ideal C real 0 aqueous 0 pure liquids 0 * + pure solids 130 * - custom selection species: 130	FTmisc-MATT Matte FTmisc-FeS_ FeS-liq FTmisc-MAT2C C-Liq(Matte/Metal) FTmisc-PYRBC C-Pyrrhotite FTmisc-PYRBC C-Pyrrhotite
Estimate P(atm): 1.0 Quantity(g): 0	The mass of both CaO and Mg are varied from 0 to 1.0 g, and
Final Conditions	the temperature is 1400 °C
<a> 0 1 0.01 	T(C) P(atm) Product H(J) Image: more and black of transitions only 1400 1 Image: more and black of transitions only 101 calculations Image: more and black of transitions only Image: more and black of transitions on black of transits on black of transitions on black of transitions on bl
FactSage 7.3 w:\MSI	iE302\Exercise\EquiDe-S_Using_Mg.DAT

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

Sustainable Materials Processing Lab

FactSage Team

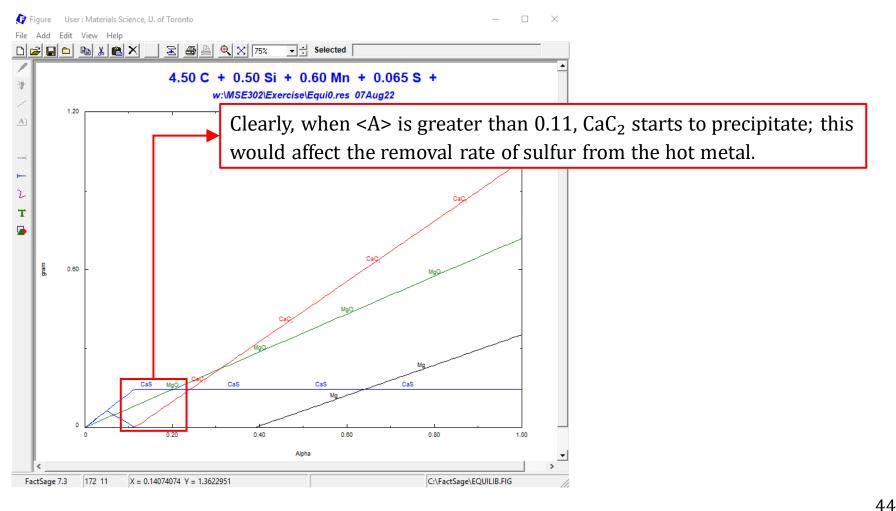
Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

ł	Plot Sp	ecies Selectio	on - Equi	lib Results: gr	am vs Alpha					[×
File	Show	Select										
+	#	Specie	es	Mole (min)	Mole (max)	Fraction (min)	Fraction (max)	Activity (min)	Activity	(max)		
	153	Fe_FeLQ		1.6892	1.6892	0.806235	0.816116	0	0			
	160	C_FeLQ		0.343066	0.374666	0.165745	0.179035	0	0		Plot Sp	ecies Selection - Equilib Resul
	2	С		0.343066	0.374666	0.165745	0.179035	0.663144	0.82257	· · .		
+	18	MgO		0	1.7832E-02	0	0	0	1	File	Show	Select
	7	Si		1.7803E-02	1.7803E-02	8.4969E- <mark>0</mark> 3	8.6011E-03	4.0261E-05	4.6983E-	+		gas phase
	157	Si_FeLQ		1.7803E-02	1.7803E-02	8.4969E <mark>-0</mark> 3	8.6010E-03	0	0		-	-
+	51	CaC2		<u> </u>	4 50005-00		•				č	aqueous species
+	15	Mg	Doub	le click	on "Mol	e (max)" to	o sort the p	ure solids				pure liquids
	154	Mn_FeLQ	Doub	ne ener			, sort the p	uic sonus	, i i i i i i i i i i i i i i i i i i i	+		
	4	Mn	(high	lighted	in green) and choo	se the pure	e solids th	at 🖽		× 1	pure solids
	8	Mg		U	0	,	•		92		F	FeLQ
	158	Mg_FeLQ a	are p	resent,	i.e., num	ber of mol	es greater †	than 0.				SOLUTIONS
+	75	CaS	-		•		0			L.		
	156	S_FeLQ		2.0221E-08	2.0271E-03	9.7692E-09	9.6777E-04	0	0		E	ELEMENTS
	6	S		2.0221E-08	2.0271E-03	9.7692E-09	9.6777E-04	1.8592E-09	1.9459E-			
+	43	MgS		0	1.1135E-03	0	0	0	1			
4	155	Ca_FeLQ		0	5.3789E-06	0	2.5987E-06	0	0			All
	3	Ca		0	5.3628E-06	0	2.5909E-06	0	7.6662E-	+	0	Clear
	Cle Click on t		o add or r	remove species	Display source phase name [page]	Mass © mole © gram 101 pages	Drder integer # mass (max) fraction (max) activity (max)	Select Top 15 ignore species phases with ze Select	and		s select	ed

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto


Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

File Help	gram vs Alpha		×	
	4.50 C + 0.50 Si	+ 0.60 Mn + 0.065 S +	•	
Axes	Variables activity	Minimum O	Maximum 12.392	
Y-axis X-axis	mole Axes: gram vs Alpl Y-variable X-variable		2.0952 6117 0.04 .553 1 400	
Axes grau VS Alp	gram maximum 1.2 minimum 0 tick every 0.2 Cancel	Alpha maximum 1 minimum 0 tick every 0.1 Refresh	1	gram for Y-axis and <a> for X-axis.
FactSage 7.	.3 w:\MSE302\Exercise\Ec		07Aug22 101 sets	

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

Equilib - Menu: last syst	Composition Target Calculation	
File Units Parameters	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	Composition Target X
Reactants (7) (gram) 4.50 (7) (gram) 4.50 (7) Products Compound species gas (• ideal (• real) aqueous pure liquids * + pure solids * - custom selection species: Composition target Element S - FTmisc-FeLQ 5 - ideat A DUA	C + 0.60 Mn + 0.065 S + 94.335 Fe + A> Mg + A> CaO 0 0 C FTmisc-Phase Full Name 0 0 ideal solutions 0 0 0 0 130 FTmisc-FeS_ FeS-liq 0 <td< th=""><th>Solution MI53-FeLQ Variable species composition log10 (species composition) element composition log10 (element composition) species activity log10(species activity) - none (removes targets) - Values Enter a single value - or enter a range of values 'first last step' Element S 0.00001 mass fraction: (0.001%)</th></td<>	Solution MI53-FeLQ Variable species composition log10 (species composition) element composition log10 (element composition) species activity log10(species activity) - none (removes targets) - Values Enter a single value - or enter a range of values 'first last step' Element S 0.00001 mass fraction: (0.001%)
10 steps Table	1400 1 C transitions only	Cancel Help OK
FactSage 7.3	v:\MSE302\Exercise\EquiDe-S_Using_Mg.DAT	

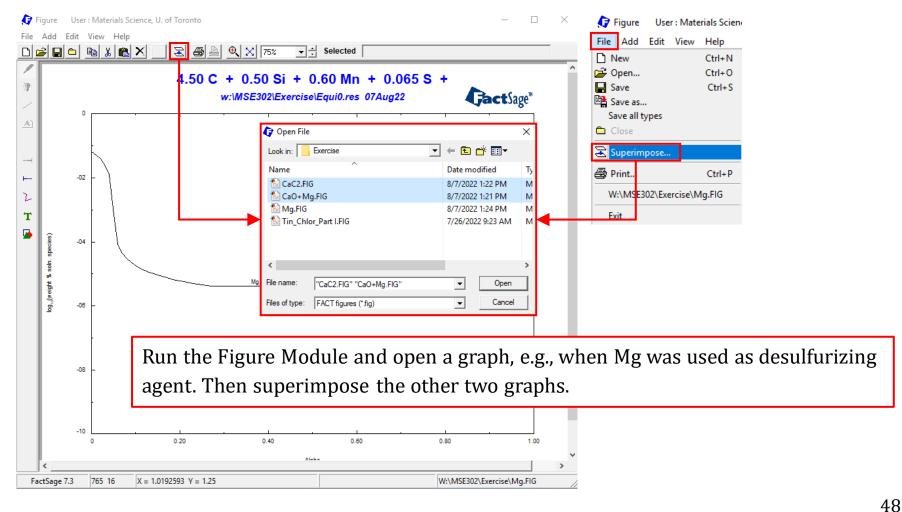
Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Basic Example: Desulfurization of <u>Hot Metal</u> Using CaO + Mg

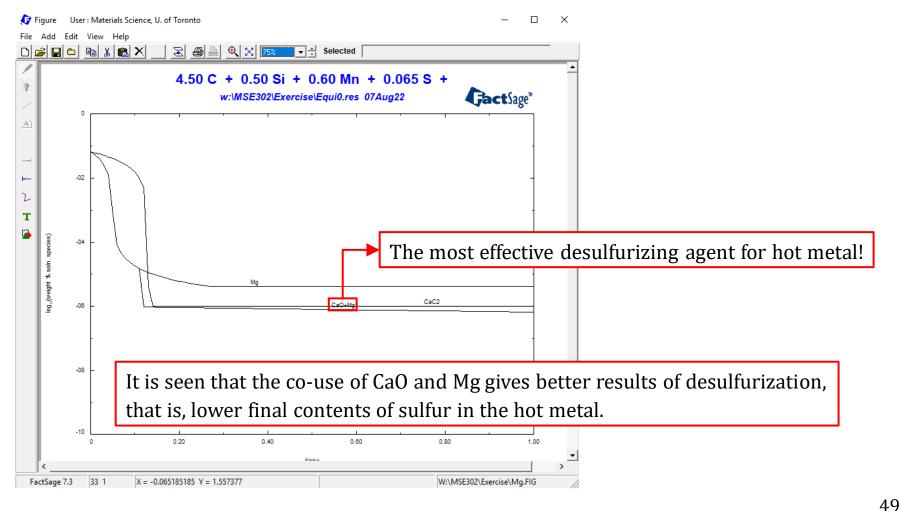
 Equilib - Results 1400 C, A=0. Output Edit Show Pages Fin 		sition Tar	get Calcula	tion	×		
	T(C) P(atm) Ene	ergy(J) Quantity(g) Vi	ol(litre)	111 🔛 🖻	X :		
C Si Mn	4.5000E+00 5.0000E-01 6.0000E-01				^		
S Fe *Mg *CaO	6.5000E-02 9.4335E+01 4.9405E-03 4.9405E-02			CaO and Mg	-		ve
PHASE: Fe-lig	EQUIL AMOUNT gram	the desire	ed sulfur co	ontent in the	e hot m	etal.	
Fe C Ca	9.4335E+01 4.5000E+00 1.7416E-07	9.4395E-01 4.5028E-02 1.7427E-09	6.6655E-01 8.2029E-01 4.7195E-07				
Mn O S	6.0000E-01 1.8292E-07 9.9937E-04	6.0038E-03 1.8304E-09 1.0000E-05	2.8711E-03 1.6145E-11 3.0200E-06				
Si Mg MgO	5.0000E-01 8.9328E-04 3.9633E-05	5.0032E-03 8.9384E-06 3.9658E-07	4.6699E-05 4.9659E-02 3.8801E-07	_			
CaO SiO MnO	1.4522E-07 2.6569E-08 1.0473E-08	1.4531E-09 2.6586E-10 1.0479E-10	1.0218E-09 2.3781E-10 5.8253E-11]			
TOTAL: System component Fe right control	9.9937E+01 Amount/mol	1.0000E+00 Amount/gram	1.0000E+00 Mole fraction	Mass fraction			
Mn Ca Si	 T(C) 1400	P(atm)	Product H(J)	1 calculation Calculate >>			
<					>:		


Sustainable Materials Processing Lab

FactSage Team

Basic Example: Comparison of Desulfurizing Agents

To compare the efficiency of different desulfurizing agents, we can superimpose all the graphs, wt. $%S \sim <A>$, using the Figure Module.


Basic Example: Comparison of Desulfurizing Agents

Sustainable Materials Processing Lab

FactSage Team

Basic Example: Comparison of Desulfurizing Agents

Sustainable Materials Processing Lab

FactSage Team

Now, we know the "CaO + Mg" mixture can be used as an effective desulfurizing agent, and we would like to use this mixture for hot metal desulfurization in a torpedo car. It should be noted that **the commercial grade** "CaO + Mg" agent typically assaying 70 wt.% CaO and 30 wt.% Mg.

Background data: in a torpedo car, we assume the blast furnace slag carry over is 10 kg/tHM and the temperature is 1427 °C. The compositions of hot metal and slag are as follows:

Hot metal composition:

Element	С	Si	Mn	Ti	S	Fe
wt.%	4.50	0.80	1.00	0.05	0.06	93.59

Slag composition:

Component	CaO	SiO ₂	MgO	Al_2O_3	MnO	TiO ₂	CaS
wt.%	34.5	34.0	14.0	9.00	2.00	2.00	4.50

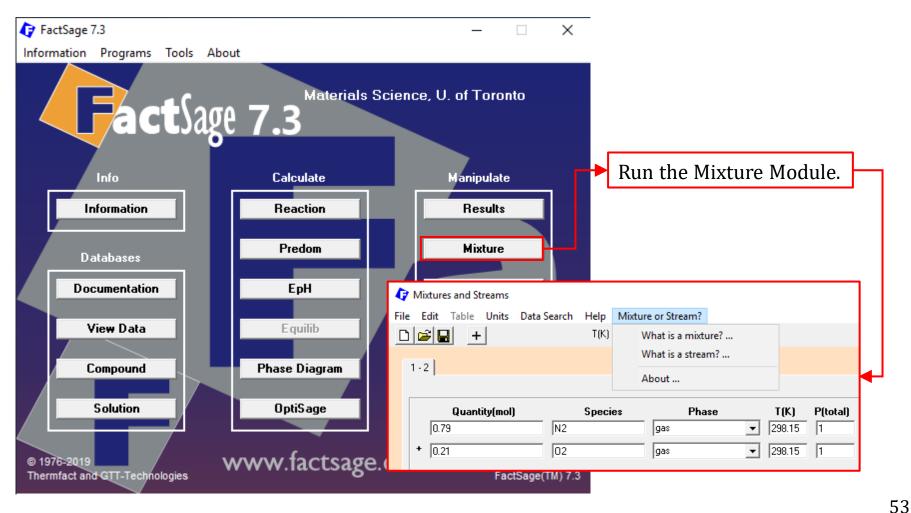
Also, the "CaO + Mg" agent is carried by the carrier argon gas at a rate of roughly $0.125 \text{ Nm}^3/\text{kg Mg}$.

For 1 Nm^3 argon (Nm^3 means normal cubic meter), the equivalent mass is calculated as follows:

$$\frac{1000 \text{ liter}}{1 \text{ Nm}^3} \times \frac{\frac{1}{22.4} \text{ mol}}{1 \text{ liter}} \times \frac{40 \text{ g}}{1 \text{ mol}} \times \frac{10^{-3} \text{ kg}}{1 \text{ g}} = 1.79 \text{ kg/Nm}^3 \text{ Ar}$$

Note: at standard temperature and pressure, i.e., 0 °C and 1 atm, 1 mole of any gas will occupy a volume of 22.4 liter.

Now, let us simulate the system consisting hot metal / slag / CaO-Mg agent / Ar using the Equilib Module.


Step 1. Define the Reactants (Type and Quantity)

Since there are a quite number of species in this advanced example, we could either (a) calculate the quantities of all species and then enter all at once in the Reactants Window, or (b) define 2 separate streams for hot metal and slag which contain many species and then input these 2 streams together with the CaO-Mg agent and Ar in the Reactants Window.

We will choose the second approach because it avoids entering many species at the same time, and the input species will be more organized.

Note: our calculation will be based on 1 tonne (= 1000 kg) hot metal.

What is a Stream?

Sustainable Materials Processing Lab

FactSage Team

What is a Stream?

What is a Mixture?		What is a Stream?	×
 A mixture is a group of species that normally would be entered as reactants in the Equilib program. For example, in Equilib you could specify the 2 reactants: 0.21 mol O2 gas + 0.79 mol N2 gas Here in the Mixture program you can do the same and then store them as a mixture, for example [air]. Like Equilib, the mixture can have up to 48 reactants with up to 32 different elements. In Equilib you can import this [air] mixture - in the [Reactant: Window] click on 'Edit > Mixtures and Streams >'. The mixture can be imported as a 'multi-line mixture' as it appear above, or as a 'single-line mixture' where all the reactant species are grouped as one and will appear as 1.0 mol [air]. 		A stream is a list of equilibrated species calculated by Equilib. You create a stream through the Equilib [Results Window] - click on 'Output > Stream File > Save stream file'. The stream can be an equilibrated gas phase, or mixture of solids, etc. Unlike a Mixture which is limited to 48 reactants, there is no limit to the number of equilibrated species stored in a stream. However in the Equilib Reactants Window, a stream can be imported only as a single entry where all the equilibrated species are grouped as one (same as a 'single-line mixture'). Both mixtures and streams can be edited by the Mixture program.	
ОК		ОК	

We will use the Equilb Module to define the streams, each of which simulate one of the following: hot metal / slag / CaO-Mg agent / Ar.

Note: defining a stream is a simple equilibrium calculation

Stream 1: Hot Metal (FTmisc-FeLQ)

存 Equilib - Reactants		-	- 🗆 X		7	
File Edit Table Units Data Searc	ch Data Evaluation Help					
D 🖻 🕂 🔳	T(C) P(atm) Energy(J) Quantity(g	g) Vol(litre)		1		
1-6		Select the Unit				
Quantity(g)	Species Phase	T(C) P(total)** S	tream# Data			
4.50 C					↓	
+ 0.80 Si			存 Data Search			
+ 1.00 Mr	n		Data Search			
+ 0.05 Ti			– Databases -	1/14 compoun	d databases, 1	/15 solution databa
	/		Gact	GactSage"	SGTE	compounds only
* 0.06 S			FactPS			solutions only
+ 93.59 Fe	, , , , , , , , , , , , , , , , , , , ,		FT oxid	FSlead		no database
			FT salt	FS stel	SGTE	
🔶 100 gram hot me	etal		FTmisc	FSupsi	SGsold	Clear All
100 gram not me			FThall			
			FT0xCN		Other	Add/Remove Data
		↓			SGnobl	
			FToulo	FT demo		RefreshDatabases
	F F F F F F F F F F F F F F F F F F F	tains a model for			DTDmeph	
	liquid iron	solution, FeLQ.	FTlite	FTnucl	TDnucl	
	inquite in on a		Information			
FactSage 7.3 Compound: 1/14 da	atabases Solution: 1/15 database	es	– Information	-		
						55

Sustainable Materials Processing Lab

FactSage Team

Stream 1: Hot Metal (FTmisc-FeLQ)

存 Equilib - Menu: last system			- 🗆 X
File Units Parameters Help	i) P(atm) Energy(J)	Quantity(g) Vol(litre)	M 🕒 💌
) Si + 1.00 Mn	+ 0.05 Ti + 0.06 S	+ 93.59 Fe
Products Compound species Solution pha	ses	→ Select	FTmisc-FeLQ only.
gas ideal C real 0 aqueous 0 pure liquids 0 pure solids 0 species: 0	Base-Phase FTmisc-FeLQ FTmisc-MATT FTmisc-MAT2C FTmisc-PYRRC FTmisc-PYRRC FTmisc-FCCS FTmisc-FCCS FTmisc-MS-c	Full Name Fe-liq Matte FeS-liq C-Liq(Matte/Metal) C-Pyrrhotite bcc fcc fcc MeS_cubic	O fixed activities
Estimate T(K): 1000 Quantity(g): 0	、' 「		al stream at 1427 °C.
Final Conditions <a> <a> Image: A interval of the steps Image: A interval of the steps	P(atm) 1	Product H(J)	Correction of the second
FactSage 7.3			

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Stream 1: Hot Metal (FTmisc-FeLQ)

存 Equilib - Results 1427 C		– 🗆 ×	
Output Edit Show Pages Final C	londitions		
Save or Print >	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🚻 💷 💽 🕱	
Plot >			
Equilib Results file >		FactSage 7.3 A	
Stream File >	Recycle all streams		
Format >	Save stream file >	Save gas phase	
Fact-XML >	Stream file properties	Save pure liquids	
Fact-Optimal >	Summary of streams >	Save aqueous	
Fact-Function-Builder	Directory (w:\MSE302\Exercise\)	Save pure solids Save solutions ALL solutions	
Refresh	6.0000E-02 9.3590E+01	FTmisc-FeLQ Fe-liq	
Swap loops	EQUIL AMOUNT MASS FRACTION AC	TIVITY	
PHASE: Fe-liq Fe	gram 9.3590E+01 9.3590E-01 6.5	668E-01	
C Mn	4.5000E+00 4.5000E-02 8.0	0822E-01 5513E-03 Save File in w:\MSE302\Exercise\Mixt*.dat X	
Save File w:\MSE302\Exercise	$a M_{12} + M_{11} +$	0310E-04 1768E-05 FTmisc-FeLQ Fe-lig ОК	
Saving file HM_1427_°C	OK 0.14	1768E-05 FTmisc-FeLQ Feliq 1458E-08 0000E+00 fraction Mass	
Enter one line of comments		79798.0. or enter a stream file name (up to 26 characters), for example	+
Enter some de	escription.	roduct H(J)	
FTmisc-FeLQ Fe-liq, 100 g HM	4	Give a name for the stream	
<	۳۱	HM_1427 °C	
		Juni 1427 M	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

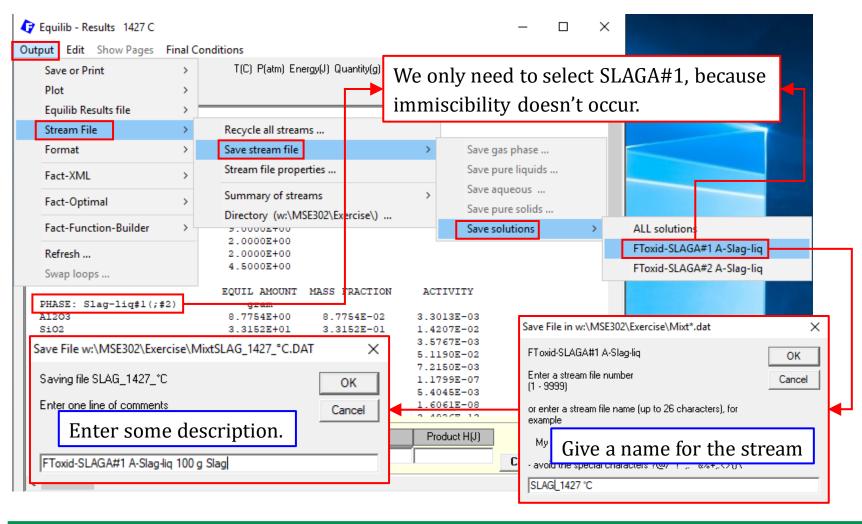
Stream 2: Slag (FToxid-Slag)

G	equilib	- Reactants					—	□ X		7	
File	e Edit	Table Units Data S	earch Data Evaluati	on Help							
Ľ) 😅	+	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)		111	📑 🔁 🕞			
	1-7				Select	the Uni					
		Quantity(g)	Species	Phase	T(C)	P(total)**	Stream	# Data			
	34	.5	CaO		-		2			↓	
	+ 34	.0	Si02				2	Data Search			
	+ 14	.0	MgO				2	-			
	+ 9.0	00	AI203				2		1/14 compoun	d databases, "	1/15 solution databa
	+ 2.0		MnO				2	Gact	GactSage"	SGTE	compounds only
							2	FactPS	FScopp	BINS	solutions only
	+ 2.0		Ti02	 				FToxid	FSIead	SGPS	no database
	+ 4.5	50	CaS		<u>~</u>		E	FTsalt	FSstel FSupsi	SGTE SGsold	Charadh
								FThall	- Toupar	003010	Clear All
	10	0 gram alag	7							Other	Add/Remove Data
	10	0 gram slag.			•			FTfrtz	ELEM	SGnobl	Add/Helliove Data
											RefreshDatabases
			FToxid	contains a	model f	or liqui	d			TDmeph	Thomas and a stable sta
			slag, SL	AGA.				FTlite	FTnucl	TDnucl	
			5148, 01					– Information	-		
Fac	xSage 7.3	3 Compound: 1/1	4 databases Solut	ion: 1/15 database	S			1.			
											58

Sustainable Materials Processing Lab

FactSage Team

Stream 2: Slag (FToxid-Slag)


🕼 Equilib - Menu: last system	Select FTmisc-SLAGA only. Please click on the phase to
File Units Parameters Help	see the information for SLAGA and SLAGB. To simply
T(C) P(atm) Energy(J) Q	uan ta an
Reactants (7)	put, SLAGA considers all sulfur as sulfide (under the
	reducing conditions), whereas SLAGB considers all
(gram) 34.5 CaO + 34.0 SiO2 + 14.0 MgO + 9.0	
	sulfur as sulfate (under oxidizing conditions).
Products	
Compound species Solution phases	Custom Solutions
★ + Base-Phase	Full Name O fixed activities Details
📕 🖉 gas 📀 ideal 🔿 real 🛛 🔤 📕 📕 🚺 📕 🗛 🗛	Slag-lig all oxides + S
aqueous 0 FToxid-SLAGB	B-Slag-liq with SO4 Pseudonyms
pure liquids 0 FT oxid-SLAG?	2 Staglig apply Edit
pore solids 0 FTOXID-SFIND	r FToxid-SLAGA – 🗆 🗙
	e Edit
species: 0 FToxid-MeO_B	
FToxid-MeO_?	^
FToxid-cPyrA (12	?) Solubility of Sulfide:
Legend V S Th	e model used, and most of the optimizations, are described in the references below. Sulfur contents as sulfide will be calcula
Estimate T(K): 1000	
	ferences: 2039, 2060, 2061, 2115, 2116
Quantity(g): 0	mplete list of references for FToxid-SLAGA:-
Re	ferences: 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 References: 2014, 2015, 2017, 20
Final Conditions Re	ferences: 2029, 2030, 2031, 2032, 2035, 2036, 2037, 2038, 2039, 2040, 2042, 2043 References: 2044, 2045, 2046, 20
<a> T(C) P(atm) Re	ferences: 6008, 6009, 6013, 6016, 6019, 6020, 6021, 6026, 6028, 6033, 6046
1427	C transitions only
10 steps 🗖 Table	1 calculation C open Calculate >>
We need a slag stream at 14	27 °C.
FactSage 7.3	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Stream 2: Slag (FToxid-Slag)

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Import the streams: hot metal and slag

E Edit Table Units Data Add a new Reactant Insert new reactant be Delete reactant	Search Data Evaluati Ctrl+R ore	on Help Energy(J) Quantity(g) Vol(litre)	<u>111</u>				
Delete all blank reactar Mixtures and Streams	nts >	Import a mixture	>	# Data			
Re-order the reactants Export list of reactants Import list of reactants	>	Edit a mixture or stream Directory (w:\MSE302\Exercise\)) >	1		.Q Fe-liq, 100 g AGA#1 A-Slag-	
Clear Example				 Data Search Databases - Cact 	3/14 compour		2/15 solution d
	e sure these elected.	three databases		✓ FactPS ✓ FToxid □ FTsalt ✓ FTmisc □ FThall	FScopp FSlead FSstel FSupsi	BINS SGPS SGTE SGsold	compounds or solutions only no database Clear All
		r	🗌 Initial (FT0xCN FTfrtz FThelg FTpulp 	ELEM	Other SGnobl SpMCBN	Add/Remove D
ctSage 7.3 Compound: 3/	4 databases Solut	Next >>		FTlite	FTnucl	Dmeph	

61

Sustainable Materials Processing Lab

FactSage Team

Import the streams, add desulfurizing agent and Ar

You can input gram or percentage. Let us use the hot metal stream. When defining the hot metal stream, we use 100 gram. Therefore, if we use percentage, e.g., 100%, the total mass would be 100 gram. If we use gram, e.g., 1 gram, the total						
Quantity(g) 1.0E6 + <8> + <0.7A>	mass would be 1 gram. Species Phase T(C) P(total)** Stream# Data [HM_1427_°C] I I I [SLAG_1427_°C] I I I [Ca0 I I I					
+ <0.3A> + <0.067A>	It <u>was calculated</u> that for 1 kg Mg, the mass of Ar was calculated 0.125×1.79 kg Ar.	as:				
The total mass of desulfurizing agent is <a> gram, the mass of CaO and Mg can be determined based on the composition: 70 wt. % CaO + 30 wt. % Mg.						
Here, we we	ble permits us to change the amount of slag carry-over. will set 10 kg per 1tonne hot metal.					
🔝 1 tonne ho	t metal. es Solution: 2/15 databases	62				

Sustainable Materials Processing Lab

Selection of Compound Species

	499	Selection	- Equilib Page 10	1/101 : T(C) = 1427, P(a	tm) = 1, A	lpha = 10000		- 🗆	×
e Units Parameters Help	File	Edit S	how Sort							
) 🖻 🔒	Selec	:ted: 216/	360 SOLID	Duplicates	selected.	X denc	10	Pages: 1	– 101 🔽 (pa	ige]
Reactants (5)			Page 101/1	01 : T(C) = 1	427, P(atm) =	1, Alpha =	10000 (min = 0	at p. 1; max = 0 at p. 1	101]	
() 1 050 (UNA 1407 *C)	+	Code	Species	Data	Phase	TV	Activity	Minimum	Maximum	
(gram) 1.0E6 [HM_1427_°C]		112	C(a)	FactOC	Graphita	V	0.8078	0.7968 [3]	0.8078 [101]	
Chc	0000	م الحر	tac chacia	c (ida	<u>م</u> ان	V	0.4250	0.4193 [3]	0.4250 [101]	
Products	1056	e all §	gas specie	s (lue	alj.	ΤV	4.9142E-04	4.0271E-06 [1]	4.9142E-04 [101]	
- Compound speci <mark>e</mark> s	+	116	MgC2(s)	FactPS	solid	0	5.7757E-06	4.6149E-08 [1]	5.7757E-06 [101]	
	+	117	Mg2C3(s)	FactPS	solid	0	1.2392E-08	8.0119E-13 [1]	1.2392E-08 [101]	
∓ gas 💿 ideal 🔿 real 🛛 69	X	118	MgO(s)	FactPS	Periclase	V	A 9978			
aqueous 0	+	119	MgCO3(s)	FactPS	magnesite_C	aC(T V	1.0026E-12	1.0026E-12[101]	8.5503E-10 [2]	
pure liquids 0	+	120	Al(s)	FactPS	solid	ΤV	4.1346E-05	6.3549E-07 [2]	4.2540E-05 [50]	
* ∓ pure solids 216	+	121	AI4C3(s)	FactPS	solid	V	2.0063E-14	1.0790E-21 [2]	2.1920E-14 [50]	
· · · ·	X	122	Al2O3(s)	FactPS	gamma	V	3.0862E-03			
* - custom selection	X	123	Al2O3(s2)	FactPS	delta	V	4.0740E-03			
apogios: 205 1										
species: 285		104	VIDD3(*3)	E-orDC	kanna	V	2 01 AFE .02			
Choose all pur equilibrium. It	t is I	olids. recor	. We ask F nmended	actSa to ed	it the p	eterm priorit	iine wh y list w	vhen suppr	essing du	plic
Choose all pur	t is 1	olids. recor	. We ask F nmended ^{siC(s2)}	actSa to ed	it the p	eterm priorit	ine wh y list w 5.2905E-03	-		plic
Choose all pur equilibrium. It		olids. recor 129 130	. We ask F nmended ^{SiC(s2)} ^{SiO2(s)}	actSa to ed FactPS FactPS	it the p Solid_Beta Quartz(I)	eterm priorit	iine wh y list w 5.2905E-03 6.5008E-06	vhen suppr	essing du	plic
Choose all pur equilibrium. It Quantity(g):	t is 1	olids. recor 129 130 131	We ask F nmended SiC(s2) SiO2(s) SiO2(s2)	actSa to ed FactPS FactPS FactPS	it the p Solid_Beta Quartz(I) Quartz(h)	eterm priorit v t v	nine wh y list w 5.2905E-03 6.5008E-06 3.4510E-05	vhen suppr	essing du	plic
Choose all pur equilibrium. It		olids. recor 129 130 131 132	We ask F nmended SiC(s2) SiO2(s) SiO2(s2) SiO2(s2) SiO2(s3)	actSa to ed FactPS FactPS FactPS FactPS FactPS	it the p Solid_Beta Quartz(I) Quartz(h) Tridymite(I)	eterm priorit v T V V T V	tine wh y list w 5.2905E-03 6.5008E-06 3.4510E-05 1.5253E-07	vhen suppr	essing du	plic
Choose all pur equilibrium. It Quantity(g): 0	t is 1	olids. recor 129 130 131	We ask F nmended SiC(s2) SiO2(s) SiO2(s2)	actSa to ed FactPS FactPS FactPS	it the p Solid_Beta Quartz(I) Quartz(h)	eterm priorit v t v	11ne wh 15.2905E-03 6 5008E-06 3 4510E-05 1.5253E-07 3 7342E-05	7hen suppr 4.5706E-03 [17]	essing du	plic
Choose all pur equilibrium. It Quantity(g): 0		Dlids. recor 129 130 131 132 133	We ask F nmended SiC(s2) SiO2(s) SiO2(s2) SiO2(s2) SiO2(s3)	actSa to ed FactPS FactPS FactPS FactPS FactPS	it the p Solid_Beta Quartz(I) Quartz(h) Tridymite(I) Tridymite(h)	eterm priorit v T V V T V	11ne wh 15.2905E-03 6 5008E-06 3 4510E-05 1.5253E-07 3 7342E-05	vhen suppr	essing du	plic
Choose all pur equilibrium. It Quantity(g): 0 Final Conditions <a> 0 10000 100 1E4		Dids. recor 129 130 131 132 133 133	We ask F nmended SiC(s2) SiO2(s) SiO2(s2) SiO2(s2) SiO2(s3) SiO2(s4)	actSa to ed FactPS FactPS FactPS FactPS FactPS FactPS	it the p Solid_Beta Quartz(I) Quartz(h) Tridymite(I) Tridymite(h) Suppress	eterm priorit T V V T V	1100 wh 2 list w 5.2905E-03 6.5008E-06 3.4510E-05 1.5253E-07 3.7342E-05 L Edit priorit	7hen suppr 4.5706E-03 [17]	essing du	plic

Sustainable Materials Processing Lab

MSE Department, University of Toronto

Selection of Compound Species

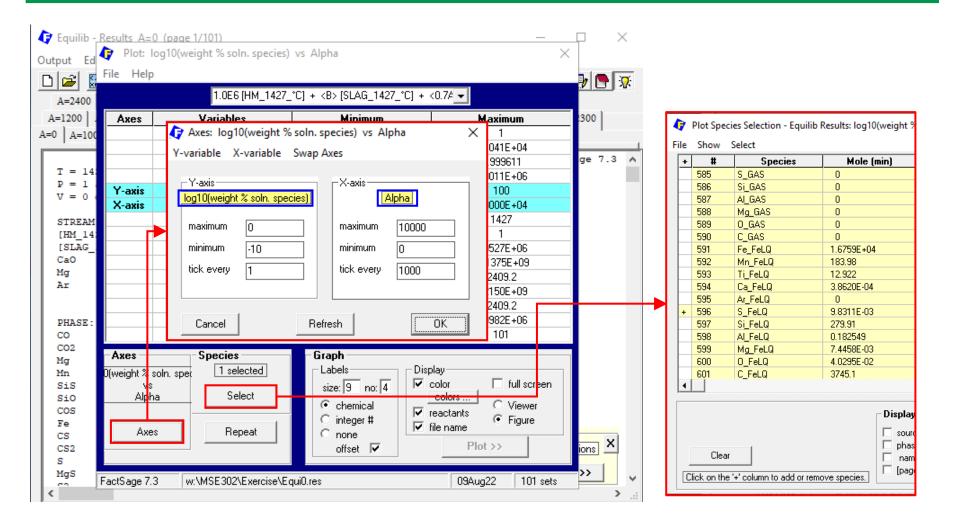
存 Equilib - Menu: comments		- 🗆 ×
File Units Parameters Help		
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	
Reactants (5)		This is slag.
(gram) 1.0E6 [HM_1427_°C]	+ [SLAG_1427_°C] + <0.7A> CaO + <0.3A>	Mg + <0.067A> Ar 🐥
Products	This is h	ot metal.
Compound species	- Solution phases	Lustom 5 olutions
	\star + Base-Phase Full Name 🔺	0 fixed activities Details
, F gas ideal ⊂ real 69	+ FTmisc-FeLQ Fe-lig	0 ideal solutions
aqueous 0	I FToxid-SLAGA A-Slag-lig all oxides + S	Pseudonyma sandu Edit
pure liquids 0 ★ pure solids 216	I FToxid-SPINB B-Spinel	
★ + pure solids 216	I FToxid-MeO_A A-Monoxide + FToxid-WOLLA A-Wollastonite,	The 12 solid solutions are selected based on
* - custom selection	+ FToxid-bC2SA A-a'(Ca,Sr,Ba)2SiO4	••
species: 285	+ FToxid-aC2SA A-a-(Ca,Sr)2SiD4	the suggestions mentioned slides (<u>1</u> , <u>2</u> , <u>3</u> , <u>4</u>).
	I FToxid-OlivA A-Olivine 🔽	However, you should be aware that for most
- Target	Legend	nowever, you should be aware that for most
Estimate T(K): 1000	+ selected 7 species: 272	of these solid solutions in the current system,
		their amounts are only a small fraction and
Here, only the sel	lected solution phases	
are shown.	Ê Equ J] ▼	thus do not have a significant influence on the
0 10000 100 1E4	1427 1 C tr	equilibrium state. For primary calculations,
10 steps 🗖 Table	101 calculations C o	^{pi} you don't need to calest these calid calutions
		you don't need to select these solid solutions.

FactSage 7.3 w:\MSE302\Exercise\EquiDe-S_Advanced_Example.DAT

64

Sustainable Materials Processing Lab

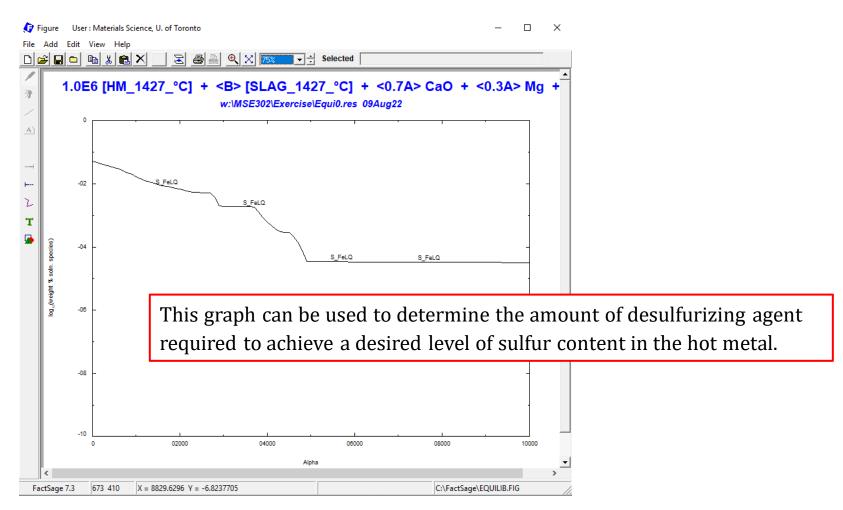
FactSage Team


Setting Final Conditions

存 Equilib - Menu: commen	ts – 🗆 🗙
File Units Parameters H	lelp
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre) 👖 📑 💽 😿
Reactants (5) This (gram) 1.0 For 2 Products the c	is the mass range and step of the desulfurizing agent. 1 tonne hot metal which contains 0.06 wt.% S, the maximum mass of desulfurization agent "70 wt.% CaO + 30 wt.% Mg" is 10 kg. When = 0, we consider only the slag/hot metal interaction.
* + pure solids * - cus om selection species:	Here, we consider the slag carry-over is 10 kg per 1 tonne hot metal. If you would like to study the effect of slag carry-over, you can repeat the calculations by changing the values of .
- none - Estimate T(K): 1000 Quantity(g): 0	Total Species (max 5000) 557 +- selected 7 The temperature is 1427 °C. 200 21 500 238
Final Conditions	T(C) P(atm) Product H(J) 1427 1 Image: Comparison only 101 calculations Image: Comparison only MSE302\Exercise\EquiDe-S Advanced

Sustainable Materials Processing Lab

FactSage Team

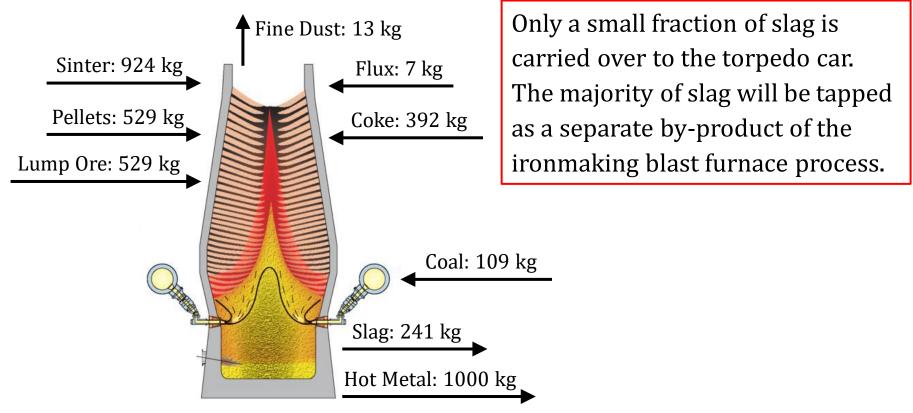

MSE Department, University of Toronto

Sustainable Materials Processing Lab

FactSage Team

Plot: wt. %**S~<A>**

Sustainable Materials Processing Lab


FactSage Team

MSE Department, University of Toronto

Example 2: Slag: Enthalpy, Melting Temperature

Background: Blast Furnace Slag

The following graph shows the mass balance for a typical ironmaking blast furnace.

Babich et al. Ironmaking Text Book, RWTH Aachen University, Department of Ferrous Metallurgy, 2008

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Background: Blast Furnace Slag

Each year, over 300 million tonnes of blast furnace slag are generated all over the world. The molten blast furnace slag, when tapped, has a temperature \sim 1500 °C, and thus the thermal energy contained is quite substantial. For the purpose of heat recovery from the molten blast furnace slag, its enthalpy and melting temperature data are required. We can use the Equilib Module in FactSage to calculate these data.

We will assume the molten blast furnace slag (1500 °C) has the following composition:

Oxide	CaO	SiO ₂	Al ₂ O ₃
wt.%	40.0	40.0	20.0

Barati and Jahanshahi, Journal of Sustainable Metallurgy (2020) 6: 191–206

Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

The Enthalpy of molten slag at 1500 °C based on <u>the SER state</u> can be directly calculated in the Equilib Module.

The maximum amount of heat (strictly speaking, the amount of thermal energy) that can be recovered corresponds to the Enthalpy change when the molten slag is cooled to room temperature. That is,

$$H_{\rm slag,1500\ ^{\circ}C} - \sum n_i h^{\circ}{}_{i({\rm solid}),25\ ^{\circ}C}$$

Therefore, two equilibrium states are required: 25 °C and 1500 °C. The following slides present one approach to calculate the difference in the Enthalpy at these two temperatures.

Example 2: Slag: Enthalpy, Melting Temperature

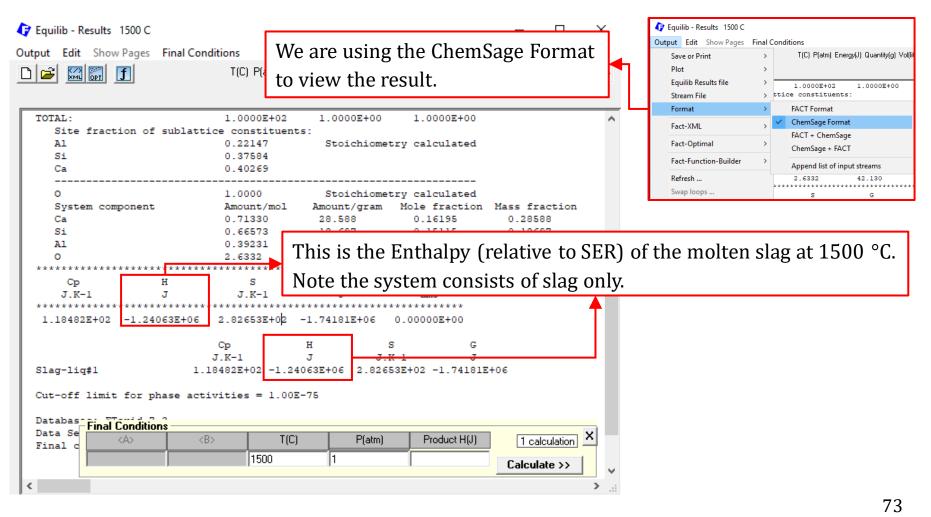
Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

存 Equilib -	Reactants						_		×				
File Edit 1	Table Units	Data Search	Data Evaluation	n Help			_						
	+ 📰		T(C) P(atm) B	Energy(J) Quantity(g)	Vol(litre)		111	7	*				
								4	Data Search				
1-3								F		· · · ·		1/15 solution databa	ase:
	Quantity(g)		Species	Phase	T(C)	P(total)**	Stream#	: [Gact	GactSage"		compounds only solutions only	_
40		CaO					1		FactPS	FScopp FSlead	BINS SGPS	no database	Γ
+ 40		Si02					1		🗌 FT salt	FSstel	SGTE		
									FTmisc	FSupsi	SGsold	Clear All	
+ 20		AI203		1	<u> </u>		11		FT0xCN FTfrtz		Other	Add/Remove Data	
			100 - hl						FThelg		SGnobl		
			100 g bla	ast furnace	e slag.				FTpulp	FT demo	SpMCBN	RefreshDatabases	
									🗌 FTlite	FTnucl	Direct		
									Information	_			
							+	, 🗖					
				The sl	ag is an	oxide	syste	m a	nd we	are not			
				consic	dering t	ne gas	phase	e. O	nly FTo	xid is n	eeded.		
							Initial Cond	itions					
				Next >>									
FactSage 7.3	Compound	: 1/14 databa	ases Solution	n: 1/15 databases	:				//				
		,											71

Sustainable Materials Processing Lab

FactSage Team

Example 2: Slag: Enthalpy, Melting Temperature


Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

存 Equilib - Menu: last system	– 🗆 X
File Units Parameters Help	
D 📽 🖬	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)
Reactants (3)	
	(gram) 40 CaO + 40 SiO2 + 20 Al2O3
Products	
Compound species	Solution phases Custom Solutions Custom Solutions Details
📕 gas 💿 ideal 🔿 real 🛛 0	I FToxid-SLAGA A-Slag-liq all oxides + S 0 ideal solutions
aqueous 0	FT oxid-MeD_A A-Monoxide Pseudonyms FT oxid-MeL A A-Melilite Edit
pure solids 0	
	Assume we know at 1500 °C, the oxide system of interest is fully molten.
species: 0	Therefore, only FToxid-SLAGA is selected.
_ Target	However, say we are unsure if the molten slag is the only phase at 1500 °C.
- none - Estimate T(K): 1000	You could select other solid solutions and pure solids and perform the
Quantity(g): 0	calculation. You should find from the result that SLAGA is the only phase.
Final Conditions	Equilibrium
<a> 	T(C) P(atm) ▼ Product H(J) ● © normal C normal + transitions 1500 1 ○ transitions only ○ transitions only
10 steps 🗖 Table	
	We would like to calculate the Enthalpy (relative to SER) of the molten
FactSage 7.3	slag at 1500 °C .
	51ag at 1500 °C. 72

Sustainable Materials Processing Lab

FactSage Team

Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

Sustainable Materials Processing Lab

FactSage Team

Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

存 Equilib - Menu: last system		- 🗆 X
File Units Parameters Help Beactants (3)	1(0,	culation, we can go back to the Menu solution properties (see the list)
	ram) 40 Ca0 + 40 Si02 + 20 Al2O3	
	phases 🚺 Molar Partial Propeties FToxid-SLAGA - A-Sla Ba Output Species Standard States	ag-liq X
Solution FToxid-SLAGA - clear - all end-members * - custom select end-members m - merge dilute solution from >> - solution properties + - single plase I - possible 3-phase immiscibility J - possible 3-phase immiscibility - standard stable phase ! - dormant (metastable) phase F - formation target phase P - precipitate target phase C - composition target	FT FT FT FT FT FT Save Excel Spreadsheet FT Save Text Spreadsheet Show Columns + gamma(i) activity coefficient of species + Delta_g(i) = g(i) - go(i) = RT ln a(i)	spect to elements at 25 C e e
L - cooLing calculation Help	+ Delta_g_ideal(i) = RT In a_ideal(i) + Delta_s_ideal(i) = -R In a_ideal(i) + Delta_s_ideal(i) = -R In a_ideal(i) + g_excess(i) = Delta_g(i) - Delta_n_ideal(i) + s_exc Select All + s_exc Select All + cp(i) heat capacity of species i = d	Close

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

存 Equilib - Results 1500 C			_	□ ×		
Output Edit Show Pages Final C	Conditions					
Save or Print >	T(C) P(atm) En	nergy(J) Quantity(g) Vol(litre)	111	🚽 🕒 😿		
Plot >						
Equilib Results file >	1_0000E+02	1 00008+00 1 0	000E+00	<u>^</u>	·	
Stream File >	Recycle all strea					
Format >	Save stream file	• • • • • • • • • • • • • • • • • • •	Save gas phase			
Fact-XML >	Stream file prop	perties	Save pure liquids			
Fact-Optimal >	Summary of stre	eams >	Save aqueous			
	• •	MSE302\Exercise\)	Save pure solids	•		
Fact-Function-Builder	0.66573	10.585 8.9	Save solutions	,	ALL solutions	
Refresh	2.6332	42.130 0.5	9784 0.42130		FToxid-SLAGA#1 A-Slag-liq	
Swap loops	S	G V	****		FToxid-SLAGA#2 A-Slag-liq	
J.K-1 J *******************	J.K-1	J dn	13 *****			
Save File in W:\MSE302\Exercise\Mixt*.dat	× 2	-1.74181E+06 0.0000	0E+00			
FToxid-SLAGA#1 A-Slag-liq	ОК	H S	G	↓ ■		
Enter a stream file number (1 - 9999)	Cancel . 24	We save the 1	500 °C molte	n slag as	s a stream. Then this sla	g
or enter a stream file name (up to 26 characters), example	for 0.03	-		U	perature. In doing so, th	U
My very favorite stream						
- avoid the special characters ?@/"^!~,,''*&%+;;<;	>8\ T(C)	🛉 maximum am	ount of thern	nal ener	gy that can be recovered	t
SCA Slag_1500 °C		calculated.				
<				>:		

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

is

Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

ᡇ Equilit	b - Reacta	ants					_	×	
File Edit	Table	Units D	ata Search	Data Evaluation	Help				
🗅 🚔	+			T(C) P(atm) En	ergy(J) Quantity(g) Vo	(litre)	111 🛄		
1-1		The	calculat	tion is ba	sed on 100) g blast furr	nace sla	ig.	
1	Qua r	ntity(g)	[SCA_S		Phase Stream]	1500 1	Stream#		
		([SCA_SI	ag_1500_°C]	: 100 g = 1.57	7518 mol = 0.220	462 lb) X 100% =	100 g = 1.5	57518 mol	= 0.220462 lb
	for t	he ch	ange in		alpy when	ise we are lo the temper	U]•	
			Fo	or a gaseous strean	pressure above the p this is the sum of the species in that stream				
							Initial Condition		
					Next >>				
FactSage 7.	.3 Co	ompound:	1/14 databa:	ses Solution:	1/15 databases			11.	

Sustainable Materials Processing Lab

FactSage Team

Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

存 Equilib - Menu: last system	$ \square$ \times
File Units Parameters Help	
🗋 😂 🖬 🛛 T(C)	P(atm) Energy(J) Quantity(g) Vol(litre)
Reactants (1)	gram) 100% [SCA_Slag_1500_*C No need to select SLAGA because at 25 °C we are sure this is no liquid phase.
gas 💿 ideal 🔿 real 🛛 🔤	Base-Phase Full Name 0 fixed activities Details Details <thdead< th=""> Dead Dead</thdead<>
Estimate T We select all ot	ther solid phases (pure solids and solid solutions).
Final Conditions <a> T(C) 25 25 25	P(atm) ▼ Delta H(J) ▼ 1 P(atm) ▼ Delta H(J) ▼
Table	We cool the slag to room temperature, which is the final temperature.
Taxbage r.J	77

Sustainable Materials Processing Lab

FactSage Team

Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

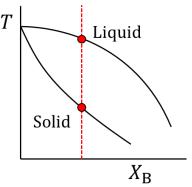
🗗 Equilib - Results 25 C	$ \Box$ \times	
Dutput Edit Show Pages Final (However, you should be aware we are performing equilibrium cooling	
	calculations. In the real world, the equilibrium cooling of molten slag is	
	never the case. As a result, the cooled slag usually contain a fraction of gla	ISS
PHASE: Melilite Ca2A1307[1-]	phase (meta-stable), and thus the recovered thermal energy is less than if	f
Ca2AllSi2O7[1+] TOTAL: PHASE: Monoxide#1;#2	the equilibrium cooling is achieved.	
CaO Al2O3 TOTAL: PHASE: Mullite#1;#2	0.0000E+00 9.9920E-01 1.0943E-05 0.0000E+00 8.0460E-04 9.3946E-17 0.0000E+00 1.0000E+00 1.0952E-05 gram MASS FRACTION ACTIVITY	
A12A1105[-1] A12A11Va5[+9] A12Si105[0] A12Si1Va5[+10]	0.0000E+00 $4.2539E-010.0000E+00$ $9.7732E-01$ Only those solids with unity activity are stable.	
TOTAL:	0.0000E+00 1.0000E+00 2.5519E-13 gram ACTIVITY	
Ca3Al2Si3Ol2_Grossula(s) Ca3Si2O7_Rankinite(s) Ca2SiO4_Gamma(olivine(s)	8.8356E+01 1.0000E+00 8.5667E+00 1.0000E+00 3.0770E+00 1.0000E+00 0.0000E+00 2.9212E-01	
Ca2Al2SiO7_Gehlenite(s) CaSiO3_Wollastonite(s) Al2O3_corundum(alpha(s4)	0.0000E+00 1.7315E-02 0.0000E+00 3.4150E-03	
CaSiO3_Ps-wollastoni(s2) CaAl204_Final Conditions Al203_d (A)	0.0000E+00 1.0091E-03 0.0000E+00 1.0091E-03 T(C) P(atm) Delta H(J) 1 calculation	
Ca2SiO4 A1203_k Ca0_Lim	25 1 Calculate >>	
<		7

Sustainable Materials Processing Lab

FactSage Team

Task 1: Calculating the Enthalpy of Slag and Recoverable Heat

存 Equilib - Results 25 C	– 🗆 ×
Output Edit Show Pages Final Con	nditions
🗅 🚅 🖾 🚮 🚺	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)
Ca3Al2O6_solid(s) CaAll2O19_solid(s) Ca3SiO5_Hatrurite(s) CaAl2Si2O8_Hexagonal(s) SiO2_stishovite(s8)	This is the maximum amount of thermal energy we can recover from 100 g molten blast furnace slag (at 1500 °C) that is considered.
DELTA Cp DELTA H J.K-1 J -4.55498E+01 -2.19303E+05	DELTA S DELTA G DELTA V J.K-1 J dm3 -2.24361E+02 2.64503E+05 0.00000E+00 S G V
can be recover Ca25: Ca35: Ca3A:	out a quick calculation for the amount of thermal energy that red from 300 million tonnes of blast furnace slag. the majority of these energy is currently wasted, and many nade to develop a sustainable technology for its recovery.
Cut-off limit for phase act Databas Data Se Final c	(B> T(C) P(atm) Delta H(J) 1 calculation X 25 1 Calculate >>


Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Task 2: Calculating the Melting Temperature of Slag

First of all, you need to be aware that for pure substances, the melting or solidification process occurs at a fixed temperature (determined by the Gibbs phase rule). On the contrast, for solution phases, the melting or solidification process occurs within a certain temperature range, bounded by the liquidus temperature and solidus temperature. **The melting temperature of slag** refers to the liquidus temperature, that is, the temperature above which the system exists as 100% liquid. There are generally two approaches to calculating the melting temperature:

- (a) Cooling Approach. Start with a temperature which is high enough so that the system is 100% liquid. Then cool the system to find the temperature when the first solid forms
- **(b) Heating Approach**. Heat up the solid mixture and find the temperature when the last solid disappears.

Task 2: Calculating the Melting Temperature of Slag (Cooling Approach)

存 Equilib - Reactants	— 🗌 🗙 🎝 Data Search
File Edit Table Units Data Search Data Evaluation Help	Databases - 1/14 compound databases, 1/15 solution databa:
T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	Image: Section 1 Image: Section 2 Image: Section 2 <t< td=""></t<>
	(C) P(total)** Stream# Data 00 1 1 FThelg ELEM SGnobl FTpulp FTdemo SpMCBN RefreshDatabases
We have already defined a molten CSA slag s Import this slag stream. Of course, you can a the three oxides. We will cool this molten slag and find the te the first solid appears.	Ilso manually input
Check the option of "Initial Conditions" to indicate the slag is fully molten at 1500 °C. However, you don't have to do so. Next >> FactSage 7.3 Compound: 1/14 databases Solution: 1/15 databases	
	81

Sustainable Materials Processing Lab

FactSage Team

Task 2: Calculating the Melting Temperature of Slag (Cooling Approach)

🕼 Equ	uilib - Menu: last system		– 🗆 X
File U	Inits Parameters Help		
	2 🖬	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🚻 📑 🔂
Read	tants (1)		
⊂ Prod	Right Click	(gram) 100% [SCA_Slag_1500_*C] (1500C,#1)	
		tion phases	Custom Solutions
Cooling Calculation - L-Option X Solution FT	oxid-SLAGA	Base-Phase Full Name IL FToxid-SLAGA A-Slag-lig all oxides + S	0 fixed activities Details 0 ideal solutions
L-Option - clear		I FToxid-MeD_A A-Monoxide	Pseudonyms
However, for Liquids the calculations are most meaningful since they relate to solidification. * - custor m - merge Solution phase: FToxid-SLAGA - solutio	e dilute solution from > > > > > > > > > > > > > > > > > > >	In the Equilib Module, "Co permitted. We could perfor cooling or non-equilibrium	rm either equilibrium
 Normal equilibrium calculation 	e 2-phase immiscibility	Gulliver cooling). The equi	0.
Not cooling calculation!	rd stable phase + nt (metastable) phase tion target phase =	will calculate all the charac when new solids precipita	cteristic temperatures
C - comp	itate target phase solution target 500		C transitions only Copen Calculate >>
Help			82

Sustainable Materials Processing Lab

FactSage Team

Task 2: Calculating the Melting Temperature of Slag (Cooling Approach)

存 Equilib - Menu: last system		- 🗆 X
File Units Parameters Help		
	T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	🔢 🔜 🕞 🐼
Reactants (1)		
	(gram) 100% [SCA_Slag_1500_°C] (1500C,#1)	
Select all the	pure solids.	Select all the solid solutions.
gas ⓒ ideal C real 0 aqueous 0 pure liquids 0 ↓ pure solids 30	* + Base-Phase Full Name IL FToxid-SLAGA A-Slag-liq all oxides + S I FToxid-Me0_A A-Monoxide + FToxid-MeLA A-Melilite I FToxid-Mull Mullite	0 fixed activities Details 0 ideal solutions Pseudonyms apply Edit Volume data sume molar volumes of
species: 30	We will use the default of	cooling step 25 °C. However, this does not affect
Equilibrium cooling	egend the calculation of charac	cteristic temperatures.
Cooling step : 25 T-auto:	- immiscible 3 - Shows and Selected	Total Species (may 5000) 50
Quantity(g): 0	+-selected 1 Cooling starts	at 1500 °C. That's why we don't have to check
Final Conditions	the option of "	Initial Conditions".
<a> 	T(C) P(atm) <u>▼</u> Delta H(J) <u>▼</u>	normal C normal + transitions
10 steps Table		C transitions only C open Calculate >>
FactSage 7.3		

Sustainable Materials Processing Lab

FactSage Team

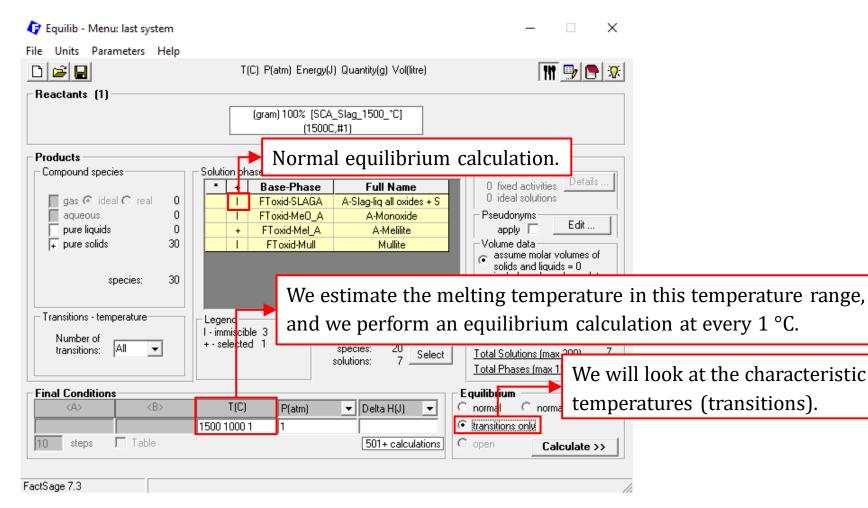
MSE Department, University of Toronto

Task 2: Calculating the Melting Temperature of Slag (Cooling Approach)

In the pure solids. Output Edit Show Pages Final Conditions	
🗅 😰 🖾 🐻 🛐 T(C) P(atm) Energy(J) Quantity(g) Vol(litre)	
- Summary - Transitions 1325 C 1321.49 C 1300 C 1275 C 1265.79 C 1257.43 C 1257.43 C	
('Double-Click' on any phase listed above to recycle All the equilibrium calculations. The temperatures of	
SUMMARY OF REACTIONS 1321.49, 1265.79, and 1257.43 °C are when new solid	ds
Cooling 1325 to 1321.49 C (DETTA H = -4.1481E+02 J) Slag-lig cooling Slag-lig cooling	
Constituent 1 1321.49 to 1265.79 G (DELTA H = -1	
^{Slag-liq -> Melilite} The first solid – Melilite forms at 1321.49 °C. Clearly, this temper	ature
Constituent 2 1265.79 to 1257.43 C (DELTA H = -2 is the melting temperature.	
Slag-lig -> Melilite + CaAl2Si208_Ambrtnite(s2)	
Constituent 3 1257.43 C (isothermal) (DELTA H = -3.9243E+04 J) Slag-lig -> Melilite + CaSiO3 Ps-wollastoni(s2) + CaM12Si2O8 Aporthite(s2)	
COMPOSITION OF PHASES IN CONSTITUENTS AT Please view other tabs and see if you can comprehend the	
(temperature of final disappearance of S calculation results (use the ChemSage format)	
Constitu Final Conditions Melilite <a> K T(C) P(atm) Delta H(J) Deactivated for	
Ca 1500 1 Scheil cooling	
۵۲ ۱. (
	84

Sustainable Materials Processing Lab

FactSage Team


Task 2: Calculating the Melting Temperature of Slag (Cooling Approach)

A Note on "Normal Equilibrium Calculation":

You can also use the mode of "normal equilibrium calculation" to calculate the melting temperature (Next Page).

Cooling Calculation - L-Option X
L-Option
You may choose any solution phase with the L-option. However, for Liquids the calculations are most meaningful since they relate to solidification.
Solution phase: FToxid-SLAGA
C Scheil-Gulliver cooling
Help

Task 2: Calculating the Melting Temperature of Slag (Cooling Approach)

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Task 2: Calculating the Melting Temperature of Slag (Cooling Approach)

Fquilib - Results 132				
	the first transition w	when temperat	ture is reduced	l from 1500 °C.
	T(C) P(atm) Energy(J) Quantity(g) V	ol(litre)	M 🖳 🕞 🕅	
	7.43 C 1125.31 C 1125.31 C			
PHASE: Slag-liq#1(;#2) A1203	EQUIL AMOUNT MASS FRACTION gram 2.0000E+01 2.0000E-01	ACTIVITY	^	
Si02	4.0000E+01 4.0000E-01	8.4424E-02		
CaO	4.0000E+01 4.0000E-01	7.6344E-04		
TOTAL:	1.0000E+02 1.0000E+00	1.0000E+00	-	
Site fraction of sublatt	ice constituents:			
Al	0.22147 Stoichiome	try calculated	_	
Si	0.37584			
Ca	Clag is a stable ph	aga hagayaa it	ta activity (acti	with of phase not
0	Slag is a stable ph	ase because n	is activity (acti	vity of phase, not
System component	constituents) is up	aitu		
Ca	constituents) is u	iiity.		
Si	0.66573 18.697	0.15115 (0.18697	
Al	0.39231 10.585	8.9068E-02 (0.10585	
•	2.6332 42.130	0.59784 (0.42130	
PHASE: Melilite	gram MASS FRACTION	ACTIVITY		
CalA1307[1-]	0.0000E+00 4.9799E-01	2.5000E-01		
CalA11Si207[1+]	0.0000E+00 5.0201E-01	2.5000E-01		
TOTAL:	0.0000E+00 1.0000F+00	1.0000E+00		
PHASE: Mullite#1;#2	gram MASS FRACTION			
A12A1105[-1] A12A11V	0.0000E+00 3.243701	7.2660E-04		1
Alesia Melilite is the	e only stable solid. T	his transition	temperature	
	is when melilite firs	st forms.		
211102.				

FactSage Team

Task 2: Calculating the Melting Temperature of Slag (Heating Approach)

In the heating approach, we will manually input the oxides at 25 °C, and then perform higher-temperature calculations. The following slides show the calculation details.

Task 2: Calculating the Melting Temperature of Slag (Heating Approach)

🞝 Ec	quilib	- Reactants				- 🗆 ×
File	Edit	Table Units Data	Search Data Evaluat	tion Help		
D	2	+ 📰	T(C) P(atm	n) Energy(J) Quantity(g) Vol(litre)	11 🕞 🚍 🛪
1.	3	Right Clicl	~	CaO Compound data on Help	n CaO	
	40	Quantity(g)	Species	Phase solid Lime	T(C) ▼ 25	P(total)** Stream# Data
+	140		Si02	solid-1 Quartz(I)	▼ 25	View Data CaO Units: T(K) P(atm) Energy(J) Quantity(mol) - X File Edit Sort Compounds Summary Databases Units Atomic Wts. Table Graph Help << Back [2 Phases] FToxid - FACT oxide compounds (2019)
	20		AI203	solid-4 corundum	(alph _ 25	Phases Cp(T) H(T) G(T) S(T) Volume Magnetic Refs. Trans. Mol Wt.2 Name: Calciu
		We can	use the View	w Data Mo	dule to	Clearly, S1 is the stable CaO at 25 °C.
		determi	ne the phas	se type at 2	25 °C.	Transition T(K) T(C) Delta H Delta S Delta Cp
Ch	eck	the option	of "Initial C	Conditions"	' to	
ind	lica	te the oxide	e mixture is	initially at	t 25 °C.	
			n't have to d			
				Next >>		
FactSa	ge 7.3	Compound: 1/	'14 databases Solu	ition: 1/15 databas	es	
						89

Sustainable Materials Processing Lab

FactSage Team

Task 2: Calculating the Melting Temperature of Slag (Heating Approach)

Q	Equilib	- Reactants				- 🗆 ×
File	Edit	Table Units Data	Search Data Evaluat	tion Help		
D	2	+ 📰	T(C) P(atn	n) Energy(J) Quantity(j	g) Vol(litre)	11 🕞 🚍 🛪
	1-3	Right Click	<	CaO Compound data on Help	CaO	
		Quantity(g)	Species	Phase	T(C)	P(total)** Stream# Data
	40		CaO	solid Lime	▼ 25	1.0 1
	• 40		SiO2	solid-1 Quartz(I)	▼ 25	View Data CaO Units: T(K) P(atm) Energy(J) Quantity(mol) - X
	• 20		AI203	solid-4 corundum	alph 🔻 25	File Edit Sort Compounds Summary Databases Units Atomic Wts. Table Graph Help << Back [2 Phases] [FToxid - FACT oxide compounds (2019)] [FToxi
						Phases Cp(T) H(T) G(T) S(T) Volume Magnetic Refs. Trans. Mol Wt.2
l			use the Vie ne the phas			Name: Calciu Clearly, S1 is the stable CaO at 25 °C. Transition T(K) T(C) Delta H Delta S Delta Cp J/mol J/mol-K J/mol-K J/mol-K J/mol-K S1 -> L1 2845.16 2572.01 79496.0 27.941 0.000
		the option te the oxide				
Н	owe	ver, you dor	n't have to c	lo so.		
				Next >>		
Fact	Sage 7.3	Compound: 1/	14 databases Solu	ition: 1/15 database	es	
	-					90

Sustainable Materials Processing Lab

FactSage Team

Task 2: Calculating the Melting Temperature of Slag (Heating Approach)

存 Equilib - Menu:	- 🗆 X
File Units Parameters Help	
□ 😂 🖬 Reactants (3)	(gram) 40 CaO + 40 SiO2 + 20 Al2O3
☐ Products	(25C,s,#1) (25C,s1,#1) Choose all the solution phases.
Compound species gas () ideal () real () aqueous () pure liquids () + pure solids () species: 30	Solution phases Custom Solutions I FToxid-SLAGA A-Slag-liq all oxides + S I FToxid-MeLA A-Melilite I FToxid-MeLA A-Melilite I FToxid-Mull Mullite Volume data include molar volume of solids and liquids = 0 include molar volume data
Transitions - temperature	We are heating up the oxide mixture from 25 °C
Number of	$\begin{array}{c} \text{Legend} \\ \text{L-immiscible 3} \\ \text{+-selected} \end{array} up \text{ to } 1500 \text{ °C.} \\ \text{+-selected} \end{array}$
transitions: All	solutions: 7 Select <u>Total Solutions (max 2000 7</u> <u>Total Phases (max 1</u> We will look at the characteristic
Final Conditions	T(C) P(atm) Delta H(J) C normal C norma temperatures (transitions).
	25 1500 25 1
10 steps 🗖 Table	60+ calculations C open Calculate >>
FactSage 7.3	

Sustainable Materials Processing Lab

FactSage Team

MSE Department, University of Toronto

Task 2: Calculating the Melting Temperature of Slag (Heating Approach)

🗗 Equilib - Results 1257.43 C (pa	ge 9/12)		- 🗆 ×	
Output Edit Show Pages Fina	l Conditions			
1321.49 C	T(C) P(atm) Energy(J) Qua			
63.49 C 63.49 C 749.2 C 749.2	C 859.36 C 859.36 C 1125.31 C	1125.31 C - 1257.43 C	1257.43 C 1265.79 C	
			^	
Al	1.0000 Stoich	niometry = 1		
Si	0.50000 Stoich	niometry = 2	At 1257.43 °C, the liquid slag starts t	0
Al	0.50000		forme (actions to me or other or first me	ماد:
System component	Amount/mol Amount		form (solidus temperature or first m	eiting
Ca	0.24372 9.767		t	
Si Al	0.12186 3.422 0.24372 6.576		temperature).	
0	0.24372 6.576		0.40845	
PHASE: Slag-lig#1;#2	gram MASS FF		0.40045	
A1203	-	49E-01 7.5821E-03		
Si02		6E-01 1.0318E-01		
CaO		5E-01 4.6771E-04		
TOTAL:	0.0000E+00 1.000	0E+00 1.0000E+00		
PHASE: Mullite#1;#2	gram MASS FI	ACTION ACTIVITY		
A12A1105[-1]	0.0000E+00 3.024	2E-01 4.5553E-04		
A12A11Va5[+9]	0.0000E+00 4.845	2E-03 1.4948E-11		
A12Si105[0]	0.0000E+00 6.817	4E-01 1.6224E-02		
Al2SilVa5[+10]		6E-02 5.3239E-10		
TOTAL:		0E+00 5.4708E-02		
PHASE: Monoxide#1;#2	gram MASS FF			
CaO	0.0000E+00 3.197	74E-01 8.3843E-03		
A1203 Final Conditions				
TOTAL: <a>	 T(C)	P(atm) Delta H(J)	60+ calculations	
CaSiO3_	25 1500 25 1		Calculate >>	
CaAl2Si			*	
<			×	

Sustainable Materials Processing Lab

FactSage Team

Task 2: Calculating the Melting Temperature of Slag (Heating Approach)

存 Equilib - Results 1321.49 C (page 12	2/12)			- 0	×
Output Edit Show Pages Final Cor	nditions				
63.49 C 63.49 C 749.2 C 749.2 C - 1321.49 C - - - -		ergy(J) Quantity(g) Vo		257.43 C 1265.79 C	<u>X</u>
Ca	0.40269				^
O System component Ca	1.0000 Amount/mol 0.71330	Stoichiomet Amount/gram 28.588	ry calculated Mole fraction 0.16195		9 °C, only melilite is present, but
Si	0.66573	18.697	0.15115	this is the	last solid before the system
Al O PHASE: Melilite	0.39231 2.6332 gram	10.585 42.130 MASS FRACTION	8.9068E-02 0.59784 ACTIVITY	becomes 1	00% liquid.
Ca2A1307[1-] Ca2A11Si207[1+]	0.0000E+00 0.0000E+00	4.9799E-01 5.0201E-01	2.5000E-01 2.5000E-01		
TOTAL:	0.0000E+00	1.0000E+00	1.0000E+00		
Site fraction of sublatt Ca	ice constituent 1.0000	s: Stoichiometry	7 = 2		
Al	1.0000	Stoichiometry	/ = 1		
Si Al	0.50000 0.50000	Stoichiometry	7 = 2		
System component Ca	Amount/mol	Amount/gram	Mole fraction 0.16667	Mass fraction 0.29233	
Si	0	0	8.3333E-02	0.10243	
Al	0	0	0.16667	0.19680	
Conditions					
	B> T(C)	P(atm)	Delta H(J)	60+ calculations	
Al2AllO Al2AllV	25 1500 25	1		Calculate >>	
Al2Silo	,				×
<				2	•
					93

Sustainable Materials Processing Lab

Question 1. The typical composition of copper slag is shown below.

Oxide	FeO	SiO ₂	CaO	Al_2O_3
wt.%	40.0	40.0	10.0	10.0

Calculate the equilibrium when this copper slag is heated between 1000 and 1800 °C in air (i.e., $P_{O_2} = 0.21$ atm).

Tip: (1) perform the calculation based on 100 gram of copper slag; (2) plot the masses of all stable phases against temperature.

In-Class Exercise

Question 2. Desulfurization of Liquid Steel

We have studied the desulfurization of hot metal using different desulfurizing agents. The hot metal after desulfurization is transferred to a basic oxygen furnace (BOF) for decarbonation. The resulting metal product is referred to as liquid steel.

<u>Another spot</u> of desulfurization is during ladle refining of liquid steel. Say we choose Mg as the desulfurization agent. Use the Equilib Module to find the required Mg if the sulfur content is reduced from 0.01 to 0.001 wt.%S. You may need the data shown on the next slide.

Question 2. Desulfurization of Liquid Steel

Liquid Steel Composition.

Element	С	Mn	S	Fe
wt.%	0.05	0.10	0.01	99.84

Ladle Furnace Slag Composition.

Component	CaO	SiO ₂	MgO	Al_2O_3
wt.%	40.0	10.0	10.0	40.0

The slag carry-over is 100 kg/tonne steel, and the temperature is 1600 °C.

Note: you don't have to consider the gas phase.

Question 3. Preparation of Synthetic Slags

Use the Equilib Module to solve the following questions

As a summer student, your professor asked you to prepare a synthetic blast furnace slag. You have the following available chemical reagents, including solid quartz (low-temperature, SiO_2), solid lime (CaO), solid alpha corundom (Al_2O_3), and solid periclase (MgO).

(1) If the composition of the blast furnace slag is 32 wt.% SiO_2 , 40 wt.% CaO, 17 wt.% Al_2O_3 and 11 wt.% MgO, what is the melting temperature?

(2) If all the chemical reagents which are initially at room temperature (25 °C) are fed into the furnace, calculate the minimum energy requirement when forming 100 g slag with the temperature determined in (1).