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Preface

There are books that are enjoyable to read, study and re-read. Amongst them is Ziman’s Models of
disorder published shortly after I started my own research. Ziman considered steel and glass, earth
and water to be disordered phases of condensed matter, even though the opening page of his first
chapter identifies a crystal as an example of the highest degree of spatial order, other than that of
the mythical perfect vacuum. But he could be forgiven for associating steel with the level of order
in glass and water, because by definition, steel never is a pure crystal – if atoms other than iron
or vacancies within the structure are not ordered, then the strict meaning of spatial order as taught
to undergraduates is lost; there is no long-range periodicity in an unordered crystalline solution.
From my perspective, Ziman’s beautifully composed book was readable in parts and challenging
otherwise. That, I concluded, is the essence of a good book because the challenge inspires, as it
does so in sport. An absence of challenge might make the book dull to read, but if the challenge is
insurmountable, then the book is abandoned. I took this as a working principle in my teaching. An
important caveat: challenge does not equate with poor delivery.

Another book that I would love to take with me if I ever were to be abandoned on a deserted
island is Christian’s Theory of Transformations in Metals and Alloys, the most respected book on the
subject. I spent an entire sabbatical studying the 1975 edition from cover-to-cover, now a bedraggled
copy that I continue to cherish. I also have the complete and final edition, but I remain loyal to my
well-used version. Christian also wrote the most amazing, concise and deep reviews on a variety
of transformation-related topics, many of which formed the foundations of understanding. I got to
know Professor Christian through some exhilarating discussions and we managed eventually to pen
a really quite nice paper together.

Given Christian’s writings, why did I find it necessary to write this book? The simple fact is
that there is a great deal of theory specific to steels that is not covered in any other book. There
are monographs dealing with specifics such as Nishiyama’s book on martensitic transformations,
chemical thermodynamics by Lupis, or my own on bainite. The monographs taken together do not
cover the spectrum of transformations in steels. And there is a lot to gain from a single text that
can enable the big-picture of the myriads of transformations possible in steels to be revealed and
rationalised. By this I do not claim that there is a grand unification theory, but it is possible, finally,
to go a fair way towards that notion.

Iron and its alloys laid the foundations of metallurgy, perhaps beginning with Sorby’s revelation
of the microcrystalline structure of steel, followed by many attempts to relate such observations
to the behaviour of the metal. It could be argued similarly that materials science, as opposed to
the basic sciences, is essentially the study of relationships between structure and properties. And
metallurgy from the beginning has been interdisciplinary – Sorby began his microscopy with the
study of rocks. Adolf Martens, after whom martensite is named, began as a locksmith; his sketches
of the microstructure of steel are consummate works of art and precision, that reveal structure to
the naked eye. The term interdisciplinary is a modern caricature; scholarship in the not-so-distant
past was simply that, with no distinction between the humanities and sciences. It was all about
natural philosophy. Mechanical engineers determined the chemical composition of cementite back
in 1885. A decade before that, William Henry Johnson, the Managing Director of the ‘Iron Metal
and Electrical Company’ discovered hydrogen embrittlement; his paper on the subject contains the
essence what we know today about the pernicious role of the lightest element on the properties
of the most stable element in the universe. This passage of time since the study of iron became a
yearning means that there is a great deal known about iron and its alloys across the modern version
of disciplines, be it astrophysics or the history and philosophy of science.

xv



xvi Preface

Given this long-standing learning associated with iron and its alloys, the subject today is not for
the faint hearted. As Ziman stated in another context, the subject is no longer “an elementary scien-
tific discipline, to be entered without long preparation”. I hope that this book helps in establishing
a marker from which to create without falling into the all too common trap of re-discovery. In this
respect, I must acknowledge Google Scholar in helping me discover the most lonely of articles.
Who would have thought, for example, that titanium carbide with its foreboding hardness, under-
goes martensitic transformation? And more, that its features fit like a glove to the crystallographic
theory of martensite.

Without thermodynamics in all its forms, it would not be possible to understand the most peculiar
behaviour of iron, even in its purest form. It’s allotropic transformation at ambient pressure from
ferrite and then back into ferrite is not replicated by any other substance. The cause, revealed by an
analysis of its heat capacity, is entirely a consequence of the magnetic characteristics of ferrite and
austenite, rather than anything to do with the thermal component of entropy. This is why, for many
decades, first principles calculations failed to reproduce the correct ground state of iron. In fact,
even austenite has a variety of magnetic states – of vital importance in explaining its large thermal
expansion coefficient that makes austenitic steels less useful in the construction of power plant. To
deal with this, I have chosen to invest in the Weiss two-state theory because it captures the essence
of the problem, rather than the first principles approach which reveals somewhat more detail but not
to an extent that is useful. On the other hand, first principles calculations for terapascal pressures
have revealed that at ambient temperatures, the ferrite when pressurised transforms into the hexag-
onal allotrope, then at higher pressures back into austenite and then into a slightly tetragonal form
of ferrite; at the moment, these last two stages are not amenable to experimental validation and do
not account for magnetism. Quantitative thermodynamics is now routine in steel metallurgy, thanks
to the pioneering efforts that led to the creation of databases and the algorithms to implement those
assessed data in the estimation of phase equilibria in multicomponent steels. I have tried to capture
the many ways in which thermodynamics has revealed the secrets of steels and has placed bound-
aries on hypotheses such as the role of host vacancies on the diffusion of interstitials. The story on
thermodynamics would not be complete without an excursion into the irreversible version, which
helps in dealing with steady-state processes driven by multiple forces and fluxes.

The detail with which we understand diffusion in iron is astonishing. Diffusion is driven by a
free energy gradient, that much is clear. This sometimes explains the concentration dependence of
diffusivity, but not entirely in the case of carbon. There is a strong repulsive force between carbon
atoms in adjacent sites, which further promotes its migration along a gradient of concentration.
Hydrogen too has its foibles, that it is easily trapped during its passage through steel, making the
apparent diffusion coefficient much smaller than expected. There is an anomaly in the migration
of large atoms at the Curie transition in ferrite. Onsager’s irreversible thermodynamics is applied
generously in dealing with multicomponent or multiforce driven migration.

After dealing with thermodynamics and diffusion in some detail, I chose to focus on ferrite and
martensite. This is because they represent the archetypal reconstructive and diffusionless transfor-
mations respectively. As such, they lay the foundations for broad-ranging phenomena which need
not be repeated when dealing with any other transformation in steels. For example, the structure
and consequences of the structure of transformation interfaces, the rate-controlling phenomena and
interface response-functions, evidence-backed nucleation mechanisms, the geometric partitioning
of the austenite, and so on. There are some logical anomalies that are revealed during this journey.

The theory for bainite has contributed much to the development of novel steels, a subject covered
comprehensively in the three editions of Bainite in Steels. I present instead a decisive exposition
of just the theoretical framework based on harsh observations rather than pander to hypotheses
that neglect the totality of evidence. The story of displacive transformations (excluding carbides)
concludes in the chapter on Widmanstätten ferrite, with an exciting mathematical rationalisation of
martensite, bainite and Widmanstätten ferrite. It becomes clear why all three of these products of
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austenite decomposition do not necessarily occur in all steels, with an attractive reconciliation of
theory and observations.

There are some hidden depths to the precipitates that occur in steels, i.e., graphite, carbides, ni-
trides and intermetallic compounds. In this context, a number of chapters cover their mechanisms,
crystallography, where possible a quantitative explanation of orientation relationships, thermody-
namic stability and physical properties. A knowledge of the crystallographic methods used is as-
sumed because they are dealt with in the book Geometry of crystals, polycrystals and phase trans-
formations. There are some titillating outcomes that explain shapes and growth directions. Many
of these precipitates are metastable so they may have a fleeting existence but nevertheless leave a
legacy of influence on subsequent reactions. This is where the reader will first encounter methods
for dealing with serial and parallel chains of reactions.

Pearlite is perhaps better described as a clever way in which nature permits the decomposition
of austenite by diffusion, but without changing its average composition, at least in the Fe-C system.
But even in this simple binary alloy, theory does not yield a growth rate, but rather a Péclet number
which is the product of the rate and an interlamellar spacing. Like it or not, there is no clear way
of deciphering this number; only experiments can reveal whether the spacing actually obtained
corresponds to a particular hypothesis, such as Zener’s assumption that growth should occur at a
maximum rate. When it comes to substitutionally alloyed steels, the theory is a poor predictor if
local equilibrium is assumed at the transformation fronts.

Kinetic theory is introduced throughout the book, but it was necessary to add a final chapter that
does not deal with individual transformations, but a more realistic scenario in which many reactions
occur at the same time, albeit at different rates. There also is a limited treatment of grain growth,
recrystallisation and thermomechanical processing. Although solidification is a transformation, I
have avoided it primarily because I lack the expertise. I hope the reader can find solace elsewhere. I
could have limited the title to solid-state transformations, but I thought that would be clumsy, rather
like the formal and lengthy titles of some heads-of-state.

This book was written over a time period that is too painful to mention. Time seems to be the only
resource that humans cannot muster at will. But I would like to finish by mentioning a few names.
I recall with affection how the late Professor Robert Honeycombe, who as an external examiner for
my undergraduate degree at the City of London Polytechnic, recruited me to Cambridge for research
in his steels group. He and my immediate supervisor David Edmonds gave me the freedom to pursue
ideas even when they believed that I was going down alleyways and therefore likely to be mugged!
Professor Jack Christian of Oxford had a thrilling and lasting influence on my understanding of
theory. He too was a scholar and a gentleman who treated a mere student from another University
without regard for status. I was able to spend some quality time with Professor Morris Cohen and
Greg Olson at MIT when we explored strange couplings in steels. I never had the opportunity to
publish with Professor Colin Humphreys, but owe a lot to him as a human being, for his selfless
nurture. Professor Hubert Aaronson and I were deep adversaries when it came to the theory of
bainite, but strangely, I suffer when some of the work he and others did on the ledge mechanism
of ferrite growth is neglected in modern publications where unrealistic hypotheses are proposed to
bring a closure between ill-conceived theory and ill-designed experiments.

The unexpected endowment of my Chair by Tata Steel touched me to the core; the value of this
generosity will continue in perpetuity. I have visited what seems like a vast part of the planet during
my academic adventures, but South Korea was special; I was recruited by Professor Hae-Geon Lee
to POSTECH and spent 3-4 months each year for ten years working with amazing people on steels
and steels alone. But I have to say, of all the places in all of the world, Cambridge to me is just that
bit extra special.

Harshad K. D. H. Bhadeshia
Cambridge
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Acronyms etc.

bcc Body-centred cubic

bct Body-centred tetragonal

fcc Face-centred cubic

hcp Hexagonal close-packed

F Face-centred

I Body-centred

IC Interface composition contour

IV Interface velocity contour

ILS Invariant-line strain

IPS Invariant-plane strain

KS Kurdjumov-Sachs orientation relationship

NP-LE Negligible partitioning local equilibrium

NW Nishiyama-Wasserman orientation relationship

PLE Partitioning local equilibrium

P Primitive

R Trigonal

TTT Time-temperature-transformation

The use of braces, for example x{y}, implies a functional relationship, i.e., x is a function of y.

Vector and matrix notation Bowles and MacKenzie’s notation is particularly useful in avoiding
confusion between frames of reference. A set of vectors ai (i = 1,2,3) defines the coordinate system
with a basis symbol ‘A’. A vector u in real space, referred to this basis will have components ui along
ai, i.e.,

[A;u] = [u1 u2 u3]

where the square brackets imply a column vector; round brackets are read as row vectors. The
components of u will be different in another basis ‘B’:

[B;u] = (B J A)[A;u]

where (B J A) is a 3× 3 coordinate transformation matrix relating the two bases. Note the juxtapo-
sitioning of the basis symbols, which reduces the chances of making errors during the expression of
a chain of separate operations. The inverse of (B J A) is written (A J B) and its transpose as (A J′ B).
A deformation referred to basis ‘A’ is written (A S A) and it is noted that a rigid body rotation falls
in this category:

[A;v] = (A S A)[A;u], [B;v] = (B J A)(A S A)[A;u].

A plane normal is a vector in reciprocal space, generally written as a row vector (h;A∗) where A∗

is the reciprocal basis corresponding to the basis A:

(h;B∗) = (h;A∗)(A J B)

Methods of dealing mathematically with crystallography, interfacial structure and homogeneous
deformations are described thoroughly in the book Geometry of crystals, polycrystals and phase
transformations, so are not reproduced here.
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Nomenclature

↵ Ferrite, or sometimes specifically, allotriomorphic ferrite
↵00 Fe16N2 nitride
↵0 Martensite
↵a Acicular ferrite
↵b Bainite
↵i Idiomorphic ferrite
↵lb Lower bainite
↵ub Upper bainite
↵W Widmanstätten ferrite
↵id Parabolic rate constant, numerical subscript referring to the dimension
eV Volume expansion coefficient
b Isothermal compressibility or angle
bO, bTe Number of octahedral (O) or tetrahedral (Te) interstices per solvent atom
bp Parameter in the Aziz theory for solute-trapping
bq Quantity in quasi-chemical solution model
� Austenite
�0 Fe4N nitride
G Activity coefficient
db Grain boundary thickness
ds Interplanar spacing
D Uniform dilatational strain
ė Strain rate
e Elastic strain
e⇤ Strain during transfer of interstitial between adjacent sites
el Strain caused by transferring C atom between not-preferred to preferred sites
eC⇤ Binding energy between carbon and iron-vacancy
euu Energy per carbon-carbon pair
eu Energy per interstitial-vacancy/carbon pair
" Fe2.4C or Fe2�3N nitride
" Hexagonal close-packed iron
ep Plastic strain
⇣ Fe2N nitride
z Dilatational strain normal to habit plane
hi Principal distortions, the subscript identifying the principal axis
⌘ Fe2C
q Ratio of number of C atoms to total number of solvent atoms
qi Fraction of sites occupied by interstitials on plane i
✓ Cementite
Q1, Q2, Q3 Functions of z, D and t in diffusion-controlled growth theory
l Parameter in quasi-chemical interstitial-solution model
l ⇤ Value of l when the interstitial atoms are randomly distributed
l l yielding largest term in summation contained in partition function
µo Gibbs free energy per mole of pure substance
µi Chemical potential per mole of element i in solution
µB Bohr magneton
L Liquid
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xxiv NOMENCLATURE

n Attempt frequency in diffusion, or Poisson’s ratio in elasticity
r Density; ledge height, isolated or leading ledge in a train of ledges
r⇤ Critical height of ledge for successful nucleation
r? Dislocation density
ri Height of trailing ledge divided by r
rA Density of atoms in a close-packed plane, moles per unit area
s+, s� Energy per unit length of positive or negative interface edge
s0 Stress driving the motion of a grain boundary in a pure material
sd Impurity drag-stress on grain boundary
sf Stacking fault energy per unit area
sP Flow stress for plastic deformation
s↵� Energy per unit area of ↵/� interface
t T/TC, or time in overall kinetics
f Parameter in quasi-chemical solution model, or electrical potential
f1,f2 Variables in solute-drag theory
fO Fraction of carbon atoms in octahedral interstices
fTe�Te Fraction of carbon atoms in tetrahedral interstices, which jump by a Te-Te route
F Electrical field, or capillarity constant
Fi Functions in theory for precipitate growth, martensite nucleation, etc.
� Hägg carbide, Fe2.2�2.5C
y Fraction of austenite region that transforms into a plate of martensite
y Order parameter in phase field theory
w Change in binding energy per atom during mixing to form binary solution
w� Carbon-carbon interaction energy in phase �
wD Debye frequency
W Partition function
a Activity, or atomic percent of element identified in subscript
a↵ Lattice parameter of phase ↵
a� Lattice parameter of austenite
a↵i Activity of i in phase ↵
am Activity of activated complex
A Atomic weight, or area of interface
Ac3 Temperature at which a sample becomes fully austenitic during heating
Ae1 Temperature separating the ↵+� and ↵ phase fields for a specific alloy
Ae3 Temperature separating the ↵+� and � phase fields for a specific alloy
Ar3 Temperature at which � begins to transform to ↵ during cooling
b Number of lattice points per unit cell, or magnitude of Burger’s vector
bi Empirical fitting constants
Bi Number of sites excluded from occupation on plane i
c� Average carbon concentration in the austenite
ci Average concentration of i in alloy, moles per unit volume
c Molar concentration per unit volume
ci Concentration of component i, moles per unit volume
c↵�

i Concentration of i in ↵ in equilibrium with �, moles per unit volume
c↵i Concentration of i in ↵ at ↵/� interface, moles per unit volume
c�↵i Concentration of i in � in equilibrium with ↵, moles per unit volume
c�i Concentration of i in � at �/↵ interface, moles per unit volume
cb Concentration of solute in a stationary grain boundary
c↵e Electronic specific heat coefficient for a mole of phase ↵
cV Specific heat capacity per unit volume



NOMENCLATURE xxv

cµ
V Magnetic component of specific heat capacity per unit volume

ci↵ Concentration of i in homogeneous phase ↵, moles per unit volume
ci� Concentration of i in homogeneous phase �, moles per unit volume
C Euler’s constant, 0.5772 . . .
C1 Function relating CP and CV
C↵

e Electronic specific heat coefficient for phase ↵
CL Lindemann constant associated with Debye temperature
CP Specific heat capacity at constant pressure
Ce

P Electronic specific heat function (constant pressure)
Cµ↵

P Magnetic component of the specific heat capacity of phase ↵ at constant pressure
CV Specific heat capacity at constant volume
Ce

V Electronic specific heat function (constant volume)
CL

V Debye specific heat function
Cµ↵

V Magnetic component of the specific heat capacity of phase ↵, at constant volume
Ci j Elastic stiffness constants
D⇤

11 Tracer diffusion coefficient for carbon
DK Fraction of kinetic energy of the migrating atom that leads to diffusion
D Interdiffusion coefficient defined relative to the laboratory frame of reference
Di Intrinsic diffusivity of component i
D Chemical or interdiffusion coefficient for a binary solution
D⇤ Tracer diffusion coefficient
DTe�Te Diffusion by path indicated in superscript
Do Pre-exponential factor in diffusion
DT Thermal diffusivity
Di j Chemical or interdiffusion coefficient for a ternary solution
m Mass of an atom
e Coefficient of thermal expansion; fundamental charge on an electron
eik Wagner interaction parameter
E Young’s modulus of elasticity
E 0 Term in the equation for the elastic strain energy for a martensitic transformation
Ei ith energy level in partition function
EB Binding energy per atom in a crystal relative to that of a free atom
EF Fermi energy
Es Shear modulus
Ei Exponential integral function, Abramowitz and Stegan (1964)
f ⇤ Attempt frequency for atoms jumping across boundary
fµ Fraction of magnetic component of enthalpy retained beyond TC
fi Fractional supersaturation of i, or dimensionless concentration
fc Bardeen-Herring correlation factor in diffusion theory; also, distance between the focus

of parabola and its tip
fo Fraction of component of enthalpy retained beyond TC during chemical ordering
F Helmholtz free energy
F, f Functions arising in diffusion-controlled growth theory
Fµ� Magnetic component of the molar Helmholtz free energy of �
F1, F2 Functions of concentration
gi Degeneracy of energy level i in partition function
DG0 Total free energy available to drive an interface
DG0{x,x} Molar Gibbs free energy change accompanying the transfer of a small amount of mate-

rial of composition x, from � of composition x, to ↵ of composition x in Fe-C
DG↵� Molar Gibbs free energy change for ↵! � transformation, = G��G↵



xxvi NOMENCLATURE

DG�↵
3 Molar Gibbs free energy change for �! ↵ transformation in pure Fe, = G↵�G�

DGF Gibbs free energy of formation for a vacancy
DGM Change in Gibbs free energy per mole due to mixing during formation of a solution
DGm Maximum free energy change accompanying nucleation
DGV Gibbs free energy change per unit volume
DeG Excess free energy per mole of solution
G Gibbs free energy
G0 Rate of change in activation energy with carbon concentration
G⇤ Activation free energy
G⇤

M Activation free energy for the migration of a vacancy
Gµ� Magnetic contribution to the molar Gibbs free energy of �
Ge Strain energy per mole
G↵ Molar Gibbs free energy of phase ↵
GDebye Molar Gibbs free energy component due to Debye specific heat function
GD Free energy dissipated in diffusion
GI Free energy dissipated in interfacial processes
G⇤

O Activation free energy for a jump from an octahedral to tetrahedral site
Gs Solute-boundary interaction energy
G⇤

Te Activation free energy for a jump from a tetrahedral to octahedral site
Gt{x,x} Molar Gibbs free energy corresponding to a point x on a tangent at point x on the � free

energy curve for Fe-C
Ge

V Elastic strain energy per unit volume
h Planck constant
HT Heat of transport per mole of atoms during thermomigration
H⇤

M Activation enthalpy for migration of vacancy or atom
DHµ{T} Excess component of magnetic enthalpy as a function of temperature
DH↵� Molar enthalpy change accompanying the transformation of ↵ to �
DHF Enthalpy of formation of a vacancy
DHM Change in enthalpy due to mixing during formation of a solution
DeH Excess enthalpy per mole of solution
H Partial molar enthalpy with respect to solute atom at rest in vacuum
H Enthalpy
H0 Enthalpy at 0 K
Hmag Magnetic field strength
i Electrical current
i⇤ Electrical current density
I Component array in generalised regular solution model
IV Nucleation rate per unit volume
Ji Flux of i relative to Kirkendall frame
J Diffusion flux
J⇤ Flux of vacancies
Ji Diffusion flux of species i
JB Flux defined relative to a volume-fixed frame of reference
k Boltzmann constant
ke Equilibrium solute-partitioning coefficient
kp Solute-partitioning coefficient that deviates from equilibrium
K Bulk modulus of elasticity
K0 Modified Bessel function of zero order
v` Plate or needle lengthening rate
L Mean lineal intercept defining grain size
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Lo Mean lineal intercept defining initial grain-size
L Long-range order parameter, or liquid
Lsr Short-range order parameter
LAB,C Binary interaction parameter in two-sublattice solution model
LABC Ternary interaction parameter in solution model
LAB Binary interaction parameter in solution model
m+ or m� Transmission coefficient in diffusion theory
mA Number of atoms per particle of A
M Magnetisation, or mobility in phase-field theory
MK

i j Mobility coefficient in Kirkendall frame of reference, diffusion theory
Mi,Mi j Mobility coefficient in diffusion theory
MA Mobility of A atoms during diffusion in a chemical potential graident
Me

A Mobility of A atoms during migration in an electrical potential gradient
MT

A Mobility of A atoms during migration in a thermal gradient
Mb Boundary mobility
Mm Maximum magnetisation
MS Martensite-start temperature
Mik Coefficient relating force Xk to flux Ji in Onsager relations
n Number of planes in a stacking fault
ns Number of ledges per unit length
N General designation of total number
NTe, NO Number of occupied tetrahedral or octahedral interstices
Ni Number of � atoms in level i
NAA Number of A-A bonds
NA Number of A atoms
Na Avogadro’s number
Nb Number of lattice points per unit cell
Ne Number of free electrons in sample
NV Number per unit volume
No

V Initial number per unit volume
O Boundary area
p Momentum; probability; Péclet number
pa Autocatalysis factor in nucleation model
P Pressure
P Pearlite
q Heat transferred into a system
Q Activation energy
rc Critical particle radius at which the growth rate becomes zero
ri Radius of an interstitial atom
ro Radius of largest sphere that can be accommodated without distortion in an interstice
R Universal gas constant
sa Mean spin imbalance per atom in an alloy
s Shear strain parallel to habit plane
sa Net spin imbalance per atom
S⇤M Activation entropy
DSF Entropy of formation of a vacancy
DSM Change in configurational entropy due to mixing during formation of a solution
DeS Excess entropy per mole of solution
Ṡ Rate of entropy production
Sv Partial molar non-configurational entropy



xxviii NOMENCLATURE

S Entropy
S⇤ Activation entropy
S⇤M Activation entropy for the migration of a vacancy
Sµ� Magnetic contribution to the molar entropy of �
SI Interlamellar spacing in pearlite
Si j Elastic compliance constants
TN Néel temperature
T Absolute temperature
T0 Temperature at which ↵ and � have identical composition and free energies
T 0

0 As for T0 but taking strain energy into account
Ta Thermal arrest temperature during cooling
TC Curie temperature
TD Debye temperature
TE Eutectoid temperature
TF Fermi temperature
Tm Melting temperature
Tq Temperature to which � is quenched, with Tq  MS
U Internal energy
U µ� Magnetic component of molar internal energy of �
UO Site energy for an octahedral interstice
UC Energy to move C atom from preferred to a less favoured octahedral site
Urep Short-range repulsive component for energy of C-C interaction
UTe Site energy for a tetrahedral interstice
⇤ Vacancy
v Speed with which an interface moves
vK Velocity of Kirkendall markers
vs Step velocity
V i Partial molar volume of component i
DVF Change in volume of formation of defect in standard state
DVM Change in volume when defect reaches saddle point during migration
V Mean volume
V i Partial molar volume of component i in an n component solution
V Volume
V ⇤ Activation volume
V0 Volume at ambient pressure
Va Volume per atom
Vm Molar volume
VV Volume per unit volume, i.e. the volume fraction
w Work done by a closed system
wi Weight percent of solute i
W Number of octahedral interstices around a single such interstice
x Average concentration in alloy
x↵I Concentration at interface in phase ↵
x Concentration, mole fraction
x↵�

i Concentration of i in ↵ in equilibrium with �
x↵i Concentration of i in ↵ at ↵/� interface
x�↵i Concentration of i in � in equilibrium with ↵
x�i Concentration of i in � at �/↵ interface
xi↵ Concentration of i in homogeneous phase ↵
xi� Concentration of i in homogeneous phase �



NOMENCLATURE xxix

Xi Force term in the Onsager force-flux relations
y Fraction of atoms in ferromagnetic form of �
y0A Site fraction of A in two-sublattice solution model
yA,s Site fraction of A within specified sublattice s
yA Concentration expressed as site fraction of A on a lattice
Y Matrix of site fractions in generalised regular solution model
z Position coordinate, or coordination number
z` Length of plate modelled as oblate spheroid
zt Thickness of plate modelled as oblate spheroid
Z Position of interface
Z" Number of nearest neighbours with spin in favoured direction
Zk Zener-Holloman parameter representing combined effect of temperature and strain rate
Zv Effective valency





1 Crystal structures
& mechanisms

1.1 ALLOTROPES OF IRON

Why do metals adopt the crystal structures that they do? This no longer is a curiosity because the
metallic state is so well understood that it is possible to select, from a calculation of the cohesive
energies of trial structures, that which should be the most stable. Figure 1.1 shows the cohesive
energy as a function of the density and crystal structure. Of all the test structures, hexagonal close-
packed (hcp) iron is found to have the highest cohesion and therefore should represent the most
stable form. This contradicts experience, but the calculations do not account for the ferromagnetism
of body-centred cubic iron (ferrite), which would make it more stable than the hcp form. There
are in fact magnetic transitions in each of the allotropes of iron, details of which are reserved for
Chapter 2.

Figure 1.1 Plot of cohesive energy EB for 0 K and

0 Pa pressure versus the normalised, expertimental vol-

ume per atom for a variety of crystal structures of iron.

EB is the binding energy per atom in the crystal relative

to that of a free atom. Hexagonal-P and Cubic-P are

primitive structures; like the diamond cubic form, they

do not exist on earth. Adapted with permission from

[1]. Copyrighted by the American Physical Society.

Only three allotropes of iron occur in nature, in bulk form; Figure 1.2 shows the phase diagram
for pure iron. Each point on a boundary between the phase fields represents an equilibrium state in
which two phases can coexist. The triple point where the three boundaries intersect represents an
equilibrium between all three co-existing phases. It is seen that in pure iron, the hexagonal close-
packed form is stable only at high pressures, consistent with its high density.
There are two further allotropes which can be created in the form of thin films. Face-centred tetrago-
nal iron can be prepared by coherently depositing iron as a thin film on a {100} plane of a substrate
such as copper with which the iron has a mismatch. The atoms in the first deposited layer replicate
the positions of those on the substrate. A few monolayers can be forced into coherency in the plane
of the substrate with a corresponding distortion normal to the substrate. This gives the deposit a
face-centred tetragonal structure which in the absence of any mismatch would be face-centred cubic
[2, 3]. Eventually, as the film thickens during the deposition process to beyond about ten mono-
layers (on copper), the structure relaxes to the low-energy bcc form, a process accompanied by the

1
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formation of dislocation defects which accommodate the misfit with the substrate.
Growing iron on a misfitting {111} surface of a face-centred cubic substrate similarly causes a
distortion along the surface normal, giving trigonal iron [4].1 Graphene is a single layer of carbon
atoms that has a hexagonal structure with a lattice parameter of 0.245 nm. The crystal is seldom
perfect, often containing holes. Compounds used in its manufacture provide a source of iron atoms
that can attach themselves to the edges of these holes, building up into monoatomic layers that are
suspended in the graphene films. These “free-standing” single-atom-thick two-dimensional arrays
of iron form a square lattice with a parameter 0.265±0.005nm [5]. This particular structure has
been suggested to be a consequence of lattice matching with the “armchair” configuration of carbon
atoms at the graphene edges where the bonding between the iron and carbon atoms is stronger than
when the iron attaches to the “zig-zag” edges of the graphene [5]. The largest stable monolayer of
iron on holes in graphene is found to be about 3 nm2 in area.

Figure 1.2 Temperature versus pressure equilibrium phase diagram for pure iron, based on assessed thermo-

dynamic data. α, γ and ε refer to ferrite, austenite and ε-iron respectively. δ is simply the higher temperature

designation of α. Diagram courtesy of Shaumik Lenka, calculated using the database ‘TCFE8’, and Thermo-

Calc version 2015b.

Table 1.1 lists some transformation temperatures and thermodynamic data for the natural allotropes
of iron. The free energy changes during the solid-state transformations are really quite small, even
when compared with the energy associated with the magnetic disordering of ferrite. In a way, this is
a reflection of the fact that their crystal structures are not all that different (Figure 1.3). For example,
assuming a hard-sphere model, the crystal structure of austenite and ε-iron can be generated by
stacking close-packed layers of iron atoms in such a way that each successive layer sits in the
depressions of the underlying layer. There are in each layer, two types of depressions, so the close-
packed layers can be stacked either in the sequence . . . ABCABCABC . . . or . . . ABABABABA . . .. The
former sequence, which has a stacking period of three, generates the austenite structure, whereas
the latter gives the hcp structure of ε-iron with a stacking period of two. The best comparison of the
relative densities of the phases is made at the triple point where the allotropes are in equilibrium at
an identical temperature and pressure and where the sum of all the volume changes is zero:

∆V (bcc → hcp) =−0.34
∆V (hcp → fcc) = +0.13
∆V (fcc → bcc) = +0.21

}

cm3 mol−1.

Ferrite is the least dense of all the allotropes under ambient conditions.
The fact that the hcp iron is denser than austenite is not expected from the hard sphere approxima-
tion, which also predicts an ideal lattice parameter ratio for hcp (c/a) of

√

8/3 & 1.633. Experi-
mental measurements at high pressures indicate that the ratio is close to ideal, but the results do not
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Table 1.1

Transformation temperatures and thermodynamic data for pure iron at ambient pres-
sure (after Hoffman, Tauer, Paskin, Weiss, Chipman and Orr [6–9]). The transforma-
tion temperatures are consistent with the International Practical Temperature Scale,
which was in 1968 modified by raising the designated melting point of palladium
by 2 K. Tα

C is the Curie temperature for the transition between the ferromagnetic and
paramagnetic states of ferrite; the energy and entropy quoted alongside TC are those
required to completely disorder ferromagnetic iron. The approximate Curie and Néel
temperatures for the two states of austenite are also listed.

T/◦C T/K Enthalpy change Entropy change

∆H/Jmol−1 ∆S/JK−1 mol−1

α→ γ 911.5 1184.65 900 0.7548

γ→ α 1394.0 1667.15 837 0.5025
γ→ L 1527.0 1800.15
α→ L 1538.0 1811.15 13807 7.6325

Tα
C 769.0 1042.15 8075 9.21

T
γ

C 1800

T
γ

N 55–80

agree with respect to its variation with pressure, Figure 1.4. Measurements made at ambient pressure
on retained hcp phase generated by shock–loading Fe-14Mn wt% alloys tend to support the data of
Mao et al., with a lattice parameter ratio of about 1.61 [10]. The fact that hcp iron has the highest
density of all the common allotropes of iron means that it is likely to be the stable solid phase of iron
at the inner core of the Earth. The crystal structure of the Fe-10Ni wt% alloy that may represent the
core composition is thought to be hcp, based on X-ray diffraction data from in-situ measurements at
340 GPa and 4700 K [11]. Simulations using techniques such as ab initio molecular dynamics show
that under Earth–like conditions, it is indeed the hcp phase that is stable at the inner core [12].

Exoplanets have been discovered outside of our solar system that are much larger than the Earth.
This has prompted studies of the iron phase diagram under conditions of extraordinarily large pres-
sures and temperatures, This is because like Earth, such exoplanets and even some so-called gas
giants, may contain iron-rich cores that determine their magnetic fields. Calculations using ab initio

Figure 1.3 Projections of atom positions on plane normal to the z-axes of the crystal structures of austenite,

ferrite and ε-iron, drawn to scale with respect to their observed lattice parameters. The black atoms have

fractional z-axis co-ordinates 0 and 1, whereas the white atoms are at 1
2 z.
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Figure 1.4 The measured lattice parameter ra-

tio c/a for hcp iron as a function of pressure (af-

ter Clendenen and Drickamer [13] and Mao et al.

[14]). The ideal value of the ratio in the hard-

sphere approximation is
√

8/3 = 1.633.

methods are shown in Figure 1.5 for temperatures up to 40,000 K and pressures reaching 100 TPa
[15]. Counter to intuition, the hcp ceases to be stable at very high pressures. This is because the
electronic structures of the phases change — the configuration of the non magnetic bcc iron atoms
under normal conditions is 3d64s2 with the core 3s and 3p bands being very narrow and at energy
levels where they are tightly bound to the nucleus and hence unable to participate significantly in
the metallic bonding process. Extreme pressure changes that, with the core electron bands widening,
overlapping and hence participating more effectively in the bonding process leading to changes in
the relative stabilities of the allotropes of iron [15, 16]. It is interesting that direct measurements
using laser pulses for pressure and X-ray diffraction for crystal structure have shown that while Fe-
6.5Si becomes hexagonal close-packed at pressures in the range 400–1314GPa, Fe-15Si becomes
body-centred cubic over the same pressure range [17]. The estimated temperatures involved in these
experiments lie in the range 1500–3000K.
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Figure 1.5 Phase diagram of iron under extreme conditions calculated using finite temperature density func-

tional theory. The continuous curves are from experimental data whereas the calculations, that neglect magnetic

contributions, are represented by dashed curves. Pressure-temperature conditions at the centre of the Earth,

Jupiter and a planet five times the size of the Earth (“superearth”) are also illustrated. The appearance of α

at pressures in excess of 34 TPa is a body-centred tetragonal distortion (c/a ≈ 0.975) of the bcc form [16].

Adapted with permission from Stixrude [15]. Copyrighted by the American Physical Society.

1.2 THE ILLOUSARY OMEGA PHASE

In alloys based on titanium, zirconium and hafnium, a metastable phase ω can form from the body-
centred cubic β. The β!ω transformation is reversible and diffusionless with a coordinated mo-
tion of atoms [18]. The structure of β has a sequence ....ABCABC.... in the stacking of {111} planes
which are not close-packed. The β ! ω transformation occurs by the passage of a longitudinal
displacement wave along 〈111〉 which causes the B and C planes to collapse into each other, leaving
the A planes unaffected.2 The stacking sequence therefore changes to ...AB′AB′AB′.... in which the
B′ planes have twice the density of atoms as the A planes. The ...AB′AB′AB′.... stacking is consistent
with the hexagonal crystal structure of ω with a c/a ≈ 0.6. The longitudinal displacement waves
are responsible for the intense streaking observed in the electron diffraction patterns in a mixture of
the matrix and ω-phase.
There are periodic reports in the literature that a metastable ω phase forms in α-iron [e.g., 19? ].
However, these are based on a misinterpretation of the additional reflections that occur due to double
diffraction between twin-related variants of α. The characteristic streaking observed in the diffrac-
tion patterns from titanium alloys undergoing the ω-transformation is also absent in the studies of
twin-free iron.
Figure 1.6 is an electron diffraction pattern taken from an internally twinned martensite plate in a
Fe-4Ni-0.4C wt% steel. It contains a pair of twin-related 〈011〉α zones [20]. Reflections such as
the one marked dd are due to double diffraction when an electron beam diffracted from one crystal
passes through another one and acts as an incident beam. These reflections have frequently been
misinterpreted to be due to the ω-phase. In some cases it is claimed that the reflections come from
an untwinned region but this has not been established systematically.
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(a) (b)

Figure 1.6 (a) Electron diffraction pattern from a martensite plate (m) and its twin (t). Spots not connected

by lines (e.g. “dd”) arise from double diffraction. (b) Interpretation of the diffraction pattern. After [20].

1.3 AMORPHOUS IRON

The classic work on gold-silicon alloys that led to the discovery of metallic glass [21] spawned an
entire field of research that continues to thrive. Whereas iron has formed the basis of many metallic
glasses, it does not seem possible to obtain sizeable samples of pure iron in a glassy state. Particles
about 30 nm in size, of iron of about 96% purity, produced by subjecting iron pentacarbonyl to
intense ultrasound have been shown to be amorphous [22]. Ultrasound of this kind leads to the
formation, growth and collapse of bubbles, processes associated with momentary high temperatures
and pressures. The particles are found to be ferromagnetic under ambient conditions with a magnetic
moment of 1.7µB per atom.

Molecular dynamics simulations indicate that liquid iron quenched at about 1013 Ks−1 for pressures
up to 20 GPa would lead to the glassy state, but if the same experiment is conducted at greater
pressures, then the liquid tends to crystallise because the crystalline state has a smaller specific
volume [23].

1.4 MECHANISMS OF TRANSFORMATION

The atomic arrangement in a crystal can be altered either by breaking all the bonds and rearranging
the atoms into an alternative pattern (reconstructive transformation), or by homogeneously deform-
ing the original pattern into a new crystal structure (displacive transformation), Figure 1.7.

In the displacive mechanism the change in crystal structure also alters the macroscopic shape of the
sample when the latter is not constrained. The shape deformation during constrained transformation
is accommodated by a combination of elastic and plastic strains in the surrounding matrix. The
product phase grows in the form of thin plates to minimise the strains. The atoms are displaced
into their new positions in a coordinated motion. Displacive transformations can therefore occur at
temperatures where diffusion is inconceivable within the time scale of the experiment. Some solutes
may be forced into the product phase, a phenomenon known as solute trapping. Both the trapping of
atoms and the strains make displacive transformations less favourable from a thermodynamic point
of view.

It is the diffusion of atoms that leads to the new crystal structure during a reconstructive transfor-
mation. The flow of matter is sufficient to avoid any shear components of the shape deformation,
leaving only the effects of volume change. This is illustrated phenomenologically in Figure 1.8,
where displacive transformation is followed by diffusion, which eliminates the shear. This recon-

structive diffusion is necessary even when transformation occurs in pure iron [24]. In alloys, the
diffusion process may also lead to the redistribution of solutes between the phases in a manner
consistent with a reduction in the overall free energy.
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Figure 1.7 The main mechanisms

of transformation. The parent crystal

contains two kinds of atoms. The fig-

ures on the right represent partially

transformed samples with the parent

and product unit cells. The transforma-

tions are unconstrained in this illustra-

tion.

Virtually all the phase transformations in steels can be discussed in the context of these two mech-
anisms. There are, of course, important details which are best described during the discussion of
specific microstructures.

(a) (b) (c)

Figure 1.8 A phenomenological interpretation of reconstructive transformation. (a) Parent phase; (b) product

phase generated by a homogeneous deformation of the parent phase. The arrow shows the mass transport that

is necessary in order to eliminate the shear component of the shape deformation; (c) shape of the product phase

after the reconstructive-diffusion has eliminated the shear component of the shape deformation.

Any phase which forms by reconstructive transformation is likely to be closer to the equilibrium
state than that generated by displacive transformation. In the latter case, the strains and the ab-
sence of solute partitioning contribute to the deviation from the equilibrium state. The equilibrium
phase diagram (Figure 1.2) shows that in pure iron, the hcp phase is stable only at pressures above
13 GPa at room temperature. Nevertheless, there are experiments where ε-iron has been observed
at pressures as small as 8 GPa. These experiments were carried out using shock waves to generate
the required pressure. The time scale is then so short that the mechanism is displacive with a glis-
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sile ε/α interface [10]. The defects introduced during shock deformation make it difficult for the
transformation front to glide reversibly so there is a large hysteresis, as illustrated in Figure 1.9.
At ambient temperature, ε-iron forms in increasing quantities as the pressure is increased beyond
13 GPa. But when the pressure is subsequently reduced, the ε-iron does not revert to ferrite until
8.1 GPa, the specimen only becoming fully ferritic when the pressure becomes less than 4.5 GPa.
Deviations like these should be much smaller when the ε-iron transforms by a reconstructive mech-
anism. The defects in the ferrite then would not interfere with the uncoordinated transfer of atoms
at the interface. On the contrary, they would encourage a faster rate of transformation as the defects
are eliminated by the passage of the interface in a process akin to recrystallisation.

Figure 1.9 Pressure hysteresis (overshooting

of the equilibrium transformation pressure of

13 GPa) of the α ↔ ε martensitic transforma-

tion. The vertical arrows indicate the pressures at

which the α→ ε and ε→ α changes begin. Data

from Giles, Longenbach and Marder [25].

1.5 CRYSTALLOGRAPHIC SIMILARITIES

It was stated earlier that the three natural allotropes of iron are in many ways similar, so the free
energy change on transformation can be quite small when compared with, for example, the stored
energy in a highly supersaturated solution. Although the crystal structures have different symme-
tries, it is easy to demonstrate similarities.
The fcc and hcp structures can be related in terms of the stacking sequences of the close-packed
planes. A transformation between austenite and ε-iron can be visualised simply as a change in the
stacking sequence of the close-packed planes. The unit cell projections in Figure 1.3 are drawn to
scale. It is readily demonstrated that the lattice parameters of the ε and γ are related: aε & aγ/

√
2

and cε & 2aγ/
√

3.
The least dense form of iron, with the body-centred cubic crystal structure, at first sight appears to
differ significantly from the other allotropes. However, Bain in 1924 [26] showed how a relatively
simple deformation can generate the ferrite lattice from that of austenite (Figure 1.10). Thus, aα &
0.8aγ.
It might be argued that the orientation relationships between the forms of iron are obvious from these
crystallographic similarities. This is partly true, but there are other considerations arising from the
need to ensure a better fit at the interface which may not be neglected. The observed orientation
relationships are almost always irrational and the reason for this will become evident in Chapter 5.
The Bain deformation is one of many possible mechanisms for converting austenite into ferrite.
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(a) (b) (c)

Figure 1.10 The Bain strain. (a) A body-centred tetragonal unit cell (red) defined from the conventional

face-centred cubic representation of austenite. (b) The body-centred tetragonal cell of austenite illustrated in

isolation. This can be compressed along the vertical axis and expanded uniformly along the other two principal

axes to give the body-centred cubic unit cell of ferrite, illustrated in (c).

The primitive unit cells of both austenite and ferrite are trigonal. The trigonal cell for austenite has
its cell edges made up of

aγ
2 〈110〉 of the conventional fcc cell, with the angles between the cell

edges being 60◦ (Figure 1.11a). For ferrite, the trigonal cell has its edges made up of aα
2 〈111〉 with

axial angles 109◦28′ (Figure 1.11b). It is obvious that the austenite trigonal cell can be converted
into that of ferrite by varying the characteristic angle and distorting along the 〈111〉 trigonal axis.
This amounts to an alternative to the Bain strain for converting fcc to bcc but it involves larger
deformations and hence is not favoured.

(a) (b)

Figure 1.11 The primitive unit cells of (a) austenite and (b) ferrite, constructed within the conventional fcc

and bcc cells.

1.6 IRON-CARBON PHASE DIAGRAM

Although many aspects of the Fe-C equilibrium phase diagram will be elaborated in later chapters, it
is nevertheless introduced here because a steel must contain carbon and a binary steel is the simplest
of the extraordinarily large numbers of phase equilibria possible in multicomponent alloys of iron.
Figure 1.12 illustrates the equilibrium between the allotropic forms of iron and cementite or graphite
(red lines). The solubility of carbon in ferrite that is in equilibrium with any other phase (except
liquid iron) is very small at all temperatures. The high-temperature form of ferrite is for historical
reasons labelled δ-ferrite but there is no difference in the crystal structure from α when the latter is
at temperatures above TC. Below that temperature, α-iron is not strictly cubic because the magnetic
spins are aligned, say along the z axis, so that rotations about the x or y axes must be combined with
time reversal to preserve the directions of the spins. The magnetic point group therefore becomes
tetragonal. It follows that the ferrite structure below TC is tetragonal, but the extent of tetragonality
is small enough to be neglected in most experiments on steels. It does, however, manifest during
magnetostriction.
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The diagram shows a peritectic reaction (L+δ→ γ), eutectic reaction (L→ γ+[graphite or θ]) and
a eutectoid (γ→ α+θ). When in equilibrium with iron, the graphite is said to be the more stable
phase than cementite [8]. Long-term heat treatment can therefore cause the cementite to disintegrate
into graphite and ferrite. The formation of graphite on iron nanoparticles coated with carbon is often
interpreted using the Fe-C phase diagram.

Figure 1.12 The iron-carbon equilibrium phase diagram, in part calculated using assessed thermodynamic

data. TC represents the Curie temperature of ferrite, θ the cementite and L the liquid phase. The more stable

equilibrium between the allotropic forms of iron and graphite is represented by the red lines. However, graphite

may not actually form due to kinetic limitations.

It has been speculated that iron nanoparticles have biomedical applications, particularly in drug de-
livery because in their ferritic form, they can be manipulated by an external magnetic field. Because
of their reactivity, they would need to be protected using graphite coatings. After production using
a variety of techniques, the particles consist of iron α, γ, θ, iron oxide and amorphous carbon. On
annealing, the carbon reduces any oxide and cementite is replaced by graphite on the surface [27].
Observations like these are interpreted by appealing to the greater stability of graphite in Fe-C equi-
librium phase diagram when compared with cementite. However, the rate of graphitisation during
annealing is rapid (800 ◦C, 20 min) when compared with bulk steels. The iron-carbon phase dia-
gram is not strictly applicable given the large curvature of the iron nanoparticles, which would tend
to favour the formation of the most stable phase.3 Experiments on carbon deposited on thin films
of iron, followed by annealing, show that the graphite is formed at the Fe3C-carbon interface as the
cementite decomposes [28].

There are many allotropic forms of crystalline carbon. Hexagonal-graphite is more stable at ambient
pressure than the fullerenes, carbon onions, single and multiwall tubes (closed ends or not), nan-
otube ropes, graphene and diamond [29]. The stability of graphite remains the highest even when
nano-sized, though the ranking of the other forms may change somewhat. Given the interest in com-
mercial diamonds, there has been some effort to construct the Fe-diamond phase diagram [30] but
diamond remains metastable with respect to graphite when under ambient pressure.
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1.7 CLASSIFICATION SCHEME

The microstructures that can be generated in pure iron can be increased considerably by the ad-
dition of carbon, but they can still all be classified within the general scheme of displacive and
reconstructive mechanisms, as illustrated in Figure 1.13 .

Reconstructive

• Diffusion of all atoms dur-
ing nucleation and growth.

• Sluggish below 850 K.

Allotriomorphic ferrite α

Idiomorphic ferrite αi

Massive ferrite α

No change in bulk composition.

Pearlite P

• Cooperative growth of fer-
rite & cementite.

Austenite γ formation

• Austenitisation.
• Intercritical annealing.

Tempering reactions

• Cementite θ & alloy car-
bide precipitation.

• Intermetallic compound
precipitation.

Displacive

• Invariant-plane strain shape
deformation with large
shear component.

• No iron or substitutional-
solute diffusion.

• Thin plate shape.

Widmanstätten ferrite αW

• Carbon diffusion during
paraequilibrium nucleation
& growth.

Bainite αb & acicular ferrite αa

• Carbon diffusion during
paraequilibrium nucleation.

• No diffusion during
growth.

Martensite α′

• Diffusionless nucleation &
growth

Low temperature cemen-
tite θ & transition carbides

• Paraequilibrium nucleation
& growth.

Figure 1.13 Characteristics of transformations in steels.

All of the phases where growth occurs by a displacive mechanism evolve in the form of thin plates,
because the strain associated with the displacements is minimised by that shape. The detailed nature
of the shape strain is such that it leaves the habit plane (the broad face of the plate) macroscopically
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undistorted and unrotated. This invariant-plane strain can be factorised into a shear on the habit
plane and a dilatation normal to that plane. One important consequence of this mechanism is that
the transformation product is confined to the parent grain in which it grows – after all, a coordi-
nated motion of atoms cannot be sustained across a grain boundary. The most important displacive
transformations are:

1. Martensitic transformation is the simplest to understand because both nucleation and
growth occur without any diffusion whatsoever. Of all the transformation products in steel,
martensite represents the largest deviation from equilibrium. Any solutes in the austen-
ite become trapped within the martensite even though they may prefer to partition during
transformation. There are defects created which are intrinsic to the growth mechanism and
there is a large strain energy associated with the shape change. Martensite can in some
circumstances grow at speeds that are a large fraction of the speed of sound in the metal.
Indeed, there are no other transformations in steel or in any other alloy system which even
approach the maximum growth rates of martensite.

2. Bainite occurs at somewhat higher temperatures than martensite, where interstitial solutes
are mobile but the substitutional atoms are not. The smaller driving force available at the
higher temperatures means that the partitioning of carbon is essential during nucleation.
However, growth appears to be diffusionless in the first instance. There is a tendency for the
microstructure to temper fairly quickly as it forms, causing a redistribution of the carbon
that either is precipitated as carbides or goes on to enrich the remaining austenite.

3. At even higher temperatures, displacive transformation occurs by a paraequilibrium mech-
anism in which the carbon atoms partition between the parent and product phases but the
ratio of the substitutional solute to iron atoms remains constant everywhere. Thus, Wid-
manstätten ferrite nucleates and then grows in the form of coarse plates that lengthen at a
rate which is controlled by the diffusion of carbon in the austenite ahead of the transfor-
mation interface.

Reconstructive transformations play an increasingly important role in the decomposition of austen-
ite as the mobility of atoms increases with temperature. At the same time the driving force for
transformation becomes smaller as the Ae3 temperature is approached, making it difficult to sustain
transformations that deviate substantially from equilibrium. The diffusion of atoms (iron, substitu-
tional and interstitial solutes) frequently becomes the rate-controlling process. This diffusion also
helps avoid the strains that would otherwise accompany the change in crystal structure. Therefore,
it is an essential feature of reconstructive transformations in pure iron. This is why in similar cir-
cumstances, reconstructive transformations can be sluggish when compared against those occurring
by a displacive mechanism. The main products of the reconstructive transformation of austenite are
as follows:

1. Allotriomorphic ferrite is the first phase to precipitate when steel is cooled into the two
phase α+γ field. It nucleates and grows most readily along the austenite grain surfaces.
This gives it an irregular shape which from a macroscopic point of view appears irregular
and not crystallographic. Idiomorphic ferrite, on the other hand, nucleates intragranularly
and can be faceted. The growth of both of these phases leads to the partitioning of carbon,
and can also involve the partitioning of substitutional solutes. Unlike displacive transfor-
mations, growth by a reconstructive transformation mechanism is not limited by austenite
grain boundaries. Massive ferrite grows without the substantive redistribution of solutes; its
growth rate can therefore be rapid. The few grains which nucleate first grow rapidly, across
austenite grain boundaries, giving an exceptionally large ferrite grain size and hence the
term “massive”.

2. Pearlite consists of cementite and ferrite. The two phases grow together at a common
transformation front with the austenite. This cooperative growth leads to the formation of
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a colony which is a bicrystal of interpenetrating cementite and ferrite. A two-dimensional
section of a pearlite colony gives the false impression that it is a stack of alternating lamel-
lae of cementite and ferrite – all of the cementite within a colony is connected in three
dimensions, as is all of the ferrite.4 Pearlite can sometimes grow at the same temperature
as bainite albeit at a much slower rate. The average composition of a pearlite bicrystal
(“colony”) can in plain carbon steels be the same as that of the steel as a whole, so its
growth does not enrich the residual austenite and the transformation can go to completion.
In two-dimensional sections, pearlite appears to consist of alternate lamellae of ferrite and
cementite.

1.7.1 THERMODYNAMIC CLASSIFICATION

Phase transformations are classified traditionally as first or second order. In a first-order transforma-
tion the two phases coexist at the transition temperature, for example, ferrite and austenite in pure
iron at about 910◦C. In a second-order transformation the two phases do not coexist but change
continuously into one another. Examples of second-order transitions are rare but the Curie point of
a ferromagnet, above which the magnetic moment of a material vanishes, is one case.
The formal thermodynamic definition of the order of a transformation is due to Ehrenfest [31]. The
classification is based on the successive differentiation of a thermodynamic potential (e.g. Gibbs
free energy) with respect to an external variable such as temperature or pressure. The order of
the transformation is given by the lowest derivative to exhibit a discontinuity. Thus, in a first or-
der transformation, the partial derivative of the Gibbs free energy with respect to temperature is
discontinuous at the transition temperature (Figure 1.14). There is thus a latent heat of transforma-
tion evolved at a sharp transformation interface which separates the coexisting parent and product
phases. The phase change occurs at a well–defined boundary which separates perfect forms of the
parent and product phases.
In a second–order transformation, the Gibbs free energy functions have precisely the same slope
at the transformation temperature (Figure 1.14b) so enthalpy evolves continuously as the transfor-
mation temperature is approached. Since the free energy curves have different curvatures, it is the
second derivative that is discontinuous at the transformation temperature. The specific heat capacity
changes abruptly at that temperature. The two phases tend to gradually become similar as the trans-
formation temperature is approached, and become identical at that temperature. This is why the free
energy curves merge beyond Tt in Figure 1.14b.
The Ehrenfest classification is useful in the context of steels because it adds clarity to the mech-
anism of transformation in a way that is independent of the time scales involved. A first–order
transformation always involves the nucleation and growth of the product phase.
This is in contrast to a second–order structural change, where the crystal structure of the parent phase
would change gradually, through an infinite series of intermediate states, into that of the product.
The parent and product phases therefore never coexist and hence there is no interface in the normal
sense. The transformation occurs simultaneously at all locations.
All of the allotropic transformations in steels are of first order. The product phase is initiated by
a large fluctuation in the structure of the parent phase, the two regions being separated by a well-
defined interface.
Second–order transformations do not involve an interface but a gradual change where the concept
of nucleation does not apply.
The martensitic transformation in steels is sometimes regarded as “instantaneous” with the implica-
tion that it does not involved nucleation, simply because it can occur rapidly. This is wrong, it is of
first order with a well-defined interface and is governed by the processes of nucleation and growth.
It cannot in this sense be distinguished from any other structural change in steels.
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(a) (b)

Figure 1.14 Free energy curves for (a) first-order transformation, (b) second-order transformation. Tt repre-

sents the transformation temperature.
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12. B. K. Godwal, F. González-Cataldo, A. K. Verma, L. Strizrude, and R. Jeanloz: ‘Stability of iron

crystal structures at 0.3–1.5 TPa’, Earth and Planetary Science Letters, 2015, 409, 299–306.
13. R. L. Clendenen, and H. G. Drickamer: ‘The effect of pressure on the volume and lattice

parameters of ruthenium an iron’, Journal of the Physics and Chemistry of Solids, 1964, 25,
865–868.

14. H.-K. Mao, W. A. Bassett, and T. Takahashi: ‘Effect of pressure on crystal structure and lattice
parameters of iron up to 300 kbar’, Journal of Applied Physics, 1967, 38, 272–276.

15. L. Stixrude: ‘Structure of iron to 1 Gbar and 40000 K’, Physical Review Letters, 2012, 108,



NOTES 15

055505.
16. C. J. Pickard, and R. J. Needs: ‘Stable phases of iron at terapascal pressures’, Journal of Physics

– Condensed Matter, 2009, 21, 452205.
17. J. K. Wicks, R. F. Smith, D. E. Frananduono, F. Coppari, R. G. Kraus, M. G. Newman, J. R.

Tygg, J. H. Eggert, and T. S. Duffy: ‘Crystal structure and equation of state of Fe-Si alloys at
super-Earth core conditions’, Science Advances, 2018, 4, eaao5864.

18. S. L. Sass: ‘The structure and decomposition of Zr and Ti bcc solid solutions’, Journal of Less

Common Metals, 1972, 28, 157–173.
19. D. H. Ping, and W. T. Geng: ‘A popular metastable omega phase in body-centered cubic steels’,

Materials Chemistry and Physics, 2013, 139, 830–835.
20. H. K. D. H. Bhadeshia: Geometry of Crystals: 2nd edition, Institute of Materials, 2001.
21. W. Klement Jun., R. H. Willens, and P. Duwez: ‘Non-crystalline structure in solidified gold–

silicon alloys’, Nature, 1960, , 869–870.
22. K. S. Suslick, S.-B. Choe, A. A. Cichowlas, and M. W. Grinstaff: ‘Sonochemical synthesis of

amorphous iron’, Nature, 1991, 353, 414–6.
23. J. Mo, H. Liu, Y. Zhang, M. Wang, L. Zhang, B. Liu, and W. Yang: ‘Effects of pressure on

structure and mechanical property in monatomic metallic glass’, Journal of Non-Crystalline

Solids, 2017, 464, 1–4.
24. H. K. D. H. Bhadeshia: ‘Diffusional formation of ferrite in iron and its alloys’, Progress in

Materials Science, 1985, 29, 321–386.
25. P. M. Giles, M. H. Longenbach, and A. R. Marder: ‘High pressure alpha to epsilon martensitic

transformation in iron’, Journal of Applied Physics, 1971, 42, 4290–4295.
26. E. C. Bain: ‘The nature of martensite’, Trans. AIME, 1924, 70, 25–46.
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Notes
1The trigonal basis is characterised by three equal length vectors from the origin with the same angle separating each

of them. When these angles are 90◦ the unit cell becomes cubic but a distortion along the body diagonal gives a trigonal
structure.

2Also described as a periodic shift of the (111)β planes in the [111]β direction by 0,
√

3aβ/6 and −
√

3aβ/6. The space
group is P6/mmm.

3This is the Gibbs-Thompson effect described later in the text, Section 7.8.
4Imagine a colony as a cabbage in a bucket of water. The leaves of the cabbage, which are all connected, represent the

single crystal of cementite, and the water the single crystal of ferrite.





2 Thermodynamics

2.1 INTRODUCTION

Thermodynamics facilitates the linking together of “the many observable properties so that they can
be seen to be a consequence of a few” [1]. It provides a firm basis for the rules that macroscopic
systems follow at equilibrium. When combined with phenomena associated with the approach to
equilibrium, it forms the foundations of kinetic theory. It was on this basis that Zener attempted
to rationalise the transformations that occur in steels [2, 3] so that the effect of alloying elements,
atomic mobility, nucleation and mechanism could all be incorporated into a single hypothesis.
After an introduction to some essential concepts, the remainder of this chapter deals with theory
that is relevant particularly to iron and its solutions.

2.2 DEFINITIONS

2.2.1 INTERNAL ENERGY AND ENTHALPY

The change in the internal energy ∆U of a closed system can be written as

∆U = q−w (2.1)

where q is the heat transferred into the system and w, the work done by the system. The sign
convention is that heat added and work done by the system are positive, whereas heat given off and
work done on the system are negative. Equation 2.1 may be written in differential form as

dU = dq− dw. (2.2)

For the special case where the system does work against a constant atmospheric pressure, this be-
comes

dU = dq−PdV (2.3)

where P is the pressure and V the volume.
The specific heat capacity of a material represents its ability to absorb or emit heat during a unit
change in temperature. Heat changes the distribution of energy amongst the particles in the system
(atoms, electrons, . . .) and it is these fundamental mechanisms that control the heat capacity, defined
formally as dq/dT . Since dq = dU +PdV , the specific heat capacity measured at constant volume
is given by

CV =

(
∂U

∂T

)

V

.

It is convenient to define a new function H, the enthalpy of the system:

H =U +PV.

A change in enthalpy accounts for both the heat absorbed at constant pressure and the work done
by the P∆V term. The specific heat capacity measured at constant pressure is therefore given by

CP =

(
∂H

∂T

)

P

.

Heat capacity can be measured using a variety of calorimetric methods. The data can then be used
to estimate enthalpy changes as a function of temperature and pressure:

∆H =

T2∫

T1

CP dT. (2.4)

17
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2.2.2 ENTROPY, FREE ENERGY

In the reversible Carnot cycle, a gas is placed in contact with a heat reservoir at temperature T2,
expands isothermally on absorbing a quantity of heat q2, in the process doing work −w1. The gas
is then insulated and expands adiabatically, does work −w2 as its temperature drops to T1. It is then
placed in contact with a heat reservoir at T1, compressed reversibly and isothermally with work w3

done upon it and giving up heat −q1 to the reservoir. To complete the cycle, the gas is insulated,
compressed reversibly and adiabatically by doing work w4 upon it, causing its temperature to rise
back to T2 [4]. The change in internal energy ∆U = q1 + q2 +w on completion of the cycle is
therefore zero, where w = Σ4

i=1wi. The work output of the engine, −w, is the difference between
heat taken and heat returned to the reservoirs, i.e. −w = q2 − (−q1) so the maximum efficiency is
defined as the ratio of the work output to the heat absorbed:

efficiency =
−w

q2
=

q2 + q1

q2
.

Kelvin used this to define the absolute temperature,

efficiency =
q2 + q1

q2
=

T2 −T1

T2
so that

q2

T2
+

q1

T1
= 0. (2.5)

By considering a cyclic process in terms of infinitesimal parts [4], it can be demonstrated that the
following relationship holds for any reversible cycle,

dq2

T2
+

dq1

T1
= 0 with

∮
dq

T
= 0

making the quantity dq/T a function of state S with

dS =
dq

T
. (2.6)

Clausius during the 19th century named this function S as entropy; in the absence of any change in
enthalpy, a reaction can occur spontaneously and irreversibly in an isolated system if it leads to an
increase in entropy, i.e., ∆S > 0. It is evident that in general, neither the enthalpy nor the entropy
change can in isolation be assumed to reliably indicate whether a reaction can occur spontaneously.
The Gibbs free energy G is therefore defined as a combination of these two terms,

G = H −TS. (2.7)

The Helmholtz free energy F is the corresponding term at constant volume, when H is replaced by
U in Equation 2.7. A process can occur spontaneously if it leads to a reduction in the free energy.
Quantities such as H, G and S are all functions of state.
From an experimental perspective, a change in entropy can be measured via the heat capacity:

∆S =
∫ T2

T1

CP

T
dT.

2.2.3 CONFIGURATIONAL ENTROPY

Figure 2.1a shows a mixture of two kinds of atoms, with like atoms segregated with no mixing; there
is only one way of achieving this arrangement. On the other hand, if they are allowed to mix ideally
then there are many more ways of configuring them, three of which are illustrated in Figure 2.1c–d.
A mixing of the atoms is obviously more probable.



Thermodynamics 19

(a) (b)

(c) (d)

Figure 2.1 Four different configurations of a mixture of two kinds of atoms. (a) The two kinds of atoms

are partitioned into their own spaces, without mixing. (b–d) If the atoms are allowed to mix, then many more

arrangements are possible, here only three of the many are illustrated.

Suppose there are N sites amongst which are distributed n atoms of type A and N−n of type B. The
first A atom can be placed in N different ways and the second in N − 1 different ways. These two
atoms cannot be distinguished so the number of different ways of placing the first two A atoms is
N(N − 1)/2. The number of distinguishable ways of placing all the atoms in this way, the number
of distinguishable ways of placing all the A atoms is

N(N − 1) . . .(N − n+ 2)(N− n+ 1)

n!
=

N!

n!(N − n)!
. (2.8)

So if the atoms behave ideally, i.e., they do not have a preference for the type of neighbour, then the
probability of a uniform distribution is much more likely than the ordered distribution.
For a real system for which the number of atoms is very large, a parameter is needed that expresses
the likelihood as a function of the correspondingly large number of configurations (wc) possible.
Suppose that a term S is defined such that S ∝ lnwc, where the logarithm is taken because it may
be necessary to add two different kinds of disorder (after Boltzmann), then the S is identified as the
configurational entropy S= k lnwc, where k, the proportionality constant, is known as the Boltzmann
constant which for a mole of atoms is the gas constant R. The entropy is a thermodynamic function
of state and it is additive. When comparing scenarios, the one that is favoured on the basis of the
degree of disorder is that which has the greater entropy. In terms of solutions, entropy favours mixing
over separation. On this basis, it can be shown quite simply that the change in entropy when atoms
mix is given by

∆S =−RΣ j
i=1xi lnxi

where i = 1 . . . j represents the atomic species and xi its mole fraction.

2.2.4 RELATIONSHIP BETWEEN CLAUSIUS AND BOLTZMANN ENTROPIES

The Carnot engine illustrates the spreading of energy whereas the Boltzmann approach is about
mixing. The relationship between these is quite straightforward – both involve mixing. As Denbigh
stated with admirable elegance, “As soon as it is accepted that matter consists of small particles
which are in motion it becomes evident that every large-scale natural process is essentially a process
of mixing” [p. 110, 5]. Energy transfer involves the motion of the atoms; it was not, at the time of
Carnot, known that matter consists of atoms. It really isn’t necessary to say much more.
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2.3 MAXWELL RELATIONS

There are some useful relations between the thermodynamic quantities; combining Equations 2.3
and 2.6 gives:

dU = T dS−PdV. (2.9)

An exact differential equation1 such as this requires that
(

∂T

∂V

)

S

=−
(

∂P

∂S

)

V

. (2.10)

Since H =U +PV , it follows that

dH = dU +PdV +VdP

= T dS−PdV +PdV +VdP

= V dP+TdS.

∴

(
∂V

∂S

)

P

=

(
∂T

∂P

)

V

.

Similarly, G = H −TS so that

dG = dH − SdT −TdS

= VdP+TdS− SdT −TdS

= VdP− SdT.

∴ −
(

∂V

∂T

)

P

=

(
∂S

∂P

)

T

.

These “Maxwell relations” are embodied in Figure 2.2.

Figure 2.2 Aid to the use of the Maxwell relations. The starting point in the path-diagrams adjacent to the

equations is at the thermodynamic quantity labelled. If a path opposes an arrow, then the partial differential

takes a negative sign. When the path is along an edge, the partial differentials of the quantities on the opposite

sides are set equal, unless an arrow points towards the quantity differentiated, in which case the sign is set as

negative. A similar aide memoire is possible for magnetic systems by substituting the field strength for P and

the negative of the magnetisation for V .

2.4 THERMODYNAMIC FUNCTIONS OF IRON

We have seen that heat capacity data can be related directly to the thermodynamic functions of
state H, G and S. Its variation with temperature and chemical composition is therefore important in
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determining the relative stabilities of the phases. A number of factors can contribute independently
to the ability of a material to absorb energy. It has been found useful to factorise the specific heat
capacities of each phase in iron, into three components with different origins.
The bulk of the contribution comes from lattice vibrations, the electrons themselves contributing
in a relatively minor way because the Pauli exclusion principle prevents all of them from partici-
pating in the energy absorption process. The third contribution, which is particularly significant for
iron, comes from temperature-induced magnetic changes. The net specific heat capacity at constant
pressure is therefore:

CP{T}=CL
V

{
TD

T

}

C1 +CeT +C
µ
P {T}

where TD is the Debye temperature and CL
V is the Debye specific heat with the function C1 correcting

CL
V to a specific heat at constant pressure. Ce is the electronic specific heat coefficient and C

µ
P the

component due to magnetism.
The Debye specific heat has its origins in the vibrations of atoms, which become increasingly violent
as the temperature rises [6]. These elastic waves (phonons) take discrete, quantised wavelengths
consistent with being bound by the periodic lattice of atoms in the solid, although the Debye model
described here is a continuum model. The atoms do not all vibrate with the same frequency, so
a spectrum of vibrations is considered in deriving their contribution to the internal energy U . The
maximum in the spectrum is designated the Debye frequency ωD, which is proportional to the Debye
temperature TD at which the highest frequency mode is excited:

TD =
hωD

2πk

where h and k are the Planck and Boltzmann constants respectively. With the approximation that the
phonon frequency is proportional inversely to the wavelength, the internal energy due to the atom
vibrations is:

U =
9NkT 4

T 3
D

∫ xmax

0

x3

(ex − 1)
dx (2.11)

where x = hωD/(2πkT ) and N is the total number of lattice points in the specimen. Since CL
V =

dU/dT , it follows that the lattice specific heat capacity at constant volume can be specified in terms
of the Debye temperature and the Debye function (Equation 2.11). The theory does not provide a
complete description of the lattice specific heat but has nevertheless been shown to fairly accurately
represent the heat capacity data for iron [7].
At low temperatures (T - TD), U → 3NkT 4π4/(5T 3

D) so that CL
V → 12π4NkT 3/(5T 3

D) and the lat-
tice specific heat thus follows a T 3 dependence. For T . TD, the lattice heat capacity can similarly
be shown to become temperature independent and approach a value 3Nk, as might be expected for
N classical oscillators, each with three degrees of freedom (Figure 2.3).

0 1 2

Figure 2.3 The Debye function showing how the

heat capacity due to phonons varies as a function of the

absolute temperature normalised by the Debye temper-

ature.
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2.4.1 RELATION BETWEEN CP AND CV

The Debye function is for the lattice specific heat capacity at constant volume; for solids, it is
convenient to convert this to constant pressure. For a reversible change, dq = dU +PdV = TdS, so
it follows from the definitions of the heat capacities that:

CV = T

(
∂S

∂T

)

V

and CP = T

(
∂S

∂T

)

P

. (2.12)

Since dS =

(
∂S

∂T

)

V

dT +

(
∂S

∂V

)

T

dV,

∴
dS

dT
=

(
∂S

∂T

)

V

+

(
∂S

∂V

)

T

dV

dT

∴

(
∂S

∂T

)

P

=

(
∂S

∂T

)

V

+

(
∂S

∂V

)

T

(
∂V

∂T

)

P

.

On substitution into Equations 2.12, the relationship between the heat capacities is found to be

CP −CV = T

(
∂S

∂V

)

T

(
∂V

∂T

)

P

.

Using the Maxwell relations (Section 2.3), and the relationships between partial derivatives,2

(
∂S

∂V

)

T

=

(
∂P

∂T

)

V

≡−
(

∂P

∂V

)

T

(
∂V

∂T

)

P

so

CP −CV =−T

(
∂P

∂V

)

T

(
∂V

∂T

)2

P

and since the volume expansion coefficient eV and isothermal compressibility β are given by

eV =
1

V

(
∂V

∂T

)

P

, β =−
1

V

(
∂V

∂P

)

T

,

it follows that
CP

CV
= 1+

e2
VVT

βCV
. (2.13)

2.4.2 DEBYE TEMPERATURES

The heat capacity cannot always be determined over the temperature range of interest, for example,
if the phase concerned is not stable within that regime. The Debye temperature can then be estimated
using the Lindemann relation [8] which is based on an assumption that melting occurs in a solid
when the mean-square amplitude of vibrations of atoms about their equilibrium positions reaches a
critical fraction of the interatomic spacing:

TD =CLV
− 1

3
a T

1
2

m A− 1
2 (2.14)

where Va is the volume per atom, Tm is the melting point of the phase concerned and A is the atomic

weight. CL is the Lindemann constant which when set to 16.50±−0.50K
1
2 nmg

1
2 mol

1
3 permits the

Debye temperatures of many metals, especially those of iron and its alloys, to be estimated [9, 10].
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The Lindemann relation requires a knowledge of the melting temperature. This can be problematic
if the phase of interest transforms before melting but it may be possible to estimate TM. For example,
the melting point of γ-iron has been estimated to be 1800 K by using that of α iron (1811 K), the
entropy of fusion of ferrite and the measured entropy change attending the α → γ transition at
1665 K. Similarly, TM for ε is found to be 1320 K [10, 11].
The Lindemann equation together with experimental data show that the Debye temperatures of both
α and γ iron are both approximately 432 K [10], consistent with the 409±9 K measured for α-iron
using X-ray diffraction [12].
The Debye temperature of ε-iron has been estimated to be 375 K [11], consistent with heat capacity
measurements (60-300 K) of hcp Fe-Ru alloys [13]. At a constant temperature, CP varies linearly
with the atomic fraction of Ru, enabling the Debye temperature for pure ε-iron to be obtained by
extrapolation to be 385K, in good agreement with the value obtained using the Lindemann equation.
The fact that the Debye temperature of ε-iron is less than that of α-iron means that the former has
a greater vibrational entropy. This goes against intuition since a loosely packed structure usually is
associated with a greater vibrational entropy. Nevertheless, the relatively low melting temperature
of ε-iron is in accord with its low TD and larger vibrational entropy.
The compressibility of a material should be related to the looseness of its structure. The ε-iron
crystal structure has been reported to have the same isothermal compressibility as ferrite, with a
value of about 6× 10−4 kbar−1 at ambient pressure (Figure 2.4) [14, 15]. This again is consistent
with a large vibrational entropy associated with ε iron.

Figure 2.4 Fractional change in normalised volume as a

function of pressure. The normalised volume of ferrite at zero

pressure is set to be 1. After Clendenen and Drickamer [14].

The ε–iron is more dense than ferrite but nevertheless has a

similar compressibility.

2.5 ELECTRONIC HEAT CAPACITY

The distribution of energy amongst a set of particles depends on the nature of the particles, specifi-
cally their spins. There are three cases:

(i) when the particles are distinguishable but with no limit to the number that can occupy any
particular energy level (Maxwell-Boltzmann distribution);

(ii) when the particles cannot be distinguished and there is no limit to the number per energy
state (Bose-Einstein distribution);

(iii) when the particles are indistinguishable but only selected pairs can occupy each energy
state (Fermi-Dirac distribution), Figure 2.5.

When atoms in a crystal vibrate they do not all do so with the same frequency. Furthermore, the
number that vibrate with a particular frequency is not restricted. The Debye function stated in the
last section is based on the continuum assumption of a Maxwell-Boltzmann distribution of en-
ergy amongst the vibrating atoms. The Bose-Einstein distribution law is more appropriate since the
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particles are indistinguishable, but the difference between these two distributions is small at high
temperatures. However, to obtain an accurate description of specific heat at low temperatures (where
there is a T 3 dependence) requires the use of the Bose-Einstein distribution.
For both of these distributions, the entire distribution can change with temperature so all of the
particles participate in energy absorption, leading to a large heat capacity (Figure 2.5). This is not
the case when considering the ability of electrons to absorb thermal energy.

Figure 2.5 Bose-Einstein, Maxwell-Boltzmann

and Fermi-Dirac distributions. The number of par-

ticles at each energy level is ni and the number of

states at each level gi.

The metallic bond is associated with a delocalised electron gas that contributes to specific heat
capacity. However, electrons are fermions so only two with opposing spins can occupy a particular
energy state, the distribution of energy is given by the Fermi-Dirac function (Figure 2.5). At 0 K, the
maximum energy of the states occupied is known as the Fermi energy, EF. At higher temperatures,
the exclusion principle prevents all but a few of the electrons within about kT of the Fermi energy
to change their energies. The contribution of electrons to heat capacity is therefore small when
compared with a classical gas at all but the lowest of temperatures [16]:

Ce
V ≈

π2NekT

2TF

[

1− 0.3π2

(
T

TF

)2]

≈
π2NekT

2TF
(2.15)

where Ne is the number of free electrons in the sample and TF is the Fermi temperature at which
all the electrons can receive kinetic energy. The Fermi temperature for iron is about 1.302× 105 K.
This equation is presented alternatively as:

Ce
V =CeT ≈ Ce

P (2.16)

where Ce is the electronic specific heat coefficient (units: JK−2). Writing ce as the corresponding
electronic specific heat coefficient per mole of substance, it is found that for iron [10, 11, 17, 18],

cγe = cαe = 5.021× 10−3 Jmol−1 K−2. (2.17)

The electronic specific heat coefficient is somewhat larger for ε-iron, at cεe = 5.858 ×
10−3Jmol−1 K−2 [13]. There is some uncertainty about why the electronic specific heat coeffi-
cient measured at temperatures in the liquid helium regime tends to be greater than that measured
at temperatures near the boiling point of liquid nitrogen [13, 18].

2.6 MAGNETIC SPECIFIC HEAT OF IRON

The origin of the properties described here is in the magnetic moments associated with electrons,
primarily those associated with the spin of the unpaired electrons in atomic orbitals. The electron
can be imagined to be a charge rotating about an axis, equivalent to a circular current flow with a



Thermodynamics 25

corresponding magnetic moment.3 The alignment of the spins of electrons on the arrays of atoms in
a material can sometimes lead to a reduction in energy with consequent changes in the macroscopic
magnetic properties. When the spins are all identically oriented, the material is said to be ferromag-
netic. When neighbouring spins of equivalent magnitude point in opposite directions, the material
is said to be antiferromagnetic.
Magnetic ordering has a profound influence on phase stability in iron and it alloys. The familiar
allotropes of iron are ferrite (α and δ), austenite (γ) and hcp (ε). The effects associated with the
Curie transition were once thought to be due to the existence of another allotrope, β-iron, which
when retained by quenching made the iron extremely hard. We now know that the hardening is
caused by the martensitic transformation of austenite and the other features associated with β-iron
are due to the transition from a paramagnetic to ferromagnetic state – although it could be argued the
β-iron should be recognised as an allotropic form of iron, given that below the Curie temperature,
the ferrite is no longer cubic. This is because if the magnetic spins are aligned along a particular
unit-cell axis, then rotations about either of the other two axes must be combined with time reversal
to preserve the directions of the spins. The magnetic point group then becomes tetragonal, so the
ferrite exhibits a small tetragonality in its lattice parameters. Aside from ferromagnetism, there are
other magnetic transitions in the different allotropes, which make seminal contributions to their
relative stabilities.
The spin of an electron is characterised by a spin quantum number s, which has values of ± 1

2 . The
unit magnetic moment is the Bohr magneton (µB). Because the spin can be in one of two senses, the
magnetic dipole of the electron either supports, or opposes an applied magnetic field. A magnetic
field of strength Hmag (amperes per metre) may lead to an induced magnetic dipole moment per unit
volume, M. The magnetic susceptibility of the material is then given by M/Hmag. The susceptibility
is negative if the induced moment opposes the applied field.
A free electron will tend to align itself to the applied magnetic field, but in metals the vast majority
of electrons are in states where the opposite spin state is already occupied. The Pauli exclusion
principle permits only two electrons with opposite spins, per state. If all the electrons are spin-paired
in this way, then the atom has no net magnetic moment and the material can only be diamagnetic.

2.6.1 DIAMAGNETISM

Diamagnetism is a weak, temperature independent negative susceptibility which causes the material
to be repelled by a magnetic field. Any substance whatsoever can be diamagnetic. As discovered by
Landau, an electron gas such as that associated with metallic bonding, will exhibit diamagnetism
because in a magnetic field, the electrons move within the metal in spirals, but in a quantised manner,
about the field direction. This induced current results in a magnetic moment which, according to
Lenz’s law, opposes the applied field. Lenz’s law states that when the flux through an electrical
circuit is changed, an induced current is set up in a direction that opposes the change in flux. The
real scenario may be more complex in a metal because the electron gas moves under the influence
of the periodic potential associated with the ion cores within the crystal structure.

2.6.2 PARAMAGNETISM

Unlike diamagnetism, paramagnetism involves a magnetic moment that is proportional to the ap-
plied magnetic field. In a paramagnetic material, the spins associated with each atom are aligned at
random except when the distribution is biased by an applied magnetic field. The effect is to cause
the energies of those electrons more parallel to the applied field to decrease relative to those that
oppose the field (Figure 2.6). To achieve a uniform Fermi potential, some of the electrons transfer
from states with spins anti-parallel to the applied field, to those where the spin is parallel. This
leaves a net imbalance in the spins. The resultant magnetisation depends on the excess number of
spins. The effect is much smaller than if all electrons were able to change their spins to lie parallel
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with the field, but this is not permitted by the Pauli exclusion principle. Paramagnetism is therefore
a weak effect which reinforces the applied field. Because diamagnetism is associated with negative
susceptibility, it reduces the contribution of paramagnetism by about a third according to the Landau
theory.

Figure 2.6 Mechanism of paramagnetism in a material with atoms containing unpaired electrons [19]. H is

the magnetic field and N{E} the number of electrons with energy E. (a) Density of states, with opposite spins

separated for the purposes of illustration. The spin orientations illustrated are relative to an arbitrary direction.

(b) Decrease in energy of those electrons with spins parallel with the applied field, and vice-versa. (c) The

final energy distribution with uniform Fermi potential, leading to an imbalance in the pairing of electrons with

opposite spins.

2.6.3 FERROMAGNETISM, ANTIFERROMAGNETISM AND FERRIMAGNETISM

Materials which are ferromagnetic, antiferromagnetic or ferrimagnetic can possess a magnetic
dipole moment in the absence of any externally applied field. This is because their atoms con-
tain electrons which are not spin-paired, making them magnetic ions. When these are arranged on
a crystal lattice, then at low temperatures where the entropy is sufficiently small, the magnetic ions
“order” spontaneously (Figure 2.7).
Ferromagnetism occurs when the dipoles from the individual atoms align parallel. If neighbouring
dipoles are antiparallel then there is a zero net magnetic moment resulting in an antiferromagnetic
state. In a body-centred cubic antiferromagnetic crystal, the dipoles are parallel on each of the
primitive cubic sublattices, but those on one sublattice are exactly anti-parallel to those on the other,
resulting in a net zero magnetic moment. In a face-centred cubic lattice, the antiferromagnetism can
consist of the dipoles on adjacent planes pointing in opposite directions (Figure 2.8). In complex
structures, the magnetic moments on each of the two opposing sublattices may not exactly cancel so
a permanent magnetisation persists, an effect described as ferrimagnetism. The long-range ordering
of magnetic ions is destroyed by thermal agitation once the Curie temperature is exceeded in a
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ferromagnetic antiferromagnetic

ferrimagnetic paramagnetic

Figure 2.7 Variety of dipole alignments in ma-

terials containing atoms with un-spin-paired elec-

trons.

Figure 2.8 Antiferromagnetic ordering on a crys-

tal with a face-centred cubic structure. The atomic ar-

rangement is projected on to the {100} plane. The +
and − signs indicate that the dipole moment is either

up or down. The shaded atoms are at height 1
2 , the

unshaded ones at height 0 or 1 relative to the struc-

tural lattice parameter.

ferromagnet. The corresponding order-disorder temperature for ferrimagnetic and antiferromagnetic
materials is designated the Néel temperature. The disordered state is paramagnetic.

2.6.4 HEAT CAPACITY DUE TO MAGNETISATION

Consider a ferromagnetic material containing unpaired electrons, at a temperature which is below
its Curie temperature but above 0 K. The spins due to the unpaired electrons will therefore be im-
perfectly aligned due to thermal agitation. Magnetic disordering of this kind does not happen by the
exact reversal of the aligned spins on an increasing number of sites as the temperature increases,
but by correlated deviations of the spin orientation. These are called spin waves or magnons (Fig-
ure 2.9). The increased disorder at high temperatures excites ever shorter wavelengths and thus gives
the material an ability to absorb energy. This is the origin of the magnetic component of heat capac-
ity. Unlike phonons, magnons are not vibrational waves but involve angular displacements between
adjacent spin orientations.
The ground state electron configurations for Fe, Co and Ni atoms are as follows: iron [Ar] 4s2 3d6,
cobalt [Ar] 4s2 3d7, nickel [Ar] 4s2 3d8, with [Ar]≡ 1s2 2s2 2p6 3s2 3p6. The electrons in the [Ar]
core are all spin-paired, so they do not contribute to ferromagnetism; the remainder are distributed
amongst the 3d and 4s in a manner that maximises spin. As a result, there will be five electrons with
spin-up in the 3d levels, two in 4s and the remainder in 3d spin-down orbitals.
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Tim
e

Figure 2.9 Spin wave disorder in a ferro-

magnet (after Ziman, [20]).

The metallic state develops when a sufficient number of atoms are in close proximity, permitting
the valence electrons to become delocalised. The energy levels associated with individual atoms
become energy bands, each containing N finely spaced energy levels, where N is the number of
collaborating atoms in the metal. In the present context, there is an overlap in energy between the
3d and 4s bands so the delocalised electrons are shared, with on average a fractional number of
atoms in each band. For iron, there are on average 7.8 and 0.2 electrons in the 3d and 4s bands
respectively so the spin imbalance in the 3d state is 2.2, giving a magnetic moment per atom of
2.2 µB per atom, close to that observed for bulk iron.4 This is in contrast to a moment of 4 µB for an
isolated atom of iron. Small clusters of iron atoms have a magnetic moment approaching 3 µB per
atom [21] because a large portion of the atoms are located at the free surface of the cluster, where
there is a reduced number of near neighbours and hence a lesser delocalisation of the 3d electrons
[22]. In other words, the atoms at the surface behave more like isolated atoms. For example, for
clusters of iron atoms where 25 ≤ N ≤ 130, the moment per atom is 3 µB, whereas for N = 500, it
becomes 2.2 µB; the Curie temperatures for small clusters are also less than that for bulk iron [23].
Clusters of iron atoms that are facetted tend to have a reduced magnetic moment per atom, when
compared against those that have steps or atoms protruding at the surface, because of the greater
hybridisation of d-orbitals along planar arrangements of atoms [? ]. It is worth noting that for small
clusters of atoms, the average magnetic moment per atom is a function of depth [24].

2.6.5 MAGNETIC HEAT CAPACITY OF FERRITE

Ferrite in pure iron undergoes a paramagnetic to ferromagnetic transition on cooling below its Curie
temperature of TC = 1042K, which is insensitive to pressure in tests up to 9.5 GPa [10, 25]. The
magnetic transition is not abrupt at TC. The magnetisation M of the ferromagnetic state has a max-
imum value Mm below TC when the dipoles are aligned.5 As the temperature is raised, Mm de-
creases, slowly at first, but at a much more rapid rate near the Curie temperature (Figure 2.10). The
thermal energy required to eliminate the magnetisation by disorienting the magnetic ions varies as
−dM/dT . As a consequence, there is (ideally) a discontinuity in the slope of the specific heat curve
at TC, where the randomising of dipoles is complete as far as long-range order is concerned. The

Figure 2.10 Variation in the normalised mag-

netisation Mm{T}/Mm{0} against the normalised

temperature T/TC.
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area under a plot of magnetic specific heat versus temperature gives the energy required to take
the system from the state of approximately complete magnetic order at T - TC to one of almost
complete magnetic disorder for T . TC. The difference between the continuous and dashed curves
in Figure 2.11 represents an energy of about 8078± 500Jmol−1 for α-iron. The entropy increase
in going from the ordered to the disordered spin state has been estimated from the plot to be about
9± 0.3Jmol−1 K−1 [26]. Suppose that each atom has a spin imbalance sa =

1
2 , then there are only

two possible accessible states per atom ↑ or ↓. When sa = 1, three possibilities arise, ↑↑, ↓↓ and
↑↓. In general, the number of accessible states per ion is 2sa + 1 and if there are Na ions, then the
number of configurations becomes [27]

wc = (2sa + 1)Na. (2.18)

The Boltzmann relation S = k ln{wc} links the entropy to the logarithm of the number of microstates
wc that a given macroscopic state of the system can have. The change in entropy in going from a
completely ordered spin state to one which is completely disordered is given therefore by

Nak ln{2sa + 1} (2.19)

for a mole of atoms.
Iron atoms in ferrite contain 7.4 electrons in the d shell, 4.8 of which oppose the spin of the re-
maining 2.6, leaving a net magnetic moment per atom of 2.2 µB (more precise data would indicate
2.22 µB). The non-integral numbers of electrons are due to the overlapping of s and d states. The
electrons can be thought of as spending some time in each state. Thus, the value of sa is about 1.1
for iron atoms in the ferrite crystal structure. Consequently, the change in magnetic entropy in go-
ing from a completely magnetically ordered to a disordered state is about 9.67 Jmol−1 K−1, which
compares well with the experimental value quoted earlier.

Figure 2.11 The specific heat ca-

pacities of ferrite as a function of

temperature (after Kaufman [28]). The

dashed curve represents the combined

contributions of the phonons and elec-

trons whereas the thicker lines also in-

clude the magnetic terms.

For T < 300K, the magnetic specific heat of α can be calculated using spin-wave theory [18]:

C
µα
P ≈ C

µα
V = 4.728× 10−5T

3
2 Jmol−1K−1. (2.20)

It has not been possible to verify this experimentally because below 300 K, C
µα
P is a small fraction

of the total heat capacity, but the form of the equation appears valid for other metals even at temper-
atures where the harmonic character of the spin waves, assumed in the theory, becomes disrupted.
Wallace et al. [29] measured Cα

P over the temperature range 298-1323 K. Using these data, and
removing the Debye and electronic specific heat terms, Kaufman et al. [10] obtained C

µα
P for T =

0-1183 K, values of which are plotted in Figure 2.11. Later work has justified this factorisation of
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specific heat capacity, since experimental measurements for ferrite over the temperature range 60-
300 K were found to be excellent agreement with calculations carried out using Tα

D = 432K and
cαe = 5.02× 10−3 Jmol−1 K−2 [13].
Figure 2.11 shows that the magnetic component of specific heat persists above TC even though
long-range spin order vanishes. This is attributed to short-range magnetic order above the Curie
temperature [30, 31]. For ferromagnetic and antiferromagnetic materials at temperatures above
the Curie or Néel temperature respectively, the magnetic component of the heat capacity varies
approximately as T−2 [10]:

C
µα
P = 7.7822× 106T−2 for T > 1183K Jmol−1 K−1. (2.21)

The work described above does not give a model for the magnetic component of the specific heat
over the entire range of temperature such as would be useful in common algorithms for the estima-
tion of phase diagrams. Semi-empirical expressions accurately describing the magnetic contribution
to the specific heat of ferromagnetic metals in general, and ferritic iron in particular, have been de-
rived by Inden [32]:

C
µα
P = b1 ln{2sa + 1}R ln

{
1+ τ3

1− τ3

}

for τ < 1

C
µα
P = b2 ln{2sa + 1}R ln

{
τ5 + 1

τ5 − 1

}

for τ > 1

where τ = T/TC. The constants, obtained by fitting to experimental data, are b1 = 0.6417 and
b2 = 0.9180 for ferrite [33]. The respective magnetic specific heats of ferromagnetic cobalt and
nickel are much smaller at 80% and 40% that of iron below the Curie temperature, and 50% and
25% above the Curie temperature [32], emphasising the predominant role of ferromagnetism in iron.
The application of this model shows the importance of short-range order above TC. Inden found that
the fraction of the total magnetic enthalpy which is absorbed above the Curie temperature is about
0.4 for bcc metals and about 0.28 for fcc metals. Table 2.1 shows the variation in the percentage
of magnetic enthalpy retained at TC as a function of the chromium concentration in Fe-Cr alloys
[34]. The model is useful in conducting generalised calculations involving many variables as will
become apparent when the thermodynamics of both pure elements and solutions are discussed in
detail (Section 2.19.4).

Table 2.1

The percentage of magnetic enthalpy at 0 K, which is retained at TC for ferritic iron
and for ferritic Fe-Cr alloys (after Miodownik [34]).

Cr / at.% TC/K µB per atom % magnetic
enthalpy retained

0 1042.15 2.22 35
3 1042 2.14 21
9 1025 2.04 27

11 1012 2.00 29
16 975 1.90 8

2.6.6 MAGNETIC HEAT CAPACITY OF AUSTENITE

Austenitic iron alloyed with manganese can exhibit antiferromagnetic ordering, whereas that with
nickel can show ferromagnetic ordering. In the latter case, there is evidence that the Fe-Ni alloys can
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be magnetically heterogeneous if the nickel concentration is less than about 36 at.%; some regions of
the sample remain paramagnetic below the Curie temperature and transform to the antiferromagnetic
state at even lower temperatures. Similar observations have been reported for Fe-Cu alloys [35].

This, and other features of the peculiar magnetic behaviour of iron, are illustrated in Figure 2.12,
which shows the magnetic phase diagram for Fe50(NixMn1−x)50 and some data for the binary Fe-
Ni and Fe-Mn alloys [36]. There is a two-phase ferromagnetic+paramagnetic phase field followed
at lower temperatures by a ferromagnetic+antiferromagnetic phase field. Thus, the coexistence of
two magnetic phases in an apparently single crystalline phase is a physical reality. Work on man-
ganese oxides indicates that because the magnetic phases are determined essentially by electron
correlations, the likelihood is that the magnetic-phase segregation occurs on a short length scale
[37]. Long-lived antiferromagnetic and ferromagnetic clusters have been observed to coexist in
manganese perovskites [38].

Precisely such a coexistence of magnetic phases has been proposed by Weiss and co-workers for
austenite in pure iron, involving two different states of electron spin. This will be discussed in detail
since the theory is capable of explaining a vast range of anomalous data on austenite.

Figure 2.12 Magnetic phase diagram of the Fe50(NixMn1−x)50 system (after Ettwig and Pepperhoff [36]).

The Néel and Curie temperatures for the binary Fe-Mn and Fe-Ni systems respectively, are also shown. The

shaded regions represent boundaries which are experimentally uncertain. The abbreviations AF, F and P stand

for antiferromagnetic, ferromagnetic and paramagnetic states respectively.

The idea that a single crystal can entertain simultaneously, two different magnetic states, the so-
called “magnetically heterogeneous” state, is not as alien as it might seem. It was the basis of a
famous two-state theory of austenite by Weiss and co-workers. Whereas the real scenario may be
more complex as indicated by first-principles calculations, the theory continues to serve well in
representing the experimental data on austenite, far more so than the ab initio methods have been
able to do so.

In the two-state theory, the γ-iron atoms are considered to exist in two electronic states, separated
by an energy gap E1 [10, 39]. Electrical resistivity and neutron diffraction experiments show that
the average magnetic moment of γ-iron at high temperatures is about 2 Bohr magnetons per atom,
similar to that of α iron [40]. Pure iron can be retained in its austenitic state to low temperatures by
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coherent precipitation in copper. At temperatures close to 0 K, both neutron diffraction and Möss-
bauer spectroscopy suggest that fcc iron has an antiferromagnetic structure, the Néel temperature
of which is 55-80 K with a magnetic moment of about 0.56-0.70 µB per atom [41, 42]. It appears,
therefore, that γ-iron has a small magnetic moment and is antiferromagnetic at low temperatures,
but has a larger moment (2.8 µB) and is ferromagnetic at high temperatures with a Curie temperature
of about 1800K [43].
In pure iron, the ground state (designated γ0) at 0 K is antiferromagnetic but the higher energy
ferromagnetic state (γ1) can be thermally excited. It only requires a shift of an electron form one
half of a d-band to the other half to convert from γ0 to γ1. Such a reversal in spin accounts for a
difference of 2 Bohr magnetons between the two states, which compares well with the observed
difference of about 2.3 µB per atom.
Consider a total number N of austenite atoms. At any finite temperature a number N0 of the atoms
are in the antiferromagnetic ground state, whereas N1 (= N −N0) atoms occupy the higher level
ferromagnetic state, with an energy E1 relative to the ground state. The fraction of atoms in the two
states at a temperature T and at zero pressure is given by

N0

N
=

g0

g0 + g1 exp
{

− E1
kT

}

N1

N
=

g1 exp
{

− E1
kT

}

g0 + g1 exp
{

− E1
kT

}

where gi represents the degeneracy of the ith energy level. The degeneracy gives the number of states
with the same energy. When the system is completely (magnetically) disordered, the degeneracies
are given by 2s+1, although in each case the degeneracy must have a minimum value of 2 because
with s = 1

2 , the spin can point either up or down.
In each of these equations, the term in the denominator is called the partition function Ω; in general,
for a multi-level system,

Ω = ∑
i

gi exp

{

−
Ei

kT

}

where Ei is the energy relative to the ground state. The degeneracy ratio g0/g1 is found to be about
0.559 and E1 = 5.6971×10−21Jatom−1 [10]. As seen from Figure 2.13, even at 1000 K, the fraction
of atoms in the higher energy ferromagnetic state is only 0.5 so that long-range coupling of dipoles
and macroscopic ferromagnetism is not observed for pure γ–iron. Consequently, for pure iron at
least, the austenite can be regarded as magnetically disordered since the Néel temperature is so
low. The degeneracy ratio g0/g1 is therefore expected to have the value 2/(2.8+ 1) = 0.53, which
compares well with that quoted above.6
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of temperature and pressure [28].
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The fraction of atoms in the higher energy state increases with temperature, with a corresponding
increase in the internal energy of the system by ∆U µγ, which for 1 mole of atoms is given by

∆U µγ = E1 ×
NaN1

N
=

NaE1

1+ g0
g1

exp
{

E1
kT

}

where Na is Avogadro’s number. The corresponding molar magnetic component of the specific heat
capacity for austenitic iron, C

µγ
V , is obtained by differentiating this equation with respect to temper-

ature:

C
µγ
V =

(
∂∆U µγ

∂T

)

V

≡
∂

∂T

(

RT 2 ∂ lnΩ

∂T

)

V

= R

(
E1

kT

)2
g0

g1
exp

{
E1

kT

}/(

1+
g0

g1
exp

{
E1

kT

})2

.

Figure 2.14 The specific heat capacities

of austenite as a function of temperature

[28]. The dashed curve represents the com-

bined contributions of the phonons and elec-

trons whereas the thicker lines also include

the magnetic terms.

Figure 2.14 illustrates the magnetic component of the specific heat capacity of austenite; it is negli-
gibly small at temperatures above 1185 K.
The Helmholtz free energy Fµγ per mole is obtained from the partition function:

F µγ = −RT ln{Ω}

= −RT ln

{

g0 + g1 exp

{

−
E1

kT

}}

= −RT ln{g0}−RT ln

{

1+
g1

g0
exp

{

−
E1

kT

}}

.

Therefore, the change in free energy as atoms are promoted from the ground state, is:

∆F µγ =−RT ln

{

1+
g1

g0
exp

{

−
E1

kT

}}

.

The corresponding molar Gibbs free energy change is given by

∆Gµγ = ∆Fµγ+PVγ
m .

Noting that ∆F µγ = ∆U µγ−T∆Sµγ, the change in molar entropy ∆Sµγ of austenite at a tempera-
ture T , due to the promotion of atoms from the ground state is

Sµγ = R ln

{
Ω

g0

}

+
∆U µγ

T

= R ln

{

1+
g1

g0
exp

{

−
E1

kT

}}

+
∆U µγ

T
.
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This entropy is a direct consequence of the magnetic properties of γ and is about 8.40Jmol−1 K−1

at the α/γ transition temperature 1185 K.
For atmospheric pressure, ∆Gµγ ≈ ∆Fµγ but for greater pressures a more accurate value of C

µγ
P

can be deduced by expressing the energy gap as a function of pressure:

E1{P}= E1 +
P(Vγ0

m −V
γ1
m )

Na
,

where V
γ0
m and V

γ1
m are the molar volumes of γ0 and γ1 respectively. By assuming that each state

of austenite has the same expansion coefficient as ferrite, Kaufman et al. [10] found that:

Vγ0
m = 6.695(1+ 2.043× 10−5T + 1.52× 10−8T 2) cm3 mol−1

Vγ1
m = 7.216(1+ 2.043× 10−5T + 1.52× 10−8T 2) cm3 mol−1

This difference in the molar volumes between the two electronic states of austenite explains why
the magnetic heat capacity of ferrite hardly varies with pressure, but that of austenite is sensitive
to pressure. The lower volume antiferromagnetic state of austenite naturally is favoured by external
pressure. Experimental work provides strong support for the idea that the antiferromagnetic state
should be the one with the smaller volume [44, 45]. Precipitated particles of fcc iron show antifer-
romagnetism, whilst thin films of iron deposited on copper substrates show ferromagnetism. This
is because the particles are large enough to have lost coherency with the copper matrix and hence
have a smaller lattice parameter than the film which is forced to match the larger lattice parameter
of the Cu substrate. It is known from the Bethe-Slater curve that the exchange interaction is sen-
sitive to atomic distance. The interaction can change sign with a small increase in the interatomic
distance, giving the transition from antiferromagnetic to ferromagnetic ordering. Antiferromagnetic
iron particles in copper become ferromagnetic if the lattice parameter of the copper is increased,
for example by alloying the copper with gold [45]. Alternatively, an austenite film deposited on a
hot copper substrate (with an expanded lattice parameter) is found to exhibit ferromagnetism whilst
maintained at the deposition temperature [46].
These observations are reinforced by studies on Fe100−xCux metastable solid solutions prepared by
a mechanical alloying technique [47–49].7 The magnetic moment of iron atoms as a function of the
copper content in fcc Fe100−xCux alloys is found to be close to 2.3 µB for x ≤ 60 but drops rapidly to
less than 1 µB for x & 70. This is because the lattice constant of fcc Fe100−xCux for x ≤ 60 is about
0.364 nm, comparable with that of ferromagnetic austenite. For x = 70 the lattice constant is smaller
at 0.3619 nm, corresponding to the low-moment state of austenite.
The general result for Fe-Cu alloys is that austenite becomes paramagnetic for small lattice pa-
rameters, (low-moment) antiferromagnetic for aγ & 0.36nm and (large moment) ferromagnetic for
aγ > 0.36 nm. The details can vary depending on the binding interactions specific to different crys-
tallographic planes of the substrate on which the iron is deposited [46].
The fact that the Debye temperatures and electronic specific heat coefficients of ferrite and austenite
are equal implies that the expansion coefficients of these phases should also be equal. However,
because the densities of the two forms of austenite differ significantly, and since the relative propor-
tion of atoms in the γ0 and γ1 states changes with temperature, the apparent expansion coefficient
of austenite as a whole, as detected experimentally, is much larger than that of ferrite. This can be
seen from the equations representing the molar volumes of ferrite and austenite as a function of
temperature [28] (300 → 1775K):

Vα
m {T} = 7.061(1+ 2.043×10−5T + 1.52× 10−8T 2) cm3 mol−1

Vγ
m {T} = (1− y)Vγ0

m {T}+ yVγ1
m {T} cm3 mol−1 (2.22)

where y is the fraction of atoms of austenite in the γ1 state. The thermal expansion coefficients of α
and γ0 and γ1 are equal, even though that of austenite as a whole is higher than that of ferrite. The
volumetric relations between α, γ0, γ1 and γ are shown in Figure 2.15.
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Figure 2.15 Molar volumes of the

bcc and fcc forms of iron (after Kauf-

man [28]).

The large thermal expansion coefficient of austenitic steels makes them particularly susceptible to
thermal fatigue when applied in conditions, such as in power plant, where the operating temperature
fluctuates. They therefore are considered unsuitable for any application where the component has a
thick cross-section, even though they can be designed for with superior creep-resistance relative to
ferritic steels.

2.6.7 INVAR EFFECT AND ASSOCIATED PHENOMENA

The two-state model was proposed originally for fcc iron but it has been established for other met-
als such as Mn, Cr, Co and Ni. However, as pointed out by Miodownik [34], the thermodynamic
consequences of the two states are likely to be appreciable only for iron because of the relatively
small value of E1, as illustrated in Figure 2.16. On the other hand, when these particular elements
are added to fcc iron as alloying elements, they obviously cause a change in E1 and therefore in the
stability and physical properties of alloyed austenite. Some of these effects can be quite remarkable.

7 8 10

 -10

0

10

E 1
-1 Figure 2.16 Variation in E1 with the “electron

concentration” [34]. Note that E1 is the elevation

of the ferromagnetic state relative to the antiferro-

magnetic ground state.

The notion that there are two electronic configurations of iron atoms in the fcc structure, can be ex-
ploited to explain a variety of observations on the effect of certain alloying elements on the physical
properties of iron. In particular, it is found experimentally that the expansion coefficient of austenite
decreases markedly, even tending towards zero, as the concentration of elements such as nickel,
platinum or palladium is increased. This is called the Invar effect. The apparent thermal expansion
of austenite is due to two effects, changes in the proportions of γ0 and γ1 (Figure 2.15), and the
normal thermal contraction resulting from the anharmonic shape of the force-interatomic separation
curve. If the relative stability of the two states of austenite is altered by solute additions, then it is
natural to expect the apparent thermal expansivity to change, with accompanying changes in the
magnetic properties of the austenite.



36 Theory of Transformations in Steels

Weiss [43] has shown that many of the unusual properties of iron-nickel alloys can be understood
by assuming a specific dependence of E1 on the nickel concentration (Figure 2.17). In pure iron, it
is the antiferromagnetic condition of austenite which is the ground state. But the addition of suf-
ficiently large concentrations of nickel causes a reversal of stability, with the ferromagnetic state
eventually becoming the ground state (Figure 2.17). When that happens, the fraction of lower den-

sity ferromagnetic austenite increases as the temperature drops, an effect which opposes the normal
anharmonic source of thermal contraction. It then becomes possible to get zero or negative expan-
sion with rising temperature. It is emphasised that the plot in Figure 2.17 is an assumed variation of
the kind required to explain the thermal expansion data.
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ground state Figure 2.17 The variation in the en-

ergy gap E1 for the two electronic

states of austenite, as a function of

the nickel concentration (after Weiss

[43]). A negative value implies that the

antiferromagnetic form of austenite is

the ground state. Note that the switch-

ing of ground states occurs at a nickel

fraction of about 0.29.

The lattice parameters of austenite for atom fractions x of nickel greater than, and less than 0.29 are
given by

aγ = aγ0

[

1−
aγ0 − aNi

aγ0
x+

aγ1 − aγ0

aγ0

N1

N
(1− x)

]

(1+ e[T − 290]) x < 0.29 (2.23a)

where e is the coefficient of linear thermal expansion. The second term in the square brackets allows
for the Vegard’s law effect of nickel, the third term for the fraction of iron atoms which are not in
the ground state.

aγ = aγ1

[

1−
aγ1 − aNi

aγ1
x−

aγ1 − aγ0

aγ1

N0

N
(1− x)

]

(1+ e[T − 290]) x > 0.29 (2.23b)

where aγ1 = 0.354nm and aγ1 = 0.364nm are respectively, the lattice parameters of the antifer-
romagnetic (γ0) and ferromagnetic γ1 states of austenite, at 290 K. The ratios N0/N and N1/N, as
usual, give the fractions of iron atoms in the γ0 and γ1 states respectively. In calculating these ratios,
the degeneracy ratio g0/g1 for x < 0.29 is 1.79, as in ordinary steels [28]. However, for nickel con-
centrations greater than 0.29, the ferromagnetic state is the ground state, so that the austenite is well
below its Curie temperature of about 1800 K. The spins are therefore aligned, giving a degeneracy
of 2, which is identical to that of the disordered spin state. Consequently, for x > 0.29, g0/g1 = 1.
Figure 2.18 shows the lattice parameters of nickel-alloyed austenite as a function of temperature.
These calculations are due to Weiss, using Equation 2.23 and the assumed E1 function. The invar
effect is apparent for the alloy containing 34.4 at.% nickel, with an almost zero thermal expansion
coefficient near ambient temperature. At that concentration of nickel, the ground state is the high
volume ferromagnetic austenite, so raising the temperature (below TC) will have the thermal expan-
sion compensated by the promotion of the low volume antiferromagnetic austenite. The net thermal
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expansion can become zero; this is the so-called invar effect. In contrast, at low nickel concentra-
tions where the ground state is the low volume antiferromagnetic austenite, raising the temperature
leads to an exaggerated expansion as more of the high-volume state is promoted.

Figure 2.18 The lattice parameters

of austenite as a function of the atomic

percent of nickel, and the temperature.

The data for the 34.3 at.% nickel are all

below the Curie temperature. Selected

data from Weiss [43].

The Invar effect has not been studied for fcc iron-copper alloys because of the small solubility of
iron in copper and the difficulty in obtaining fcc iron at low temperatures. However, copper-rich
Fe-Cu solutions with an fcc structure can be created by mechanical alloying. The Curie temperature
of fcc Fe1−xCux with 50 < x < 61 is found to be about 500 K with a magnetic moment per atom of
2.35 µB [48]. It would be interesting to measure the thermal expansion coefficient of such alloys.

Curie temperature

The Weiss two-state model for austenite manages to predict accurately the variation in the ferro-
magnetic Curie temperature of austenite as a function of the nickel concentration. The prediction is
based partly on an empirical equation that works rather well for many transition metals and alloys:

TC/K & 113.5 | Z↑ −Z↓ | ln(2sa + 1) (2.24)

where Z↑ is the number of nearest neighbours with spin aligned in the direction favoured by the
exchange integral and Z↓ is the number with opposite spins [50]. When the electron wave func-
tions of two atoms overlap, the electrons are shared and therefore they must correlate in some way,
since they can exchange their roles. This correlation, including that of the spins, can lead to fer-
romagnetism or antiferromagnetism. For ferromagnetic austenite, all the dipoles point in the same
direction. Since each atom has twelve nearest neighbours along 〈110〉 directions, | Z↑ −Z↓ |= 12.
The overall structure of antiferromagnetic austenite must contain an equal number of opposing
spins. This could arise if, for example, the atoms on any given {100} plane have identical spins,
but with alternating planes having opposing spins. Given that the nearest neighbour atoms lie along
〈110〉 directions, each atom has four nearest neighbours with the same spin, but eight of which
oppose its spin. Consequently, | Z↑ −Z↓ |= 8− 4 = 4.
To account for nickel additions to iron, Weiss [43] assumed that the average magnetic moment per
atom of the alloy would scale with the concentration:

[2sa]average = µNi
B x+

µγ1
B (1− x)N1

N
+

µγ0
B (1− x)N0

N
(2.25)

where µB refers to the magnetic moment per atom of the species identified by the superscript.
Similarly,

| Z↑ −Z↓ |average= 12x+ 12(1− x)
N1

N
+ 4(1− x)

N0

N
. (2.26)

Both these equations must be evaluated at the Curie temperature - the agreement with experimental
data was found to be excellent (Figure 2.19).
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Figure 2.19 The estimated and ob-

served values of the ferromagnetic

Curie temperature of austenite in Fe-

Ni alloys (after Weiss [43]).

Justification of the magnetic properties of austenite

The Weiss and Tauer two-state model for austenite is able to describe a variety of thermodynamic
and magnetic phenomena in iron. There has been some unease about its physical significance which
prompted many attempts at finding direct connections between the two-state hypothesis and ab

initio calculations based on the electron theory of metals.
Quantum mechanical calculations broadly confirm that the magnetic properties of fcc iron are com-
plicated. Consistent with the Weiss and Tauer model, Kübler [51] has shown that the ground state of
γ-iron is antiferromagnetic with a relatively low volume and a magnetic moment per atom of about
0.6 µB. However, he has found two higher energy ferromagnetic states of austenite, one of which
has a low magnetic moment and the other a high magnetic moment (< 0.6 µB and > 2 µB per atom,
respectively). This is in contrast to the single ferromagnetic state proposed by Weiss and Tauer.
With more refined calculations, Krasko [52] revealed three ferromagnetic states in austenite, two
with the low spin and one with the high spin. The two low-spin states have energies similar to that
of a hypothetical nonmagnetic austenite, the energies being much larger than that associated with
the high-spin state. Unfortunately, Krasko did not extend the calculations to include the antiferro-
magnetic γ-iron.
Other quantum mechanical total-energy8 calculations in the context of the invar effect (e.g., Mohn et
al. [53]; Wassermann [54]) indicate results reminiscent of the two-state model of austenite. However,
many of the studies neglect to consider antiferromagnetic austenite as an option. Where low-spin fer-
romagnetic states have been reported for austenite, their much greater energies may justify neglect-
ing them, in which case the high-spin, high-volume ferromagnetic and a low-spin, low-volume anti-
ferromagnetic ground state of austenite remain, consistent with the original Weiss and Tauer model.
Other results using ab initio calculations are discussed in the context of thin films of iron, where the
crystal structure can be altered continuously between the fcc and bcc forms (Section 2.6.9).

2.6.8 MAGNETIC HEAT CAPACITY OF ε-IRON AND SUPERCONDUCTIVITY

If it is assumed that magnetic properties are a function primarily of interatomic spacing rather than
the details of lattice symmetry, then hcp iron is expected to exhibit magnetic characteristics similar
to those of austenite. Therefore, the ground state should be a low-volume, low-spin antiferromag-
netic structure, with increasing contributions from the high-volume, high-spin ferromagnetic state
as the temperature is raised. An increase in pressure should tend to favour the antiferromagnetic
state.
There is only limited evidence in support of this conclusion. Whereas Mössbauer spectra indicate
that at high pressures hcp iron is not ferromagnetic, it is unclear whether it is antiferromagnetic or
paramagnetic [55, 56]. Iron-manganese alloys with fcc and hcp structures are known to be antifer-
romagnetic; the Néel temperature of a Fe-17Mn wt% hcp alloy is found to be about 240 K [30, 56].
The study of the internal fields and the Néel temperatures of the Fe-Mn alloys in both the fcc and
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hcp structures indicate that the magnetic properties of the iron atoms in these two environments are
similar. If these data are extrapolated to pure iron, then the internal field and Néel temperature of
pure hcp iron can be estimated to be similar to that of pure γ–iron [56]. The Bethe-Slater curve
which describes the relationship between the exchange coupling and interatomic distance implies
that fcc and hcp iron should be antiferromagnetic [57].
The mechanism of superconduction in elemental metals according to Bardeen, Cooper and Schri-
effer is thoroughly embedded in the literature; a conduction electron, when it moves through the
lattice, distorts the positive ions towards itself, thus creating a higher density of positive charge in
its vicinity. This can attract another electron, leading to a weak electron-electron pairing. How this
leads to superconduction is described in the original theory, suffice it to say that the two electrons
should have opposite spins. Any metal can in principle become superconducting in its non-magnetic
state at a sufficiently low temperature.
Iron becomes superconducting at pressures in the range 15-30 GPa and at temperatures below 2 K
[58]. The transition to the superconducting state was confirmed by both a drop in resistivity and
the expulsion of magnetic flux from the iron (Meissner effect). Metallic superconductors rely on the
pairing of electrons with opposite spins; the pairs are then propelled through the lattice by vibrations
(phonons). Magnetic interactions change the electron spins and hence prevent them from pairing up.
Ferromagnetism and superconductivity therefore compete in metallic superconductors. Ferromag-
netism is eliminated in iron by studying it at a pressure and temperature where it becomes hexagonal
close-packed. It is argued that this is the reason for the onset of superconduction, although it is not
clear how this conclusion would be modified if the hcp iron turns out to be antiferromagnetic. It
has been argued [59] that the electron pairing mechanism mediated by lattice vibrations is not the
dominant mechanism representing superconduction in hcp iron, because the theory fails to explain
why the superconducting state vanishes beyond 30 GPa. It is proposed instead that the superconduc-
tivity is unconventional with incommensurate antiferromagnetic spin waves inducing the electron
pairing. This is based on calculations that indicate a coincidence between the onset and vanishing
of magnetic order over roughly the same range pressure as the observed superconduction.
Stepakoff and Kaufman [13] have shown that Cε

P can, at least for the temperature range 60-300 K,
be represented accurately as a function of just the vibrational and electronic components of specific
heat. It seems that the magnetic component of the specific heat of ε-iron can be neglected without
significant loss of accuracy (Figure 2.20).

Figure 2.20 The experimentally measured

specific heat capacity of ε-iron and its com-

parison with a curve calculated neglecting the

magnetic component of the specific heat ca-

pacity (after Stepakoff and Kaufman [13]).

2.6.9 TRIGONAL AND TETRAGONAL IRON

These unusual allotropes of iron can only be created in the form of incredibly thin films. The drive to
study such films of iron deposited on single-crystal substrates is allegedly from the vague possibility
of applications in information technology and in the manufacture of artificial superlattices. The
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studies nevertheless reveal evidence for the magnetic properties of iron. The basis for the classical
thermodynamic models for iron has been reinforced by the ability in thin-film experiments to study
phases of iron which do not otherwise occur in nature, or to study known phases in conditions that
are not natural.
Recall that coherency may be maintained with the substrate during the early stages of film deposi-
tion provided that the misfit between the iron and substrate is not so large that the elastic limit is
exceeded. The deposited layers of iron may then adopt the atomic structure of the substrate surface.
There is an important caveat, that the clean substrate surface may reconstruct into a pattern of atoms
that is different from that in the bulk crystal structure. Thus, {100}Au surface is known to recon-
struct into a (5× 20) structure, but the deposition of a small fraction of a monolayer of iron causes
the surface to revert to the (1× 1) bulk-termination structure [46].9

Any small in-plane misfit in coherently deposited films leads to a corresponding distortion normal
to the layer, placing the film in an anisotropic state of strain. A homogeneously strained layer like
this can be regarded as having either the face-centred tetragonal or trigonal structure depending on
whether it is deposited to match the {100} or {111} substrate planes respectively.
Consider first the trigonal form of iron. The trigonal cell is defined by three basis vectors from the
origin of an fcc cell, each of equal magnitude and separated by equal angles (Figure 1.11, Table 2.2).
The body-cantered cubic, primitive cubic and face-centred cubic cells can all be regarded as special
cases of the trigonal cell. If the primitive cubic cell is stretched along its body diagonal [111] until
the cell angles (α, β , γ) become 60◦, then this represents the primitive trigonal cell of the con-
ventional fcc cell. By contrast, compression along the body diagonal to give cell angles of 109.47◦

gives the primitive trigonal cell of the conventional bcc lattice. It follows that when considering the
deposition of iron on the {111} plane of the fcc substrate, a matching atomic configuration for γ-
iron is obtained when the substrate parameter (as) is equal to that of austenite. The distance between
the atoms in the {111} plane of the substrate is as

2 〈110〉. The corresponding distance between the
atoms on the {111} plane of the trigonal cell for α-iron is abcc〈110〉. This means that α-iron is said
to be deposited coherently when the substrate lattice parameter as = 2aα.

Table 2.2

Relationship between the non-primitive conventional and primitive trigonal cell pa-
rameters.

Conventional cell Basis vectors of primitive cell Primitive (trigonal)
relative to conventional cell cell parameters

Cubic a[100] a[010] a[001] a = b = c α = β = γ = 90◦

fcc a
2 [101] a

2 [110] a
2 [011] a = b = c α = β = γ = 60◦

bcc a
2 [111] a

2 [111] a
2 [111] a = b = c α = β = γ = 109.47◦

The results of first-principles calculations using density functional theory are presented in Fig-
ure 2.21 [60]. The horizontal axis gives the substrate lattice parameter, beginning with a value which
is close to that of austenite. Further increases in the substrate parameter lead to a gradual change in
the trigonal cell until it becomes equivalent to the bcc form of iron. The austenite thin film is thus
associated with a low magnetic moment, consistent with the fact that the calculations are for 0 K
although it is not clear whether the antiferromagnetic state was included in the calculations. The
ferrite is correctly predicted to have a large magnetic moment per atom. The states between these
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natural allotropes are trigonal forms of iron. It is interesting that the magnetic moment per atom can
be controlled by appropriately depositing iron in the form of thin films, although it is difficult as yet
to see any practical application of this property.

Given that the energies of the trigonal forms of iron are larger than those of the fcc or bcc allotropes,
they can exist only in metastable states, during forced coherency with the substrate. The excess
energy relative to the equilibrium forms can be regarded as the coherency strain energy. The strain
energy is clearly doubled when iron is deposited on palladium compared with when it is deposited
on copper. Fox and Jansen suggest that this is why islands of bcc iron start to form on palladium
when the thickness of the iron is less than a couple of atomic layers and why silver and aluminium
are difficult substrates for iron.

(a) (b)

Figure 2.21 Density functional theory calculations corresponding to 0 K. (a) Plot of the minimum in the

total energy of a thin film of iron deposited coherently on the {111} plane of an fcc substrate. The dashed

lines indicate the positions of Cu and Pd substrates. The fcc and bcc forms of iron are also identified; it is

assumed for both lattices that their {111} planes are parallel to the substrate {111} plane, and that the genesis

of the three-dimensional structure corresponds to the correct plane spacing normal to those planes. The bcc

is a 2× 2× 2 supercell since the {111} plane of a single cell does not intersect the body-centering atom. (b)

Corresponding plot of the calculated magnetic moment per atom. (Adapted from Fox and Jansen [60].)

When a thin film of iron is deposited coherently on a mismatching {100} fcc substrate, it assumes
a face-centred tetragonal structure [61]. The tetragonal distortion gives another continuous path
between the fcc and bcc structures. The famous Bain strain [62], involving a compression of the
fcc cell along one of the cell edges and a uniform expansion along the other two, Figure 1.10, fits
precisely within this scheme. This Bain strain is assumed throughout transformation theory to be the
correct description of the pure strain which accomplishes the change in crystal structure. There are
other strains which can implement the change but the Bain strain apparently has the smallest known
principal deformations [63]. The trigonal deformation described above is another possibility for the
lattice deformation. However, total energy calculations indicate that the barrier between the fcc and
bcc structures for this deformation is about seven times larger than for the tetragonal distortion [61].

Figure 2.22 shows how the magnetic moment per atom varies as a function of the lattice parameter
of a {100} fcc substrate. The variation in the ratio c/a of the in-plane to the normal lattice parameter
of the iron film is also illustrated. This ratio is unity for the fcc structure but 1/

√
2 for ferrite. This

is because aα =
√

2cα in order to ensure the same number of lattice points per unit cell in all the
structures.

The calculations confirm that the ground sate for austenite at low temperatures is the low moment an-
tiferromagnetic state. Antiferromagnetic ferrite has too large an energy to be stable; only ferromag-
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Figure 2.22 Plot of the c/a ratio

and magnetic moment per atom (Bohr

magnetons) for a thin film of iron de-

posited coherently on the {100} plane

of an fcc substrate.

netic ferrite is stable.10 The face-centred tetragonal structures in between the fcc and bcc forms are
either low moment austenite-like or high moment ferrite-like with a rather abrupt change at a sub-
strate lattice parameter of 0.37 nm. Iron films grown coherently on {100} on copper (a= 0.3602nm)
are expected to be slightly tetragonal and antiferromagnetic with a small moment. This is found ex-
perimentally to be the case when the films are about three monolayers thick. Thicker films (about
eight layers) tend to be fcc in structure with defects present at the interface with the copper. It is
assumed that the strain accumulated as the film thickens beyond three monolayers is sufficient to
cause a breakdown of coherency and a relaxation to the fcc structure [64]. Since even this is not the
equilibrium structure it is expected that further thickening or annealing must cause a transformation
to bcc iron. Alternatively, when the mismatch with the substrate is large (e.g., with Pd or Ag), it be-
comes difficult to deposit anything but the bcc iron. In fact, there is only a 0.8% mismatch between
the fcc {100} Ag and bcc {100} Fe surface after a 45◦ rotation so it would not be favourable to
precipitate fcc iron given the larger misfit [65].

It is striking that almost all of the ab initio calculations, including those discussed above, fail to
predict that bcc iron is more stable than fcc iron at 0 K. It appears that this is an inherent difficulty
with the local density approximation [60]. To overcome this difficulty, Krasko and Olson [66] made
an empirical adjustment to one of the magnetic terms (the Stoner exchange parameter) to ensure
a match with experimental data. This leads to the surprising result that ferromagnetic austenite
is unstable to tetragonal distortion and hence does not exist. In contrast, all the other ab initio
calculations predict that the ferromagnetic states of fcc and bcc iron are stable, defined by energy
minima in structure space.

These problems are resolved by using full-potential band-structure calculations in the density func-
tional formalism but together with a generalised gradient approximation. The method correctly
predicts that ferromagnetic bcc iron is the most stable form at low temperatures. It confirms that
the ferromagnetic fcc phase has the low-moment low-spin and high-moment high-spin states. Fur-
thermore, the high-density antiferromagnetic form of fcc iron is found to be the ground state for
austenite but with increasing amounts of the low-density high-spin ferromagnetic austenite excited
with rising temperature, explaining the large apparent thermal expansivity of austenite and also the
invar type effects [67, 68]. This is reminiscent of the classical Weiss and Tauer two-austenite state
model.
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Magnetic anisotropy in thin films of iron

There are two special magnetic effects associated with thin films of iron. First, the magnetic moment
per atom becomes especially large (3.1 µB) when compared with bulk iron (2.2 µB). Secondly, there
exists a large magnetic-anisotropy in thin epitaxial films of iron.

The increase in the magnetic moment per atom is due to the smaller coordination number for atoms
in a thin film. The atoms of the substrate used to produce the thin film do not contribute to the
coordination number because there is a lack of hybridisation between the electronic states of the
iron layer and the substrate [65, 69]. The d-bands in bulk ferromagnets are much broader than they
would be for a single atom because of hybridisation between atoms. In reducing the number of
nearest neighbours, the hybridisation is reduced so the bands become “atom-like”. This squashing
of the d-bands increases the density of states at the Fermi level and resolves the majority spin-up
band from the minority spin-down band. A low-coordination atom therefore has more electrons in
its majority spin-up band, and so has a larger moment per atom. An isolated atom has the highest
moment and the bulk material the lowest. Reducing the coordination makes the material less bulk-
like and more single-atom-like.

The magnetic anisotropy seen in thin films is a general feature found even in bulk iron where it
is more readily magnetised along the 〈100〉 axis [70]. Anisotropy is caused by the coupling of the
directions of the spin magnetic moments and orbital magnetic moments. For a thin film of iron, the
net effect is often such that it causes the spins to align in a direction normal to its plane. Thin layers of
iron separated by intervening layers of chalcogenides have been found to be highly anisotropic with
the internal field perpendicular to the plane [71]. Such materials show a large change in resistance
as the magnetic field is altered and could conceivably have applications in recording devices.

The details of this spin alignment normal to the plane of the film can only be accessed via precise
calculations of the band structure along different crystallographic directions. However, Van Vleck
[72] proposed a model that gives some intuitive feel for the problem. Quantum mechanics shows
that the spin direction and spin orbit energy are coupled. As the spin direction changes, the spin orbit
energy changes so the electron wave function must redistribute in order to comply. This affects the
electron overlap between nearest neighbour atoms, with consequences on electrostatic interactions.
The energy of the system becomes a function of the direction of the electron spin with respect to the
crystalline lattice. The resulting magnetocrystalline anisotropy therefore reflects the symmetry of
the crystalline lattice. In bulk iron the symmetry is cubic whereas in a monolayer it must be uniaxial
so the spins align normal to the plane.

There is a further consequence of the fact that the magnetisation tends to be normal to the film
of iron [73]. Bulk samples of iron generally contain a magnetic-domain structure to minimise the
overall energy. But domain formation is opposed by the exchange energy which acts to make the
magnetic moment of each atom line up with those of neighbouring atoms. Consequently, sufficiently
small particles tend to have a single domain structure. This applies to thin films. Thus, thin films of
cobalt with in-plane magnetisation are single-domain whereas iron films where the magnetisation
in normal to the film plane contain a domain structure. Reducing the thickness of an iron film has
no influence on its domain structure.

When thin layers of iron are deposited on slightly mismatching substrates, the spins mostly tend to
align along the normal to the film. This is confirmed both experimentally [65, 74] and using total
energy calculations which show that the spin-alignment is in-plane for a free-standing monolayer
of iron, but perpendicular when a monolayer of iron is deposited on a monolayer of Au, Ag or
Pd [69].11 The difference with free-standing iron arises because of an interaction of the Fe 3d and
substrate 4d band electrons. The interaction can induce weak magnetic moments in the adjacent
substrate atoms (Au, Ag, Pd) which normally are not magnetic.

The degree of magnetic anisotropy varies with the thickness of the iron film. For austenite “clamped”
to the (100) plane of copper, the anisotropy changes as a function of the number of monolayers
deposited, becoming maximum at a 5–layer thick film. This is because the fcc iron films expand
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normal to the surface with the strain reaching a maximum value of 6% at 5–layer thick films. This
phenomenon is attributed to subtle details of the electronic band structure that is dependent on the
strain [75].

Curie temperature of monolayers of iron

Equation 2.24 indicates that the Curie temperature varies directly with the atomic coordination
number. A {100} monolayer of bcc iron has only four nearest neighbours compared to eight for
bulk iron. It is not surprising, therefore, that the Curie temperature of the monolayer is only about
500 K, i.e., about half that found for bulk iron [46, 75, 76].

2.7 HEAT CAPACITY OF LIQUID IRON

Most metals, at their melting temperatures, have values of constant pressure heat capacities in the
range 30-40 Jmol−1 K−1. The temperature dependence of the heat capacity tends to be small [77].
It can be shown empirically (the Neumann-Kopp law), that the heat capacities of liquid alloys can
be estimated by a weighted mean of the component elemental liquids. A comprehensive list of heat
capacity data for liquid metals can be found in Guthrie and Iida [78].
At 1811 K pure iron, which has a bcc structure, melts to give liquid iron. Orr and Chipman [79]
concluded that the thermodynamic data for liquid iron can be represented adequately by assuming
a constant value CL

P = 46Jmol−1 K−1 over the temperature range 1811-3200K, within the limits
of experimental error. This is consistent with data generated for the purposes of geophysics, at
47± 3Jmol−1 K−1 at 1811 K [80].

2.8 FREE ENERGY FUNCTIONS OF IRON

Having established the heat capacity terms for α, ε and γ, the expression for the total heat capacity,
i.e.,

CP{T}=CV

{
TD

T

}

C1 + ceT +C
µ
P {T}, (2.27)

can be integrated to give the corresponding components of the Gibbs free energy of the phase con-
cerned:

G{T}= H0 +GDebye

{
TD

T

}

+Gµ{T}+ 0.5ceT
2 (2.28)

where the integration constant H0 is the molar enthalpy at 0 K. This enthalpy cannot be fixed ab-
solutely; it is for α set by convention to zero at 0 K and atmospheric pressure. This does not cause
difficulties since the usual interest is in differences in the free energies of phases.
Since the electronic specific heat coefficients of α and of γ are equal, it follows that the change in
molar Gibbs free energy on transforming α to γ at a pressure of 1 atmosphere is given by

∆Gαγ = ∆Hαγ{0K}+Gµγ{T}−Gµα{T} (2.29)

where ∆Hαγ{0K,1atm} is the enthalpy change accompanying the transformation of a mole of α to
γ, found to be about 5452 Jmol−1 [10]. The function ∆Gαγ is illustrated in Figure 2.23. The molar
Gibbs free energy changes accompanying the γ → ε and α → ε transformations can similarly be
found, but because of the uncertain magnetic properties of ε-iron, Gµε has to be assumed to be zero:

∆Gαε = ∆Hαε{0K}+Gε
Debye

{
TD

T

}

−Gα
Debye

{
TD

T

}

−Gµα{T}+ 0.5T2(cεe − cαe )

∆Gεγ = ∆Hεγ{0K}+G
γ
Debye

{
TD

T

}

−Gε
Debye

{
TD

T

}

−Gµγ{T}+ 0.5T2(cγe − cεe ).
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Some thermodynamic data for iron are summarised in Table 2.3. Figure 2.23 illustrates the variation,
at a constant pressure of 1 atmosphere, of the free energy changes accompanying the α→ γ, α→ ε

and α→ L transformations.

Table 2.3

Thermodynamic properties of α, ε and γ iron.

α γ γ0 γ1 ε

Tm/K 1811 1800 - - 1320

Vm{0K, 1atm}/cm3 mol−1 7.061 - 6.695 7.216 6.731

H0/Jmol−1 0 5452 - - 4812

TD/K 432 432 - - 385

ce/Jmol−1K−2 0.00502 0.00502 - - 0.00586

TC/K 1042 - - ≈1800 -

Tn/K - - 55-80 - -
µB / Bohr magnetons 2.2 - 0.56-0.7 ≈ 2.8 -

The work of Kaufman and co-workers explains much of the peculiar behaviour of iron. Because
of its ferromagnetism, ferrite is stable relative to austenite at low temperatures, but the two-spin
state electronic structure of austenite gives it an extra entropy that stabilises it above 1185 K. The
reversion to ferrite above 1667K results from its magnetic entropy which builds up rapidly above
the Curie temperature and eventually overrides the two-spin state entropy of austenite. Indeed, it is
this magnetic contribution to the entropy of ferrite which dominates at high-temperatures to produce
a minimum in the ∆Gαε versus T curve, even though at low temperatures, the vibrational entropy of
ε is greater than that of α. Figure 2.23 also shows that ε is more stable than γ at 0 K, but that as the
temperature rises, γ, because of its magnetic entropy, becomes the more stable phase above 340 K.
If pure, unconstrained γ-iron could be quenched to a temperature below 340 K, it should tend to
transform into ε-iron.

Kaufman [81] pointed out that if α-iron were not to be ferromagnetic, its free energy at 0 K would
rise by such a large amount that austenite would become stable even at low temperatures. Indeed,
since the Debye temperatures and electronic specific heat coefficients of α and γ are equal, the
stability of austenite relative to ferrite would persist at all temperatures. Below 340K, iron would be
in the hcp structure in these circumstances. Life would clearly be dull in the absence of ferrite and
ferromagnetic iron!

The scenario just described actually arises in ruthenium, which is considered to be an “iron-
analogue” because it lies in the same column of the periodic table. Its bcc α phase is not ferro-
magnetic and consequently is less stable than its fcc γ phase for all temperatures [81]. Following
the earlier logic, ruthenium is found to have a hcp structure at ambient temperature.

2.8.1 LIQUID IRON

For temperatures in excess of 1667 K where ferrite is once again more stable than austenite, an
approximate expression for the molar Gibbs free energy change accompanying the α→ L transfor-
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Figure 2.23 Gibbs free energy-

temperature relations for the phases

of pure iron, at a pressure of 1 at-

mosphere (after Kaufman, Clougherty

and Weiss [10]; Blackburn, Kaufman

and Cohen [11]; and Stepakoff and

Kaufman [13]). The points “a” and “b”

represent the melting temperatures of

α and γ respectively.

mation can be obtained using the following experimental data due to Orr and Chipman [79]:

CL
P ≈ 46.0 Jmol−1 K−1

Cα
P ≈ 41.8 Jmol−1 K−1

∆SαL{Tm} = 7.6325 Jmol−1 K−1

∆HαL{Tm} = 13807 Jmol−1.

Pure metals which do not have allotropic transitions have an entropy of fusion of approximately
9.2 Jmol−1 K−1 [82]. For those metals like iron which do undergo solid state transformations, it is
the total entropy change due to all the transitions from 0 K to the liquid state that has this value.
Therefore, for iron, the entropy of fusion and the entropy changes at the γ→ δ and α→ γ add up
as follows (Table 1.1):

7.6325+ 0.5025+0.7548= 8.89 Jmol−1 K−1.

The data show that the change in heat capacity on solidification is approximately constant and quite
small. The data can be integrated to yield the thermodynamic variables as a function of temperature:

∆HαL{T}= ∆HαL{Tm}+
∫ T

Tm

(CL
P −Cα

P ) dT

∆SαL{T}= ∆SαL{Tm}+
∫ T

Tm

CL
P −Cα

P

T
dT

so that ∆GαL = 6229− 3.4486T − 4.184T ln

{
T

Tm

}

Jmol−1.
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A more approximate equation, the form of which is consistent with the approximation that CL
P −

Cα
P = 0, is given by Kaufman [81], valid for T > 1667K, is

∆GαL = 15397− 8.4935T Jmol−1.

Kaufman also found that for the γ→ L and ε→ L metastable transformations,

∆GγL = 16339− 9.0584T Jmol−1

∆GεL = 15397− 12.522T Jmol−1.

All of these thermodynamic data are subject to approximations and likely to fail if excessive extrap-
olations are made into temperature regimes where one of the phases is metastable. There are, for
example, no measurements of the heat capacity of ferrite above its melting temperature, nor of the
supercooled liquid iron. The extrapolation of the properties of liquids has assumed new significance
because of access to rapid quenching techniques, the aim being either to refine microstructure by
forcing transformation to initiate at large undercoolings, or to induce the liquid into a glass tran-
sition. The latter occurs when the liquid is undercooled to such an extent, that its configuration
becomes frozen at the glass transition temperature. Pure liquid iron is unlikely ever to be made
into a glass; modelling based on molecular dynamics indicates that a quenching rate of 1013 Ks−1

would be necessary to achieve amorphous iron [83]. Nevertheless, work on glass-forming alloys
gives some valuable clues on the thermodynamic properties of pure metals as well.
Although there are no data for supercooled liquid iron, a number of other pure metals have been
investigated at undercoolings in excess of 200 K. The experimental heat capacity data have been

compared with a variety of approximations for the difference ∆CP =C
liquid
P −Csolid

P ,

∆CP = b3 + b4T

where b3 and b4 are empirical constants. The approximations involved can then be described as
follows (presented in order of increasing accuracy):

(a) b3 = b4 = 0 [81]. This turns out to be a reasonable assumption for pure metals that do not
undergo a glass transition, where the change ∆CP tends to be small when compared with the
absolute value of the heat capacity of either the liquid or solid phases. The approximation
would fail for a polymeric liquid where the change in heat capacity on transition to the
solid state is expected to be large [84].

(b) b4 = 0, so that ∆CP = b3 [85].12 The value of ∆CP usually is taken to be that at the melting
temperature [86].

(c) b3 and b4 are taken to be finite. The problem here is to obtain appropriate values for the
constants in the absence of experimental data.

2.9 EFFECT OF PRESSURE

2.9.1 LIQUID IRON

It is natural that the melting temperatures of both δ and γ should be raised by increasing pressure
because the solid phases are denser than the liquid (Figure 1.2). This is particularly important in
geophysics where the increase of the melting temperature limits the temperature distribution in the
core of the earth, which is predominantly iron [87]. δ–Iron is eliminated at the sort of pressures that
exist in the earth’s core, so it is the melting temperature of austenitic iron that is of greatest interest.
The experimental data over the pressure range P =3-20 GPa are represented as follows [87]:

Tγ
m / ◦C = 1718+ 38.5(P− 5.2)− 1.95(P− 5.2)2 + 6.24× 10−2(P− 5.2)3
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The actual pressure at the core is of the order of 300 GPa; this equation does not extrapolate well
because the melting temperature at 225 GPa is much greater at about 5100 K [88]. The outer liquid-
core of the earth is not of course, pure iron, so its melting temperature is likely to be lower than
implied by this equation. Indeed, the density of the core liquid is smaller [89] and the bulk modulus
larger, than that of pure liquid-iron [90].

2.9.2 FERRITE AND AUSTENITE

The compressibility of iron in all but its vapour state is small so the consequences on the free energy
of the solid or liquid phases as a function of pressure are noticeable only at large pressures. Some
data are presented in Table 2.4.

Table 2.4

Bulk modulus K, and pressure derivatives K′, K′′, for allotropes of iron.

Phase Bulk modulus or pressure derivatives Source

Liquid iron K = 109.7± 0.7 GPa, at 1181 K, 105 Pa [80]
K′ = 4.661± 0.040, K′′ =−0.043± 15.3GPa−1 [80]

Austenitic stainless steels K = 157.5-163.3GPa, ambient conditions [91]
K′ = 5.39-5.57 [91]

γ-iron K = 199GPa [92]
K′ = 5.5 [92]

ε-iron K = 164.8GPa [93]
K′ = 5.33 [93]

α-iron K = 166.4GPa, ambient temperature [94]
K′ = 5.29 [94]

In the case of austenite, an increase in pressure favours the low-volume antiferromagnetic state.
The energy gap E1 between the γ0 and γ1 states increases by P∆V

γ0−γ1
m assuming that the molar

volumes V
γ0
m and V

γ1
m are both independent of pressure, because any change in pressure can be

accommodated by a change in the fraction of atoms in each of the two states. The molar Gibbs free
energy of γ at zero pressure follows from Equation 2.28:

Gγ{T}= H
γ
0 +G

γ
Debye

{
TD

T

}

+Gµγ{T}+ 0.5cγe T 2.

If the electronic specific heat coefficient ce remains constant, the effect of pressure is to modify this
equation to:

Gγ{T,P}= H
γ
0 +PVγ

m {T,P}+G
γ
Debye

{
TD

T

}

+Gµγ{T,P}+ 0.5cγe T 2.

The magnetic component Gµγ must depend on pressure via E1. Since the magnetic properties of
ferrite are insensitive to pressure [10, 25],

Gα{T,P}= Hα
0 +PVα

m {T,P}+Gα
D

{
TD

T

}

+Gµα{T}+ 0.5cαe T 2.
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Given that the Debye temperatures and electronic specific heat coefficients of α and γ are identical,
it follows that

∆Gαγ{T,P}= H
αγ
0 +P(Vγ

m {T,P}−Vα
m {T,P})+Gµγ{T,P}−Gµα{T}.

2.9.3 HEXAGONAL CLOSE-PACKED IRON

Following the same principles, the pressure dependence of ∆Gαε is given by:

∆Gαε{T,P}= ∆Gαε{T}+P∆Vαε
m {T}.

Assuming that the molar volumes of α and ε, and Gµα are independent of pressure. For γ→ ε,

∆Gγε{T,P}= ∆Gγε{T,P}+∆Gγα{T,P}. (2.30)

2.10 MECHANICAL MIXTURES AND SOLUTIONS

All steels are solutions. The distinction between a compound and a solution is that the free energy of
the former increases sharply with a change in its chemical composition. For a solution, the variation
in free energy with composition is much more gentle so that the range of composition over which
it can exist is greater. It is useful to examine the nature of a solution by considering its evolution as
the components are mixed together. For when is a mixture, a solution?

2.10.1 ALLOYING BY DEFORMATION

Mechanical alloying is a process invented by Benjamin [95], in which mixtures of fine powders
consisting of elemental metals or master alloys are changed into solid solutions, apparently without
any melting (Figure 2.24). The powders are forced to collide with each other and with much larger,
hardened steel balls whilst contained in a ball mill. The collisions are energetic, involve large contact
pressures, and lead eventually to the formation of an intimate solid solution. Refractory oxides can
also be introduced into the mechanically alloyed powder for dispersion strengthening. The alloyed
powder is finally extruded to form full density bulk samples in rod, sheet or other useful shapes. The
process has been used commercially to make iron alloys containing large amounts of aluminium for
oxidation resistance, and yttria particles to guard against creep.

Figure 2.24 Mixture of metallic

powders and compounds ball-milled

together until alloying occurs. The top

part shows a cylindrical drum contain-

ing a mixture of elemental powders

and large steel balls. When the drum

is rotated the balls collide causing the

powder particles to coalesce and frag-

ment repeatedly. The resulting pow-

ders are then canned and hot-extruded

to produce solid metal.

The preparation of a binary alloy by this route can be considered in terms of the two elemental
powders (‘A’ and ‘B’) which are mixed such that the mole fraction of B is x. The pure powders have
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the molar free energies µ◦
A and µ◦

B respectively, Figure 2.25. The free energy of this mechanical
mixture of powders is given by:

G{mixture}= (1− x)µ◦
A + xµ◦

B +∆SM (2.31)

where ∆SM is the accompanying change in configurational entropy. It has been assumed here, that
there is no change in enthalpy in the process, i.e., the atoms in the context of bonding are indifferent
to the type of neighbouring atom. The change in configurational entropy as a consequence of

Figure 2.25 Plot of free energy ver-

sus composition, both for mechanical

mixtures and a solid solution. ∆GM is

the free energy of mixing when the

mechanical mixture turns into a solid

solution.

mixing can be obtained using the Boltzmann equation S = k ln{wc} where wc is the number of
configurations. Suppose that there are mA atoms per powder particle of A, and mB atoms per particle
of B; the powders are then mixed in a proportion which gives an average concentration of B which
is the mole fraction x.
There is only one configuration when the heaps of powders are separate. When the powders are
mixed randomly, the number of possible configurations for a mole of atoms becomes [96]

(

Na([1− x]/mA+ x/mB)
)

!

(Na[1− x]/mA)! (Nax/mB)!
. (2.32)

The numerator in Equation 2.32 is the total number of particles, and the denominator is the product
of the factorials of the A and B particles respectively; Na is Avogadro’s number. Using Stirling’s
approximation, the molar entropy of mixing is:

∆SM

kNa
=

(1− x)mB+ xmA

mAmB
ln

{

Na
(1− x)mB+ xmA

mAmB

}

−
1− x

mA
ln

{
Na(1− x)

mA

}

−
x

mB
ln

{
Nax

mB

}

(2.33)

subject to the condition that the number of particles remains integral and non-zero.13

The largest reduction in free energy occurs when the particle sizes are atomic, Figure 2.26, which
shows the molar free energy of mixing for a case where the average composition is equiatomic.
Such a composition maximises configurational entropy. When it is considered that phase changes
often occur at appreciable rates when the accompanying reduction in free energy is just 10Jmol−1,
Figure 2.26 shows that the entropy of mixing cannot be ignored when the particle size is less than a
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few hundreds of atoms. In commercial practice, powder metallurgically produced particles are typi-
cally 100µm in size, in which case the entropy of mixing can be entirely neglected, though solution
formation must be considered to be advanced when the processing reduces particle dimensions to
some 102 atoms. These comments must be qualified due to the neglect any enthalpy change during
mixing.

Figure 2.26 The molar Gibbs free energy

of mixing, ∆GM =−T ∆SM, for a binary al-

loy, as a function of the particle size when

all the particles are of uniform size in a mix-

ture, the average composition of which is

equiatomic, T = 1000K.

2.11 CHEMICAL POTENTIAL

In a single-phase equilibrium diagram such as that for iron as a function of temperature and pressure,
the boundaries between the phase fields represent the locus of all points along which the adjacent
phases are in equilibrium, i.e., they have an identical free energy. For example, the α/γ phase
boundary is defined by setting (Figure 2.27):

Gα = Gγ. (2.34)

This is because allotropic transitions are considered here as a function of variables such as temper-
ature and pressure, where the crystal structure changes but not the chemical composition.

Temperature

Fr
ee

 e
ne

rg
y

ferrite

austenite

transition 
temperature

Figure 2.27 The transition temperature

for an allotropic transformation.

A different approach is needed when the chemical composition is variable. Consider a single-phase
alloy consisting of two components A and B. The molar free energy G{x} of that phase will in
general be a function of the mole fractions (1 − x) and x of A and B respectively, written as a
weighted mean of the free energy contributions from each component:

G{x}= (1− x)µA
︸ ︷︷ ︸

contribution from A atoms

+ xµB
︸︷︷︸

contribution from B atoms

. (2.35)

The terms µB and µB, known as the chemical potentials per mole of A and B respectively, in effect
partition the free energy G{x} into a component purely due to A atoms and another due to B atoms
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alone. This equation is illustrated in Figure 2.28 by the tangent at the coordinate [G{x},x]. Consis-
tent with Equation 2.35, the intercepts of this tangent on the vertical axes give µA and µB. Since the
slope of the tangent depends on the composition, so do the chemical potentials. Note that the free
energies of the pure components are written µ◦

A and µ◦
B.

It should be obvious from Figure 2.28 that

µA = G{x}− x
∂G

∂x

and µB = G{x}+(1− x)
∂G

∂x

where ∂G/∂x is the slope of the tangent so the product on the right-hand side of the equations
simply represents the difference in µ and G. In general, for a system with n components [97, p. 57]:

µi = G{xi}+
n

∑
j=2

(δi j − x j)
∂G

∂x j
(2.36)

where δi j is the Kronecker delta (δi j = 0 for i 3= j and δi j = 1 for i = j).

Figure 2.28 Illustration of the

chemical potential µ for a binary

solution, with µ◦ representing the free

energy of the pure component.

The chemical potential µ{x} of a component is known also as its partial molar free energy, describ-
ing a part of the integral molar free energy G{x}. There are in fact many quantities which can be
expressed using relationships of the form implied by Equation 2.35. Thus, the volume of a solution
might be written in terms of the partial molar volumes of the components:

Vm =V AxA +V BxB (2.37)

where V i refers to the partial molar volume of component i =A,B.

2.12 EQUILIBRIUM BETWEEN SOLUTIONS

Consider now two phases α and γ that are placed in intimate contact in a binary steel. The phases
will only be in equilibrium with each other if the carbon atoms in γ have the same chemical potential
as the carbon atoms in α, and if this is true also for the Fe atoms:

µα
C = µγ

C

µα
Fe = µγ

Fe. (2.38)

In fact, in a binary solution, the chemical potentials of A and B when sharing a tangent are not
independent so this last condition is redundant. This is apparent from Figure 2.28, where the two
potentials are connected by the tangent.
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If the atoms of a particular species have the same chemical potential in both the phases, then there
can be no tendency for them to migrate across the phase boundaries. The system will be in stable
equilibrium if this condition applies to all species of atoms. The way in which the free energy of a
phase varies with concentration is unique to that phase, so the concentration of a particular species
of atom need not be identical in phases which are at equilibrium. Therefore, in general,

x
αγ
C 3= x

γα
C

x
αγ
Fe 3= x

γα
Fe (2.39)

where x
αγ
i describes the mole fraction of element i in phase α which is in equilibrium with phase γ

etc.
The condition that the chemical potential of each species of atom must be the same in all phases at
equilibrium is general. For the binary alloy, two phase case, it follows that the equilibrium compo-
sitions can be found on a plot of free energy versus composition, by constructing a tangent that is
common to the two free energy curves as illustrated in Figure 2.29.

Figure 2.29 The common tangent

construction giving the equilibrium

compositions xαγ and xγα of the two

phases at a fixed temperature.

2.13 ACTIVITY

The chemical potential µα
A of the A atoms in the α phase may be expanded in terms of a contribution

from the pure component A and a concentration dependent term as follows:

µα
A = µ◦α

A +RT lnaαA (2.40)

where µ◦α
A is the free energy of pure A in the structure of α, and aA is the activity of atom A in the

solution of A and B.
The activity of an atom in a solution can be thought of as its effective concentration in that solution.
For example, there will be a greater tendency for the A atoms to evaporate from solution, when
compared with pure A, if the B atoms repel the A atoms. The effective concentration of A in solu-
tion will therefore be greater than implied by its atomic fraction, i.e., its activity is greater than its
concentration. The opposite would be the case if the B atoms attracted the A atoms.
The atom interactions can be expressed in terms of the change in energy as an A-A and a B-B bond
is broken to create 2(A-B) bonds. An ideal solution is formed when there is no change in energy
in the process of forming A-B bonds. The activity is equal to the mole fraction in an ideal solution
(Figure 2.30). If, on the other hand, there is a reduction in energy than the activity is less than ideal
and vice versa. The activity and concentration are related via an activity coefficient Γ:

a = Γx. (2.41)

The activity coefficient is in general a function of the chemical composition of all the elements
present in the solution but tends to be constant in dilute solutions (i.e., in the Henry’s law region).
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In this discussion, the activity of the solute was defined with respect to a Raoultian reference state,
i.e., a = 1 for x = 1. Other definitions are sometimes convenient. A common alternative for dilute
solutions being that the activity tends to unity as the concentration tends to 1 wt%.

Figure 2.30 Variation in Raoultian activity as a

function of its concentration in a binary solution.

The ideal solution represents the case where the

enthalpy of mixing is zero; the atoms are indif-

ferent to the specific nature of their neighbours.

The case where the activity is larger than the con-

centration is for solutions where the enthalpy of

mixing is greater than zero, with like atoms pre-

ferred as near neighbours. When the activity co-

efficient is less than unity, unlike atoms are pre-

ferred as near neighbours, the enthalpy of mixing

being negative.

Note that solutions where the enthalpy of mixing is positive tend to exhibit clustering at low tem-
peratures whereas those with a negative enthalpy of mixing will tend to exhibit ordering at low
temperatures. The effect of temperature is to mix all atoms since both clustering and ordering cause
a reduction in entropy (i.e., a reduction in entropy). The product −T∆S becomes increasingly pos-
itive at high temperatures, so much so that it eventually overcomes the enthalpy effects and causes
the mixing of all atoms.

2.14 IDEAL SOLUTION

An ideal solution is one in which the atoms at equilibrium are distributed randomly; the interchange
of atoms within the solution causes no change in the potential energy of the system. For a binary
(A-B) solution the numbers of the different kinds of bonds can therefore be calculated using simple
probability theory:

NAA =
1

2
zN(1− x)2

NBB =
1

2
zNx2

NAB = zN(1− x)x

where NAB represents both A-B and B-A bonds which cannot be distinguished. N is the total number
of atoms and x the fraction of B atoms. The factor of 1

2 avoids counting A-A or B-B bonds twice.
The term z is a coordination number.
For an ideal solution, the entropy of mixing is given by Equation 2.33 with mB = mA = 1. There
is no enthalpy of mixing since there is no change in energy when bonds between like atoms are
broken to create those between unlike atoms. This is why the atoms are randomly distributed in the
solution. The molar free energy of mixing is therefore:

∆GM = NakT [(1− x) ln{1− x}+ x ln{x}]. (2.42)

Figure 2.31 shows how the configurational entropy and the free energy of mixing vary as a function
of the concentration. ∆GM is at a minimum for the equiatomic alloy because that is when the entropy
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of mixing is at its largest; the curves are naturally symmetrical about x = 0.5. The form of the
curve does not change with temperature though the magnitude at any concentration scales with the
temperature. It follows that at 0 K there is no difference between a mechanical mixture and an ideal
solution.
From Equation 2.40, the chemical potential per mole for a component in an ideal solution is given
by:

µA = µ◦
A +NakT ln{1− x}

and there is a similar equation for B. Since µA = µ◦
A+RT lnaA, it follows that the activity coefficient

is unity.

Figure 2.31 The entropy of mix-

ing (Jmol−1 K−1) and the free energy

of mixing (kJmol−1) as a function of

concentration in an ideal binary solu-

tion where the atoms are distributed at

random. The free energy is for a tem-

perature of 1000 K. The data are plot-

ted as dots rather than curves because

concentration is strictly a discrete vari-

able. So the slope at the vertical axes is

not ±∞ as implied by Equation 2.42,

but finite though very large.

2.15 REGULAR SOLUTIONS

There are no solutions of iron that are ideal. The iron-manganese liquid phase is close to ideal,
though even that has an enthalpy of mixing which is about −860Jmol−1 for an equiatomic solu-
tion at 1000 K, which compares with the contribution from the configurational entropy of about
−5800Jmol−1. The ideal solution model is nevertheless useful because it provides a reference. The
free energy of mixing for a non-ideal solution often is written with an additional term, the excess

free energy (∆eG = ∆eH −T∆eS) that indicates the deviation from ideality:

∆GM = ∆eG+NakT [(1− x) ln{1− x}+ x ln{x}]
= ∆eH −T∆eS+NakT [(1− x) ln{1− x}+ x ln{x}] (2.43)

One of the components of the excess enthalpy of mixing comes from the change in the energy when
new kinds of bonds are created during the formation of a solution. This enthalpy is, in the regular

solution model, estimated from the pairwise interactions between adjacent atoms. The term regular

solution was proposed by Hildebrand [98] to describe mixtures, the properties of which when plotted
varied in an aesthetically regular manner; he went on to suggest that a regular solution, although not
ideal, would still contain a random distribution of the constituents.14 Following Guggenheim [99],
the term regular solution is now restricted to cover mixtures that assume an ideal entropy of mixing
but have a non-zero interchange energy.
In the regular solution model, the enthalpy of mixing is obtained by counting the different kinds
of near neighbour bonds when the atoms are mixed at random; this information together with the
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binding energies gives the required change in the enthalpy on mixing. The binding energy may be
defined by considering the change in energy as the distance between a pair of atoms is decreased
from infinity to an equilibrium separation (Figure 2.32). The change in energy during this process is
the binding energy, which for a pair of A atoms is written −2εAA. It follows that when εAA +εBB <
2εAB, the solution will have a larger than random probability of bonds between unlike atoms. The
converse is true when εAA +εBB > 2εAB since atoms then prefer to be neighbours to their own kind.
Notice that for an ideal solution it only is necessary for εAA +εBB = 2εAB, and not εAA = εBB = εAB

[99].

Figure 2.32 Change in energy as a

function of the distance between a pair

of A atoms. −2εAA is the binding en-

ergy for the pair of atoms. There is a

strong repulsion at close range.

Suppose now that the approximation that atoms are randomly distributed is retained, even though
the enthalpy of mixing is not zero. The number of A-A, A-B and B-B bonds in a mole of solution
is then 1

2 zNa(1− x)2, 1
2 zNax2 and zNa(1− x)x respectively, where z is the coordination number. It

follows that the molar enthalpy of mixing is given by

∆HM & Naz(1− x)xω where ω = εAA + εBB − 2εAB. (2.44)

The product zNaω is often called the regular solution parameter, which in practice will be temper-
ature and composition dependent. A composition dependence also leads to an asymmetry in the
enthalpy of mixing as a function of composition about x = 0.5. For the nearly ideal Fe-Mn liquid
phase solution, the regular solution parameter is −3950+ 0.489T Jmol−1 if a slight composition
dependence is neglected.
A positive ω favours the clustering of like atoms whereas when it is negative there is a tendency for
the atoms to order. This second case is illustrated in Figure 2.33, where an ideal solution curve is
presented for comparison. Like the ideal solution, the form of the curve for the case where ∆HM < 0
does not change with the temperature, but unlike the ideal solution, there is a free energy of mixing
even at 0 K where the entropy term ceases to make a contribution.

Figure 2.33 Free energy of mixing

at 1000 K, as a function of concentra-

tion in a binary solution where there

is a preference for unlike atoms to be

near neighbours. The free energy curve

for the ideal solution (∆HM = 0) is in-

cluded for reference.

The corresponding case for ∆HM > 0 is illustrated in Figure 2.34, where the form of the curve is seen
to change with the temperature. The contribution from the enthalpy term can largely be neglected



Thermodynamics 57

at high temperatures where the atoms become randomly mixed by thermal agitation so the free
energy curve then has a single minimum. However, as the temperature is reduced, the opposing
contribution to the free energy from the enthalpy term introduces two minima at the solute-rich and
solute-poor concentrations. This is because like-neighbours are preferred. On the other hand, there
is a maximum at the equiatomic composition because that gives a large number of unfavoured unlike
atom bonds. Between the minima and the maximum lie points of inflexion which are of importance
in spinodal decomposition, to be discussed later.
For a regular solution, Equation 2.35 shows that the chemical potential per mole is given by

µB = µ◦
A + zNax2ω +NakT ln{1− x} (2.45)

and that the activity coefficient is exp{zx2ω/kT}. Some of the properties of the different kinds of
solutions are summarised in Table 2.5.

Figure 2.34 Free energy of mixing

as a function of concentration and tem-

perature in a binary solution where

there is a tendency for like atoms to

cluster. The free energy curve for the

ideal solution (∆HM = 0) is included

for reference.

Table 2.5

Elementary thermodynamic properties of solutions

Type ∆SM ∆HM

Ideal Random 0

Regular Random 3= 0

Quasichemical Not random 3= 0

2.16 QUASICHEMICAL SOLUTION

The regular solution model assumes a random distribution of atoms even though the enthalpy of
mixing is not zero, whereas in reality a random solution is only expected at high temperatures when
the entropy term overwhelms any tendency for ordering or clustering of atoms. It follows that the
configurational entropy of mixing should therefore vary with the temperature. The quasichemical

solution model has a better treatment of configurational entropy which accounts for a non-random
distribution of atoms. The model is so-called because it has a mass-action equation that has similar-
ity to chemical reactions [100]. However, the presentation below follows derivations by Christian
[101] and Lupis [97].
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Recalling that zNAB represents the number of A-B bonds, the total energy of the assembly for a
particular value of NAB is UNAB =−z(NAεAA +NBεBB −NABω) where ω = εAA + εBB −2εAB. In a
non-random solution there are many values that NAB can adopt; each value corresponding to one or
more arrangement of atoms with an identical value of U is therefore associated with a degeneracy
gNAB which is the number of arrangements possible for a given value of U . The partition function is
therefore the sum over all possible NAB:

Ω = ∑
NAB

gNAB exp

{

−
UNAB

kT

}

= ∑
NAB

gNAB exp

{
z(NAεAA +NBεBB −NAB)ω

kT

}

. (2.46)

For a given value of NAB, the different non-interacting pairs of atoms can be arranged in the follow-
ing number of ways (N = NA +NB)

gNAB ∝
( 1

2 zN)!

( 1
2 z[NA −NAB])! (

1
2 z[NB −NAB])! (

1
2 zNAB)! (

1
2 zNBA)!

(2.47)

where the first and second terms in the denominator refer to the numbers of A-A and B-B bonds
respectively, and the third and fourth terms the numbers of A-B and B-A pairs respectively. This
is not an equality because the various pairs are not independent, as illustrated in Figure 2.35; the
distribution of pairs is not random. Guggenheim addressed this difficulty by using a normalisation

Figure 2.35 Why pairs of atoms cannot be distributed at random on lattice sites

which are marked as small dots. Once the bonds connecting the coordinates (i, i+

1), (i+ 1, i + 2), (i+ 2, i + 3) are made as illustrated, the final bond connecting

(i, i+3) is necessarily occupied by a pair AB. Adapted from Lupis [97].

factor such that the summation of all possible degeneracies equals the total number of possible
configurations as follows.
Suppose that the number of arrangements of pairs of atoms possible in a random solution is identi-
fied with an asterix, then from the proportionality 2.47, it is seen that

g∗ ∝
( 1

2 zN)!

( 1
2 z[NA −N∗

AB])! (
1
2 z[NB −N∗

AB])! (
1
2 zN∗

AB)! (
1
2 zN∗

BA)!
. (2.48)

This again will overestimate the number of possibilities (Figure 2.35), but for a random solution it
is known already that

g∗ =
N!

NA! NB!
. (2.49)

It follows that gNAB can be normalised as

gNAB =
( 1

2 z[NA −N∗
AB])! (

1
2 z[NB −N∗

AB])! (
1
2 zN∗

AB)! (
1
2 zN∗

BA)!

( 1
2 z[NA −NAB])! (

1
2 z[NB −NAB])! (

1
2 zNAB)! (

1
2 zNBA)!

×
N!

NA! NB!
. (2.50)

With this, the partition function Ω is defined explicitly and the problem is in principle solved. It
is usual, however, to simplify first by assuming that the sum in Equation 2.46 can be replaced by
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its maximum value. This is because the thermodynamic properties that follow from the partition
function depend on its logarithm, in which case the use of the maximum is a good approximation.
The equilibrium number Ne

AB of A-B bonds may then be obtained by setting ∂ ln{Ω}/∂NAB = 0
[97, 101]:

Ne
AB =

2Nzx(1− x)

βq + 1
(2.51)

with βq being the positive root of the equation

β 2
q − (1− 2x) = 4x(1− x)exp{2ω/kT}, (2.52)

so that

Ne
AB =

2Nzx(1− x)

[1− 2x+ 4x(1− x)exp{2ω/kT}] 1
2 + 1

.

The percentages of the different pairs are plotted in Figure 2.36. Equation 2.51 obviously corre-
sponds to the regular solution model if βq = 1 with a random arrangement of atoms. As expected,
the number of unlike pairs is reduced when clustering is favoured, and increased when ordering is
favoured.

Figure 2.36 Calculated percentages

of pairs for the quasichemical model

with x = (1− x) = 0.5. The result is in-

dependent of the coordination number z.

The free energy of the assembly is

G = F =−kT ln{Ω}=UNe
AB

− kT lngNe
AB

(2.53)

so that the free energy of mixing per mole becomes

∆GM = zNe
ABω −NakT lngNe

AB

=
2zωNax(1− x)

βq + 1
︸ ︷︷ ︸

molar enthalpy of mixing

−RT lngNe
AB
. (2.54)

The second term on the right-hand side has the contribution from the configurational entropy of
mixing. By substituting for gNe

AB
, and with considerable manipulation, Christian has shown that this

can be written in terms of βq so that the molar free energy of mixing becomes

∆GM =
2zωNax(1− x)

βq + 1

+RT
[

(1− x) ln{1− x}+ x ln{x}
]

+
1

2
RTz

{

(1− x) ln
βq + 1− 2x

(1− x)(βq + 1)
+ x ln

βq − 1+ 2x

x(βq + 1)

}
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The second term in this equation is the usual contribution from the configurational entropy of mixing
in a random solution, whereas the third term can be regarded as a quasichemical correction for the
entropy of mixing because the atoms are not randomly distributed.
It is not possible to give explicit expressions for the chemical potential or activity coefficient since
βq is a function of concentration. Approximations using series expansions are possible [97] but the
resulting equations are not as easy to interpret physically as the corresponding equations for the
ideal or regular solution models.
The expressions in the quasichemical (or first approximation) clearly reduce to those of the regular
solution (or zeroth approximation) model when βq = 1. Although a better model has been obtained,
the first approximation relies on the absence of interference between atom-pairs. However, each
atom in a pair belongs to several pairs so that better approximations can be obtained by considering
larger clusters of atoms in the calculation. Such calculations are known as the “cluster variation”
method proposed originally by Kikuchi [102]. The improvements obtained with these higher ap-
proximations are usually rather small though there are cases where pairwise interactions simply
will not do.
It is worth emphasising that although the quasichemical model has an excess entropy, this comes as
a correction to the configurational entropy. The excess entropy from this model is always negative;
as Lupis pointed out [97], there is more disorder in a random solution than in one that is biased.
Therefore, the configurational entropy from the quasichemical model is always less than expected
from an ideal solution. Thermal entropy or other terms such as magnetic or electronic are additional
contributions.
The procedure in the development of the quasichemical models is illustrated in Figure 2.37.
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Categorise and count the
variety of atom-atom or

atom-vacancy pairs possible

Estimate the configura-
tional energy arising from
the pairwise interactions

Write the configura-
tional partition function

Discover the degener-
acy for each configuration

Normalise the degeneracy function
to ensure that the grande summation

of all degeneracies is the total
number of possible configurations

Replace the summation in the
partition function by its largest term

Derive required thermodynamic
functions from partition function

Deal with any excess thermody-
namic quantities not described by
a consideration of configurations

Figure 2.37 Steps in the construction of a quasichemical solution model.

2.17 QUASICHEMICAL MODEL FOR CARBON IN AUSTENITE

There is a particularly useful application of the quasichemical model to the solution of carbon in
austenite [103].15 The theory is founded on the fact that there is a repulsion between the carbon
atoms which has the effect of reducing the probability by which a neighbouring interstitial site is
occupied. The history of such “site exclusion models” has been reviewed by [103, 104], but the focus
here is on the McLellan and Dunn model that removes many of the difficulties of earlier treatments.
Furthermore, the model appears to have considerable physical significance, both in explaining fine
detail in thermodynamic data and in the prediction of diffusion phenomena (Chapter 3).
The essential problem in the construction of a quasichemical model is, of course, the partition
function. Carbon dissolves in the octahedral interstices between the iron atoms in austenite. The
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number of Fe-Fe pairs and the number of Fe-C pairs does not change for a given composition for
all configurations. The partition function can therefore be described solely in terms of the carbon
atoms u and the octahedral sites uo. A u-u pair therefore refers to an adjacent carbon-carbon pair
and u-uo pair is a carbon atom next to an unoccupied interstitial site.
Consider a system with Nu carbon atoms, NFe iron atoms, and therefore, βONFe octahedral sites
where βO is the number of octahedral interstices per iron atom (βO = 1 for octahedral holes in
austenite and βO = 3 for octahedral holes in ferrite). The variety of pairs of species is listed in
Table 2.6, where the number of u-uo and uo-u pairs is written Wλ ; the parameter W = 12 is the
number of octahedral sites around a single such interstice in austenite (for ferrite, W = 4). Naturally,
W is the same for the carbon atoms.

Table 2.6

Pair interactions in Fe(γ)-C quasichemical model (after McLellan and Dunn [103]).
The energy zero is for an atom at rest in a vacuum so the energies listed are numer-
ically negative.

Kind of pair No. of such pairs Energy per pair Total energy

uo-uo
1
2W (NFeβO −Nu −λ ) 0 0

uo-u and u-uo Wλ εu Wλ εu

u-u 1
2W (Nu −λ ) εuu

1
2W (Nu −λ )εuu

Total 1
2W NFeβO W

[

λ εu +
Nu−λ

2 εuu

]

The configurational partition function using the data listed in Table 2.6 is, therefore,

Ω = ∑
λ

gλ exp

{

−W
[

λ εu +
Nu −λ

2
εuu

]

/kT

}

. (2.55)

Proceeding as in Section 2.16 with the assumption of non-interacting pairs, the degeneracies gλ are
proportional to

gλ ∝
[ 1

2WNFeβO]!

[
1

2
W (NFeβO −Nu −λ )]!

︸ ︷︷ ︸

uo−uo

[
1

2
W (Nu −λ )]!

︸ ︷︷ ︸

u−u

[
1

2
Wλ ]! [

1

2
Wλ ]!

︸ ︷︷ ︸

u−uo and uo−u

. (2.56)

As before, this proportionality can be converted into an equality by normalising with the degeneracy
corresponding to a completely random solution, for which λ has the value λ ∗ given by the product
of the number of solute atoms (Nu) and the chance of finding an unoccupied octahedral site:

λ ∗ = Nu

(

1−
Nu

NFeβO

)

. (2.57)

∴ gλ =
[NFeβO]!

[NFeβO −Nu]! Nu!

×
[ 1

2W (NFeβO −Nu −λ ∗)]! [ 1
2W (Nu −λ ∗)]! [ 1

2W λ ∗]! [ 1
2Wλ ∗]!

[ 1
2W (NFeβO −Nu −λ )]! [ 1

2W (Nu −λ )]! [ 1
2W λ ]! [ 1

2W λ ]!
.
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The partition function Ω is now solved, but to proceed and obtain some useful thermodynamic
quantities, the usual approximation is made to replace the summation in Equation 2.56 by the largest
term corresponding to λ = λ , which can be obtained by differentiation with respect to λ :

λ =
NFeβO

2φ

{

1−
[

1− 4φ
θ

βO

(

1−
θ

βO

)] 1
2
}

where θ = Nu/NFe and

φ = 1− exp

{
−ωγ

kT

}

and ωγ = εuu − 2εu is the carbon-carbon interaction energy, describing the repulsion between car-
bon atoms in adjacent interstitial sites.
When ωγ is large, all octahedral sites adjacent to a carbon atoms are blocked from occupation,
whereas if the distribution of carbon atoms were to be random, there would be a finite chance of
carbon atoms in adjacent sites. Figure 2.38 shows how significant differences develop between the
blocking and random approximations as θ becomes greater than about 0.04. The partition function

Figure 2.38 Plot of a measure of the

carbon atoms that have empty adjacent

octahedral interstices (λ/NFe) values

against a measure of the carbon con-

centration (θ ). Complete blocking is

represented here by λ/NFe for ωγ =

800,000 J mol−1 and T = 1200 K and

random mixing by λ ∗/NFe. The points

correspond to λ/NFe values for ωγ =

8000 J mol−1 at 1200 K and 500 K.

Note that ωγ = εuu −2εu

now becomes

Ω =
[NFeβO]!

[NFeβO −Nu]! Nu!

×
[ 1

2W (NFeβO −Nu −λ ∗)]! [ 1
2W (Nu −λ ∗)]! [ 1

2Wλ ∗]! [ 1
2Wλ ∗]!

[ 1
2W (NFeβO −Nu −λ)]! [ 1

2W (Nu −λ)]! [ 1
2Wλ ]! [ 1

2W λ ]!
(2.58)

×exp

{

−W

[

λεu +
Nu −λ

2
εuu

]/

kT

}

(2.59)

which reduces to that for a random solution when λ = λ ∗. This can happen when the temperature is
high enough to allow thermal agitation to mix up the atoms irrespective of their binding tendencies.
The configurational free energy F and chemical potential µ follow:

F =−kT ln{Ω}

µ =−kT ln

{
∂ ln{Ω}

∂Nu

}

NFe,T

.
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McLellan and Dunn used Stirling’s approximation to obtain the configurational part of the chemical
potential:

∂

∂Nu
ln

{
[NFeβO]!

[NFeβO −Nu]! Nu!

}

= − ln

{
θ/βO

1−θ/βO

}

∂

∂Nu
ln

{[
1

2
W (NFeβO −Nu −λ )

]

!

}

= −
W

2
ln

{
W

2
[NFeβO −Nu −λ ]

}

∂

∂Nu
ln

{[
1

2
W (Nu −λ )

]

!

}

=
W

2
ln

{
W

2
(Nu −λ )

}

∂

∂Nu
ln

{[
1

2
Wλ

]

!

}

= 0

∂

∂Nu

{

−W

(

λ εu +
Nu −λ

2
εuu

)}

= −
Wεuu

2
. (2.60)

Noting that Wεuu/2 =Wεu +Wωγ/2, the chemical potential per atom is given by

µ = kT ln

{
θ/βO

1− (θ/βO)

}

−kT ln

{(
θ/βO

1− (θ/βO)

)W(1− (θ/βO)− (λ/NFeβO)

(θ/βO)− (λ/NFeβO)

)W
2
}

+Wεu +W
ωγ

2
.

The term Wεu is interpreted as the partial energy of solution of carbon in austenite at infinite dilution,
a component of µo in µ = µo +RT ln{a}. The activity of carbon is, in this derivation, with respect
to pure carbon with the crystal structure of austenite. It is more convenient to define the activity of
carbon relative to pure graphite as the standard state. This is easily done, since

aC{graphite}
aC{austenite}

= exp

{
µ◦,austenite

C − µ◦,graphite
C

kT

}

= exp

{
∆µ◦

C

kT

}

(2.61)

where ∆µ◦
C is the change in free energy accompanying the transfer of carbon from its standard

state of graphite to a standard state based on an infinitely dilute solution as the reference state (it
is also called the relative partial free energy of a solute atom in solution with respect to the pure
solute at infinite dilution). The value of ∆µ◦ is determined experimentally from thermodynamic data
measured at sufficiently small concentrations (Figure 2.39).16 It follows that the activity of carbon
with respect to graphite is, according to McLellan and Dunn,

au =
θ/βO

1− (θ/βO)
exp

{
∆µ◦

kT

}

×
(

θ/βO

1− (θ/βO)

)−W(1− (θ/βO)− (λ/NFeβO)

(θ/βO)− (λ/NFeβO)

)−W
2

exp

{
Wωγ

2kT

}

.

The term containing εu is absorbed into ∆µ◦.

There is a difficulty in this derivation of the chemical potential, that λ ∗ and λ are assumed not to
be functions of Nu. This approximation was not made in a parallel treatment of the zeroth order
quasichemical model [107]. A version it therefore developed here which allows for the dependence
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Figure 2.39 Variation of the exper-

imentally determined relative partial

free energy of carbon in solution in

austenite, with respect to pure graphite

at infinite dilution (after Ban-ya, El-

liott and Chipman [105, 106]).

of λ on Nu:

∂

∂Nu
ln

{[
1

2
W (NFeβO −Nu −λ )

]

!

}

= −
W

2

(

1+
∂λ

∂Nu

)

ln

{
W

2
[NFeβO −Nu −λ ]

}

∂

∂Nu
ln

{[
1

2
W (Nu −λ )

]

!

}

=
W

2

(

1−
∂λ

∂Nu

)

ln

{
W

2
(Nu −λ )

}

∂

∂Nu
ln

{[
1

2
Wλ

]

!

}

= W

(
∂λ

∂Nu

)

ln

{
W

2
λ

}

∂

∂Nu

{

−W

(

λεu +
Nu −λ

2
εuu

)}

= −
(

∂λ

∂Nu

)

Wεu −
Wεuu

2
+

(
∂λ

∂Nu

)
W εuu

2

λ̇ ∗ =
∂λ ∗

∂Nu
= 1− 2(θ/βO)

λ̇ =
∂λ

∂Nu
=

1− 2(θ/βO)

[1− 4φ(θ/βO)+ 4φ(θ/βO)2]
1
2

.

The configurational chemical potential thus becomes [108]:

µ = kT ln

{
θ/βO

1− (θ/βO)

}

−kTW ln

{

θ
2θ
βO

[
θ

βO
−
(

θ

βO

)2]1− 2θ
βO
[

1−
θ

βO
−
(

λ

NFeβO

)] 1
2 (1+λ̇ )}

+kTW ln

{(
λ

NFeβO

)λ̇[ θ

βO
−

λ

NFeβO

] 1
2 (1−λ̇)[

1− 2
θ

βO
+

(
θ

βO

)2]1− θ
βO
}

+W λ̇ εu +
1

2
W (1− λ̇)εuu (2.62)
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and the activity of carbon in austenite with respect to graphite is [108]

aγu =
θ/βO

1− (θ/βO)
exp

{
∆µ◦

kT

}

×
{

θ

βO

2θ
βO

[
θ

βO
−
(

θ

βO

)2]1− 2θ
βO
[

1−
θ

βO
−
(

λ

NFeβO

)] 1
2 (1+λ̇ )}−W

×
{[

λ

NFeβO

]λ̇[ θ

βO
−

λ

NFeβO

] 1
2 (1−λ̇ )[

1−
2θ

βO
+

(
θ

βO

)2]1− θ
βO
}W

×exp

{
(1− λ̇)Wωγ

2kT

}

. (2.63)

The term with Wεu is again absorbed into ∆µ◦.

2.17.1 DILUTE SOLUTION, ωγ → 0 LIMIT

In the limit that ωγ tends to zero, λ → λ ∗ and λ̇ → 1− 2(θ/βO). Noting that ωγ = εuu − 2εu, the
limiting form of Equation 2.62 becomes

µ{ωγ → 0}= kT ln

{
θ/βO

1− (θ/βO)

}

+Wεu +Wωγ
θ

βO
. (2.64)

Naturally, λ must also tend to λ ∗ at high temperatures so the high temperature limit of this first-
order quasichemical theory will then become equivalent to the zeroth-order mixing treatment where
the solute atoms are distributed at random [107].

2.17.2 INFINITE REPULSION LIMIT

In this case, as ωγ → ∞, λ → Nu and λ̇ → 1. Therefore,

µ{ωγ → ∞} = kT ln

{
θ/βO

1− (θ/βO)

}

−kT ln

{(

1− 2
θ

βO

)(

1−
θ

βO

)1−2 θ
βO
}

+kT ln

{(

1−
θ

βO

)2−2 θ
βO
}

+Wεu

which, at values of θ sufficiently small to allow the expansion ln{1−θ}&−θ , can be rewritten as

µ{ωγ → ∞}= kT ln

{
θ/βO

1− (W + 1)(θ/βO)

}

+Wεu. (2.65)

This is consistent with all the interstitial sites adjacent to a carbon atom being blocked from occu-
pation. Notice that the term −W (θ/βO)ωγ is absent from all these complete-blocking equations
because there are no carbon-carbon near neighbour pairs in that scenario.
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2.17.3 ZEROTH-ORDER QUASICHEMICAL MODEL

The zeroth approximation of quasichemical theory has the solute atoms distributed at random. The
partition function and all associated functions for the zeroth-order treatment can be deduced from
the corresponding equations for the first-order treatment simply by setting λ = λ ∗. It is nevertheless
interesting to compare the first and zeroth approximations as was first reported by Alex and McLel-
lan [107], and indeed to illustrate the difference between a substitutional and interstitial solution
[97, 107].
From Equation 2.55, the partition function is obtained as

Ω =
[NFeβO]!

[NFeβO −Nu]! Nu!
× exp

{

−W

[

λ ∗εu +
Nu −λ ∗

2
εuu

]/

kT

}

.

On substituting for λ ∗ (Equation 2.57) and εuu this becomes 17

Ω =
[NFeβO]!

[NFeβO −Nu]! Nu!
× exp

{

−W

[

2Nuεu +
N2

u

NFeβO
ωγ

]/

2kT

}

. (2.66)

The configurational chemical potential therefore becomes:

µ = kT ln

{
θ/βO

1− (θ/βO)

}

+Wεu +Wωγ
θ

βO
. (2.67)

Comparison with Equation 2.64 shows that the two equations are identical.
The zeroth approximation is in reality identical to the regular solution model. For a substitutional so-
lution consisting of A and B atoms, the chemical potential per atom of A is given by Equation 2.45:

µA = µ◦
A + zx2ω + kT ln{1− x} (2.68)

which clearly has a different compositional dependence than that given by Equation 2.67.

2.17.4 REFERENCE STATE FOR CARBON

In an earlier discussion the activity of carbon defined with respect to a hypothetical pure carbon
with the austenite crystal structure was converted into a reference state of pure graphite (Equa-

tion 2.61). For graphite, µ◦,graphite
C can be obtained from standard tables. The term µ◦,austenite

C may

be decomposed further into a relative partial enthalpy (HC) and a nonconfigurational entropy (S
v
C).

The relative partial enthalpy comes from the insertion of carbon atoms from rest in a vacuum, into

infinitely dilute austenite. The entropy term is entirely nonconfigurational because µ◦,austenite
C refers

to pure carbon in the austenite crystal structure; this is why ∆S
v
C has the superscript.

Although Figure 2.39 shows that ∆µ◦
C varies nonlinearly with the temperature, Dunn and McLellan

[104] have shown that the curvature is due to the temperature dependence of µ◦,graphite
C . They find

∆HC and ∆S
v
C to be independent of temperature, for carbon in austenite or in ferrite [109], Table 2.7.

The data in Table 2.7 can be used in conjunction with those for graphite to obtain ∆µ◦, which
in general is temperature dependent. Table 2.8 contains some values of ∆µ◦ for transformations
between a variety of different states of carbon.

2.17.5 CARBON-CARBON INTERACTION ENERGY IN AUSTENITE

The pairwise C-C interaction energy in austenite, ωγ = εuu − 2εu, features prominently in the qua-
sichemical models for Fe-C solutions. It determines the distribution of carbon atoms in solution.
Its specific value to some extent depends on the nature of the quasichemical model that is used to
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Table 2.7

The partial molar enthalpy with respect to a solute atom at rest in a vacuum and
the non-configurational entropy for solute in austenite and in ferrite [104, 109, 110].
These quantities are found to be temperature independent.

H /Jmol−1 S
v
C /Jmol−1 K−1

Carbon in austenite −649691 5.78
Carbon in ferrite −602747 6.56

Nitrogen in austenite −342670 7.20
Nitrogen in ferrite −310871 6.20

Table 2.8

The stability of different forms of carbon. ‘L’ stands for liquid and β Mn and αMn
are complicated crystal structures of manganese. The data are due to Kaufman and
Nesor [111] for temperatures in excess of 300 K.

Transformation Jmol−1

µ◦
L − µ◦

bcc −32635− 12.552T

µ◦
bcc − µ◦

hcp 32635

µ◦
hcp − µ◦

fcc −24267

µ◦
fcc − µ◦

β Mn −7531

µ◦
β Mn − µ◦

αMn 6694

µ◦
L − µ◦

graphite 114223− 27.196T

interpret measured activity data, but it generally is accepted that carbon atoms in austenite repel
with ωγ & 8000Jmol−1 [104].

Mössbauer spectroscopy can be used to study more directly, the distribution of carbon atoms relative
to an iron atom. The measured probabilities of different kinds of clusters of atoms can then be
compared against Monte Carlo simulations to deduce interaction energies [112, 113].

The Mössbauer data show that it is necessary to consider four kinds of Fe-C configurations (Fig-
ure 2.40): iron atoms which do not have neighbouring carbon atoms; an iron atom with a single
near neighbour carbon atom; an iron atom with two neighbouring carbon atoms in a 180 ◦ con-
figuration; an iron atom with two neighbouring carbon atoms in a 90 ◦ configuration. The pair of
carbon atoms in the 90 ◦ configuration are near neighbours whereas those in the 180 ◦ configuration
are next-near neighbours. A surprising result is that the repulsion between near neighbour carbon
pairs is smaller than that between next-near neighbours. The mechanism for this apparently strange
behaviour, which is not found for nitrogen-nitrogen pairs, does not seem to have been considered.

Oda et al. [112] compared the local interaction energies derived from Mössbauer results, with
the global value obtained by applying quasichemical theory to thermodynamic data, by taking a
weighted average:

Wωγ &Wω(1)
γ +W2ω(2)

γ (2.69)
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where, as usual, W = 12 is the number of C-C near neighbour pairs that can form about one C atom
whereas W2 = 6 is the number of C-C next near neighbour pairs that can form about one C atom.

ω(1)
γ and ω(2)

γ are the C-C interaction energies for the 90 ◦ and 180 ◦ configurations respectively. As
shown in Table 2.9, the Mössbauer and quasichemical data compare well except for nitrogen where
there is some uncertainty in the thermodynamic data. However, an independent study has verified
the general trend that there is a much stronger N-N repulsion than the C-C interaction in the first
co-ordination shell whereas the opposite is found for the second co-ordination shell [114].

The consequence of such interactions on the non-random nature of the distribution of interstitial
atoms in austenite has also been measured. Both carbon and nitrogen are heterogeneously distributed
on a scale of about 30 nm, the inhomogeneities being more abrupt for nitrogen than for carbon [114].

Table 2.9

Comparison of the overall interaction energy between interstitial atoms determined
from the Mössbauer method (column 4) against values derived using quasichemical
models (column 5). The energies are in Jmol−1 (after Oda et al. [112]).

Mössbauer results Quasichemical

ω(1)
γ ω(2)

γ ωγ & (W ω(1)
γ +W2ω(2)

γ )/W ωγ

C-C 3500 7333 7167 & 8000
N-N 8167 1000 8667 & 4000

Figure 2.40 The distribution of car-

bon atoms (dark) on a single {001}γ
plane of austenite. The symbol a repre-

sents an iron atom with a single carbon

neighbour, b the case where Fe has two

carbon atoms forming a 180◦ configu-

ration, and c where Fe has two carbon

atoms in a 90◦ configuration.
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2.17.6 CARBON-CARBON INTERACTION ENERGY IN FERRITE

The problem for ferrite is more complicated. Following on from Equation 2.63, the activity of carbon
in ferrite relative to pure graphite as the standard state is as follows [108]:

aαu =
θ/βO

1− (θ/βO)
exp

{
∆µ◦

kT

}

×
{

θ

βO

2θ
βO

[
θ

βO
−
(

θ

βO

)2]1− 2θ
βO
[

1−
θ

βO
−
(

λ

NFeβO

)] 1
2 (1+λ̇ )}−W

×
{[

λ

NFeβO

]λ̇[ θ

βO
−

λ

NFeβO

] 1
2 (1−λ̇ )[

1−
2θ

βO
+

(
θ

βO

)2]1− θ
βO
}W

×exp

{
(1− λ̇)W ωα

2kT

}

(2.70)

where λ̇ = ∂λ/∂Nu.
This corrects the earlier work in which the activity function was stated as [103, 104]:

au =
θ/β

1− (θ/β )
exp

{
∆µ◦

kT

}

×
(

θ/β

1− (θ/β )

)−W(1− (θ/β )− (λ/NFeβ )

(θ/β )− (λ/NFeβ )

)−W
2

exp

{
Wωα

2kT

}

. (2.71)

On the basis of Equation 2.70, ωα is found to be large, probably greater than 150kJmol−1 [115,
116]. However, both studies reported large and unsystematic variations in the value of ωα as a
function of different experimental data.18

The corrected quasichemical theory (Equation 2.70) in fact compounds the problem of deducing
ωα. Whereas in Equation 2.71 the activity (even at small concentrations) is a significant function of

ωα, this is not the case for Equation 2.70. This can be seen from the behaviour of λ and λ̇ at small

concentrations. As θ → 0, λ → NFeβ and λ̇ → 1. Equation 2.70 therefore ceases to be a function of
ωα, but Equation 2.71 does not because the extreme right-hand exponential terms are different:

Equation 2.70: exp

{
(1− λ̇)Wω

2kT

}

Equation 2.71: exp

{
W ω

2kT

}

(2.72)

For Equation 2.70 this exponential term tends to zero via (1− λ̇ ) as θ → 0 whereas this is not the
case for equation 2.71.
The sad conclusion is that it is not possible, using the low carbon concentration data available
for ferrite, to deduce the value of ωα if the correct quasichemical model is used. On the other
hand, this must be a reasonable common sense conclusion since the probability of finding a pair of
carbon atoms in close proximity also vanishes as the concentration tends to zero. Thus, for carbon
in ferrite, it does not seem relevant to worry about the magnitude of the interaction. This may
not, of course, be the case for supersaturated solutions of carbon in ferrite, such as in bainitic or
martensitic transformations, but no activity measurements have been conducted for those solutions
(supersaturated solutions of carbon are not stable).
This topic of carbon-carbon interactions in ferrite will be revisited in Chapter 3.
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2.18 ZENER ORDERING

The transformation of austenite without diffusion is achieved by a Bain deformation [62]. The car-
bon atoms in both the parent and product phases occupy octahedral interstices, but there are three
times as many of these interstices per atom of iron in the ferrite than in austenite. The Bain strain
therefore places all the carbon atoms on to one sublattice of octahedral interstices in the ferrite, re-
sulting in a tetragonal unit cell. The Zener order [117] is therefore imposed by the action of the Bain
strain. This tetragonality can have dramatic effects on the properties of the ferrite, for example, an
increase in the solubility of carbon in tetragonal-ferrite that is in equilibrium with austenite [118].
Although the state of Zener order [2, 117] is forced on to the product lattice by the Bain strain, its
subsequent stability can be examined using the theory of order-disorder transformations. There are
three irregular-octahedral interstice sublattices in the bcc structure, each with the short axis aligned
to one of the three 〈100〉 axes. The strain energy due to a misfitting carbon atom will be 1

2 E100ε2,
where E100 is the elastic modulus along 〈100〉 and ε is the elastic strain. Consider ordering to occur
specifically along a preferred axis [100], with N

p
V and Nn

V being the number of carbon atoms per unit
volume in preferred and not-preferred sites, with the total number of carbon atoms per unit volume
being NV = N

p
V +Nn

V. An order parameter can be defined as follows:

z =
3

2

(
N

p
V

NV
−

1

3

)
{

z = 1 if N
p
V = NV

z = 0 if N
p
V = 1

3 .

The free energy change per unit volume on ordering is given by

∆GZener =−
1

2

(
2

3
NVελ z

)2

E100 +
1

3
NVkT [2(1− z) ln{1− z}+(1+ 2z) ln{1+ 2z}] (2.73)

where ελ is the strain caused by transferring a carbon atom from a non-preferred site to a preferred
site, in units of strain per (number of atoms per unit volume). The first term on the right represents
the change in free energy when carbon atoms are transferred to the preferred sites, and the second the
corresponding change in configurational entropy. The entropy change associated with ordering on
sublattices is discussed in detail in Section 2.20. The factor 2

3 is because from a random distribution
of carbon atoms, it would only require that fraction of carbon atoms to relocate to obtain the fully
ordered state. The temperature at which the ordering parameter becomes finite is the critical ordering
temperature TZener, that can be derived by setting the differential of Equation 2.73 to zero, which
gives

T =
2

3k
NVε2

λ E100 × z

/

ln

{
1+ 2z

1− z

}

so that
TZener /K ≈ 28080×

xC

1− xC
(2.74)

where xC is the mole fraction of carbon.19

Khachaturyan and Shatalov [119, 120] used the microscopic elasticity theory [121] which recog-
nises the discrete nature of the lattice during elastic interactions between solute and solvent atoms, to
derive a more elaborate model for carbon atom ordering. This gives a critical ordering temperature
(still labelled TZener) [122]:

TZener /K ≈ (11400 or 23400)×
xC

1− xC

where the choice of the numerical value depends on whether the original [120, 122] strain interaction
parameter is used or another based on molecular dynamic simulation is substituted [123]; in the
latter case, the result is almost identical to Equation 2.74.
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2.19 COMPUTER CALCULATION OF PHASE DIAGRAMS

The thermodynamic methods described thus far in this chapter are revealing and have been applied
towards the understanding and modelling the behaviour of iron and its alloys. It nevertheless is too
complicated in the context of multicomponent steels where individual solute concentrations can vary
over a large range. Therefore, methods have been developed for doing this in a seamless manner;
these methods have been so successful that they now represent the first step in any alloy development
project. The subject of the computer calculation of phase diagrams based on experimental data has
been reviewed extensively, e.g., [124–129]. The focus here is on the framework for such generic
calculations, which necessarily involves a degree of educated, clever empiricism. The process has
also led to the systematic compilation and assessment of experimental data on a scale that is perhaps
unique in science. All this was initiated by like-minded scientists long before “big data” or computer
modelling became fashionable.
One possibility is to represent thermodynamic quantities by a series expansion with sufficient ad-
justable parameters to adequately fit the experimental data. There has to be a compromise between
the accuracy of the fit and the number of terms in expansion. However, such expansions do not
generalise well when dealing with complicated phase diagram calculations involving many com-
ponents and phases. Experience suggests that the specific heat capacities for the pure elements are
better represented by a polynomial with a form that describes most of the known experimental data:

CP = b8 + b9T + b10T 2 +
b11

T 2
. (2.75)

If the fit with experimental data is found not to be good enough, the polynomial is applied to a
range over which the fit is satisfactory, and more than one polynomial is used to represent the full
dataset with care exercised to ensure continuity over the range. A standard element reference state
is defined with a list of the measured enthalpies and entropies of the pure elements at 298 K and one
atmosphere pressure, for the crystal structure appropriate for these conditions. With respect to this
state, the Gibbs free energy is obtained by integration to be:

G = b12 + b13T + b14T ln{T}+ b15T 2 + b16T 3 +
b17

T
. (2.76)

This free energy is defined with respect to a reference (included in b12), i.e., relative to the enthalpy
at 298.15 K and entropy at 0 K of the stable states of the element(s) concerned at 298.15 K. Al-
lotropic transformations can be included if the transition temperatures, enthalpy of transformation
and the CP coefficients for all the phases are known.
Any specific contributions to CP, such as due to magnetic transitions, are dealt with separately, as
are the effects of pressure. Once again, the equations for these effects are chosen carefully in order
to maintain generality.
The excess Gibbs free energy for a binary solution with components A and B is written:

∆eGAB = xAxB

j

∑
i=0

LAB,i(xA − xB)
i. (2.77)

For i = 0 this gives a term xAxBLAB,0 which is familiar in regular solution theory, where the coeffi-
cient LAB,0 is, as usual, independent of chemical composition and to a first approximation describes
the interaction between components A and B. If all other LAB,i are zero for i > 0, then the equation
reduces to the regular solution model with LAB,0 as the regular solution parameter. Further terms
(i > 0) are added to allow for any composition dependence not described by the regular solution
constant.
In the first approximation, the excess free energy of a ternary solution can be represented purely by
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a combination of the binary terms in Equation 2.77:

∆eGABC = xAxB

j

∑
i=0

LAB,i(xA − xB)
i

+xBxC

j

∑
i=0

LBC,i(xB − xC)
i + xCxA

j

∑
i=0

LCA,i(xC − xA)
i.

The advantage of the representation embodied in Equation 2.77 is clear, that for the ternary case, the
relation reduces to the binary problem when one of the components is set to be identical to another,
e.g., B≡C [130].
Experimental data may indicate significant ternary interactions, in which case a term xAxBxCLABC,0

is added to the excess free energy. If this does not adequately represent the deviation from the binary
summation, then it can be converted into a series which properly reduces to a binary formulation
when there are only two components:

xAxBxC

[

LABC,0 +
1

3
(1+ 2xA− xB− xC)LABC,1

+
1

3
(1+ 2xB− xC − xA)LBCA,1 +

1

3
(1+ 2xC− xA − xB)LCAB,1

]

.

This method can be extended to any number of components as long as appropriate thermodynamic
data are available, with the advantage that few coefficients have to be changed when the data due to
one component are improved. The information necessary to derive the coefficients become sparse
for systems with more than three components.

2.19.1 STOICHIOMETRIC PHASES: REGULAR SOLUTION MODEL

A compound differs from a solution in that its free energy increases rapidly when the composition
deviates from a specific ratio of the components (Figure 2.41). When the compound is crystalline
it usually is the case that the lattice can be considered to consist of interpenetrating sublattices.
Thus, for a binary compound each sublattice would be occupied mostly by one of the components.
A widely used regular solution model for multicomponent compounds, as developed by Hillert and
Staffansson [131] from work on ionic compounds and melts, is presented here.

Figure 2.41 Free energy of a (bi-

nary) compound increases sharply on

deviation from a stoichiometric com-

position, when compared with that of

a solution.

Consider a stoichiometric phase (A,B)a(C,D)c in which the components A,B and C,D are located
on different sublattices, the stoichiometry being a/c with a+ c = 1. A new composition parameter,
the site fraction y′ is introduced to deal with the sublattices in isolation:

y′A =
nA

nA + nB
=

xA

a

y′C =
nC

nC + nD
=

xC

c
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where ni represent the number of moles of the component identified in the subscript. If the two
sublattices are treated as independent with random mixing on each, then the ideal configurational
entropy of mixing for the system consisting of N atoms is [132]

∆SM =−R
(

nA ln{y′A}+ nB ln{y′B}+ nC ln{y′C}+ nD ln{y′D}
)

JK−1

so dividing both sides this equation by nA + nB+ nC+ nD gives the molar quantity:

∆SM =−R
(

xA ln{y′A}+ xB ln{y′B}+ xC ln{y′C}+ xD ln{y′D}
)

Jmol−1 K−1.

The free energy of the phase is then written relative to the four possible pure binary compounds,
each of which contains just one component on each sublattice20

G = (y′Ay′Cµ◦
AaCc

+ y′Ay′Dµ◦
AaDc

+ y′By′Cµ◦
BaCc

+ y′By′Dµ◦
BaDc

)−T∆SM +∆eG.

Referring to Figure 2.42, the bottom left hand corner corresponds to the pure compound AaCc. Thus,
y′A = y′C = 1 and y′B = y′D = 0 so it is found correctly that G = µ◦

AaCc
. On the other hand, half way

along the horizontal axis, y′A = y′B = 0.5, y′C = 1 so that G = 0.5µ◦
AaCc

+ 0.5µ◦
BaCc

−T∆SM +∆eG,
where the entropy term is due solely to mixing on the AB sublattice. The excess free energy on the
other hand must involve interactions between all the species present. To account for this, Hillert and
Staffannson expressed the excess free energy as:

∆eG = y′Ay′By′CLAB,C + y′Ay′By′DLAB,D + y′Cy′Dy′ALCD,A + y′Cy′Dy′BLCD,B

so the regular solution parameters for each sublattice depend also on the occupancy of the other
sublattice. The L parameters embody interactions: e.g., LCD,B the interaction between C and D when
the other sublattice is filled completely with B. It also is possible, in deriving the partial quantities,

Figure 2.42 Representation of com-

position for a (A,B)a(C,D)c compound

(after Hillert and Staffansson [131]). The

corners are binary compounds whereas

a point along the edges has mixtures of

atoms on the sublattices.

to treat the binary compound as a component in the quarternary solution. Using Equation 2.36, it is
seen that

µAaCc = G+(1− y′A)
∂G

∂y′A
+(1− y′C)

∂G

∂y′C
.

2.19.2 INTERSTITIAL SOLUTION

An interstitial solution can be accommodated in the sublattice model by treating the interstitial
vacancies (#) as a component in the stoichiometric phase (A,B)a(C,#)c and, as before, a+ c = 1;
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the ratio a/c is 1 and 1
3 for carbon dissolved in austenite and ferrite respectively. Consider the Fe-

Mn-C system where Fe (solvent) and Mn are atoms in the substitutional sites.21 The site fractions
for the substitutional elements are therefore:

yFe = xFe/(1− xC)

yMn = xMn/(1− xC)

The number of interstitial sites is the product of the number of moles of substitutional atoms (nFe +
nMn) and the ratio c/a so the site fraction for carbon is given by:

yC =
nC

c
a (nFe + nMn)

=
axC

c(1− xC)

y! = 1− yC.

The configurational entropy of mixing for a system containing a total of N = NC+NFe+NMn atoms
is, therefore,

∆SM =−R(nFe ln{yFe}+ nMn ln{yMn}+ nC ln{yC}+ n! ln{y!). (2.78)

Since the number of unoccupied interstitial vacancies is

n! =
c

a
(nFe + nMn)− nC,

the molar configurational entropy of mixing becomes

∆SM =−R

[

xFe ln{yFe}+ xMn ln{yMn}+ xC ln{yC}+
(

c

a
− xC

a+ c

a

)

ln{1− yC}
]

.

In order to obtain the molar Gibbs free energy, it is necessary to define the reference states (µ◦)
for each of the pure components, in the context of the stoichiometric phase model. Since an Fea#c

compound is simply pure Fe, µ◦
Fea!c

= µ◦
Fe, the free energy of a mole of pure Fe. Similarly, for

manganese, µ◦
Mma!c

= µ◦
Mn.

The reference state for carbon which is interstitially dissolved is a little more awkward. In an Fe-
C-# system it is given by the difference between a pure vacancy-free Fea −Cc carbide and pure
Fe:

µ◦
FeaCc

− µ◦
Fea!c

= µ◦
FeaCc

− µ◦
Fe.

This standard state can of course be related to pure graphite as discussed on page 64. Similarly, in
a B-C-# system it is given by the difference between a pure vacancy-free MnaCc carbide and pure
Mn:

µ◦
MnaCc

− µ◦
Mna!c

= µ◦
MnaCc

− µ◦
Mn. (2.79)

It follows that the molar Gibbs free energy is given by:

G = xFeµ◦
Fe + xMnµ◦

Mn + xc(µ
◦
FeaCc

− µ◦
Fea!c

)

+RT

[

xFe ln{yFe}+ xMn ln{yMn}

+xC ln{yC}+
(

c

a
− xC

a+ c

a

)

ln{1− yC}
]

+∆eG

where the excess free energy is

a×∆eG = yCxMn

[

(µ◦
Fe − µ◦

FeCc
)− (µ◦

Mn − µ◦
MnCc

)
]

+xFeyMn

[

yCLFeMn,C +(1− yC)LFeMn,!

]

+yC(1− yC)
[

xFeLC!,Fe + xMnLC!,Mn

]

.
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The chemical potentials can be derived from this integral free energy. For austenite, c/a = 1 so the
following equations are obtained for the chemical potentials [133]; the subscripts identifying the
phase as austenite have been omitted for clarity:

µFe = µ◦
Fe +RT

[

ln{yFe}+ ln{1− yC}
]

−yMnyC

[

(µ◦
Fe − µ◦

FeC)− (µ◦
Mn − µ◦

MnC)
]

−yMnyC

[

LFeMn,C −LFeMn,!+LC!,Mn −LC!,Fe

]

+y2
MnLFeMn,!+ y2

CLC!,Fe

+2y2
MnyC(LFeMn,C −LFeMn,!)+ 2yMny2

C(LC!,Mn −LC!,Fe). (2.80)

µMn = µ◦
Mn +RT

[

ln{yMn}+ ln{1− yC}
]

+yFeyC

[

(µ◦
Fe − µ◦

FeC)− (µ◦
Mn − µ◦

MnC)
]

+yFeyC

[

LFeMn,!−LFeMn,C+LC!,Mn −LC!,Fe

]

+y2
FeLFeMn,!+ y2

CLC!,Mn

+2y2
FeyC(LFeMn,C −LFeMn,!)+ 2yFey2

C(LC!,Fe −LC!,Mn).

µC = µ◦
FeC − µ◦

Fe +RT
[

ln{yC/(1− yC)}
]

+yMn

[

(µ◦
Fe − µ◦

FeC)− (µ◦
Mn − µ◦

MnC)
]

+yMn

[

LFeMn,C −LFeMn,!+LC!,Mn −LC!,Fe

]

+(1− 2yC)LC!,Fe

+2yMnyC(LC!,Fe −LC!,Mn)+ y2
Mn(LFeMn,!−LFeMn,C).

Typical values of some of the parameters for ternary Fe-Mn-C austenite are listed in Table 2.10. A
model such as this can readily be extended to many more components. An application to the Fe-Mo-
W-C system with numerous alloy carbide phases in addition to austenite, can be found in Uhrenius
and Harvig [134].

Table 2.10

Some typical thermodynamic parameters for ternary Fe-Mn-C austenite (after Hillert
and Waldenström [133]). The units are all in J mol−1.

Parameter J mol−1

LC!,Fe/(1− xC) −21,058− 11.581T

LC!,Fe −LC!,Mn 0

(µ◦
Fe − µ◦

FeC)− (µ◦
Mn − µ◦

MnC) −48500

LFeMn,C −LFeMn,!+LC!,Mn −LC!,Fe 8500

LFeMn,C −LFeMn,! 8668

µ◦
FeC − µ◦

Fe − µ◦,graphite
C 67,208− 7.64T

µ◦
MnC − µ◦

Mn − µ◦,graphite
C 18708− 7.64T
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2.19.3 GENERALISED REGULAR SOLUTION MODEL

Sundman and Ågren [135] enhanced the sublattice-regular solution concept of Hillert and Staffans-
son to allow for an arbitrary number of components and sublattices. The familiar site fraction for a
particular sublattice thus becomes:

yi,s = Ni,s

/(

N!,s +∑
i

Ni,s

)

where yi,s is the site fraction of component i on sublattice s. The site fraction of vacant sites is
therefore,

y!,s = 1−∑
i

yi,s.

A parameter as is defined to identify the number of sites on the sublattice s per mole of formula
unit of the phase (this is equivalent to the ratio c/a in the Hillert and Staffanson model). The molar
entropy of mixing becomes:

−∆SM/R = ∑
s

as ∑
i

yi,s lnyi,s.

As pointed out by Sundman and Ågren, it is the use of site fractions instead of mole fractions that
leads to this simple and recognisable form of the entropy equation. The mole fractions are related
to the site fractions by

xi =
∑s asyi,s

∑s as(1− y!,s)
.

The site fractions are now be arranged on a matrix with as many rows and columns as sublattices
(Ns) and components (Nc) respectively:

Y =









y1,1 y2,1 y3,1 · · · yNc,1
y1,2 y2,2 y3,2 · · · yNc,2

...
...

...
...

y1,Ns y2,Ns y3,Ns · · · yNc,Ns









.

Quantities, such as µ◦
BaDc

, the Gibbs free energy of a mole of pure compound BaDc, were used to
define the reference state in the Hillert-Staffansson model for stoichiometric phases. Retaining the
old notation, the reference state for a four component, two-sublattice model was deduced to be:

G◦ = yAyCµ◦
AaCa

+ yAyDµ◦
AaDc

+ yByCµ◦
BaCc

+ yByDµ◦
BaDc

.

With two sublattices there are only binary compounds. With four components and two sublattices,
it is possible to generate 16 compounds but only four are used here since A and B are restricted to
enter just one sublattice and C and D the other. The sixteen possibilities are,

yAyAAaAc yByABaAc yCyACaAc yDyADaAc

yAyBAaBc yByBBaBc yCyBCaBc yDyBDaBc

yAyCAaCc yByCBaCc yCyCCaCc yDyCDaCc

yAyDAaDc yByDBaDc yCyDCaDc yDyADaDc.

All of these can be deduced from Y. Each term can be identified by the components and the location
of those components with respect to the sublattices. For example, when considering the compound
BaDc the component array I0 = (B ↔ a,D ↔ c) indicates the complete information both about the
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compound and about its premultiplier yByD. The corresponding µ◦
AaAc

can be written in brief as µ◦
I0

.
It follows that

G◦ = ∑
I0

ΠI0
{Y}µ◦

I0

where Π{Y} represents the product of the site fractions from the Y matrix.
The enthalpy of mixing, which forms the excess free energy in the regular solution model for a
multicomponent single-lattice phase, is given by

∆eG =
1

2 ∑
i

∑
j

xix jKi j

where Ki j represents the change in pairwise binding energies on mixing. In the Hillert-Staffanson
two-sublattice model [131], it is necessary when considering interactions within one sublattice, to
take account of the species present in the other sublattice, so

∆eG =
1

2 ∑
s

∑
i

∑
j
∑
k

yi,sy j,syk,tL
sst
i jk

where s denotes one sublattice and t the other. The location of each component is identified by
comparing the corresponding terms in the subscript and superscript for L. For brevity, the scripts of
L may be represented by another component array I1 = (i ↔ s, j ↔ s,k ↔ t) which this time allows
more than one component in a given sublattice. The excess molar Gibbs free energy is then given
by

∆eG = ∑
I1

ΠI1
{Y}LI1

.

Higher order interactions can be represented in an equivalent way by introducing higher order com-
ponent arrays, but with the restriction that the array must not contain any component twice in the
same sublattice.

2.19.4 MAGNETIC EFFECTS

Inden’s theory [32, 33, 128] for the heat capacity due to magnetic effects was described briefly in
Section 2.6.5:

C
µ,f
P = b1 ln{2sa + 1}R ln

{
1+ τ3

1− τ3

}

for τ < 1

C
µ,p
P = b2 ln{2sa + 1}R ln

{
τ5 + 1

τ5 − 1

}

for τ > 1

where the additional superscripts “p” and “f” are intended to emphasise the paramagnetic and fer-
romagnetic states. τ = T/TC and b1 and b2 are constants dependent on the crystal structure. These
equations in principle completely define the thermodynamic properties since they can be integrated
to reveal the magnetic contributions to enthalpy and entropy [128]. For τ < 1,

Hµ{T}−Hµ{0}
b1 ln{2sa + 1}RTC

= (1− τ) ln{1− τ}+ τ ln

{
1+ τ3

1+ τ + τ2

}

+ ln

{
1+ τ√

τ4 + τ2 + 1

}

+
√

3arctg

{
2τ − 1√

3

}

−
√

3arctg

{
2τ + 1√

3

}

+ 2
√

3arctg

{
1√
3

}
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The corresponding enthalpy for τ > 1 is

Hµ{T}−Hµ{TC}
b2 ln{2sa + 1}RTC

= (τ + 1) ln{τ + 1}− (τ− 1) ln{τ − 1}+ τ ln

{
1− τ + τ2 − τ3 + τ4

1+ τ + τ2 + τ3 + τ4

}

−cos

{
π

5

}

ln

{

τ4 − 2τ2 cos

{
π

5

}

+ 1

}

−cos

{
π

5

}

ln

{

τ4 + 2τ2 cos

{
π

5

}

+ 1

}

+2sin

{
π

5

}[

arctg

{
τ − cos{π/5}

sin{π/5}

}

− arctg

{
τ + cos{π/5}

sin{π/5}

}]

+2sin

{
3π

5

}[

arctg

{
τ − cos{3π/5}

sin{3π/5}

}

− arctg

{
τ + cos{3π/5}

sin{3π/5}

}]

+ ln

{
5

4

}

+ cos

{
π

5

}

ln

{

4sin2{π/5}
}

+

{
3π

5

}

sin

{
π

5

}

+cos

{
3π

5

}

ln

{

4sin2{3π/5}
}

−
{

π

5

}

sin

{
3π

5

}

.

The corresponding entropy for τ < 1 is

Sµ{T}− Sµ{0}
b1 ln{2sa + 1}R

=
1

3
Φ{τ3}

and for τ > 1:
Sµ{T}− Sµ{TC}
b2 ln{2sa + 1}R

=
1

5

[

Φ{1}−Φ{τ−5}
]

where the function Φ{y}= 2

(

y+
y3

32
+

y5

52
+ . . .

)

.

The total entropies for long- and short-range order obtained using these equations are, respectively,

Sµ{TC}− Sµ{0} =
b1

12
ln{2sa + 1}Rπ2 (2.81a)

Sµ{∞}− Sµ{TC} =
b2

20
ln{2sa + 1}Rπ2. (2.81b)

It is found in practice that Equation 2.81 can be applied as an approximation even when the spin is

not integral [18].

The parameters b1 and b2

The Curie temperature, the spin per atom, and the parameters b1 and b2 define the magnetic compo-

nent of the specific heat capacity and hence all the necessary thermodynamic functions. We present

here the procedure used by Inden to estimate b1 and b2. For a pure component with an integral

number 2sa of Bohr magnetons, the total magnetic entropy must, according to Equation 2.19, equal

Sµ{∞}− Sµ{0}= R ln{2sa + 1}.
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Using Equation 2.81, it follows that

b1

12
ln{2sa + 1}Rπ2+

b2

20
ln{2sa + 1}Rπ2 = R ln{2sa + 1} ∴ π2

(
b1

12
+

b2

20

)

= 1

Having established a relationship between b1 and b2, the actual values of these constants can be

obtained by considering the magnetic enthalpies. If the fraction of the total magnetic enthalpy that

is absorbed above the Curie temperature is given by fµ, then

fµ =
Hµ{∞}−Hµ{TC}

(Hµ{∞}−Hµ{TC})(Hµ{TC}−Hµ{0})
.

On substituting for the various enthalpies, and using equation 2.81, Inden obtains

b1 = 1.217−
0.470 fµ

0.598− 0.211 fµ

b2 =
0.784 fµ

0.598− 0.211 fµ
.

The value of fµ is reliably found to be about 0.4 for bcc metals and 0.28 for fcc metals.

The Gibbs free energy

The magnetic Gibbs free energy Gµ is defined with respect to the completely disordered state at

T = ∞; this is consistent with the fact that any magnetic ordering produces a stabilisation effect. For

temperatures above the Curie point,

Gµ =
∫ T

∞
C

µ,p
P dT ′ −T

∫ T

∞

C
µ,p
P

T ′ dT ′

and for τ < 1

Gµ =
∫ TC

∞
C

µ,p
P dT ′ −T

∫ TC

∞

C
µ,p
P

T ′ dT ′+
∫ T

TC

C
µ,f
P dT ′ −T

∫ T

TC

C
µ,f
P

T
dT ′.

Figure 2.43 illustrates the accuracy with which Inden was able to represent the magnetic heat ca-

pacity of bcc iron. The curves are calculated using the following data:

Fe : TC = 1043K fµ = 0.40 Sµ{∞}− Sµ{0}= R ln{2.2+ 1}.

Figure 2.43 shows also the significant influence of short-range order beyond TC in iron.

Alloys

With the assumption that fµ = 0.4 for bcc metals and fµ = 0.28 for fcc metals, Inden’s theory can

be used to estimate the magnetic entropy, enthalpy and Gibbs free energy changes not only for pure

metals but also for alloys if the spin imbalance per atom (sa) and Curie temperature TC are known.
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Figure 2.43 Magnetic specific heat

capacity of iron. The curve is calcu-

lated whereas the points are derived by

subtracting the non-magnetic compo-

nents from experimental data (after In-

den [128]).

Assuming that the atoms in an alloy contribute independently, the total magnetic entropy is given

by

Sµ{∞}− Sµ{0}= R∑
i

xi ln{2sa,i + 1}

where sa,i is the spin for species i with mole fraction xi. If the individual moments are not known,

then this expression can be approximated by

Sµ{∞}− Sµ{0}& R ln{2sa + 1}

where 2sa is the average magnetic moment per atom. This depends on the concentration of the

components:

sa = xFesa,Fe + xXsa,X

where X is a substitutional solute. It has been suggested that for the addition of a non-magnetic

solute to iron, sa,X may be set to zero if the appropriate data are not available, whilst keeping sa,Fe

constant even for alloys [33, 136].

Figure 2.44 shows a calculated heat capacity curve for Fe0.79Cr0.21 solid solution [128], using the

following data:

Fe0.79Cr0.21 : TC = 923K fµ = 0.40 Sµ{∞}− Sµ{0}= R ln{1.61+ 1}.

The mean value of the magnetic moment was obtained from experimental measurements of the

variation in magnetisation with the chromium concentration [137]:

2sa = 2.11− 2.36xCr.

The non-magnetic component of the specific heat for Fe0.79Cr0.21 was derived simply as a weighted

mean of the corresponding values for iron and chromium. The agreement between calculation and

experiment is seen to be rather good.
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Figure 2.44 Specific heat capacity

of Fe0.79Cr0.21 [128]. The straight line

represents the non-magnetic compo-

nent, and the curve the sum of the

non-magnetic and calculated magnetic

components of the specific heat capac-

ity. The points are experimental data.

Simplification

Inden’s integrated expressions are complicated for implementation into a general scheme for phase

diagram calculations. Hillert and Jarl [33] therefore suggested that in the heat capacity expressions,

the terms in τ should be expanded as a series which is truncated at an appropriate level of usefulness,

prior to the integrations:

C
µ,f
P = 2b1R ln{2sa + 1}

(

τ3 +
τ9

3
+

τ15

5

)

for τ < 1

C
µ,p
P = 2b2R ln{2sa + 1}

(

τ−5 +
τ−15

3
+

τ−25

5

)

for τ > 1.

As expected theoretically, Inden’s equations give a heat capacity which tends to infinity at

T = TC whereas the series expansions tend to the finite limits (46/15)R ln{2sa + 1}b1 and

(46/15)R ln{2sa + 1}b2 which is convenient from the point of view of computer implementation

and yet does not lead to significant errors in the enthalpy or entropy terms, which are obtained by

integration (Equations 2.4 and 2.6) as

Sµ{T ≥ TC}− Sµ{T = TC} =
∫ T

TC

C
µ,p
P

T ′ dT ′ (2.82)

= −2Rb2 ln{2sa + 1}
[(

τ−5

5
+

τ−15

45
+

τ−25

125

)

− 0.6
518

675

]

Sµ{T ≤ TC}− Sµ{T = 0} =
∫ T

0

C
µ,f
P

T ′ dT ′

= Rb1 ln{2sa + 1}
(

τ3

3
+

τ9

27
+

τ15

75

)

giving

Sµ{T = ∞}− Sµ{T = 0}=
518

675
R ln{2sa + 1}(b1+ 0.6b2).

The magnetic entropy is also given by Equation 2.19 as Nak ln{2sa + 1} so

b1 + 0.6b2 =
675

518
. (2.83)
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One further condition is needed to solve for the parameters b1 and b2, obtained by considering the

enthalpy terms:

Hµ{T ≥ TC}−Hµ{T = TC} =
∫ T

TC

C
µ,p
P dT ′

= RTCb2 ln{2sa + 1}
[

79

140
−
(

τ−4

2
+

τ−14

21
+

τ−24

60

)]

Hµ{T ≤ TC}−Hµ{T = 0} =
∫ T

0
C

µ,f
P dT ′

= RTCb1 ln{2sa + 1}
(

τ4

2
+

τ10

15
+

τ16

40

)

so that

Hµ{T = ∞}−Hµ{T = TC}=
79

140
RTCb2 ln{2sa + 1}

Hµ{T = TC}−Hµ{T = 0}=
71

120
RTCb1 ln{2sa + 1}.

The fraction of enthalpy retained beyond the Curie temperature, fµ , is therefore

fµ =

(
79

140
b2

)/(
79

140
b2 +

71

120
b1

)

.

On solving this simultaneously with Equation 2.83, it is seen that

b1 = b2

[
474

497

(
1− fµ

fµ

)]

with b2 =

[
518

1125
+

11692

15975

(
1− fµ

fµ

)]−1

.

Taking the magnetic contribution to the molar Gibbs free energy to be zero at infinite temperature,

for τ > 1, it follows that

Gµ =
∫ T

∞
C

µ,p
P dT ′ −T

∫ T

∞

C
µ,p
P

T ′ dT ′

= −b2 ln{2sa + 1}RTC

(
τ−4

10
+

τ−14

315
+

τ−24

1500

)

and for τ < 1

Gµ =
∫ TC

∞
C

µ,p
P dT ′ −T

∫ TC

∞

C
µ,p
P

T ′ dT ′+
∫ T

TC

C
µ,f
P dT ′ −T

∫ T

TC

C
µ,f
P

T ′ dT ′

= −b2 ln{2sa + 1}RTC

(
79

140
−

518τ

1125

)

−b1RTC

(
τ4

6
+

τ10

135
+

τ16

600
+

71

120
−

518τ

675

)

.
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2.19.5 MAGNETISATION

It is a good approximation when the temperature is close to the Curie temperature, to take the

spontaneous magnetisation to be given by the relation

Mm{T}
Mm{0}

=

(

1−
T

TC

)b18

where the term on the left is the reduced magnetisation, i.e., the magnetisation normalised relative

to that at 0 K. For pure ferritic iron it is found experimentally that:

b18 = 0.33 for 10−2 >

(

1−
T

TC

)

> 10−1

b18 = 0.27 for 10−1 >

(

1−
T

TC

)

> 2× 10−1.

Inden and Meyer [138] found that the values of b18 do not seem to be sensitive to the addition of

cobalt to iron, and hence were able to use the relationship to accurately fix the Curie temperatures

from magnetisation measurements at low temperature, for Fe-Co alloys where TC is not accessible

because the sample undergoes a phase change before becoming paramagnetic.

Summary

The Inden formalism is useful – it permits the estimation of the magnetic component of heat capac-

ity from a knowledge of just the magnetic moment per atom (sa), the Curie temperature (TC) and

assumed values of the partitioning of enthalpy between long and short-range order ( fµ). There is

evidence that the method is applicable equally to chemical ordering.

2.20 ORDER PARAMETER

The phenomenon of ordering is discussed first, in the context of thermodynamics, before introducing

the crystallographic aspects of typical ordering reactions in iron alloys.

The classical Bragg-Williams model contains many of the essential features for ordering. The

derivation presented here is due to Christian [101] and is for an equiatomic binary alloy of com-

ponents A and B when ordering changes a cubic-I lattice into one which is primitive cubic. The

most popular example of this kind of an ordering reaction is CuZn, but FeAl and FeCo are relevant

examples in the context of iron. The iron aluminides in particular may become important engineer-

ing materials in their own right.

The extent of order is described in terms of a long-range order parameter L which is unity for the

fully ordered crystal and zero when the distribution of atoms is random in the context of a long

range:

L =
rA − xA

1− xA
=

rB − xB

1− xB
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where rA is the probability of an A site being rightly occupied by an A atom, equal in our example

to the probability of a B site being occupied by a B atom, so that with xA = xB = 0.5,

L = 2r− 1.

When r = 1, the alloy is fully ordered with L = 1 and when r = 1
2 , L = 0 with the alloy being fully

disordered.

The probability of A-A pairs is the chance of finding an A site that is occupied correctly (r) mul-

tiplied by that of finding a B site which is incorrectly occupied (1− r). A similar rationale for the

B-B and A-B pairs gives:

NAA =
N

2
zr(1− r)

NBB =
N

2
zr(1− r)

NAB =
N

2
z[r2 +(1− r)2]

since only N
2 sites can be occupied correctly by either species for the cubic-I to cubic-P ordering

transition. z is a coordination number and N is the number of atoms. In deducing the number of

unlike bonds, r2 is the probability of finding two adjacent sites that are occupied correctly and

the additional term (1− r)2 accounts for the probability of finding two adjacent sites which are

incorrectly occupied. Both of these circumstances lead to A-B bonds.

The configurational internal energy U is then given by the sum of all bond strengths,

U = −Nzr(1− r)(εAA + εBB)−Nz[r2 +(1− r)2]εAB

= −NzεAB −Nzr(1− r)ω

= −Nz[εAB + r(1− r)ω ].

(2.84)

The factor of two drops out because of the way in which the binding energy is defined (Figure 2.32).

The configurational Gibbs free energy is given by assuming that the enthalpy of ordering is equal

to the internal energy, and adding the contribution from the change in configurational entropy. The

ordered lattice can be imagined to consist of a series of sublattices to enable the entropy of any

distribution of atoms on these sublattices to be estimated; for a binary alloy without vacancies, this

is given by22,

S =−
R

n

n

∑
i=1

(

x
(i)
A ln{x

(i)
A }+ x

(i)
B ln{x

(i)
B }
)

(2.85)

where n is the number of sublattices and x
(i)
A the fraction of A atoms on the sublattice i. For the

present example, N = 2 so:

G ≈ F =U +NkT [r lnr+(1− r) ln(1− r)]. (2.86)
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When r = 1, the configurational entropy is zero. To find the equilibrium value of r, dG/dr is set to

0, to obtain
1

2r− 1
ln

r

1− r
= zω/kT (2.87)

(2/L)tanh−1L = zω/kT. (2.88)

The variation of the long range order parameter as a function of the reduced temperature T/TC is

illustrated in Figure 2.45. TC is the temperature where L = 0. The increase in disorder is at first small

as the temperature rises towards TC, but this resistance to disordering decreases once the process gets

hold.

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0
Figure 2.45 The equilibrium value

of the long-range order parameter as

a function of the reduced temperature,

using the Bragg-Williams model.

2.20.1 SHORT-RANGE ORDER

This Bragg-Williams model for the order-disorder transition is analogous to the Weiss model for

ferromagnetism by spin orientation ordering. They both assume that the atoms (or moments) are

distributed at random on each sublattice of the superlattice structure and hence predict completely

random mixing at all temperatures above TC. Short-range order cannot therefore be treated with

these models.23 As with magnetism, the probability of finding A-B pairs remains larger than random

when the long-range order parameter becomes zero. An excess heat capacity (i.e., relative to an

ideal solution model) persists beyond TC; important implications of this phenomena are discussed

in Chapter 3 which deals with diffusion.

It is well established that models based on near neighbour interactions alone cannot explain the

stability of many of the superlattices found in practice. Second, sometimes third near neighbour

interactions have to be taken into account. This will become obvious when the detailed crystal

structures are discussed in the next section. In some cases it becomes necessary to consider clusters

of atoms rather than just pairwise interactions in order to predict the correct equilibrium state. The

historical development of the theory can be described in terms of quasichemical approximations,

where the Bragg-Williams model is the zeroth, and the Beth model the first order quasichemical

approximation. Cluster variation methods are higher approximations of the quasichemical method.

These are not described here partly because they have been discussed thoroughly by Christian [101]
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but also because in the context of iron, there are few data against which they can be tested. One

difficulty is that many important ordering reactions occur at temperatures where it takes a long time

to reach equilibrium.

A pragmatic approach is to apply Inden’s heat capacity equations (Section 2.19.4) to the problem of

chemical ordering. As with magnetism, all that is required is a knowledge of the critical temperature

and the factor fo which gives the ratio of the enthalpy due to short-range order to the total amount of

enthalpy due to ordering. Inden [128] has suggested that in the absence of good experimental data,

fo can be taken to be identical to fµ, i.e., 0.4 for bcc and 0.28 for fcc systems.

2.21 SUPERLATTICES

2.21.1 ORDERED CRYSTALS

Ordering leads to an increase in the volume of the primitive cell, hence the term superlattice is used

to describe crystal structures in which the different atomic species are ordered. Some of the techno-

logically important superlattices of iron-based intermetallic compounds are listed in Table 2.11. All

of these structures lead to an increase in the number of unlike neighbours when compared with the

case where the atoms are disordered, randomly dispersed.

FeAl and FeCo intermetallic compounds have a cubic-I structure in the disordered state and cubic-P

when ordered. The tendency for ordering (i.e., enthalpy change on ordering) is much larger for FeAl

than FeCo so that the former is often described as a strongly ordered compound, a description that

is not a measure of the order parameter.

Ni3Fe is a classic ordered compound which in the disordered state is cubic-F that on ordering be-

comes cubic-P with Ni atoms at the face centres and Fe atoms at the cube corners. Fe3Al and Fe3Si

have a cubic-I crystal structure when disordered.

Table 2.11

Some of the ordered compounds that occur in iron alloys.

Compound Crystal Structure Tm / K TC / K Density / kgm−3

Ordered Disordered

FeAl B2, Cubic-P Cubic-I 1523-1673 1523-1673 5560

Ni3Fe L12, Cubic-P Cubic-F

(Fe22Co78)3Fe L12, Cubic-P Cubic -F 1673 1223 7800

(Fe60Ni40)3(V96Ti4) L12, Cubic-P Cubic -F 1673 953 7600

Fe3Al DO3, Cubic-F Cubic-I 1813 813 6750

Fe3Si DO3, Cubic-F Cubic-I 1543 1543 7250

These and other ordered crystals can, for the purposes of thermodynamic analysis (Section 2.19.1),
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be represented conveniently by subdividing the bcc and fcc arrangements of atoms into four and

eight sublattices as illustrated in Figure 2.46.

Table 2.12

Location of atoms in the sublattices of the perfectly ordered phases. The sites 1,
2 . . . 8 are identified in Figure 2.46. The first two compounds are based on the four
sublattices of the bcc arrangement, and the last on the eight sublattices of the fcc
arrangement.

Compound I II III IV V VI VII VIII

AB, B2 A A B B - - - -

A3B, DO3 B A A A - - - -

A3B, L12 B B A A A A A A

(a) (b)

Figure 2.46 Four and eight sublattices of the bcc and fcc arrangements respectively, as an aid to illustrating

the ordering of atoms (adapted from [128]).

2.22 THERMODYNAMICS OF IRREVERSIBLE PROCESSES

Thermodynamics as a subject is limited to the equilibrium state. Properties such as entropy and

free energy are, on an appropriate scale, static and time-invariant during equilibrium. There is an

extension of the subject to systems that are close to equilibrium so that they can be divided into

subsystems where the rules of equilibrium can be applied locally [139]. Parameters not relevant

to the discussion of equilibrium, such as thermal conductivity, diffusivity and viscosity, then enter

the picture because they can describe a second kind of time independence, that of the steady state.

For example, the concentration profile does not change during steady-state diffusion, even though
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energy is being dissipated during diffusion.

The thermodynamics of irreversible processes deals with systems that are not at equilibrium but are

nevertheless stationary. The theory in effect uses thermodynamics to deal with kinetic phenomena.

There is, nevertheless, a distinction between the thermodynamics of irreversible processes and ki-

netics. The former applies strictly to the steadystate, whereas there is no such restriction on kinetic

theory.

2.22.1 REVERSIBILITY

A process, the direction of which can be changed by an infinitesimal alteration in the external condi-

tions is called reversible, because an exact reversal leads to no net dissipation of energy. Figure 2.47

shows the response of an ideal gas contained at uniform pressure within a cylinder, any change be-

ing achieved by the motion of the piston. For any starting point on the pressure-volume curve, the

application of an infinitesimal force may cause the piston to move to an adjacent position still on

the curve, while the removal of the infinitesimal force restores the system to its original state. This

process is reversible because there is no net dissipation in displacing and recovering the frictionless

piston.

If the motion of the piston in the cylinder entails friction, then deviations occur from the P/V curve

as illustrated by the cycle in Figure 2.47. An infinitesimal force cannot move the piston because

energy must be dissipated to overcome the friction; this energy is the area enclosed by the cycle

on the P/V plot. A process such as this, which involves the dissipation of energy, is classified

as irreversible with respect to an infinitesimal change in the external conditions. More generally,

gas
Figure 2.47 The curve represents

the variation in pressure within the

cylinder as the volume of the ideal gas

is altered by the frictionless position-

ing the piston. The cycle represents the

dissipation of energy when the motion

of the piston causes friction.

reversibility means that it is possible to pass from one state to another without appreciable deviation

from equilibrium. Real processes are not reversible so equilibrium thermodynamics can only be used

approximately, though the same principles define whether or not a process can occur spontaneously

without ambiguity.

For irreversible processes the equations of classical thermodynamics become inequalities. For ex-

ample, at the equilibrium melting temperature, the free energies of the liquid and solid are identical

(Gliquid = Gsolid) but not so below that temperature (Gliquid > Gsolid). Such inequalities are much

more difficult to deal with though they indicate the natural direction of change. For steady-state

processes however, the thermodynamic framework for irreversible processes as developed by On-
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sager [140] is particularly useful in obtaining relationships even though the system may not be at

equilibrium.

2.22.2 LINEAR LAWS

There is no change in entropy or free energy at equilibrium. An irreversible process dissipates energy

and entropy is created continuously. In the example illustrated in Figure 2.47, the dissipation was

due to friction; diffusion ahead of a moving interface is dissipative. The rate at which energy is

dissipated is the product of the temperature and the rate of entropy production:

T Ṡ = JX (2.89)

where J is a generalised flux of some kind, and X a generalised force. In the case of an electrical

current, the heat dissipation is the product of the current (J) and the electromotive force (X).

As long as the flux-force sets can be expressed as in Equation 2.89, the flux must naturally depend

in some way on the force. It may then be written as a function J{X} of the force X . At equilibrium,

the force is zero. J{X} can be expanded in a Taylor series about equilibrium (X = 0):

J{X} =
∞

∑
0

anXn

= J{0}+ J′{0}
X

1!
+ J′′{0}

X2

2!
. . . (2.90)

In this expansion, J{0}= 0 because there is no flux in the absence of force. If the high–order terms

are neglected, then a proportionality between the force and flux is revealed:

J ∝ X .

Therefore, the forces and their conjugate fluxes are linearly related whenever the dissipation can

be expressed as in Equation 2.90, at least when the deviations from equilibrium are not large. This

caveat is illustrated nicely by the relationship between the rate at which an interface moves and the

driving force. In Chapter 4, Equation 4.64, which is limited to small driving forces, shows a linear

relationship between the two quantities, whereas Equation 4.63 which is derived without limits on

the magnitude of the driving force, shows that the rate and driving force are not in general linearly

related.

In another example, consider a closed system in which a quantity dH of heat is transferred in a time

interval dt across an area A in a direction z normal to that area, from a region at temperature Th

to a lower temperature T!. The receiving part increases its entropy by dH/T! whereas the depleted

region experiences a reduction dH/Th, so the change in entropy is

dS = dH

(
1

T!
−

1

Th

)

.

The rate of entropy production per unit volume is therefore

Ṡ =
1

V

dS

dt
=

1

V

dH

dt

(
1

T!
−

1

Th

)

. (2.91)
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The flux of heat J is defined as A−1dH/dt so Equation 2.91 becomes

Ṡ = J
A

V

(
1

T!
−

1

Th

)

≡ J

(

−
1

T 2

)
dT

dz

or TṠ = J
︸︷︷︸

flux

(

−
1

T

)
dT

dz
︸ ︷︷ ︸

force

.

Some examples of forces and fluxes in their generic form are listed in Table 2.13.

Table 2.13

Examples of forces and their conjugate fluxes. z is the distance over which the gra-
dient exists, φ is the electrical potential and µ the chemical potential.

Force Flux

− ∂φ
∂ z

Electrical current

− 1
T

∂T
∂ z

Heat flux

− ∂ µi
∂ z

Diffusion flux

Stress Strain rate

2.22.3 MULTIPLE IRREVERSIBLE PROCESSES

There are circumstances whereby a number of irreversible processes occur together. In a ternary

Fe-Mn-C alloy, the diffusion flux of carbon depends not only on the gradient of carbon, but also

on that of manganese. A uniform distribution of carbon will tend to become inhomogeneous in

the presence of a manganese concentration gradient. Similarly, the flux of heat may not depend on

the temperature gradient alone; heat can be driven also by an electromotive force (Peltier effect).24

Electromigration involves diffusion that is driven by an electromotive force. When there is more

than one dissipative process, the total energy dissipation rate can still be written

TṠ = ∑
i

JiXi. (2.92)

In general, if there is more than one irreversible process occurring, it is found experimentally that

each flow Ji is related not only to its conjugate force Xi, but is also linearly related to all other forces

present. Thus,

Ji = Mi jXj (2.93)

with i, j = 1,2,3 . . .. Therefore, a given flux depends on all the forces causing the dissipation of

energy.
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2.22.4 ONSAGER RECIPROCAL RELATIONS

Equilibrium in real systems is dynamic on a microscopic scale. It seems obvious that to maintain

equilibrium under these dynamic conditions, a process and its reverse must occur at the same rate on

the microscopic scale. The consequence is that provided the forces and fluxes are chosen from the

dissipation equation and are independent, Mi j = Mji. This is known as the Onsager theorem, or the

Onsager reciprocal relations. It applies to systems near equilibrium when the properties of interest

have even parity, and assuming that the fluxes and their corresponding forces are independent. An

exception occurs with magnetic fields in which case there is a sign difference Mi j =−Mji [141].
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Notes
1The necessary and sufficient condition that the differential equation

M{x,y}dx+N{x,y}dy = 0 (2.94)

is exact requires that
(

∂M

∂y

)

x

=

(
∂N

∂x

)

y

(2.95)

2This follows from the relationships between partial derivatives of variables x, yz. The total differentials are

dx =

(
∂x

∂y

)

z

dy+

(
∂x

∂ z

)

y

dz and dy =

(
∂y

∂x

)

z

dx+

(
∂y

∂ z

)

x

dz

Substituting for dy in the equation for dx yields:

[(
∂x

∂y

)

z

(
∂y

∂x

)

z

−1

]

dx+

[(
∂x

∂y

)

z

(
∂y

∂ z

)

x

+

(
∂x

∂ z

)

y

]

dz = 0

Since each expression in the square brackets must vanish independently, if follows that

(
∂ z

∂x

)

y

(
∂x

∂y

)

z

(
∂y

∂ z

)

x

=−1.

3This picture is convenient but inaccurate because in a classical calculation, the velocity at which the electron would

have to spin to produce the observed magnetic moment would be greater than that of light. The term “spin” really refers to a

quantised rotation that has no counterpart in classical mechanics.
4There is a rule that says that electrons are distributed in a level to maximise spin. Therefore, in 3d there will be five

electrons with spin-up, and 2.8 with spin-down, giving a net moment of 2.2.
5M is the magnetic moment per unit volume, induced by a magnetic field of strength Hmag. It is sometimes called the

intensity of magnetisation or simply magnetisation. The ratio of M/Hmag is the magnetic susceptibility.

6It is assumed here that g0 has the minimum value of 2, and that the spin per atom for the γ1 state is 1.4, so that

2s+1 = 2.8+1.
7When bcc iron and copper powders are heavily deformed together in a ball mill, the powders naturally become finer but

there also is an increase in contact between iron and copper particles. This eventually causes the iron particles to transform

into austenite as they are forced into coherency with the copper. Continued milling leads to interdiffusion and finally, the

formation of a true Fe-Cu fcc solid solution [49, 142, 143].
8The term “Total energy” describes first-principles calculations of the ground-state energy of an interacting electron gas.

It is the sum of the many-body kinetic energy, the many-body Coulomb energy and the external energy due to the atomic

nuclei and other external fields. The energy is really an enthalpy since it refers to the ground state at 0 K.
9If the two-dimensional unit cell of the unrelaxed surface has parameters a and b, then a 2×1 reconstruction refers to the

relaxed pattern having a larger unit cell with parameters 2a and b.
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10The antiferromagnetic structure used in these calculations involves the continuous deformation of the simplest bcc case

where the corner and body-centering atoms have opposite spins.
11There are two difficulties. Experiments on austenite monolayers deposited on {100}Au show results which appear to

contradict these calculations that the magnetisation is in the plane of the film [46]. Secondly, calculations of spin anisotropy

by Gay and Richter [144, 145] predicted magnetisation perpendicular to the surface of a free-standing iron monolayer; this

is believed to be a consequence of computational difficulties [69].
12Some difficulties with the use of this approximation are described in [84, 146].
13This equation reduces to the familiar

∆SM =−kNa[(1− x) ln{1− x}+ x ln{x}] (2.96)

when mA = mB = 1.
14Hildebrand’s definition: “A regular solution is one involving no entropy change when a small amount of one of its

components is transferred to it from an ideal solution of the same composition, the total volume remaining unchanged” [98].
15It is straightforward to apply this also to carbon dissolved in ferrite. The parameters βO and W to be described later have

to be set to different values consistent with the geometry of the body-centred cubic lattice.
16The relationship illustrated in Figure 2.39 can be described by the following equation which is due to Ban-ya, Elliott

and Chipman:

∆µ◦ = 4.184(17250+12.44T log{T}−48.15T ) Jmol−1. (2.97)

17It is worth emphasising again that this substitution for λ ∗ recognises implicitly that λ ∗ is a function of Nu. This is

in contrast to the first order quasichemical theory by Dunn and McLellan, where during the differentiation of the partition

function with respect to Nu, λ was treated as a constant. The comparison reported by Alex and McLellan is therefore between

models based on different assumptions. The comparison here is with the corrected first-order quasichemical theory.
18It has been believed that ωα may be negative, i.e., that carbon atoms in ferrite attract each other [147]. However, the

analysis used an incorrect coordination number [115].
19 A similar ordering effect has been found for the cubic compound NiAl, where there are strong distortions around

vacancies with atomic displacements parallel to 〈111〉 [148]. The vacancies, when they are close to each other, are therefore

expected to align parallel to the 〈111〉 axes to reduce the strain energy. This is said to be responsible for the transformation

of the cubic NiAl structure into that of Al3Ni2 which has a trigonal crystal structure.
20The equation that follows should be compared with the usual one for a multicomponent solution, i.e.,

G = ∑
i

xiµ
◦
i −T∆SM +∆eG

21There is a variation in terminology in the published literature. The reader should note particularly the definition of the

terms a and c to avoid confusion
22Assuming a random distribution of the atoms on each sublattice
23Short-range order is usually discussed in terms of the Bethe parameter given by:

Lsr =
NAB −Nrandom

AB

Nordered
AB −Nrandom

AB

where the numerator is the difference between the number of A-B bonds and the number expected in a random alloy. The

denominator is the corresponding difference relative to a fully ordered alloy. Clearly, Lsr = 0 when the solution is random

and Lsr = 1 when it is fully ordered. In this respect it is similar to the long range order parameter L, but the definition is with

respect to nearest neighbours only rather than segregation into different lattices.
24In the Peltier effect, the two junctions of a thermocouple are kept at the same temperature but the passage of an electrical

current causes one of the junctions to absorb heat and the other to liberate the same quantity of heat. This Peltier heat is

found to be proportional to the current.





3 Diffusion

3.1 INTRODUCTION

There probably are no examples of useful steels that are even close to equilibrium. But the rate at

which they may approach equilibrium determines the evolution of microstructures during manu-

facture and the stability of the steel during service. This rate depends on the mobility of atoms in

the solid-state, i.e., on diffusion and on the forces that drive diffusion. It will be seen that iron has

some distinctive features when it comes to diffusion. Magnetic transitions cause marked anomalies

in diffusion data. There are huge disparities in the rates at which interstitial and substitutional so-

lutes migrate. On occasions, the concentration dependence of the diffusion coefficients cannot be

explained by thermodynamics alone. And there is much more detail that is important to the devel-

opment of phase transformation theory for steels.

3.2 FICK’S LAW AND DIFFUSION COEFFICIENTS

Fick’s first law for diffusion in a binary system along a coordinate z is based on the intuitively

reasonable premise that the solute flux J is related directly to the concentration gradient via a pro-

portionality constant which is the diffusion coefficient D:

J =−D
dc

dz
. (3.1)

The negative sign is because the flux is along +z whereas the concentration increases along −z and

it is assumed that diffusion occurs down a concentration gradient. The hypothesis was based on his

work on diffusion in liquids, at the Department of Anatomy in Zürich. To quote Fick: “According

to this law, the transfer of salt and water occurring in a unit of time, between two elements of space

filled with differently concentrated solutions of the same salt, must be, cæteris paribus, directly

proportional to the difference of concentration, and inversely proportional to the distance of the

elements from one another” [1].

The flux is the rate of transfer of the diffusing substance through a unit of area and the concen-

tration gradient is measured normal to this area [1]. A large number of measurements have been

made within the framework of this law. Deviations from Fick’s law are therefore treated by making

the diffusion coefficient concentration dependent in order to retain the basic proportionality. The

justification for this will be explored later in this chapter.

Some elements diffuse faster in a solution than others; each component of the solution is associated

with its characteristic intrinsic diffusion coefficient DA. This represents the flux JA of component

“A” in a binary A-B substitutional solution containing a concentration gradient of A (and hence of

B).

When the two species in an interdiffusion experiment have unequal intrinsic mobilities in a system

where diffusion occurs by a vacancy mechanism, there will be a net flow of matter in the direction

103
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of the more mobile element. If a diffusion couple is constructed with inert markers at the interface,

fixed to the laboratory bench, then the specimen will move relative to the markers during diffusion

(Figure 3.1), a phenomenon known as the Kirkendall effect [2, 3]. This bulk flow of matter con-

tributes to composition change at any point but is not accounted for in the definition of intrinsic co-

efficients. The substitution of intrinsic diffusion coefficients into Fick’s first law is therefore said to

define fluxes Ji relative to the Kirkendall (or lattice fixed) frame of reference in which ∑i Ji =−J!,

where J! is the flux of vacancies. The Kirkendall frame moves with the velocity of the inert markers

relative to the laboratory frame to which the specimen is fixed.

(a)

(b) (b)

Figure 3.1 (a) The Kirkendall effect during diffusion by a vacancy mechanism. J represent the fluxes of

the two elements A and B in the diffusion couple and t is the time. DA > DB. The inert markers are fixed to

the laboratory frame. Unequal fluxes result in a net transport of matter relative to the markers. (b) A Cu-Ni

multilayer heat treated at 1273 K for 1 min. (c) The same after holding at 1273 K for 15 min. Cu diffuses faster

than Ni in the Cu-Ni solid solution, leading to a net flow of vacancies into the copper-rich side, vacancies that

condense eventually to form pores [4]. Micrographs courtesy of David Matlock.
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An observer in the laboratory frame sees the change in composition at a point in the sample due to

both intrinsic diffusion and the Kirkendall flow of matter. The chemical or interdiffusion coefficient

D is defined relative to the laboratory frame in order to take both of these effects into account,

representing the rate at which mixing or unmixing occurs. It is the interdiffusion coefficient that

is used most frequently in practical applications, for example when dealing with transformation

kinetics, homogenisation or tempering reactions. In circumstances where DA = DB, there is no

Kirkendall effect and DA = DB = DA,B; in other words, the laboratory and Kirkendall frames of

reference become identical.

It may be convenient to define the interdiffusion coefficient D relative to other frames of reference.

In the volume-fixed frame, the fluxes Ji are measured across a section such that the total volume on

either side of the section remains constant during diffusion. The origin of the coordinate system is

at the instantaneous centre of volume. In this case,

n

∑
i

JiV i = 0,

where V i is the partial molar volume of component i in an n component solution. A coordinate

system such as this can be defined only if the partial molar volumes are constant.

The laboratory frame is also known as the number-fixed frame. In this case, the fluxes occur across

a section defined such that the total number of atoms on either side of the section remains constant:

n

∑
i

Ji = 0.

If the integral molar volume remains constant, then the volume-fixed frame coincides with the

number-fixed frame. This may be true approximately in dilute solutions where any changes in the

integral molar volume as a function of chemical composition will be small.

The frames of reference are summarised in Table 3.1; Miller [5] states that with few exceptions,

most experimental determinations of interdiffusion coefficients assume constant volume and hence

refer to the volume-fixed frame. If the further assumption is made that the molar volume remains

constant, then these coefficients are valid for the laboratory frame of reference.

Table 3.1

Frames of reference for diffusion. J! is the flux of vacancies.

Reference frame Definition

Kirkendall (lattice-fixed) ∑n
i Ji =−J!

Laboratory or number-fixed ∑n
i Ji = 0

Volume-fixed ∑n
i JiV i = 0
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The flux described in the laboratory frame includes a component Ji due to intrinsic diffusion, and

another due to the bulk flow of matter (Kirkendall effect), i.e., civK where vK is the velocity of the

Kirkendall markers and c is the local molar concentration per unit volume. It follows that [6]

JA = JA + cAvK and JB = JB + cBvK. (3.2)

The velocity of the markers depends on the volume of matter passing through a unit area in a unit of

time. The net flux across the markers is JA+JB (moles m−2 s−1). Noting that 1/(cA+cB) is simply

the volume per mole,

vK =−
volume past markers

area× time
=−

JA + JB

cA + cB
. (3.3)

The negative sign indicates that the markers move in a direction opposite to the net flux. Since

cA/(cA + cB) is the mole fraction xA, substitution for the Kirkendall velocity into Equation 3.2

yields

JA = xBJA − xAJB. (3.4)

The relationship between the chemical diffusion coefficient and intrinsic coefficients therefore be-

comes

D = xBDA + xADB. (3.5)

This description of interdiffusion in a binary alloy requires just one diffusion coefficient, though

some information is omitted unless the Kirkendall velocity also is stated.

The tracer diffusion coefficient, D∗, describes the motion of radioactively labelled isotopes in an

otherwise chemically homogeneous solution. When the tracer atoms are of the same species as the

non-tracer atoms, the coefficient becomes the self-diffusion coefficient. Tracer and self-diffusion

coefficients describe purely random motion, not intended to represent diffusion in concentration

gradients. In self-diffusion measurements there is a mass difference between the radioactive isotope

and the solvent, which causes the two isotopes to vibrate with different frequencies in the lattice.

The vibration frequency is proportional to the inverse square root of the mass m of the atom. For

two different isotopes of the same species, it follows that

D∗
1 −D∗

2

D∗
2

∝
m
− 1

2
1 −m

− 1
2

2

m
− 1

2
2

(3.6)

with the proportionality constant fc∆K, where the Bardeen-Herring correlation factor fc accounts

for the non-random path of a defect such as a vacancy around a “solute” because some of its jumps

are reversed. It is possible that a number of adjacent atoms might participate in the vibration mode

which causes a particular atom to migrate; ∆K is the fraction of the total kinetic energy attributed to

the vibration mode, which resides in the migrating atom [7]. ∆K is unity when the migrating atom

is not coupled with its neighbours.

In contrast with self-diffusion, an additional virtual force acts on the diffusing species in a chemical

potential gradient:

D = xBDA + xADB = (xBD∗
A + xAD∗

B)× thermodynamic factor (3.7)
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where the nature of the thermodynamic factor will be described later (Section 3.16). When the

thermodynamic factor is close to unity or if the solute concentration xB - 1, then D ≈ DB ≈ D∗
B.

3.2.1 REACTION RATE EXPRESSION

The diffusion coefficient for transport by a vacancy mechanism must depend on the probability of

finding a vacancy in a neighbouring site, on the barrier to the migration of that vacancy and on the

frequency with which diffusion jumps are attempted along the appropriate direction:

D = νa2 fc exp

{

−
∆GF +G∗

M

kT

}

(3.8)

where ∆GF is the free energy of formation of a vacancy with exp{−∆GF/kT} representing the

probability of forming a vacancy. G∗
M is the activation free energy for the migration of the vacancy,

ν is the frequency with which diffusion is attempted in the direction of the overall flux, a is the

lattice parameter and fc the Bardeen-Herring correlation factor. This is a rather general description

of the use of reaction rate theory in understanding diffusion. Much more detail about the individual

factors can be found elsewhere [8]; the important issue in the present context is the form of the

equation. In particular, the free energies can be factorised into their entropic S and enthalpic H

components:

D = νa2 fc exp

{

−
∆SF + S∗M

k

}

exp

{

−
∆HF +H∗

M

kT

}

≡ Do exp

{

−
Q

kT

}

(3.9)

where Do is the pre-exponential factor and Q is the activation enthalpy for diffusion. In the case of

interstitial diffusion, there is in general no shortage of vacant interstices so the activation enthalpy

for interstitial diffusion is much smaller because ∆HF = 0. Interstitial diffusion is therefore much

faster than substitutional diffusion by a host-atom vacancy mechanism.

3.3 DIFFUSION OF CARBON IN FERRITE

A carbon atom is about 60% of the size of an iron atom so consistent with the Hume-Rothery rules,

occupies the interstices within the crystal structure. Because the concentration of carbon tends to

be small, the chances of finding a vacant interstice adjacent to an atoms of carbon are large. This is

unlike substitutional solutes, so carbon is much more mobile in solid iron; it can, for example, rear-

range into a different location at ambient temperature leading to changes in macroscopically observ-

able properties, such as the yield point effect or Snoek damping. At high temperatures, its solid-state

diffusivity compares with the self-diffusivity of iron in its liquid state at about 10−10 m2s−1.

3.3.1 INTERSTITIAL SITES IN FERRITE

There are two kinds of interstitial sites in iron capable of accommodating small atoms such as

carbon, nitrogen or hydrogen. These are the tetrahedral and octahedral sites, illustrated in Figure 3.2.



108 Theory of Transformations in Steels

(a) (b)

(c)

Figure 3.2 The main interstices in the body-centred cubic structure of ferrite. (a) An irregular octahedral-

interstice; (b) a tetrahedral interstice; (c) location of both kinds of interstices.

The octahedral interstices in ferrite are not regular. One of the axes has a length aα, the lattice pa-

rameter of ferrite, whereas the other two are along the 〈1 1 0〉 directions with length
√

2aα. The

shortest axis has four-fold symmetry so a vacant octahedral site in ferrite has tetragonal symmetry
4
m

2
m

2
m . Adjacent octahedra have their axes inclined at 90◦ to each other. Since the close-packed

direction is 〈1 1 1〉, the radius of an iron atom in ferrite is aα
√

3/4. The smallest axis of the octa-

hedron is parallel to the cell edge so the radius of the largest sphere which can fit in the octahedron

without any distortion is aα(1/2−
√

3/4) = 0.067aα. This compares with the space available along

the 〈1 1 0〉 where the corresponding radius is much larger, at aα(1/
√

2−
√

3/4) = 0.274aα.

The tetrahedral interstice in ferrite is also irregular (Figure 3.2). Two of its edges lie parallel to

〈1 0 0〉 directions, the remaining four being along 〈1 1 1〉 directions, with lengths aα and aα
√

3/2

respectively. The lines joining the corners of the tetrahedron to its centre are of the form 〈2 1 0〉.
These lines each have a length aα

√
5/4; given that an iron atom in ferrite has a radius aα

√
3/4,

the radius of the largest atom which will fit without distortion is aα(
√

5/4−
√

3/4) = 0.126aα.

This is much larger than is the case for the octahedral hole. It follows that a sphere which fits

into an octahedral hole without distortion has free passage through the crystal since the intervening

tetrahedral holes are larger. No interstitial atom, with the possible exception of hydrogen, satisfies

this condition.

Calculations of the distortions caused by carbon in ferrite are summarised in Table 3.2 [9], where

the position vectors originate at the carbon atom and are in units of aα/2. The distortion falls

off rapidly with distance (cf. the iron atoms at 1,0,0 and 3,0,0 for the octahedral hole). The huge

displacements at 1,0,0 exclude the octahedral interstice located at distance aα along the tetragonal

axis from occupation [10], as verified experimentally using a diffuse X-ray scattering technique

[11].

The radius of an interstitial atom such as carbon depends on its environment. There is evidence
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Table 3.2

Positions of iron atoms relative to a carbon atom located at the origin, for octahe-
dral and tetrahedral interstices. The position vectors are in units of aα/2 and the
last column describes the number of equivalent iron neighbours. The data are from
Johnson, Dienes and Damask [9] where a more comprehensive listing can be found.

OCTAHEDRAL

Perfect position Displaced position Number

1 0 0 1.225 0.000 0.000 2

3 0 0 3.046 0.000 0.000 2

0 1 1 0.000 0.958 0.958 4

0 3 3 0.000 2.955 2.955 4

1 0 2 1.017 0.000 1.986 8

TETRAHEDRAL

0 1
2 1 0.000 0.529 1.116 4

1 3
2 0 0.983 1.459 0.000 4

2 1
2 1 2.011 0.506 1.015 8

that both carbon and nitrogen in austenite are positively charged [12–15]. A good estimate can be

made by measuring the change in the lattice parameter of untempered, high-carbon martensite as a

function of the carbon concentration. Based on such data, Beshers [16] concluded that both carbon

and nitrogen in ferrite have a radius of 0.082 nm (≈ 0.286aα).

Carbon mainly occupies the octahedral interstices in ferrite and martensite. It is large enough to

push all six of the neighbouring iron atoms apart. The octahedral hole becomes nearly spherical,

occupying some of the space that is in the undistorted lattice assigned to the neighbouring four

tetrahedral interstices (Figure 3.2c). The activation volume V ∗ in general has the components:

V ∗ = ∆VF +∆VM (3.10)

where ∆VF is the change in volume upon the formation of one (interstitial) vacancy, in this case zero

since the vacancies are always there; ∆VM is the difference in volume between the stable configura-

tion, and the configuration at the saddle point during the jump between adjacent sites.

The activation volume is related to the activation free energy G∗ as follows:

V ∗ =

(
∂G∗

∂P

)

T

(3.11)

and if D = Do exp{−G∗/kT} then if follows that

V ∗ =−kT

(
∂ ln{D/Do}

∂P

)

T

. (3.12)
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The activation volumes for the diffusion of carbon and nitrogen in ferrite determined by relaxation

methods at temperatures in the range 238-253 K and 300 MPa pressure is close to zero [17–19],

i.e., the respective diffusion coefficients are insensitive to pressure. However, measurements of car-

bon diffusion at elevated temperatures (889-1000 K) reveal larger activation volumes that vary with

temperature, with significant sensitivity to pressure [20]. The mechanism for the observations is not

entirely established but it is argued that there may be a change in the mechanism of diffusion.

Beshers [16] has estimated the strain and activation energies for each interstitial site and diffusion

path using continuum elasticity theory. The strain energy was assumed to be proportional to the

square of the displacement and to the Young’s modulus in the direction of motion. Any movement

at right angles to the direction of motion were discounted; parallel displacements were added be-

fore squaring. Neglecting Poisson’s effects, the strain energy associated with the occupation of an

octahedral (UO) and tetrahedral (UTe) site is given by

UO ∝ 2(ri − ro)
2E100, UTe ∝ 4(ri − ro)

2E210 (3.13)

where ri is the interstitial-atom radius, ro is the radius of the undistorted hole and E the Young’s

modulus along the crystallographic direction identified in the subscript. For r = 0.08 nm, UTe/UO =

1.38. On this basis, the octahedral site is favoured, even though the tetrahedral interstice can ac-

commodate somewhat larger interstitials. Some calculations suggest that there is a difference in the

chemical energy of solution between the octahedral and tetrahedral sites that also makes the former

interstice the favoured location for carbon atoms [21].

The activation energies for diffusion given ri = 0.08 nm were found to be QO→O/UO = 1,

QO→T/UO = 0.69, QT→O/UO = 0.31 and QT→T/UO = 0.91. The favoured diffusion path is there-

fore O → T → O; direct jumps between octahedral sites are unlikely.

An interesting consequence of the misfit between the interstitial and interstice is the Snoek effect in

which ordering occurs under the influence of a stress. The strain field about the (irregular) octahedral

hole has tetragonal symmetry. The application of a stress makes some of the sites less tetragonal

than others and hence favours their occupation. Beshers demonstrated that the asymmetry of the

strain field about the tetrahedral sites can in principle lead to a similar ordering of interstitials [16].

3.3.2 DUAL-SITE OCCUPANCY

Because of its limited solubility in ferrite, the diffusion coefficient of carbon often is measured

using internal friction experiments, where the damping of imposed vibrations yields data about

the diffusion of interstitials between adjacent sites. Traditional mass flow methods can be used to

determine diffusivity at high temperatures. The combined data from these different techniques cover

some fourteen orders of magnitude in the diffusion coefficient. The data do not strictly follow an

Arrhenius relationship over this range of temperatures, with perceptible deviations from the straight

line on a plot of ln{D} versus T−1, Figure 3.3. They can, over this range, be described empirically

by the equation [22]:

lnD =−11.297− 1.197

(
104

T

)

+ 0.0037

(
104

T

)2

m2 s−1. (3.14)
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Figure 3.3 Diffusion data for car-

bon in ferrite, showing deviations at

high temperatures from the Arrhenius

behaviour. Data from compilation by

McLellan, Rudee and Ishibachi [23].

One explanation for this nonlinear behaviour relies on the two kinds of interstitial sites available

in ferrite, the octahedral (O) and tetrahedral (Te) sites [23]. Although the fraction of carbon atoms

that reside in the tetrahedral sites is small (about one atom in a thousand at high temperatures), the

deviation from linearity is nevertheless significant because the activation energy for jumps between

adjacent tetrahedral sites is relatively small.

Let the activation free energies for the O→Te and Te→O jumps be G∗
O and G∗

Te respectively. The

jump probability for O→Te is proportional to βTe exp{−G∗
O/RT}, where βTe is the number of tetra-

hedral sites per solvent atom, into which a carbon atom originally in the octahedral site can jump.

The probable ratio of the number of occupied tetrahedral sites (NTe) to occupied octahedral sites is

given by

NTe

NO
=

βO

βTe
exp

{

−
G∗

Te −G∗
O

RT

}

. (3.15)

Since βO = 3 and βTe = 6, the fraction φO of carbon atoms in the octahedral sites is

φO = 1−
(

3

6
exp

{

−
G∗

Te−G∗
O

RT

}

+ 1

)−1

(3.16)

Given the distribution of carbon atoms amongst the octahedral and tetrahedral sites, it becomes

possible to consider the combined effect of the diffusion paths between near neighbour interstices:

(i) An atom in a tetrahedral site can jump either into an adjacent Te site, or an O site.

(ii) Given that direct jumps between neighbouring octahedral sites must involve passage

through a tetrahedral site, a third diffusion path is O-Te-O.

The overall diffusion coefficient D is then

D = φODO−Te−O +(1−φO)φTe−TeDTe−Te

+(1−φO)(1−φTe−Te)DTe−O−Te (3.17)
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where φTe−Te is the fraction of carbon atoms in the tetrahedral sites which jump by the Te→Te route.

By fitting this equation to the experimental data, McLellan et al. were able to explain the nonlinear

behaviour in the Arrhenius plot, assuming the parameter values given in Table 3.3.

Table 3.3

Parameters describing the diffusion of carbon in ferrite. The first set is due to
McLellan, Rudee and Ishibachi [23], derived by fitting the dual-occupancy model
to experimental data. Do,Te−Te was corrected slightly by Condit and Beshers [24].
The second set is due to Beshers [16]. Do is the pre-exponential in the equation
D = Do exp{−Q/RT}, where Q is an activation enthalpy. G∗ the activation free energy.
UO is the energy of a carbon atom in an octahedral site.

Dual occupancy model Calculations using elasticity theory

Do,O−Te−O 3.3× 10−7 m2 s−1 QO−O/UO 1

Do,Te−Te 2.6× 10−4 m2 s−1 QO−Te/UO 0.69

QO−Te−O 80.8 kJmol−1 QTe−O/UO 0.31

QTe−Te 61.5 kJmol−1 QTe−Te/UO 0.91

G∗
Te −G∗

O 30.1+ 4.4RT kJmol−1

φTe−Te 0.86

The data in Table 3.3 show that the two models give a different trend for the activation energy for

jumps between tetrahedral sites when compared with the O-Te-O route. Beshers predicts the latter

route to have the smallest activation energy, whereas McLellan et al. attribute a smaller value for

the Te-Te jumps. The diffusion data for carbon in ferrite have been measured using a variety of

techniques including internal friction and mass flow experiments. In internal friction the carbon

atoms jump to octahedral sites that are favoured by the applied stress so the appropriate activation

energy is QO−Te−O. Atoms located in different kinds of sites can be distinguished by the temperature

or frequency corresponding to the maximum in the damping of vibrations so there is less ambiguity

in the diffusion path. In contrast, mass flow experiments access all possible diffusion paths. It is

difficult to reconcile the dual occupancy model with the fact that the two kinds of experiments give

identical diffusion coefficients in a regime that shows deviations from the strict Arrhenius law [22].

Only a single stage diffusion mechanism would give identical diffusivities with internal friction and

mass flow experiments.

This discussion will be developed further when considering the influence of the magnetic transition

in ferrite on the diffusion process.

3.4 DIFFUSION OF CARBON IN MARTENSITE

The irregular octahedral interstices with axes of magnitude aα,
√

2aα and
√

2aα in the body-centred

cubic lattice of ferrite are all crystallographically equivalent. There are three such interstices per iron

atom. The anisotropic distortion that accumulates when carbon atoms can locate preferentially on
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one of the three sub-lattices of interstitial sites causes the lattice to become tetragonal and those

particular interstices are then slightly expanded along the c-axis of the bcc lattice relative to the

other two unoccupied sites, which are contracted relative to the cubic lattice, Figure 3.4a. During

diffusion it may be necessary for the carbon atom to jump into the less favoured contracted holes.

The diffusion of carbon in tetragonal martensite is therefore expected to be slower than in ferrite

[25].

For the body-centred tetragonal lattice, Zener [10, 26, 27] has estimated the energy UC to move

a single carbon atom from a preferred to an unfavourable adjacent octahedral site. Assuming that

the tetragonality in the first instance is caused by the application of a stress along [100] in a single-

crystal sample of the random solution, the resulting strain ε causes an increase in the internal energy

by 1
2 E100ε2, where E100 is the appropriate elastic modulus. If the random solution is now induced

to order completely, then the total change in energy is

1

2
E100ε2 −

2

3
NC

VUC (3.18)

since only two-thirds of the carbon atoms need to redistribute in the transition from the random to

the ordered state. The term NC
V is the number of carbon atoms per unit volume. When the work

done by the applied stress is equal to the reduction in energy on the ordering of the carbon atoms,

the external stress is not needed to maintain the strain ε . This condition is realised by setting the

derivative of the total energy with respect to the strain to zero,

E100ε −
2

3
NC

V
dUC

dε
= 0. (3.19)

Zener assumed that the energy UC, which is the difference in the energy of a carbon atom in a

preferred site and the corresponding term in the unfavourable site, is proportional to the strain, i.e.,

UC ∝ −E100ε . This is then converted into an equality by multiplying by the strain ε∗ introduced

when one carbon atom per unit volume is transferred into a preferred site:

UC = E100 ε∗ε (3.20)

For a sample in which randomly distributed carbon atoms change into a fully ordered configuration,

the strain ε∗ = ε/( 2
3 NC

V), so that

UC =
2

3
E100 ε2

∗NC
V . (3.21)

Hillert has estimated the UC = 4.6543×10−20 wC Jmol−1, where wC is the weight percent of carbon.

Hillert [28] argued that the effect of introducing tetragonality to the cubic lattice is to lower the

energy of the preferred site by 1
2UC and to raise that of the contracted site by the same amount

(Figure 3.4b). In this way, the height of the barrier from the preferred site is increased by 1
2UC, so

that the jump probability from that site is correspondingly reduced by a factor exp{−NaUC/2RT}.

Assuming that long-range diffusion is dominated by the largest barrier, he concluded that

Dα′ ≈ Dα exp{−NaUC/2RT} (3.22)
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where α (bcc) and α′ (bct) refer to ferrite and martensite respectively. The diffusivity in marten-

site should decrease exponentially with its carbon concentration assuming that the martensite is

tetragonal at the temperature and concentration of interest.

(a) a
a

c

al-c
al-a

al-c
al-a

(b)

UC
UC

Figure 3.4 Octahedral and tetrahedral sites on the surface of a body-centred tetragonal cell [29]. The c/a

ratio has been exaggerated for the purposes of illustration. Hollow circles represent expanded holes, whereas

filled circles represent those that are contracted, the deformations being defined with respect to the cubic lattice.

(b) The influence of tetragonality on the barrier to diffusion between adjacent octahedral sites.

3.5 INTERACTIONS BETWEEN CARBON ATOMS

3.5.1 REPULSION BETWEEN CARBON ATOMS

Carbon atoms in adjacent interstitial sites in austenite or in ferrite repel each other. The resulting

interaction energy ω is defined in thermodynamic models as follows (p. 66):

ω = εuu − 2εu (3.23)

where εu is the energy per interstitial-vacancy/carbon pair and εuu is the energy per C-C pair. The

properties of graphite suggest that the short-range repulsive component of the C-C interaction can

be written [30, 31]:

Urep = 1856exp(−35.75r) eV (3.24)

per C-C interaction at distance r in nm.

It is found from the analysis of thermodynamic data that ωγ = 8250Jmol−1 or 0.086 eV per C-C

pair [32] and ωα ≈ 150,000Jmol−1 or 1.54 eV per C-C pair [33]. The closest approach distance of

carbon atoms in austenite is 0.252 nm, giving Urep = 0.23 eV per pair. Similarly, the closest approach

distance of carbon atoms in ferrite is 0.143 nm, giving Urep = 11.0 eV per pair. The values of Urep

and ω are not for direct comparison since the latter is a net interaction energy. But Urep does explain

why ωα . ωγ; there is a much shorter approach distance for carbon atoms in ferrite.

Equation 3.24 is derived for graphite, where the C-C spacing between planes is large (0.335 nm) and

it refers to the residual repulsion when the bonding molecular orbitals of the carbon atoms are filled.

The equation should not be structure dependent provided that the carbon orbitals are saturated, as

they probably are for carbon in transition metals. However, the expression strictly applies at large



Diffusion 115

C-C distances. While in principle, there could be a close distance of approach in ferrite (0.143 nm),

in practice the carbon atoms are never likely to get as close as that, preferring to occupy second near

neighbour sites. They are a good deal apart even in cementite (Chapter 8). On the other hand, carbon

atoms get as close as 0.127 nm in certain transition metal carbides [34, pp. 66-67]. This happens

when there is direct carbon-carbon covalent bonding, similar to that in diamond and within the

basal planes of graphite, where the bond length is just 0.13 nm. In the unlikely event that the carbon

atoms get as close as this in ferrite, then the expression for Urep would have to be used alongside a

strong molecular bonding term. There is much evidence against the existence of covalently bonded

carbon pairs in ferrite, for example from the high mobility of carbon in ferrite.

The repulsion between carbon atoms complicates the analysis of diffusion. Experimental measure-

ments usually assume that the diffusion coefficient does not depend on the magnitude of the gradient

of concentration. It will become apparent later that the repulsive forces between the carbon atoms

affect the migration of the carbon in a differential manner with respect to motion up or down the

gradient. This problem is important in austenite because large gradients can arise, but not in ferrite

where the low solubility of carbon limits the concentration gradients that can develop.

3.5.2 CLUSTERING OF INTERSTITIAL ATOMS

The probability in a random, ideal solution that interstitial atoms occupy adjacent sites is propor-

tional to x2, where x is the mole fraction of the solute. However, the adjacent sites are so close in

ferrite ( 1
2 aα) that electrostatic, thermodynamic and elastic strain considerations completely exclude

them from simultaneous occupation. In austenite the nearest approach distance for a pair of intersti-

tials is larger, but the probability that adjacent sites are simultaneously occupied is much less than

expected at random because of the repulsion between carbon atoms.

In ferrite, the interstices located at 0, 1
2 ,

1
2 and 0,0, 1

2 have tetragonal symmetry; the long axis is

in each case parallel to an edge of the body-centred cubic unit cell. Carbon atoms that at first

are randomly dispersed amongst the three tetragonal orientations can order under the influence of

stress. The favoured orientation is that where the distortion caused by the stress makes it easier to

accommodate the carbon. This stress-induced ordering is responsible for the Snoek effect in which

the damping of vibrations by the migration of atoms between sites can be used to estimate the

mobility and concentration of dissolved carbon. A similar effect does not exist in austenite where

all the octahedral interstices (which have cubic symmetry) are equivalent even under the influence

of an external load. Consequently, the only information available about the distribution of carbon in

austenite comes from thermodynamic analysis, that the carbon atoms in adjacent sites repel.

The clustering of nitrogen and carbon in ferrite has been assessed on the basis of the associated

strain energy. The methods range from macroscopic elasticity [10] to those in which the strain

energies are estimated using interatomic potentials. The focus here is on the latter which ought to

be more reliable given that the local distortions may exceed the limits of linear elasticity theory. As

emphasised in Section 3.5.1, clusters involving near-neighbour pairs are impossible in ferrite; the

calculations therefore refer to more distant pairs of atoms as illustrated in Figure 3.5. The results

rely on strain interactions alone without accounting for electrostatic effects; there is evidence to
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suggest that the interstitial atoms in iron are positively charged [12–15].

Strain interactions undoubtedly support a tendency for both carbon and nitrogen to cluster in iron

[9, 29, 35, 36]. The di-carbon, tri-carbon and tetra-carbon binding energies have been estimated

to be about 0.13, 0.36 and 0.66 eV respectively, with the binding energies for even larger clusters

increasing by about 0.31 eV per additional atom. These energies are insensitive to the carbon con-

centration. The clusters are predicted to form as thin plates on {0 0 1} planes when the carbon atoms

are in octahedral sites. They can migrate by the motion of peripheral atoms, although the activation

energy for a concerted motion is large.

(a) (b)

(c)

Figure 3.5 Three possible di-carbon clusters, which on the basis of strain energy alone are stable with

binding energies of 0.13 eV, 0.11 eV and 0.08 eV for (a), (b) and (c) respectively. Note that in all cases the

carbon atoms do not occupy near-neighbour interstitial sites. After Johnson, Dienes and Damask [35].

There is experimental evidence for the existence of carbon atom clusters in ferrite, and even for their

diffusion through the lattice. Keefer and Wert [37, 38] in their studies of stress-induced ordering

found that at low temperatures (≈ 250K), the vast majority of nitrogen or carbon atoms in ferrite

are isolated from each other. However, about 5% associate as pairs or triplets. The binding energies

for C-C and N-N pairs were estimated to be about 0.08 eV and 0.065 eV respectively, consistent

with the calculations by Johnson et al. [35]. For triplets, the corresponding binding energies were

found to be 0.26 eV and 0.22 eV for carbon and nitrogen respectively. The mobility of clusters must

naturally be smaller than that of individual atoms since their diffusion requires either the coordinated

movement of the constituent atoms, or the breaking and reforming of the groups.

Keefer and Wert’s experiments were based on the damping of vibrations so it was not possible
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to obtain a precise definition of the clusters. Given the large repulsion between carbon atoms in

adjacent sites in ferrite, the clusters are presumably formed of next near-neighbour interstitial atoms

separated by aα.

The strain fields of the atoms that constitute the carbon pairs illustrated in Figure 3.5a,b are parallel;

each pair can translate to the right by aα/2 [35]. The resulting reorientation of the strain fields can

be detected in an internal friction experiment. For the case illustrated in Figure 3.5c, the two carbon

atoms have their tetragonal axes perpendicular to each other and this would remain the case after

diffusion; such motion cannot therefore be detected in internal friction experiments such as those of

Keefer and Wert.

3.5.3 ASSOCIATION OF CARBON WITH DEFECTS

Much of the information on the migration of carbon atoms associated with defects such as iron-

vacancies and iron-interstitials comes from irradiation experiments simulations of defect-clusters

and their mechanisms of migration using interatomic potentials. The defects can trap solutes and

hence alter the nature of precipitation reactions in irradiated iron.

Interstitial type complexes

The stable Fe-interstitial in α-iron has a “split” configuration in which two atoms are symmetrically

disposed in a 〈110〉 direction about a normal site which is vacant. In Figure 3.6a, the carbon atom

is lower than its normal position by 0.025aα; the centre of the split interstitial is similarly displaced

downwards by 0.06aα, the distance between the atoms of the split interstitial being 0.75aα [9]. An

interstitial such as this has a binding energy with the carbon atom of about 0.5 eV. The migration

energy for the isolated iron interstitial is 0.3 eV. A complex may be formed when a migrating iron

interstitial is trapped by association with carbon. For the iron-interstitial to escape from the carbon

will necessitate overcoming an energy barrier greater than 0.8 eV. The alternative proposal that the

carbon can escape from the cluster is not relevant because the migration energy of carbon is larger

(0.86 eV), meaning that it would need 1.36 eV to escape. It goes against intuition to think that

the carbon is less mobile than the Fe-interstitial, but because the split interstitial is a high-energy

configuration, the Fe can migrate freely above approximately 80 K, whereas carbon becomes mobile

in this context, at much higher temperatures (≈ 200K).

An iron di-interstitial consisting of two parallel split interstitials is also possible and has a bind-

ing energy with the Fe-interstitial/carbon complex of about 1 eV. This grande complex therefore

dissociates at higher temperatures.

Vacancy type complexes

An iron vacancy in ferrite has a binding energy with an atom of carbon of about εC! = 0.41−
0.48 eV [39]. A carbon atom encountering a vacancy does not fall into it, but moves towards it

along 〈100〉 as illustrated in Figure 3.6b, remaining attached to five of the adjacent iron atoms.

Positron annihilation studies indicate that the carbon atom is about 0.365aα from the vacancy centre,

forming a dumbbell configuration with the vacancy [40]. In irradiated samples, precipitation causes
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(a) (b)

Figure 3.6 The most stable position of a carbon atom (black) in a defective unit cell of ferrite [9, 29]. (a)

There is a split interstitial of a pair of iron atoms (heavy dashed line along 〈110〉) causing the carbon atom to

relax downwards by 2.5% of the lattice parameter. (b) The effect of an iron vacancy on the position of carbon.

the carbon-vacancy complexes to dissociate at approximately 250 ◦C [41]. Notice that this does not

mean, as is sometimes argued, that under equilibrium conditions the complex decomposes above

250 ◦C, since at that temperature the binding energy is almost an order of magnitude greater than

the thermal energy kT . The problem is important because the association of a carbon atom with a

host vacancy may influence its mobility. There is theory to handle this scenario, based on a generic

treatment of the thermodynamics of interstitial-vacancy interactions in solid solutions [42], that has

been applied to these interactions in ferrite [43]. The most probable complexes involve the pairing

of a single host vacancy with a single carbon atom. The fraction yC! of carbon atoms complexing

in this way is given by [43]:

yC! =
zx! exp{εC!/kT}

βO(1− f{θ ,εC!,x!})

f{θ ,εC!,x!} = x!(1+ 4θ exp{εC!/kT}) (3.25)

where the equilibrium concentration of vacancies, x! = exp{−∆H!
F /kT}, where ∆H!

F ≈ 1.5eV

is the enthalpy of formation of a vacancy.1 Using an exaggerated value of the binding energy

εC! = 0.8eV gives the fraction of carbon atoms that are present as carbon-vacancy pairs as ≈ 10−7.

The logical conclusion is that this cannot perceptibly affect either the thermodynamic function of

carbon in iron nor the diffusivity of carbon or iron [43]. This remains the case even if, for exam-

ple, the concentration of vacancies is increased a hundred fold. Consistent with this, first principles

calculations combined with Monte Carlo simulations have failed to reveal any significant effect of

interstitial-vacancy complexes on equilibria between ferrite and nitride or carbide in Fe-N and Fe-C

systems respectively [44]; these calculations reveal εX! for X=O, N or C as 1.43, 0.73 and 0.41 eV.

An iron vacancy in ferrite could in principle accommodate a pair of carbon atoms. However, kinetic

data suggest that such di-carbon/vacancy clusters do not form in practice, presumably because of

electrostatic repulsion between the carbon atoms [29].

It is suggested that the presence of carbon in austenite, by association, reduces the vacancy formation

energy and thereby increases the self-diffusion coefficient of iron. However, these claims do not
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seem to be well-founded, first because of the small fraction of carbon atoms that would associate

with vacancies, and second because the space within the host vacancy to associate with the carbon

will be reduced and hence make self-diffusion more difficult.

There is a strong repulsion (−7eV) between a carbon atom and an iron vacancy in austenite [39].

The carbon should therefore remain in the octahedral holes even in the presence of adjacent va-

cancies. This is because a carbon atom in an iron vacancy would hardly interact with its now more

distant iron atom neighbours.

3.6 DIFFUSION OF CARBON IN AUSTENITE

The diffusion coefficient of carbon in austenite increases by a factor of five as the concentration

changes from 0 to 0.05 mole fraction [45, 46]. This cannot be explained in terms of the thermody-

namic factors that are used to convert diffusion based solely on concentration gradients to the more

logical free-energy gradients, as discussed in Section 3.16.

Carbon occupies octahedral interstices in austenite (Figure 3.7). Unlike ferrite, the octahedra are

regular with all three axes equal in size. As a consequence, the distortion caused by carbon is spher-

ically symmetrical and essentially interacts only with the hydrostatic component of the stress field

of the dislocation. Carbon is therefore much less effective as a solid solution strengthening agent in

austenite than in ferrite. Since the distortion it causes is symmetrical, there is no tendency for the

carbon atoms in austenite to order.

Figure 3.7 The octahedral inter-

stices in austenite. Unlike the case for

ferrite, each of the three axes of the

octahedron is equivalent. There is one

octahedral interstice per iron atom in

austenite.

3.6.1 DEPENDENCE OF DIFFUSIVITY ON COMPOSITION

The sensitivity of the diffusivity of carbon in austenite has been investigated [47] using Eyring’s

absolute reaction rate theory. During diffusion, an atom which is in a potential well must overcome

a barrier in order to translate into an adjacent equilibrium position. The rate theory postulates that

an activated complex forms at the peak of the barrier, the energy of which differs from that in the

potential well by the activation free energy G∗. The ratio of the activity of the activated complex to

that of the reactant in the ground state is given by:

am

a
= exp

{

−
G∗

kT

}

. (3.26)



120 Theory of Transformations in Steels

Since the activity is related to the atom fraction by an activity coefficient Γ, the fraction of solute

atoms that are in the activated state is given by:

xm

x
=

Γ

Γm
exp

{

−
G∗

kT

}

(3.27)

where Γm is the activity coefficient of the solute atoms at the saddle point, assumed constant given

that the concentration of activated complexes will always be small.

If the number of solute atoms per unit volume is c, then the number per unit area of a plane with

spacing δs is cδs; of these, (xm/x)cδs will be in the activated state. The number of jumps in a unit

of time across a unit area of the {002} planes designated 2 and 3 in Figure 3.8 is proportional

to the number of activated complexes and the attempt frequency kTD/h where TD is the Debye

temperature.

Figure 3.8 Illustration of the concentration gradient along the z direction of the austenite lattice. The iron

atoms and interstitial sites are illustrated. The {002} austenite planes are shaded. Diffusion is considered across

the imaginary (dashed) plane sandwiched between planes 2 and 3.

This leads to the flux in the positive z direction:

J+ = cδs
kTD

h
exp

{

−
G∗

kT

}
Γ

Γm

1

m+

= cδsKo
Γ

Γm

1

m+
(3.28)

where the activity of solute on plane 2 has been replaced by the product of its concentration and

activity coefficient. The aggregation term Ko is therefore a constant at a fixed temperature. The

transmission coefficient 1
m+ represents the fraction of all possible jumps which are in the forward

direction. The flux in the reverse direction (i.e., from plane 3 to 2) is

J− =
Koδs

Γm

(

c+ δs
dc

dz

)(

Γ+ δs
dΓ

dz

)
1

m− (3.29)
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since the concentration and activity of solute changes by δs
dc
dz and δs

dΓ
dz respectively on going from

plane 2 to plane 3. If it is assumed that m+ = m− ≡ m and when terms higher than δ 2
s are neglected,

the net diffusion flux is found to be

J = J+− J−

= −
Koδ 2

s

mΓm
Γ

(
dlnΓ

dlnc
+ 1

)

︸ ︷︷ ︸

thermodynamic factor

dc

dz
. (3.30)

Figure 3.9 shows how the variation in the diffusion coefficient with the carbon concentration as

measured experimentally is more pronounced that that calculated using Equation 3.30. Evidently,

there are other effects which cause diffusion to be faster than just the thermodynamic factor. The

term dlnΓ
d lnc + 1 is alternatively written c d lnΓ

dc + 1 or dlna
d lnc .

Figure 3.9 Comparison of the mea-

sured diffusivity of carbon in austen-

ite, against that calculated allowing for

the thermodynamic factor. Data from

Kirkaldy [48].

3.6.2 DEPENDENCE OF DIFFUSIVITY ON C-C INTERACTIONS

Smith [46], and later Kirkaldy [48], demonstrated that neither the thermodynamic factor nor the

proportionality of mobility to the activity coefficient can account for the composition dependence

of the diffusivity of carbon in austenite.

There is another effect peculiar to the strong repulsion between carbon atoms in solution that re-

solves the puzzle [49, 50]. The gradient of carbon concentration then influences migration because

the probability of interstitial site occupation in the vicinity of an occupied site depends on the re-

pulsion. In such a gradient, a carbon atom attempting random motion therefore sees an exaggerated

difference in the number of available sites in the forward and reverse directions, making diffusion

down the gradient particularly favourable. A carbon atom is affected more by the repulsion when it

jumps into a carbon-rich region up a concentration gradient then when it enters a lower concentra-

tion regime down that gradient.

These repulsive interactions contribute to the concentration dependence of the diffusion coefficient;

the description that follows is due to Siller and McLellan [49, 50], who incorporated the repulsion

explicitly via the transmission coefficients 1/m+ or 1/m−. Referring to Figure 3.8, an atom on the
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ith plane can jump on to planes (i− 1), (i) or (i+ 1); of all these possibilities, just a few contribute

to flow in the intended direction. It is this fraction of correctly oriented jumps that the transmission

coefficient represents. Figure 3.8 shows also the twelve possible near-neighbour sites that a carbon

atom located at position “A” can jump into, four on its own plane and four each on the two adja-

cent planes. Geometric considerations alone therefore reduce the chance of a jump in the forward

direction by a factor of three; there is a further reduction by a factor of 2 because the activated

complex can relax with equal probability in the forward and backward directions [51]. Therefore,

the transmission coefficient 1
m+ is, for diffusion jumps from plane 2 to 3, given by

1

m+
=

1

2
×

s3

s1 + s2 + s3
(3.31)

where the subscripts give the location of {0 0 2} planes in the sequence shown in Figure 3.8 and the

terms si represent the number of available sites for diffusion on the i th plane. If si = 1 for all i, then

the transmission coefficient is 1
6 since four of the twelve available sites are on the forward plane.

Similarly, for jumps in the reverse direction from plane 3 to 2, the transmission coefficient is

1

m− =
1

2
×

s2

s2 + s3 + s4
. (3.32)

It remains to estimate the terms si. On each plane there will be some sites already occupied by

carbon atoms, and others that are vacant but excluded from occupation by the repulsive forces

between adjacent carbon atoms. Noting that in austenite there is one octahedral interstitial site per

iron atom,

si = NFe
P

{

1−θi−
Bi

NFe
P

}

(3.33)

where NFe
P is the number of iron atoms per plane, θi accounts for the fraction of sites that are

occupied by carbon, and Bi is the number of sites on plane i which are excluded from occupation

because of the repulsion from carbon atoms in adjacent sites. Thus,

Bi =
1

3

j=i+1

∑
j=i−1

Ne-u
j p j (3.34)

where Ne-u
j is the number of unoccupied interstitial sites which are nearest neighbours to carbon

atoms on plane j (the “e” representing an empty site, and “u” a site occupied by a carbon atom); p

is the probability that one of these sites is excluded from occupation by a neighbouring carbon atom.

The factor of 1
3 is to avoid counting the same exclusion three times when considering separately,

each plane in the set of three that are included in Equation 3.34.

Using the appropriate thermodynamic model for the solution of carbon in austenite, McLellan and

Dunn (pp. 61-63) showed that the equilibrium number of e-u pairs is:

Ne-u =
Wλ

2
(3.35)

=
W

2

NFe
P

2φ
[1− (1− 4φθ (1−θ ))1/2] (3.36)
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where θ = x1/(1− x1) is the ratio of the number of carbon atoms to the total number of solvent

atoms, W is the number of octahedral interstices around a single such interstice; W = 12 for octahe-

dral sites in austenite, φ = 1−exp(−ωγ/kT ); ωγ is the nearest neighbour carbon-carbon interaction

energy in austenite. It remains to solve for the probability p, which is

p = 1−
Nu-u

Nu
(3.37)

where Nu is the number of carbon atoms and Nu-u is the number of carbon-carbon pairs. The latter

is the difference between the number of carbon atoms and the number of carbon-vacancy pairs, i.e.,

Nu-u =
1

2
W (Nu −λ) (3.38)

All the parameters necessary to solve for the transmission coefficients are therefore determined. As

before, the coefficients can be used to calculate the forward and reverse fluxes across a plane and

hence the net flux (and ignoring terms higher than δ 2
s ):

J = J+− J−

= −
Koδ 2

s

6Γm
Γ

[
Wc

1− (W
2 + 1)θ + W

2 (
W
2 + 1)(1−φ)θ 2

dθ

dc
+

dlnΓ

dlnc
+ 1

]
dc

dz
.

(3.39)

By comparing the net flux with Fick’s first law, the diffusion coefficient of carbon (D11) that defines

its flux relative to the gradient in carbon concentration is given by2

D11{x1,T}=
kTD

h

(
δ 2

s

6Γm

)

exp

{

−
G∗

kT

}

η{θ} (3.40)

with

η{θ}
a
γ
1

= 1+

[
W (1+θ )

1− (0.5W + 1)θ +(0.25W2 + 0.5W)(1−φ)θ 2

]

+(1+θ )
1

a
γ
1

da
γ
1

dθ
(3.41)

where G∗ is, in the notation of absolute reaction rate theory, the free energy difference between

the activated complex and the reactants when each is in its standard state at the temperature of

the reaction, defined here to be independent of the temperature and composition of the austenite;

this is comparable to the activation free energy of the standard Arrhenius equation. Bhadeshia [52]

found δsG
∗/k = 21,230K and ln{6Γm/δ 2

s } = 31.84. Table 3.4 shows typically how the diffusivity

depends on the C-C interaction energy.

3.6.3 DILATATION EFFECTS

Carbon atoms are larger than the interstices in which they reside in iron. The resulting distortions

can be categorised into two types. At constant pressure, there is a mean distortion of the crystal as a
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Table 3.4

Diffusion coefficient of carbon in Fe-C austenite at 1273 K, calculated using Siller
and McLellan’s method [50] for a variety of carbon-carbon interaction energies.

C / wt% C-C interaction energy / Jmol−1 Diffusivity / 10−10 m2 s−1

0.2 0 0.198
0.2 8250 0.221
0.2 16500 0.233
0.2 24750 0.239

0.9 0 0.321
0.9 8250 0.509
0.9 16500 0.626
0.9 24750 0.693

whole, the magnitude of which is approximately a linear function of the concentration (Vegard’s law,

[53]). There are the local distortions around each atom of carbon, defined relative to the positions of

the atoms in the homogeneously distorted crystal [54]. In the context of diffusion, the homogeneous

distortions lead to a variation in the specific volume along any concentration gradient. The activation

free energy for diffusion then becomes a function of the position along the gradient. Its dependence

on the gradient of concentration can be approximated as a linear function of concentration [55, 56]:

G∗ = G∗
o +θ

dG∗

dθ
(3.42)

where θ = x1/(1− x1) is as usual, the ratio of the number of carbon atoms to the total number of

solvent atoms and G∗
o is the characteristic activation free energy for an isolated solute atom. The

term dG∗/dθ has a value of about −40kJmol−1 when compared with G∗
o ≈ 150kJmol−1, so G∗

decreases by about 2.5kJmol−1 as θ changes from 0 to 0.06.

dG∗/dθ is the product of the activation volume V ∗, and the rate at which the ghost pressure required

to restore the austenite to its undilated state changes with carbon concentration [57]:

dG∗

dθ
=−K ×

[
3

4

Na

Vm
a2
γ

daγ

dθ

]

×V ∗ (3.43)

where aγ and Vm are the lattice parameter and molar volume of austenite, respectively; K is the

bulk elastic modulus. The terms containing aγ represent the volume strain per unit concentration

of carbon so its product with the bulk modulus gives the ghost pressure. After making appropriate

substitutions it is found that the activation volume is about 0.6×10−6 m3 mol−1 [58], which is small,

and compares against a measurement for carbon in ferrite by Bass and Lasarus [19] of almost zero

at (0.0± 0.1× 10−6 m3 mol−1); it may as well be assumed to be zero [59]. Substitutional atoms

have large activation volumes in the solid-state (almost equal to the molar volume) because their

migration requires both the formation and motion of vacancies. The formation part is absent for

carbon and its motion seems to cause little change in volume, perhaps because it is partly ionised
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[59]. The conclusion is that pressure does not have a significant influence on the mobility of carbon

atoms over the range studied.

These results emphasise that the diffusion behaviour of a carbon atom in a concentration gradient

is expected to be especially different from that in a homogeneous solution. Parris and McLellan

[60] demonstrated this by measuring the mobility of carbon in a diffusion couple, one half of which

contained 12C atoms and the other half the same concentration of 14C atoms. The interstitial tracer

diffusivity of carbon was found to be smaller in the couple than when diffusion occurred in a finite

concentration gradient (Figure 3.10). Notice that in the tracer experiments, there nevertheless is a

dependence of D on θ , but the differential effects of the gradient are eliminated.

For tracer diffusion, the transmission coefficients in the forward and reverse directions are equal,

i.e., 1/m+ = 1/m− = 1/m, since there is no concentration gradient. But the transmission coefficient

still depends on concentration since some of the possible jump sites may already be occupied or

excluded by the C-C repulsion. From Equations 3.33 and 3.36,

6

m
= NP

{

1−θ −
B{θ}

NP

}

= 1−θ −
3χ

φ

[

1−
1

θ

(

1−
χ

2φθ

)]

(3.44)

where

χ = [1− (1− 4φθ (1−θ ))1/2]. (3.45)

There also is the concentration dependence via the thermodynamic factors (Equation 3.30):

Γ

(
dlnΓ

dlnc
+ 1

)

= a+(1+θ )
da

dθ
(3.46)

so the interstitial tracer diffusion coefficient D∗
C becomes

D∗
C =

Koδ 2
s

6Γm

{

1−θ −
3χ

φ

[

1−
1

θ

(

1−
χ

2φθ

)]}

×
{

a+(1+θ )
da

dθ

}

. (3.47)

In these tracer experiments, although dθ/dz = 0, da/dθ is not zero, as assumed by Liu et al. [61].

There are other treatments [62] of the tracer diffusivity which appear to neglect all but the thermo-

dynamic factors and therefore are unable to predict correctly at large concentrations.

3.6.4 ÅGREN’S METHOD

In this practically useful method [63], the concentration dependence of diffusivity of carbon in

austenite in Fe-C alloys, is as usual a function of the thermodynamic factor, together with an empir-

ical concentration dependence of the activation free energy of diffusion:

D
γ
C = 4.53× 10−7

[

1+θ (1−θ )
8339.9

T

]

×

exp

{

−
(

1

T
− 2.221× 10−4

)

(17767− 26436θ )

}

m2 s−1 (3.48)
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Figure 3.10 The interstitial tracer-

diffusivity at 1273 K of carbon as a func-

tion of θ , compared with corresponding

data for diffusion in a finite concentration

gradient. Data from Parris and McLellan,

[60].

3.7 DIFFUSION OF NITROGEN IN FERRITE

Nitrogen causes a slightly smaller distortion of the iron lattice than carbon:

∆aα = (0.84± 0.08)× 10−3 nm per at.%C

∆aα = (0.79± 0.07)× 10−3 nm per at.%N (3.49)

where ∆aα is the change in the lattice parameter of ferrite. As a consequence, its activation energy

for diffusion is smaller than that for carbon (Table 3.5).

Table 3.5

The diffusion parameters for carbon and nitrogen in ferrite, derived using low tem-
perature (< 75◦C) data only [22].

Interstitial Do /m2 s−1 Q/kJmol−1

Carbon 1.67× 10−7 78.1
Nitrogen 1.26× 10−7 73.4

As for carbon, nitrogen in ferrite shows deviations from the Arrhenius law at high temperatures. To

a high level of accuracy, the diffusion data for nitrogen in ferrite can be described by the empirical

equation [22]:

lnDα
N =−13.695− 0.9979

(
104

T

)

+ 0.0014

(
104

T

)2

m2 s−1 (3.50)

The third coefficient in this equation represents the deviation from the Arrhenius plot; its magnitude

is about 2 1
2 times smaller than the corresponding term for carbon in ferrite (0.0037, Equation 3.14).

Data such as those presented in Table 3.5 should therefore be treated with caution because the

activation energy as interpreted in diffusion theory is temperature dependent. This will be discussed

further when considering the effect of the ferromagnetic to paramagnetic transition in ferrite on the

diffusion process.
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The activation volume for the diffusion of nitrogen in ferrite is (3.7± 3.3)× 10−8m3 mol−1, which

is only about 4% of the volume of a mole of nitrogen in solid solution [17]. Hydrostatic pressure

therefore has only a minor influence on diffusivity.

3.8 DIFFUSION OF NITROGEN IN AUSTENITE

By monitoring the outgassing of a thin, nitrided sample of austenitic stainless steel (20Cr-25Ni wt%)

containing 0.5 wt% of diffusible nitrogen over the temperature range 1223-1323K, the diffusion

coefficient of nitrogen in austenite has been determined to be [64]

D
γ
N = 2.18× 108 exp

{

−
3.16± 0.05×105

RT

}

m2 s−1, (3.51)

obeying an Arrhenius relationship over the range of the data investigated. The activation energy is

about half that for nitrogen diffusion in ferrite.

Very large concentrations of nitrogen (38 at.%) can be introduced into the surfaces of austenitic

steels either by diffusion or using techniques such as ion implantation [65, 66]. The lattice parame-

ter of the austenite then expands dramatically by 10%. There is sharp transition observed between

the lattice parameters of the expanded austenite and that of the unaffected substrate. The diffusion

coefficients for nitrogen in the expanded austenite in a stainless steel then become concentration

dependent, as illustrated for 693 K in Figure 3.11; the data are compared against a calculation done

using Equation 3.51. It is evident that at low and high nitrogen concentrations, there isn’t much of a

difference with the value extrapolated from the high-temperature data, but at intermediate concen-

trations, the nitrogen diffuses much faster in the expanded austenite. At first, the increase in nitrogen

leads to a greater dilation of the austenite, making it easier for it to diffuse. At very large concentra-

tions, the diffusivity decreases again because of the blocking action of interstitial sites that already

are occupied [67].

Figure 3.11 The points represent a se-

lected data for the diffusion of nitrogen at

693 K in expanded austenite (304 stain-

less steel enriched with nitrogen) [67].

yN represents the fraction of octahedral

sites occupied by nitrogen. The dashed

line is a calculation done by extrapolat-

ing the high-temperature data for ordinary

austenite [64], using Equation 3.51.

3.9 DIFFUSION OF C AND N IN CEMENTITE AND HÄGG CARBIDE

The diffusivity of carbon in cementite has been deduced by measuring the rate of cementite for-

mation on iron powders in CH4/H2 gas [68]. At 723 K the diffusivity is found to be about 10−19-
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10−20 m2 s−1, which is many orders of magnitude smaller than for carbon in ferrite. There may be

a simple explanation for the much reduced mobility in cementite; the number of vacant interstitial

sites in ferrite is much greater. The diffusion coefficient increases with the activity of carbon in

the gas, consistent with the fact that the cementite is not strictly stoichiometric (Chapter 8) with

diffusion occurring by an interstitial or interstitialcy mechanism.

Recent measurements using similar techniques give the self-diffusion coefficients of carbon in ce-

mentite and Hägg carbide at 773 K as [69]:

Cementite (Fe3C) 6.0× 10−18 m2 s−1

Hägg carbide (Fe5C2) 8.5× 10−18 m2 s−1.

The approximate temperature dependence of the self-diffusion coefficient of carbon in cementite,

obtained by combining published data, is expressed as [69]

Dθ
C ≈ 1.8× 10−6 exp

{

−
172.8kJmol−1

RT

}

m2 s−1. (3.52)

The carbon atoms in cementite occupy four energetically preferred prismatic interstitial sites (Sec-

tion 8.1) and there are four unoccupied but smaller octahedral sites within the unit cell. Molec-

ular dynamics simulations indicate that the mechanism involves carbon diffusion jumps to the

favoured sites via the unoccupied interstices (Figure 3.12), although the calculated activation en-

ergy for this process is somewhat smaller than indicated in Equation 3.52, at about 125 kJ mol−1

[70, 71]. First principle calculations for the same mechanism indicate a diffusion barrier for car-

bon of 221 kJ mol−1 and that the barrier is independent of the jump direction implying that carbon

diffusion in cementite is likely to be isotropic in spite of its orthorhombic symmetry [72].

Figure 3.12 Showing the location

of vacant octahedral interstitial sites

within the cementite crystal structure.

There are four such sites per unit cell at

the equivalent positions (Wyckoff 4a)

listed in Table 8.1.

The activation energy for the tracer-diffusion of nitrogen for dilute solutions in cementite is far

smaller than that of carbon, at just 65 ± 2kJmol−1 [73].
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3.10 MIGRATION OF POINT DEFECTS

The equilibrium concentration of iron-interstitials will be extremely small, but not so when the metal

is irradiated with neutrons or other high energy particles. Some of the steel in a typical fission reactor

may experience 20-30 displacements per atom over its service life. The stability and mobility of the

resulting defects has been studied both experimentally and using theory.

3.10.1 IRON INTERSTITIALS

Many kinds of iron interstitials have been investigated; of these, six configurations are found to

be at metastable equilibrium because of their symmetry (Figure 3.13, [74]). The first three cases

illustrated are designated split because the pair of atoms in the interstitial configuration are placed

symmetrically about a vacant iron-site. The spacing between each such pair is about 0.75aα.

(a) (b) (c)

(d) (e) (f)

Figure 3.13 Computed structures of iron interstitials in ferrite [9]. The dark circles represent the atoms

in interstitial configuration. (a) 〈100〉 split interstitial; (b) 〈110〉 split interstitial; (c) 〈111〉 split interstitial or

crowdion; (d) activated crowdion; (e) octahedral interstitial; (f) tetrahedral interstitial.

The crowdion configuration illustrated in Figure 3.13c is so-called because it has the distortion

relaxed along the close-packed row of atoms, constraining it to move along that direction. This

particular crowdion is barely stable with a small local minimum in energy. Its migration along

〈111〉 would take it into the arrangement illustrated in Figure 3.13d before it recovers its original

configuration; since the path involved is c → d → c, the interstitial of Figure 3.13d is said to be an

activated crowdion, the activation energy for the motion being only 0.04 eV.

The calculated energies of the variety of interstitials are given in Table 3.6, from which it is apparent

that the 〈110〉 split interstitial is the minimum energy configuration. The motion of such an inter-

stitial is illustrated in Figure 3.14; the activation energy for the sequence is about 0.33 eV. Johnson

also found many cases where two split-interstitials occupy adjacent positions with a reduction in

energy, leading to the formation of a di-interstitial. For example, two 〈110〉 split interstitials located

on adjacent lattice sites with their axes perpendicular to the line joining them have a binding en-
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ergy relative to the separated pair of 1.08 eV. The migration of a di-interstitial complex occurs by

dissociation and regeneration. It is worth noting that the relative stabilities of defects in ferrite are

different from those in other bcc transition metals. This is because the magnetic moments, particu-

larly on incorrectly located atoms and near neighbouring atoms, change significantly relative to the

defect-free lattice [75].

Table 3.6

The energy of each of the interstitial configuration illustrated in Figure 3.13, less
that of the stable configuration, Figure 3.13b. Ω′ is the volume expansion relative to
the atomic volume of iron. Configuration (g) is not illustrated in Figure 3.13 because
it is the saddle point configuration during the motion of the 〈110〉 split interstitial
and is difficult to describe. After Johnson, [74]. The values in brackets are from first
principles calculations due to Derlet et al. [76].

Configuration Relative energy / eV Ω′

a 1.29 (1.12) 1.7
b 0.00 (0.00) 1.6
c 0.32 (0.68) 1.7
d 0.36 (0.71) 1.7
e 1.12 (1.28) 1.4
f 0.85 (0.39) 1.5
g 0.33 1.7

Figure 3.14 The migration se-

quence of a 〈110〉 split interstitial in

ferrite. The cube at the top of the dia-

gram is the saddle point configuration.

Adapted from Johnson [74].

3.10.2 IRON DEFECTS IN AUSTENITE

There do not seem to have been any calculations of the iron-interstitial configurations in austenite,

but work on copper [77, 78] indicates the stable forms illustrated in Figure 3.15. In the dumb-bell

the insertion of the additional atom is accommodated by sharing with an adjacent atom with most of

the distortion along 〈100〉. As might be expected, the body-centred interstitial causes more isotropic

distortion. Figure 3.15c shows the 〈110〉 crowdion, an arrangement which allows the distortions to

be spread over a large distance along a straight line. It is estimated that the crowdion energy is much
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larger than that of the other two stable configurations. Di-interstitials are also possible, particularly

pairs of dumb-bells.

(a) (b) (c)

Figure 3.15 Iron-interstitial defects in austenite. (a) 〈100〉 dumb-bell configuration; (b) body-centred inter-

stitial; (c) crowdion. Based on calculations by Johnson and Brown [77] on copper, with diagrams adapted from

Thompson [78].

3.10.3 VACANCIES

A vacancy is an iron atom that is absent from its normal site in the lattice; its motion is simple, a

place exchange with a neighbouring atom. For ferrite this has a negligible activation volume [74].

The energy barrier to vacancy motion has a slight local minimum at the intermediate position (Fig-

ure 3.16), of about 0.04 eV which is small and probably of no practical importance. In Figure 3.16,

the computed curve does not extend exactly to the [000] or [111] positions because the migrating

atom relaxes towards the vacancy.

Di-vacancies are simply pairs of vacancies in close proximity, with a binding energy given rela-

tive to the two isolated vacancies. It is found that the binding energies vary from 0.13 eV, 0.20 eV

and 0.05 eV for the nearest, second-nearest and fourth-nearest neighbour pairs respective. All other

combinations do not give appreciable binding energies. The second–nearest configuration is the

most stable of these; there is a reduction of 0.1 atomic volume when the two vacancies merge. Di-

vacancies migrate in a step-wise process in two possible ways: 2 → 1 → 2 and 2 → 3 → 2, where

the numbers 1, 2 and 3 refer to the first, second and third nearest neighbour configurations.
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Co-or

gy
 / 

eV

Figure 3.16 The barrier to the mi-

gration of a vacancy in ferrite. The plot

is of the change in energy as a function

of the movement of the atom which

swaps positions with the vacancy, be-

ginning at a cell corner and ending up

at the opposite cell corner along a body

diagonal [74].

3.11 MIGRATION OF HYDROGEN AND DEUTERIUM

3.11.1 DIFFUSION IN FERRITE

Hydrogen is notorious in its ability to embrittle ferritic iron in particular, even though it has an

equilibrium solubility which is only a few tens of atoms per billion at 300 K. The concentrations are

so small that it is only when the hydrogen can diffuse and concentrate at the stress field of a crack

that it embrittles. At 300 K, its diffusivity in ferrite is comparable with the self-diffusion coefficient

of water [79]:

Dα
H =

(

1.6+0.94
−0.59

)

× 10−7 exp

{

−
Q

RT

}

m2 s−1

with Q = 7076± 126Jmol−1for the temperature range: 322-799 K (3.53)

The diffusion of H or 2H is in practice complicated by interactions with defects such as dislocations

and other traps within the microstructure [80, 81]. The effect of such traps is to reduce the apparent

diffusivity. There are two kinds of traps, those which can become saturated (e.g., dislocations, grain

boundaries) and others (e.g., pores) that establish an equilibrium with the dissolved hydrogen. In

the latter case, the hydrogen probably becomes permanently trapped in its molecular form.

The temperature dependence of the diffusion coefficient of H or 2H is consistent with Arrhenius

behaviour with an activation energy that is identical for both isotopes. The pre-exponential factor,

which contains the attempt frequency, is smaller for deuterium than for hydrogen, by a factor which

changes from 1.8 at 322 K to 1.3 at 639 K [80]. On the basis of the isotope effect alone (Equa-

tion 3.6), the ratio would be expected to be
√

2 because deuterium has twice the mass of hydrogen;

the natural frequency of vibration scales with mass−1/2. It is possible that quantum mechanical

effects cannot be neglected for these light particles [82]. It is considered that classical behaviour

dominates when kT is much greater than the zero-point energy. Heller [83] has estimated that for a

particle with the mass of a proton in the ferrite lattice, kT becomes equal to the zero-point energy at

about 480 K, indicating that classical diffusion theory is not strictly appropriate for hydrogen.

Quantum tunnelling becomes important when the particle momentum is small, because the de

Broglie wavelength then becomes large. The wavelengths for hydrogen and deuterium are 0.98-

0.18 nm and 0.69-0.13 nm over the temperature range 10-300 K, which are greater than or similar to
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the typical widths of activation barriers. According to calculations, tunnelling leads to a noticeable

upturn in the Arrhenius plot for the diffusion of hydrogen in ferrite at temperatures below about

250 K [82]. This is illustrated in Figure 3.17 where the calculated curve clearly is not linear – the

calculations have been shown to be consistent with a range of experimental data in the domain where

they exist. This kind of positive curvature in the plot of the log rate versus reciprocal temperature

has been predicted for some time by applying quantum statistics with tunnelling to formulate a rate

theory for light particles [84].

experiments calculations

2 4 6 8

-8.5

-8.1

-7.7

-7.3
Figure 3.17 Curve showing the diffu-

sion coefficient of hydrogen in ferrite as

a function of the temperature. The dashed

line shows the boundary between the do-

main in which experimental data exist,

with the remainder based on calculations

alone. Adapted from [82].

At higher temperatures, the isotopes of hydrogen all show Arrhenius behaviour, with the pre-

exponential factors exhibiting the expected inverse square-root mass dependence. An explanation

of this requires a rate theory that includes quantum statistics applied to a particle trapped in a po-

tential well, with the particle described as a time-dependent Gaussian wave packet. The theory is a

generalisation of the classical equilibrium statistical approach to yield an effective activation energy

as follows [84, 85]:

Qeffective = Qo +
1

4

hω

2π
(3.54)

where Qo is the classical activation energy and ω is the oscillation frequency which varies with the

inverse square root of the particle mass. Therefore, the activation energies for diffusion increase in

the order H >2 H >3 H. There is experimental evidence to confirm such a trend [85–88].

3.11.2 DIFFUSION OF HYDROGEN IN AUSTENITE

The diffusivity of hydrogen in austenite is known to be many orders of magnitude slower than in

ferrite, Figure 3.18 [89]:

D
γ
H = 2.5× 10−6 exp

{

−
Q

RT

}

m2 s−1 with Q = 59300Jmol−1 (3.55)

The difference between austenite and ferrite is because the hydrogen occupies relatively larger oc-

tahedral interstices in austenite but the smaller tetrahedral interstices in ferrite. The solubility of



134 Theory of Transformations in Steels

hydrogen in austenite is therefore expected intuitively to be greater. At the same time, the number

of octahedral interstices in austenite is just one per iron atom, when compared with six of the tetra-

hedral variety per iron atom in ferrite. This may explain why the diffusion coefficient for hydrogen

in ferrite is so much larger than in austenite.

10-13

10-11

10-09

10-07

0 0.002 0.004

Figure 3.18 A comparison of the

diffusion rates of hydrogen in ferrite

and in austenite. The shaded region

represents the apparent diffusion rate

when hydrogen is trapped at defects in

the ferrite [81].

3.11.3 HYDROGEN-VACANCY INTERACTIONS

The presence of interstitially dissolved hydrogen in metals such as nickel, palladium, platinum and

austenitic iron can increase the concentration of vacancies (Figure 3.19 [90]). This is entirely due to

the binding energy between dissolved hydrogen and a host-vacancy. One consequence would be a

reduction of density, and another an increase in the diffusivity of atoms in substitutional sites. Both

of these effects have been observed experimentally.

200

-5

-4 Figure 3.19 Estimate of the host-

vacancy concentration c# in hydro-

genated austenitic iron. The hydrogen

concentration is cH indicated along-

side each curve (after McLellan and

Xu [90])

3.12 SELF-DIFFUSION IN IRON

Self-diffusion in austenitic iron follows Arrhenius behaviour over the temperature range 910-

1400◦C for which experimental data exist, Figure 3.20a. A comprehensive analysis of the exper-

imental data by Oikawa [91–93] gave the following estimates for the diffusion parameters:

D
γ
Fe = (0.89+0.40

−0.28)× 10−4 exp{−Q/RT}m2 s−1

with Q = 291.3± 4.5kJmole−1. (3.56)
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The activation energy for diffusion is larger than the corresponding value for ferrite, even though the

melting temperature of austenite is slightly lower than that of ferrite (Table 1.1). This presumably is

because austenite is a more densely packed phase than ferrite.

(a) (b)

Figure 3.20 (a) Self-diffusion in austenite (data from Buffington, Hirano and Cohen [94]). (b) Self-diffusion

coefficient of iron in α-ferrite [95]. The Curie temperature is 1043 K and the formation of austenite begins at

1184 K.

In contrast, the self-diffusion data for ferrite show considerable anomalies, both in the region of the

paramagnetic to ferromagnetic transition and in the δ-ferrite temperature range, Figure 3.20b [94,

96]. The anomaly has been observed also for the diffusion of nickel in ferrite [97] and in a vast range

of other measurements including mechanical properties such as creep at elevated temperatures.

Both the vacancy formation energy and its ability to migrate are changed in the ferromagnetic state

[96]. This can be explained by magnetic interactions [98, 99]; in the fully ordered ferromagnetic

state, the magnetic interaction energy of an atom which has zc nearest neighbours is W = −zcωo

where −ωo is the interaction energy per pair of atoms. This assumes that only near neighbour terms

contribute significantly to W . The diffusion of iron or substitutional atoms occurs by a vacancy

mechanism. In a process where a vacancy is created by removing an atom, zc pairs of contacts

are broken, half of which are recreated when the discarded atom is replaced at the free surface.

The enthalpy of formation of a vacancy is therefore increased by 1
2 zcωo. A similar argument gives

a further contribution to the migration energy as (zv − z∗)ωo where zv is the number of nearest

neighbours to an atom paired with a vacancy, and z∗ the number of nearest neighbours to an atom

in its activated state, neglecting relaxation effects. The value of ωo is proportional to the square of

the saturation magnetisation Mm{0} at absolute zero. Bearing this is mind, the activation enthalpy

for self–diffusion becomes

Q = Qo

[

1+ b1

(
Mm{T}
Mm{0}

)2]

(3.57)

where Qo is the activation energy when there is no long range magnetic order (i.e., for paramagnetic

ferrite). The constant b1 is obtained by fitting to experimental data; it can in principle be partitioned

into two components, one representing the increment due to magnetic spin order in the vacancy

formation energy and the other in the migration energy. This is difficult to do in practice because
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the calculations require a knowledge of the saddle point configuration during the migration over the

activation barrier. The important point is that Equation 3.57 gives a temperature dependence to the

activation energy, making it possible to interpret the deviations from the Arrhenius relationship.

Precise measurements by Iijima et al. [95] confirm the relation over a wide temperature range (766-

1148 K), with Qo = 250.6± 3.8kJmol−1, b1 = 0.156± 0.003 and the pre-exponential factor in

the Arrhenius equation given by Do = (2.76+1.42
−1.04)× 10−4 m2 s−1 (Figure 3.20b). The temperature

dependence of the self-diffusion coefficient apparently shows the normal Arrhenius relationship

above the Curie temperature. Magnetisation data are necessary to use this diffusion model; these

have been reported by Potter [100] and Crangle and Goodman [101] as illustrated in Figure 2.10.

There are two further issues to consider. Early research indicated that the diffusion anomaly extends

to temperatures beyond the Curie temperature, which would be inconsistent with a theory that relies

on just the long-range magnetic-order parameter since the magnetisation terms then tend to zero to-

wards TC. Modern high-precision measurements on well prepared samples do not reveal anomalous

effects beyond TC.

Secondly, measurements for δ-ferrite at high temperatures do not seem to fit the extrapolated data

for paramagnetic α-ferrite (Figure 3.21). The activation energy of Q = 296kJmol−1 for δ-ferrite

is larger and Do = 9.21× 10−3 m2 s−1. It is possible that at high temperatures diffusion by a diva-

cancy mechanism adds to the usual flux from the monovacancy mechanism [95, 102]. The estimated

parameters for self-diffusion by the divacancy mechanism in ferrite are:

D2! = 5.2exp

{

−
406,000Jmol−1

RT

}

m2 s−1. (3.58)

This makes D2! about half D! at the melting temperature.3

Figure 3.21 Self-diffusion coeffi-

cient of iron in δ-ferrite. The γ → δ

transformation occurs at 1665 K with

melting occurring at 1811 K. Data

from Iijima, Kimura and Hirano [95].

Short-range magnetic order persists to temperatures well in excess of the Curie temperature, Fig-

ure 3.22. A number of models have been proposed to account for short-range order effects and at

the same time allow δ-ferrite and paramagnetic α-ferrite to be treated identically. The models use
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a number of fitting parameters and do not seem to explain why the diffusion anomaly vanishes at

T/TC ≈ 1.16, whereas the short range order persists to even greater temperatures (Figure 3.21).

Figure 3.22 The calculated long-

range and short-range magnetic or-

der parameters for bcc iron (Kučera,

[103]). The reduced temperature is the

ratio of the absolute temperature to the

Curie temperature.

To cope with this difficulty, Kučera [103] defined a fictitious paramagnetic temperature (Tp > TC)

beyond which there is no measurable effect on diffusion of (short-range) magnetisation with

Q = Qo(1+ q{T}) (3.59)

where q{T}Qo expresses the excess activation enthalpy associated with local demagnetisation aris-

ing from vacancy formation and migrations, defined such that contributions from long-range order

go to zero at TC and those from short-range order become zero at Tp. Zener [104] argued for a

temperature–dependent activation free energy because an atom during its course of migration strains

the surrounding lattice; the ability of the lattice to resist deformation changes with temperature. The

temperature coefficient of the ratio of the activation free energy G∗{T}/G∗{T = 0} should there-

fore be the same as that of the shear moduli Es{T}/Es{T = 0}. Any temperature dependence of the

activation free energy can be incorporated into the pre-exponential term in the diffusion coefficient

via the activation entropy, the change in which becomes:

∆S∗ ≈
b2

Tm

d(Es{T}/Es{T = 0})
d(T/Tm)

(3.60)

where Tm is the melting temperature and b2 is a fitted constant. Since the shear modulus has a

dependence on the magnetic state, Kučera incorporated the function q{T} into the pre-exponential

factor:

D = Do exp

{
0.35q{T}Qo

RTm

}

exp

{

−
Q

RT

}

. (3.61)

Other models have involved empirical modifications of the Kučera approach, for example by the

substitution of the excess enthalpy attributed to the magnetic effect for the function q{T} whilst

retaining the same form as Equation 3.61 [105], or by explicitly including the shear moduli in

the calculations [106, 107]. Some models include two additional terms in the activation energy

function: the variation in the long range order parameter and in the elastic modulus [107]. Jönsson

[108] pointed out that these models are difficult to distinguish as empirical representations because

the excess enthalpy and elastic modulus vary in a similar manner with the temperature. Neither the
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excess enthalpy nor the difference in shear moduli between the ferromagnetic and paramagnetic

states reach zero at the temperature where the diffusion anomalies vanish.

Bearing in mind that enthalpy data are more frequent than modulus data for alloys4 Jönsson adapted

Braun and Feller-Kniepmeier’s method where the diffusion anomaly is expressed purely as a func-

tion of the excess enthalpy, so in Equation 3.61,

q{T}= b3 ∆Hµ{T} (3.62)

where b3 is a fitting constant and ∆Hµ{T} is the excess magnetic enthalpy at the temperature T .

Equation 3.61 contains the melting temperature whose meaning in the context of diffusion is not

clear given that an alloy melts over a range of temperatures. However, there is a well known empir-

ical relationship between the activation energy for diffusion and the melting temperature of a pure

metal,

Qo = 140Tm Jmol−1 (3.63)

so Tm can be eliminated from Equation 3.61. By fitting the equation to ferritic iron, Jönsson demon-

strated that with appropriate thermodynamic data for ∆Hµ , it was possible to estimate the tracer

diffusion of elements such as cobalt, nickel in ferrite both in the ferromagnetic and paramagnetic

regions. The activation energy and Do for the paramagnetic state is derived by fitting in each case

and b3 is assumed to depend only on the lattice geometry.

The method used for incorporating magnetic spin order into the diffusion equation has been ex-

tended to the representation of long-range chemical order [109]. The magnetic order parameter

in Equation 3.57 is replaced directly by the long-range configurational order parameter. There is,

nevertheless, an essential difference between configurational order and magnetic spin order. In a

configurationally ordered system, those diffusion paths which minimise the disruption of order are

favoured; the degree of order can be influenced by the redistribution of atoms during diffusion.

3.12.1 THE ISOTOPE EFFECT

The isotopes 55Fe and 59Fe diffuse at different rates related by the parameter ∆K which describes

the fraction the kinetic energy associated with the mode of vibration that leads to diffusion, that

resides in the migrating atom (Equation 3.6). A large value of ∆K implies that the neighbouring

atoms do not participate much in the vibrations that lead to the successful jump of the migrating

atom. The vibrations can only be decoupled in this sense if the activation volume is large, i.e., there

is little relaxation of the surrounding atoms when a vacancy is created. Figure 3.23a shows that

∆K is smallest for paramagnetic iron indicating that the relaxation of the lattice around a vacancy

is larger than in the ferromagnetic state. It is obvious from Figure 3.23b that many more atoms

would need to participate in the successful migration of an atom in the paramagnetic ferrite when

compared with the ferromagnetic state.

The particularly small values of ∆K associated with δ-ferrite may be a reflection of diffusion by

both the vacancy and divacancy mechanisms [110]. The measured diffusion coefficient D is then

a sum of two diffusivities, D! and D2!, for migration by the mono and di-vacancy mechanisms
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respectively. The effective value of ∆K is then given by

fc∆K = fc,!∆K!

D!

D
+ fc,2!∆K2!

D2!

D
. (3.64)

Since fc,2! and ∆K2! are both much less than the corresponding terms for monovacancy diffusion,

the operation of both diffusion mechanisms leads to an effective ∆K which is smaller than for the

monovacancy mechanism alone.

The form of the variation illustrated in Figure 3.23, with a large drop in fc∆K at elevated temper-

atures, is typical of many metals, even some of which do not show magnetic spin ordering. This

adds weight to the argument that there is a significant di-vacancy contribution to the diffusion flux

at temperatures close to the melting point.

(a) (b)

Figure 3.23 (a) Temperature dependence of ∆K in the isotope effect for diffusion of 55Fe and 59Fe in α

and δ iron [95]. (b) Schematic illustration of the greater relaxation of atoms around a vacancy in paramagnetic

ferrite. The open circles are vacancies and the relaxation is exaggerated.

3.13 MAGNETISM AND INTERSTITIAL DIFFUSION IN FERRITE

It was argued in the context of substitutional diffusion in ferromagnetic ferrite, that the creation of a

vacancy reduces the number of pairwise magnetic interactions and consequently leads to an increase

in the energy for vacancy formation. This substantially explains the diffusion anomaly although

other interpretations exist, for example Borg’s proposal that the activation strain energy is changed

as the elastic moduli depend on the magnetic order parameters. Whatever the true mechanism, there

is evidently a powerful influence on diffusion of the magnetic transition.

That the diffusion of carbon in bcc iron cannot be described by a single Arrhenius equation is

clear from the experimental data; this also is true for nitrogen in bcc iron [111]. The possibility

of the magnetic transition influencing interstitial diffusion must therefore be considered. However,

vacancy formation is not really an issue in the context interstitial diffusion. Any anomalous diffusion

has to be attributed to effects such as the change in elastic moduli.

The diffusion data for carbon and nitrogen have been fitted to include the effect of magnetism

[112]. The listing in Table 3.7 can be used in combination with Equation 3.61 to provide a good

representation of experiments; for nitrogen the fit extends to δ-ferrite though similar data are not
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available to test the case for carbon in δ-ferrite. This approach obviates the need to consider a dual-

site occupancy model, but it suffers from the difficulties encountered in treating the self-diffusion

of iron, that short-range order effects beyond TC are not taken into account. The physical basis of

the effect of magnetism on interstitial diffusion is not clear because if the anomalies are attributed

to changes in elastic moduli, then the pre-exponential factor must also contain a term dependent on

temperature (Equation 3.61).

The data in Table 3.7 confirm earlier work that the diffusion anomaly is smaller for nitrogen than

for carbon in ferrite. However, the values of the constant b1 are about twice as large as that for

self-diffusion in ferrite. This indicates that the activation energy for the migration of the interstitial

is influenced more by magnetic spin ordering, but the associated reasoning is not clear.

Table 3.7

The diffusion parameters for carbon and nitrogen in ferrite. The coefficient b1 deter-
mines the temperature dependence of the activation energy (Equation 3.57) and Qo

can be regarded as the activation energy for diffusion in paramagnetic ferrite. After
Iijima [112].

Interstitial Do /m2 s−1 Qo /kJmol−1 b1 Applicability

Carbon 2.72× 10−7 59.6 0.337 230-1170 K

Nitrogen 2.42× 10−7 59.7 0.266 220-1742 K

The interstitial diffusion anomalies observed in iron exist also in cobalt which has a Curie temper-

ature of 1396 K. The anomaly in cobalt is confined to T ≤ TC, where the activation energy depends

on the extent of magnetic spin ordering. The Arrhenius law is obeyed for T > TC. This is found to be

the case for both substitutional and interstitial solutes in cobalt. Although the results cast doubt on

the hypothesis that the diffusion anomaly must extend beyond TC where short-range order persists,

there is no physical explanation of why it should be confined to below TC.

3.14 SUBSTITUTIONAL SOLUTES

Substitutional solutes diffuse at rates not dissimilar to the self-diffusion of iron. This is illustrated

in Figure 3.24 which shows empirically how the ratio of the substitutional-solute/iron diffusivities

varies with the atomic number for the first series of transition metals in iron; the same kind of

variation is assumed for the remaining series where data are sparse. The relations mostly represent

diffusion at 1000 ◦C [113]. There is no obvious explanation for the variation illustrated but the ob-

served patterns are useful in estimating unknown diffusivities. For example, the diffusion coefficient

of zinc in iron was not known at the time of the compilation, but was later measured at 998 K to

be 0.5-2×10−17 m2 s−1 [114], which is remarkably consistent with [113] at 1.4× 10−17 m2 s−1. It

is interesting that heavy elements such as molybdenum, niobium or tungsten diffuse faster in iron

than iron itself. For niobium, an explanation offered is that the larger atom causes a distortion in the

surrounding lattice which results in an attractive interaction with vacancies, thereby reducing the
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enthalpy of formation of a vacancy, making diffusion easier [115]. Ruthenium and osmium are iron

analogues in that they have similar valance electron shells so it may be logical that the ratios of their

diffusivities relative to iron are unity.
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Figure 3.24 Ratio of the diffusivity

of element (DX) to the self-diffusivity

of iron (DFe) in austenite or ferrite,

after Fridberg, Törndahl and Hillert

[113]. An anomalously low value for

the diffusivity of Hf in austenite has

been left out of this diagram.

A similar rationalisation, i.e., keeping the activation energies as for the self-diffusion of iron, for the

light elements Al, Si, P and S is presented in Figure 3.25. They all diffuse more rapidly than iron.

Some of the important difference between the diffusion of solutes in austenite and ferrite is, of

course, the seminal influence of the magnetic transition in the latter. Austenite can also be ferro-

magnetic, for example in nickel-rich alloys, but there does not appear to have been any systematic

search for diffusion anomalies in that context. Although expanded austenite can be ferromagnetic,

the large interstitial concentrations cause considerable dilation and site blocking so it is difficult to

interpret the role of magnetic effects per se.

Figure 3.25 Light elements: ratio

of the diffusivity of element to the

self-diffusivity of iron in austenite or

ferrite, after Fridberg, Törndahl and

Hillert [113].
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The strict application of the theory for the effect of the Curie transition on solute diffusion in ferrite

requires a knowledge of the spontaneous magnetisation and Curie temperature as a function of

alloy chemical composition. Such data usually are not available, but Jönsson’s approach, where

the diffusion anomaly is expressed in terms of the excess magnetic enthalpy alone, is an adequate

practical approach to the problem of substitutional-solute diffusion in ferromagnetic ferrite. The

following discussion covers a few interesting diffusion effects associated with substitutional solutes

in iron; there is a useful review by Iijima and Hirano [110].

Cobalt enhances and chromium diminishes the magnetic moment of an iron-alloy relative to pure

iron [116, 117]. It is not surprising, therefore, that the temperature dependence of the activation

energy for the diffusion of cobalt is smaller and that of chromium larger, when compared with self

diffusion in ferromagnetic ferrite (Table 3.8). The quantity b1 in Table 3.8 is described in Equa-

tion 3.57; it scales with the temperature dependence of the activation energy in the ferromagnetic

state. The results in the vicinity of the Curie temperature in pure iron are difficult to interpret given

inevitable changes in TC caused by the alloying.

Table 3.8

Diffusion parameters. The quantity b1 scales with the temperature dependence of
the activation energy in the ferromagnetic state. After Iijima and Hirano [117].

Do/m2 s−1 Qo/kJmol−1 b1

Self-diffusion in α-iron 2.76× 10−4 250.6 0.156

Cobalt in α-iron 2.76× 10−4 251 0.23

Chromium in α-iron 37.3× 10−4 267.4 0.133

3.15 GRAIN BOUNDARY DIFFUSION

Grain boundaries are less dense than the perfect lattice; atoms are therefore more mobile during

transport along the boundary plane. It is difficult experimentally to separate Do and the boundary

thickness δb so the pre-exponential term is expressed as a product of these two quantities. In their

assessment of diffusion data, Fridberg et al. [113] concluded that all grain boundary diffusion data

for austenite and ferrite, including substitutional solutes, can be approximated adequately by

Do × δb = 5.4× 10−15 m3 s−1 Q = 155,000Jmol−1. (3.65)

The parameters here are somewhat similar to those for diffusion in liquid iron (p. 148) indicating that

the grain boundaries considered must contain a large free volume and would not be representative

of the more coherent interfaces that occur during transformations or in textured steels.

Figure 3.26 shows tracer diffusion data for a variety of austenitic steels, with a comparison between

the diffusion parameters at grain boundaries and lattice diffusion. To facilitate the comparison, it

is assumed that the boundary has a thickness 0.5 nm. The data refer to migration along the grain
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boundary plane rather than across it. Boundary diffusivity is necessarily anisotropic depending on

the many degrees of freedom that determine its atomic structure [118].

boundary

lattice
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Figure 3.26 Comparison of diffusion parame-

ters for flow in the grain boundary plane and that

in the defect free lattice. The lattice data [110] re-

fer to the isotopes 59Fe, 51Cr, 63Ni and 54Mn dif-

fusion in austenite [110]. The horizontal bar rep-

resents an overall value for grain boundary dif-

fusion in ferrite or austenite assuming δb = 5×
10−10 m [119].

3.16 PHENOMENOLOGICAL TREATMENT OF BINARY DIFFUSION

Darken’s experiment [120, 121] proved that diffusion can occur against a concentration gradient;

carbon initially distributed uniformly migrated across a diffusion couple from a silicon-rich to a

silicon-poor steel. In spinodal decomposition, a chemically uniform solution can become sponta-

neously inhomogeneous as diffusion enhances concentration gradients. Artificially created multilay-

ered structures also exhibit this uphill diffusion [122]. Consequently, the forces that drive diffusion

are best described in terms of gradients of free energy rather than concentration [123, 124].

Consider substitutional diffusion in a binary system consisting of components “A” and “B”. The

fluxes are referred to the volume-fixed frame of reference because this best represents the usual ex-

perimental data. Diffusion can then be described in terms of just one (inter-)diffusion coefficient and

one mobility coefficient. The theory is developed in terms of the component B but an equivalent de-

scription can be obtained by selecting A. The process of diffusion dissipates energy (Section 2.22);

it would not otherwise occur at all:

T Ṡ = JA

(

−
∂ µA

∂ z

)

+ JB

(

−
∂ µB

∂ z

)

(3.66)

where Ṡ the rate of entropy production per unit volume. An equation such as this is useful only

when the forces and fluxes in it are independent. This is not the case for the chosen reference frame

since conservation requires that ∑JiV i = 0. Furthermore, the chemical potentials of the two com-

ponents are related by the Gibbs-Duhem equation. To ensure that the dissipation equation contains

independent forces and fluxes, the force is redefined by substituting JA =−(V B/V A)JB:

T Ṡ = −JB

(
∂ µB

∂ z
−

V B

V A

∂ µA

∂ z

)

so that XB = −
∂

∂ z

(

µB −
V B

V A
µA

)

. (3.67)
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There now is only one independent force driving diffusion. The dissipation Equation 3.66 is there-

fore correctly formulated in the context of Onsager’s theory.5 That the entropy change must be

positive for an irreversible process, JBXB > 0 ensuring that the mobility coefficient M will always

exceed zero.

Recalling now Equation 2.93 and Fick’s law,

JB = MXB and JB =−D∇cB

∴ D = M
∂

∂cB

(

µB −
V B

V A
µA

)

. (3.68)

Noting that cB = xB/Vm, and that ∂ µA/∂xB = 0, we get

∂ µB

∂cB
= Vm

∂ µB

∂xB

=
RTVm

xB

(
dlnΓB

dlnxB
+ 1

)

(3.69)

=
RT

cB

(
dlnΓB

dlnxB
+ 1

)

.

Substitution into Fick’s equation gives

JB =−
RT M

cB

(
dlnΓB

dlnxB
+ 1

)

︸ ︷︷ ︸

D

∂cB

∂ z
. (3.70)

Both the mobility M and the thermodynamic factor in brackets are expected to be dependent on

the chemical composition, but note that the derivation neglects any dependence of the partial molar

volumes on concentration.

The chemical potentials of isotopes depend only on configurational entropy so from Equation 3.69,

the diffusivity of a radioactive tracer of B in the absence of any chemical concentration gradient is

simply:

D∗
B = MBVmRT. (3.71)

Tracer diffusion data are therefore more convenient for the determination of the mobility MB than

are chemical diffusion data. For the diffusion of an interstitial element, the right hand side of Equa-

tion 3.71 must also be multiplied by the fraction of the interstitial sites that are available for diffusion

(Equations 3.32-3.34).

3.17 DIFFUSION IN MULTICOMPONENT SYSTEMS

For a system of n components where the flux of i may also depend on the concentration gradients

of other components, Fick’s law may be generalised as follows [125, 126]:

Ji =−
n−1

∑
k=1

Dik
∂ck

∂ z
(3.72)
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where Ji are the n− 1 independent fluxes, defined with respect to the volume-fixed frame of ref-

erence; Dik form a matrix of empirical chemical diffusion coefficients. The virtual force Xi acting

on a diffusing species really should depend on the negative gradient of its chemical potential; in a

multicomponent system, this force is also a function of the chemical potential gradients of the other

species.

For diffusion in a multicomponent system each Ji is not only linearly related to its conjugate Xi, but

also to all the other forces which lead to entropy production (Section 2.22.3). For diffusion in an

isotropic medium referred to a volume-fixed frame, and for an n-component system, this may be

expressed as follows:

Ji =
n−1

∑
k=1

MikXk (3.73)

where the Mik are phenomenological coefficients of the various linear force-flux relations; the coef-

ficients form a symmetric matrix of dimensions (n− 1)× (n− 1) and satisfy the Onsager reciproc-

ities. If the forces are taken to be potential gradients then because of the Gibbs-Duhem relation

(∑i xi∇µi = 0), there only are n− 1 independent forces, given by [126]

Xk =−
∂

∂ z
[µk − (V k/V n)µn]. (3.74)

The particular component that is designated n in this equation can be selected arbitrarily from the

set of components, but in the discussion that follows it represents the host iron atoms. In doing this,

the force on the iron atoms becomes zero:

Xn =−
∂

∂ z
[µn − (V n/V n)µn] = 0. (3.75)

Comparison of the flux equation with Fick’s law gives [126]:

Dik = ∑
j

Mi j
∂

∂ck

(

µ j −
V j

V n
µn

)

︸ ︷︷ ︸

thermodynamic

. (3.76)

The second term in this equation is entirely thermodynamic in origin.6 The mobility may not be

a purely kinetic component in this equation; it is possible to imagine circumstances where it can

depend in the chemical composition. For example, when the activation energy for diffusion is af-

fected by the composition independently of the thermodynamic effect, due to lattice dilation (Sec-

tion 3.6.3). The on-diagonal diffusion coefficients have always been found to be positive, although

Kirkaldy has shown that this need not be the case.

3.17.1 DIFFUSION IN TERNARY Fe-X-C ALLOYS

Consider a ternary Fe-X-C alloy, where X is a substitutional solute identified in the diffusion equa-

tions by the subscript 2, with carbon and iron identified by the subscripts 1 and 3 respectively. The
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rate of entropy production is

T Ṡ = J1

(

−
∂ µ1

∂ z

)

+ J2

(

−
∂ µ2

∂ z

)

+ J3

(

−
∂ µ3

∂ z

)

(3.77)

referred to a volume-fixed frame of reference so that

J1V 1 + J2V 2 + J3V 3 = 0 (3.78)

with the forces related by the Gibbs-Duhem equation

c1∂ µ1 + c2∂ µ2 + c3∂ µ3 = 0 (3.79)

Equation 3.77 is valid only for independent forces and fluxes. Equations 3.78 and 3.79 can be used

to eliminate the solvent iron by writing

∂ µ3 = −
c1

c3
∂ µ1 −

c2

c3
∂ µ2 and

TṠ = J1

(

−
∂ µ1

∂ z

)

+ J2

(

−
∂ µ2

∂ z
+

∂ µ3

∂ z

)

Assuming now that V 1/V 3 = 0 and V 2/V 3 = 1, it follows that for diffusion in one dimension along

a coordinate z,7

X1 = −
∂ µ1

∂ z

X2 = −
(

1+
x2

x3

)
∂ µ2

∂ z
−

x1

x3

∂ µ1

∂ z
. (3.80)

The solute fluxes follow:

J1 = M11X1 +M12X2

J2 = M22X2 +M21X1 (3.81)

again, referred to a volume-fixed frame of reference.

The assumptions concerning the partial molar volumes are considered reasonable as long as the

volume change of mixing is insufficient to influence the diffusion profiles significantly. By substitu-

tion of the forces in Equation 3.80 into the flux Equations 3.81, together with a comparison against

Fick’s law, it follows that [127]:

D11 = M11
∂ µ1

∂c1
+M12

x1

x3

∂ µ1

∂c1
+M12

(

1+
x2

x3

)
∂ µ2

∂c1
(3.82a)

D12 = M11
∂ µ1

∂c2
+M12

(

1+
x2

x3

)
∂ µ2

∂c2
+M12

x1

x3

∂ µ1

∂c2
(3.82b)

D22 = M21
∂ µ1

∂c2
+M22

x1

x3

∂ µ1

∂c2
+M22

(

1+
x2

x3

)
∂ µ2

∂c2
(3.82c)
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D21 = M21
∂ µ1

∂c1
+M22

x1

x3

∂ µ1

∂c1
+M22

(

1+
x2

x3

)
∂ µ2

∂c1
. (3.82d)

Values of D11 and D22 are readily available so these equations can be used to obtain the ratios

D12/D11 and D21/D22; with certain approximations, these ratios can be expressed in terms of easily

accessible thermodynamic parameters [126–128]. To illustrate the approximations, it is necessary to

relate the coefficients Mi j defined in the laboratory frame and the corresponding Onsager coefficients

MK
i j defined in the Kirkendall frame. This can be done using the velocity of the Kirkendall markers.

Assuming that interstitials do not contribute to the Kirkendall effect, the velocity of the Kirkendall

markers (vK) is given by the flow of just the substitutional solute and iron atoms. Equation 3.3 shows

that

vK = −
J2 + J3

c2 + c3

=
1

c2 + c3

(

D22
∂c2

∂ z
+D33

∂c3

∂ z

)

=
1

c2 + c3

(

MK
22

∂ µ2

∂c2

∂c2

∂ z
+MK

33
∂ µ3

∂c3

∂c3

∂ z

)

(3.83)

where cross-effects have been neglected. Given the dilute nature of the solution, ∂ µ2/∂c2 ≈
RT∂ lnx2/∂c2 and since x3 ≈ 1, ∂ µ3/∂c3 ≈−RT (∂x2/∂c3 + ∂x1/∂c3) so that

vK =
RT

c2 + c3

[(
MK

22

x2
−MK

33

)
∂x2

∂ z
−MK

33
∂x1

∂ z

]

. (3.84)

If ∂x1/∂ z is small, then the Kirkendall effect vanishes when MK
22 = x2MK

33. To make effective use of

this equation, it is useful to relate it to the Mii coefficients.

The flux J1 in the volume-fixed frame of reference is given by

J1 = −M11
∂ µ1

∂ z
−M12

(

1+
x2

x3

)
∂ µ2

∂ z
−M12

x1

x3

∂ µ1

∂ z

= J1 + c1vK

= −MK
11

∂ µ1

∂ z
+

c1RT

c2 + c3

[(
MK

22

x2
−MK

33

)
∂x2

∂ z
−MK

33
∂x1

∂ z

]

. (3.85)

It is assumed here that in the Kirkendall frame of reference the components all diffuse independently

when the solution is dilute.

Within this set of equations, a comparison of the multipliers for ∂x2/∂ z in the first and third lines

gives

M12 = x1x2MK
33 − x1MK

22. (3.86)

It follows that when MK
22 = x2MK

33, M12 = 0 so that the Kirkendall effect vanishes when M12 = 0. In

this limit,

D12

D11
=

∂ µ1

∂c2

/
∂ µ1

∂c1
(3.87)
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D21

D22
=

M21
∂ µ1
∂c1

+M22
x1
x3

∂ µ1
∂c1

+M22(1+
x2
x3
) ∂ µ2

∂c1

M21
∂ µ1
∂c2

+M22
x1
x3

∂ µ1
∂c2

+M22(1+
x2
x3
) ∂ µ2

∂c2

. (3.88)

If it is assumed that x1,x2 - x3 and M21 - M22, then Equation 3.88 becomes

D21

D22
≈

∂ µ2

∂c1

/
∂ µ2

∂c2

For dilute solutions, these equations may be expressed in terms of the Wagner interaction parame-

ters eik [129]:

eik =
∂ lnΓi

∂xk
= eki (3.89)

where Γi is the activity coefficient of i relative to the standard state at infinite dilution. Equations 3.87

and 3.88 can be simplified as follows:

D12

D11
=

e12x1

1+ e11x1
and

D21

D22
=

e12x2

1+ e22x2
(3.90)

Brown and Kirkaldy [127] have verified the validity of Equation 3.90 for ternary steels containing

Mn, Co, Cr, Ni or Si as the substitutional solutes.

Kirkaldy [126] has shown that for dilute ternary iron alloys containing two substitutional solutes,

similar simplification of the diffusion matrix can only be made if the diffusivity of one of the solutes

is relatively large; since this is usually not the case, Kirkaldy suggests that the direct measurement

of the chemical diffusion matrix is the easiest approach.

3.18 DIFFUSION IN LIQUID IRON

Measurements of the diffusion coefficients in liquid iron are of importance in the processing of steel.

The self-diffusivity of iron within its liquid state has been measured to be [130]

D = 9.48× 10−4 exp{−145000/RT} m2 s−1. (3.91)

The measurements are over the range 1823-1923 K. This gives a value of about 5× 10−8 m2 s−1 at

the melting temperature. The activation energy and pre-exponential factor are similar to that for the

data assessed by Fridberg et al. [113] for diffusion parallel to grain boundaries in steel, Figure 3.26.

A comprehensive compilation of diffusion data for liquid iron has been published by Kubic̃ek and

Pepr̃ica [131], which includes a summary of the methods used to measure the diffusion coefficients.

The diffusivity of interstitials in molten iron is comparable with that of many of the substitutional

solutes.

The pressure dependence of diffusivity in liquid iron is expected to be small because the activation

volume consists only of the changes caused during the motion of “vacancies”, which presumably

may be regarded as available in profusion so the formation volume can be neglected (Nachtrieb,

quoted in [17]).
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3.19 STRESS-INDUCED MIGRATION

Pressure is expected to influence diffusion because it alters the ability of the lattice to accommodate

transient changes in volume associated with the migration of atoms from their equilibrium positions.

Different interactions are possible with other forms of stress (e.g., uniaxial tension) when the distor-

tion associated with a misfitting solute atom has a symmetry that is lower than that of the host lattice.

This is because crystallographically equivalent sites which have identical energy at zero stress, sep-

arate into differing energy states under the influence of the stress. Solute atoms that happen to be

lodged in the less favoured sites then tend to migrate into sites that comply best with the applied

stress. For bcc-iron there are three sets of octahedral sites which can be occupied by carbon atoms.

These octahedra are irregular with the shortest principal axis aligned to one of the 〈100〉 directions.

A stress-induced elongation of the unit-cell along one of the 〈1 0 0〉 cell edges expands the set of

octahedral holes with this short axis parallel to that edge. A redistribution of the carbon atoms along

these preferred edges would therefore lead to a reduction in enthalpy. Stress-induced migration

must obviously be dependent on the crystallographic orientation, as verified experimentally using

single-crystals or crystallographically-textured samples [132].

Stress-induced migration introduces a time-dependence in the evolution of strain. This anelasticity

is responsible for the well–known phenomenon of internal friction. The capacity of a steel to damp

vibrations depends on internal friction since work is done as the atoms switch positions during

the alternating stress. The effect must obviously be frequency dependent with the damping being

maximised when the jump frequency and vibration frequencies are in resonance. This characteristic

frequency, which will also depend on temperature, can be used to identify the migrating species and

the activation energy for diffusion. It is interesting to note that although internal friction experiments

monitor macroscopic effects with quite simple equipment, the measurements can in fact deal with

single-atom diffusion jumps.

The experiments usually are carried out using a torsional pendulum where the angle δi by which the

strain lags behind the stress is a measure of anelasticity. The ratio of successive amplitudes, i.e., “the

logarithmic decrement” Q−1
i has a maximum value proportional to the concentration of the solute

atoms. Internal friction experiments can therefore be used to characterise extremely low-carbon

concentrations in ferritic steels.

It is possible for interactions between the mobile interstitial atoms and immobile substitutional-

solutes to influence the stress-induced migration of the former. Figure 3.27 shows that the Snoek

peak has fine structure due to different interstitial/substitutional-solute pairwise interactions. It has

been possible therefore to measure the interaction energies (Table 3.9). Although the chances of

finding the interstitial next to a substitutional atom are small in dilute solutions, interstitial atoms are

mobile even at room temperature, enabling them to migrate into positions close to the substitutional

solute atoms if this leads to a greater reduction in energy [133].

The profile of the Snoek relaxation depends on the specific solutes involved. When nitrogen in-

teracts with chromium or vanadium, there is a discernible additional peak in the relaxation profile

(Figure 3.27). This is not the case for carbon in manganese-containing ferrite, where there is no

extra peak but the peak strength is markedly reduced. This is because the formation of a Mn-C pair
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Table 3.9

The binding energies for interstitial-substitutional solute pairs in ferrite, as mea-
sured using internal friction [133].

Substitutional solute Binding energy / eV

N C

V 0.18

Cr 0.16–0.18
Mn 0.16–0.20 0.12–0.16

Figure 3.27 Internal friction peak in

a Fe-0.1Cr-0.23N wt% ferritic steel.

The continuous curve is measured

whereas the other curves are calculated

contributions from nitrogen atoms that

are bound to a near or second-near

neighbour Cr atom. After Numakura

and Koiwa [133].

reduces the distortion around a carbon atom relative to an isolated carbon atom [134]. It is the elas-

tic interaction between Mn and C which is dominant in this effect, rather than a chemical affinity.

Thus, phosphorus and carbon do not chemically interact but the presence of phosphorus leads to

a reduction in the Snoek peak which is even larger than that associated with manganese. This is

explained by the larger elastic distortion caused by phosphorus in solution [135].

There are other traps for interstitial atoms which can affect their migration. Ke [136] showed that

in cold-worked ferrite, a Snoek peak lying at about 225◦C involves the stress-induced migration of

atoms lying near dislocations.

3.20 ELECTROMIGRATION

Atoms can migrate in the solid-state under the influence of an electrical field, a phenomenon known

as electromigration. Whereas the driving force for ordinary diffusion is the gradient in the chemical

potential, that for electromigration is the gradient in the electrical potential φ . This can be demon-

strated by considering the flow of current i under the influence of the potential difference ∆φ [137].

The rate at which work is done by the current is i∆φ ; if all of this is dissipated as thermal energy in

the surroundings, then it leads to the creation of entropy so

T Ṡ = i∆φ . (3.92)
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Using current density i∗ instead of current, converts this equation into one familiar in the context of

irreversible thermodynamics:

T Ṡ =−i∗
dφ

dz
(3.93)

where the negative sign comes from the fact that the direction of current flow is opposite to that

in which the electrical potential increases. It follows from the thermodynamics of irreversible pro-

cesses, that the force that drives electromigration may be written as

X =−
∂φ

∂ z
= Φ (3.94)

where Φ is the electrical field, X is the force per atom. The current density due to this force will

depend on the charge on the atom. It will be proportional to the true valency of the migrating atom,

but for metals there is an additional contribution due to the effect of the electrons (and/or holes)

which also migrate when a field is applied. The moving electrons interact with the diffusing atoms,

imparting additional momentum in the direction of flow, the process being described as an electron

wind. The wind effect dominates in some metals in which it opposes the flow of the positive ions

and leads to an effective valency that is negative. Consequently, the true valency of the diffusing

species may be masked in electromigration experiments, making it necessary to use an effective

valency Zv; this term is a dimensionless number so it must be multiplied by the magnitude of the

charge per electron, |e| to obtain the effective charge per atom.

The velocity vA of the diffusing species A is related to the force by

vA = Me
AX (3.95)

Me
A (m2 s−1 volt−1) is the electrical-mobility under the action of a unit force. The simplest explana-

tion of this electric-mobility can be obtained by comparison with the tracer diffusion process. From

Equation 3.71 the diffusion mobility MA is given by

MA = D∗
A/kT m2 s−1 J−1 (3.96)

whereas the electric mobility has the units m2 s−1 volt−1. It follows that MA = Me
A/|e|Zv giving

D∗
A = Me

A
kT

|e|Zv
or Me

A = D∗
A

|e|Zv

kT
(3.97)

This in essence is the Nernst equation derived for electrolytes as long ago as 1888 [138]. The flux

is simply the product of the velocity and the concentration:

JA = vA(cANA)

= Me
AΦcANA

=
D∗

A|e|Zv

kT
(ΦcANA) (3.98)

where the multiplier cANA takes account of the fact that X was defined originally as the force per

atom. The flux in electromigration is found to respond as expected – a reversal of the field reverses

the direction of flow and an alternating current has no net effect [139].
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The electromigration of carbon in liquid iron and in austenite has been known ever since it has

been argued that the carbon has a positive charge when dissolved in iron. For migration in the

solid-state, the early research involved the passage of direct current through steel wires maintained

at high temperatures with typical current densities of 30 Amm−2 and for time periods up to 100 h

[12, 140–142]. Changes in carbon concentration were followed metallographically. Experimental

data due to Dayal and Darken [14] are presented in Figure 3.28 in order to illustrate the magnitude

of the changes involved. The data were generated by passing direct current through steel samples

maintained in the austenitic state for periods of up to ten hours. Data for ferritic iron are presented

in Table 3.10.

Figure 3.28 Data illustrating the electro-

migration of carbon in austenite [14]. The

carbon concentration difference induced by

the passage of electrical current is nor-

malised with respect to the mean value at the

central plane between the electrodes. The

horizontal axis represents the product of the

applied current and the duration of the cur-

rent.

Well-designed experiments by Okabe and Guy [143] have demonstrated that Zv = 3.99± 0.08 for

carbon in austenite, independent of the carbon concentration, the temperature or the current density.

Although Zv coincides with the known valency of carbon in its tetrahedral configuration, such a

comparison may be misleading. There is evidence to indicate that the value and sign of Zv is de-

termined more by the electron wind effect than by the intrinsic valency of carbon. Indeed, it may

be the case that the carbon, if it is in an ionised state, has its charge screened by Fermi electrons

[144]. It would not then feel any direct force from the applied field, the screening charge being able

to polarise in response to the field.

When data for many metals are examined together, it is found that different interstitials in a given

metal all tend to have the same sign of the effective valency [145]. This might be taken to indicate

the predominance of the electron wind effect.
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Table 3.10

The effective valency of various elements in ferritic and austenitic iron. The unref-
erenced data are obtained from a compilation by Bocquet et al. [146] and Pratt and
Sellors [147].

Element Zv Reference

H in α 0.24 [139]
2H in α 0.39 [139]

C in α 4.3

N in α 5.7

C in γ 3.99± 0.08 [143]

3.21 THERMOMIGRATION

Thermomigration is the transport of matter in a gradient of temperature; the phenomenon is also

known as the Ludwig-Soret effect. The force responsible for thermomigration can once again be

derived using the theory of irreversible processes [137].

Consider the steady-state flow of heat through a bridge between two bodies, one at a uniform temper-

ature T +∆T and the other at the uniform temperature T . When the latter body absorbs a quantity

of heat q, its entropy increases by ∆S1 = q/T , whereas that of the higher temperature body has

∆S2 =−q/(T +∆T ), giving a net increase in entropy which is

∆S = ∆S1 +∆S2 =
q

T
−

q

T +∆T

.
=

q∆T

T 2
(3.99)

The rate of entropy production during this irreversible process is then

Ṡ =
d

dt

(
q∆T

T 2

)

=
dq

dt

∆T

T 2
, (3.100)

the final equality being justified because of the steady-state nature of the process. The heat flows

through the bridge where the entropy is created; the bridge has a volume V , a cross-sectional area A

and a length ∆z, the temperature difference between its ends being ∆T . The rate of entropy produc-

tion per unit volume is therefore:

Ṡ

V
=

1

T 2

∆T

∆z

1

A

dq

dt
(3.101)

which in the limit of small ∆’s becomes

T Ṡ =
1

A

dq

dt

(

−
1

T

dT

dz

)

= J

(

−
1

T

dT

dz

)

(3.102)

with the negative sign appearing because the flow of heat is in a direction opposite to that in which

the temperature increases. J is the flux of heat. The last term on the right-hand side is the force that

drives the diffusion of heat.
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During thermomigration, the atoms move in a direction that reduces the temperature gradient. They

must therefore carry with them a unit of enthalpy, known as the heat of transport HT (per mole of

atoms). The force responsible for thermomigration is:

X =−
1

T

dT

dz
(3.103)

and the velocity of the atom is then

vA = MT
AX (3.104)

where MT
A is the thermal mobility with units m2 s−1 which by comparison with the units of the

ordinary diffusion mobility gives MT
A = MA/HT and since JA = vAcA it follows that the flux in a

temperature gradient is

JA =−cAHTD∗
A

1

kT 2

dT

dz
. (3.105)

Table 3.11

The heats of transport for various elements in iron. The range indicated for hydrogen
and deuterium in ferrite is because HT is temperature dependent [148, 149].

Element HT/kJmol−1 Reference

H in α -34 to -23 [150]
2H in α -33 to -22 [150]

C in α -100 [151]

N in α -100 [152]

C in γ -8 [151]

It is of course possible to have cross-effects of the kind associated with the Onsager theory. Thus,

diffusion which is driven by a chemical potential gradient can lead to the development of a temper-

ature gradient and vice-versa.

3.22 ELECTROPULSING

High frequency pulses of electrical current have long been known to induce dramatic changes in the

structure and properties of materials [153], including, for example, the healing of internal cracks

in microseconds [154] and electrically induced plasticity as an aid to shape forming [155]. If the

temperature rise associated with the pulsing is sufficient, then the dislocation density can be af-

fected even if the pulse duration is just a few millionths of a second [156]. The process can lead to

quite dramatic changes in the microstructure of steel, as illustrated in Figure 3.29. It is believed that

the observations are not related to electromigration which increases atomic mobility, because elec-

tropulsing has been found in stainless steels to suppress precipitation reactions [157]. It is claimed
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(a) (b)

Figure 3.29 Cold-drawn pearlitic steel wire subjected to a peak current density of 9× 109 Am−2 with a

pulse duration of 150µs. (a) In the cold drawn state. (b) The same following the application of electropulsing.

Reproduced from Qin et al. [157] under the CCBY license.

instead that the pulsing changes the thermodynamic free energy of the system but this is not estab-

lished, for example by including a free energy term into phase diagram calculations to predict the

effect of electropulsing, in a manner similar to calculations for the effects of pressure and magnetic

fields on phase stability. In some cases the role of joule heating is considered unimportant [158],

whereas in others, it clearly is significant [159]. Other factors include stress effects caused by ther-

mal changes, and heterogeneities due to the skin effect whereby the electrical current density varies

as a function of depth from the surface of the sample.

Whereas this subject has vast quantities of experimental data to demonstrate changes due to elec-

tropulsing, it remains the case that there is no quantitative closure between any of the proposed

theoretical frameworks and data.
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Le Claire, L. M. Slifkin, and F. H. Wöhlbier, eds. Diffusion and Defect Monograph Series.

Riehen, Switzerland: Trans Tech Publications, 1973:K42–K43.

148. O. D. Gonzalez, and R. A. Oriani: ‘Thermal diffusion of dissolved hydrogen isotopes in iron

and nickel’, Trans. Metall. Soc. AIME, 1965, 233, 1878–1886.

149. R. A. Oriani: ‘Thermomigration in solid metals’, Journal of Physics and Chemistry of Solids,

1969, 30, 339–351.

150. O. D. Gonzalez, and R. A. Oriani: ‘Thermal diffusion of dissolved hydrogen isotopes in iron

and nickel’, Trans. Metall. Soc. AIME, 1975, 233, 1878–1886.

151. P. Shewmon: ‘The thermal diffusion of carbon in α and γ iron’, Acta Metallurgica, 1960, 8,

605–611.

152. L. S. Darken, and R. A. Oriani: ‘Thermal diffusion in solid alloys’, Acta Metallurgica, 1954,

2, 841–847.

153. O. A. Troitskii: ‘Electromechanical effect in metals’, JETP Letters (English version), 1969,

10, 11–14.

154. Y. Zhou, J. Guo, M. Gao, and G. He: ‘Crack healing in a steel by using electropulsing tech-

nique’, Materials Letters, 2004, 58, 1732–1736.

155. H. Conrad: ‘Electroplasticity in metals and ceramics’, Materials Science & Engineering A,

2000, 287, 276–287.

156. W. H. Cao, J. L. Zhang, and C. H. Shek: ‘Effects of electropulsing treatment on mechanical

properties in Ti rich TiNi shape memory alloy’, Materials Science and Technology, 2013, 29,

1135–1138.

157. R. S. Qin, A. Rahnama, W. J. Lu, X. F. Zhang, and B. Eliott-Bowman: ‘Electropulsed steels’,

Materials Science and Technology, 2014, 30, 1040–1044.

158. X. R. Chu, S. X. Lin, Z. M. Yue, J. Gao, and C. S. Zhang: ‘Research of initial dynamic

recrystallisation for AZ31 alloy with pulse current’, Materials Science and Technology, 2015,

31, ?????

159. D. Guo, X. L. Wang, and W. B. Dai: ‘Microstructure evolution in metals induced by high

density electric current pulses’, Materials Science and Technology, 2015, 31, 1545–1554.

160. G. Ghosh, and G. B. Olson: ‘The isotropic shear modulus of multicomponent Fe-based solid



164 NOTES

solutions’, Acta Materialia, 2002, 50, 2655–2675.

161. J. W. Christian: Theory of Transformations in Metals and Alloys, Part I: 3 ed., Oxford, U. K.:

Pergamon Press, 2003.

Notes
1Other data indicate the formation and migration energies of a vacancy in iron to be 16-2.2 eV and 0.64-0.67 eV, respec-

tively. Compilation in [76] and [82].
2The equation at this stage does not change if the concentration c is replaced with the mole fraction x. The following

identities are useful: x1 = θ/(1+θ ) and Γ = a1(1+θ )/θ .
3An alternative interpretation is that the neglect of short-range order effects near TC causes the discrepancy observed in

the Arrhenius plot, but inconsistent with the fact that precise measurements made by Iijima et al. cast doubt on whether a

diffusion anomaly actually exists for T > TC.
4 It now is possible to estimate the isotropic shear modulus of ferrite and austenite as a function of chemical composition

[160].
5This assumes that there is no vacancy current [161].
6Onsager’s theory also states that as long as the Ji and Xi which contribute to dissipation are independent, then for

diffusion processes, Mi j = Mji .

7And substituting mole fraction ratios for concentration-per-unit-volume ratios.



4 Ferrite by reconstructive
transformation

4.1 INTRODUCTION

Allotriomorphic ferrite is, without a doubt, the most prolific phase in the vast majority the 1.6 billion

tonnes of steel consumed annually. It is the first phase to precipitate when austenite is cooled slowly

below its equilibrium transformation temperature [1–3]. The term allotriomorphic in this context

implies that the limiting surfaces of the crystal are irregular and do not display the symmetry of

its internal structure [? ]. The irregular form is a consequence of the ferrite nucleating at austenite

grain surfaces so subsequent diffusion-aided growth occurs more rapidly along the boundaries than

in any other direction. Its shape is therefore influenced by the presence of the boundary rather than

its crystal structure (Figure 4.1). Allotriomorphic ferrite need not always form at the austenite grain

boundaries, but it invariably does so because of the dearth of heterogeneous nucleation sites in the

austenite; modern steels are impressive in their cleanliness, with few unintended inclusions that may

facilitate the intragranular nucleation of ferrite.

The term idiomorphic implies that the precipitate has faces belonging to its crystalline form. In

steels, idiomorphic ferrite is taken to be that which has a facetted shape (Figure 4.1). Idiomorphic

ferrite nucleates on inclusions or other heterogeneous nucleation sites within the austenite grains.

(a) (b)

Figure 4.1 (a) Allotriomorphic ferrite in Fe-2.03Si-2.96Mn-0.12C wt% steel, transformed partially, at

720◦C. (b) Idiomorphic ferrite in Fe-5.9W-1.95Si-0.36C wt% steel, partially transformed at 850◦C (micro-

graph courtesy of Sunil Sahay).

These descriptions of allotriomorphs and idiomorphs are relevant when the precipitate is able to

165
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grow freely without impedance: hard impingement involves physical contact between adjacent par-

ticles whereas soft impingement describes the case where the solute-diffusion or temperature fields

of nearby particles begin to overlap.1 Impingement has the effect of constraining the microstruc-

ture. Steels, when they transform completely into allotriomorphic ferrite, have a microstructure of

space-filling equiaxed ferrite grains, the shape of which bears little resemblance to the early stages

of transformation.

The morphological definitions are to be interpreted loosely; they refer to a scale of observation that

is typical of optical microscopy. Allotriomorphic ferrite can be crystallographically facetted when

examined at a greater resolution. Similarly, it is not established whether the shape idiomorphic

ferrite reflects the symmetry of the body-centred cubic crystal structure. It is more likely to comply

with the combined symmetry of the γ/α bicrystal [5]. Indeed, the ability of any growing precipitate

to form facets depends not just on the orientation dependence of interfacial energy but also on

the driving force for transformation which determines the mechanism of interface displacement,

whether the motion is stepped or continuous [6]. In principle, allotriomorphic ferrite formed at high

temperatures (low supersaturations) could appear facetted while that formed at lower temperatures

may not. This is because a step mechanism relies on the ability of a proportion of the interface to

be pinned in a deep energy well, which is one in a periodic array of wells with a spacing normal to

the interface that is equal to the step height. At large driving forces the pinned interface can escape

from the energy wells and hence will tend to move continuously with every element of the interface

moving in unison.

Since both idiomorphic and allotriomorphic ferrite grow by a reconstructive transformation mech-

anism, their growth is not limited by austenite grain boundaries. The extent of penetration into

particular grains may vary given that the mobility of the transformation interface can change with

the α/γ orientation relationship. Massive ferrite, which also grows by a reconstructive transfor-

mation mechanism, has the distinction that it inherits the composition of the parent austenite. The

ability to cross parent austenite grain boundaries is particularly pronounced during massive transfor-

mation; the final ferrite grain size can be larger than the initial grain size of the austenite. The lack

of a composition change allows the transformation to proceed until all of the austenite is consumed.

These factors combine to give a single-phase microstructure of large grains of ferrite which have an

approximately equiaxed morphology due to impingement between neighbouring grains. The trans-

formation may begin with the growth of idiomorphs or allotriomorphs, so massive ferrite cannot

strictly be regarded as a separate morphology in the classification scheme.

Austenite can only transform without a composition change if the temperature is below T0, at which

α and γ of identical composition have equal free energy (Figure 4.2). The T0 temperature lies be-

tween the Ae3 and Ae1 temperatures which in turn define the upper and lower limits respectively

of the two-phase α+γ field. For the range Ae3 → T0, austenite can only transform to ferrite with

a different chemical composition. Between T0 and Ae1, the growth of ferrite of equilibrium or un-

changed composition is in principle possible. Below the Ae1 temperature, massive transformation

should predominate if the transformation mechanism is reconstructive.
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Figure 4.2 Construction of the

phase boundaries using free energy

curves. The tangent common to the

free energy curves defines the equilib-

rium compositions of the austenite and

ferrite at the temperature T1; the locus

of these compositions as a function of

the temperature gives the Ae1 and Ae3

phase boundaries. The T0 curve is the

locus of all points for which austenite

and ferrite of identical composition

also have the same free energy.

4.2 INTERFACES

4.2.1 COHERENCY

The Ehrenfest classification (Section 1.7.1) is based on the successive differentiation of a thermody-

namic potential with respect to an external variable such as temperature or pressure. The order of the

transformation is defined by the lowest derivative to exhibit a discontinuity. In a first–order transfor-

mation, the partial derivative of the Gibbs free energy with respect to temperature is discontinuous

at the transition temperature. There is thus a latent heat evolved at a sharp interface that separates

the coexisting parent and product phases. This interface delineates perfect forms of the parent and

product phases. The structure of the interface will be related to the mechanism of transformation in

a manner consistent with both the nucleation and growth events.

In a second–order transformation the parent and product phases do not coexist; when such a trans-

formation involves a lattice change, the change occurs continuously throughout the parent phase

until its lattice is altered gradually into that of the product. There is no identifiable interface nor a

nucleation event in the conventional sense.

All of the transformations associated with the decomposition of austenite are thermodynamically

of first order. They occur by the propagation of well-defined interfaces that can be coherent, semi-

coherent or incoherent. Coherency can of course be forced when the particle is small with conse-

quent strain energy; stress-free coherence refers to the case where there is no breakdown of co-

herency as the particle grows.

A pair of crystals can be joined by a stress-free coherent interface if one of them can be generated

from the other by a homogeneous deformation which is an invariant-plane strain (IPS). Such a

deformation leaves one plane invariant, i.e., undistorted and unrotated, to form the coherent interface

(Figure 4.3). It will be demonstrated in Chapter 5 that austenite cannot be deformed into ferrite by
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a strain which is an invariant-plane strain. It follows that α/γ interfaces must be semi-coherent or

incoherent, except at the nucleation stage where the ferrite might be forced into coherence. For larger

areas of contact when the coherency strains become intolerably large, defects are introduced into

the interface that reduce the range of the strains. The structure of the interface will then consist of

coherent patches separated periodically by discontinuities that prevent the misfit from accumulating

over large distances.

(a) (b) (c)

Figure 4.3 Three kinds of invariant-plane strains. The invariant-plane, shaded grey, is unaffected by any of

the deformations. The terms s and ζ refer to the shear and dilatational strains respectively.

4.2.2 GLISSILE SEMI-COHERENT INTERFACES

There are two kinds of semi-coherency. If the discontinuities described above consist of a single

set of screw dislocations, or dislocations with Burgers vectors that do not lie in the interface plane,

then the semi-coherent interface is said to be glissile [4, 7, 8]. It also is necessary that the glide

planes (of the misfit dislocations) associated with the ferrite lattice meet the corresponding glide

planes in the austenite lattice edge to edge in the interface, along the dislocation lines [9]. A glissile

interface can move conservatively, i.e., without any diffusion. When it does so, its motion causes

deformation (Figure 4.4) that generates the new crystal structure, but at a rate that would be limited

only by the mobility of the interface. The same interface can move slowly to produce reconstructive

transformation only if its motion is accompanied by reconstructive diffusion (Figure 1.8).

(a) (b)

Figure 4.4 The conservative motion of a glissile interface causes deformation as it transforms the crystal

structure. The dashed lines are traces of the glide planes of the interfacial dislocations, meeting edge-to-edge

in the interface.
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4.2.3 SESSILE SEMI-COHERENT INTERFACES

If the interfacial dislocations have Burgers vectors which lie in the interface plane, not parallel to

the dislocation line, then the boundary is said to be “epitaxially semi-coherent” (Figure 4.5). Its

normal displacement cannot occur without the thermally activated climb of the misfit dislocations.

The rate of interface motion is therefore limited by diffusion and is expected to be sluggish at low

temperatures.

Figure 4.5 Nature of the shape change accompanying the movement of an epitaxially semi-coherent inter-

phase interface [10].

The upwards motion of the boundary designated AB (Figure 4.5) to the new position C′D′ should

change the shape of a region ABCD of the parent crystal to AC′D′B of the product phase. Because

of the dislocation climb implicit in the process, the total number of atoms in regions ACDB and

AC′D′B will not be equal, the difference being removed by diffusion normal to the interface plane.

Atom movements are therefore needed over a distance at least equal to that moved by the boundary.

If this is the only diffusion flux, then the shear component of the shape change will not be elimi-

nated, the transformation exhibiting characteristics associated with the displacive mechanism. The

mobility of the interface will, of course, be limited by the dislocation climb process. This orderly re-

moval of atoms as the interface migrates, involving the removal of the extra half-planes of the misfit

dislocations, leaves only a partial atomic correspondence between the parent and product phases.2

However, if atoms have to migrate over large distances when an epitaxially semi-coherent interface

moves, they should also be able to produce a net flow parallel to the interface, thus eliminating

the shear component of the shape change, and its associated strain energy [7]. Referring to Fig-

ure 4.5, this would involve the diffusion of matter contained in the region BF′D′ to region AFC′,

in a direction parallel to the interface (cf. Figure 1.8). It may therefore be improbable that atomic

correspondence can be maintained during non-conservative interface motion.
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4.2.4 INCOHERENT INTERFACES

The dislocations in the connecting interface become more closely spaced as the misfit between ad-

jacent crystals increases. They eventually coalesce giving a boundary consisting of closely spaced

vacancies or dislocation cores. Such a boundary is said to be incoherent; there is little correlation

of atomic positions across the boundary. The activation energy for diffusion along such a boundary

is similar to that for liquid iron (p. 142). The motion of an incoherent boundary can lead only to

reconstructive transformation. The free volume and diffusivity within the boundary may be suffi-

ciently large to confine the reconstructive processes to the proximity of the boundary itself, unlike

the diffusion associated with the motion of semi-coherent interfaces.

Incoherent, coherent and semi-coherent boundaries can coexist around a particle which has grown

by a reconstructive transformation mechanism. However, only coherent and semi-coherent bound-

aries that are glissile can enclose a particle that is generated by displacive transformation. This is

because the deformation associated with the transformation is homogeneous. If an atomic corre-

spondence exists across a particular interface of a particle, then it necessarily does so across any

other interfacial orientations [4, 11].

4.3 CRYSTALLOGRAPHY

Crystallography has its origins in the description of patterns in single-crystals, but it is the relation-

ship between crystals that is emphasised in transformations. There are at least five quantities which

need to be specified in order to describe a pair of crystals which are connected at an interface. The

orientation relationship, that is independent of the plane of the interface, can be described by an

axis-angle pair. Since the axis can be specified with two independent direction cosines, the orienta-

tion relationship uses up three degrees of freedom (the two cosines and the angle of rotation about

the axis). The interface plane requires a further two degrees of freedom since it is the normal to the

plane which describes the orientation of the plane; two direction cosines fix the normal. Thus, there

are five degrees of freedom necessary to describe the bicrystal (Figure 4.6). Each of these can be

altered independently to obtain physically distinct bicrystals.

4.3.1 ORIENTATION RELATIONSHIPS

It is observed routinely that the orientation relationships that develop during phase transformations

in the solid-state are not random [8, 12, 13]. The frequency of occurrence of certain orientation

relationships usually exceeds the probability of obtaining it by arbitrarily joining two crystals. This

perhaps is because the special dispositions allow the best fit at the transformation front [14, 15]. A

good fit is conducive to a small value of the interfacial energy, making it easier for the transformation

to nucleate. Embryos that happen by chance to be orientated for optimum fit would find it easier to

grow into successful nuclei, giving rise to the non-random distribution seen experimentally. When

nucleation occurs heterogeneously at austenite grain boundaries, there will also be a dependence on

the relative orientations of the adjacent austenite grains.

An alternative interpretation is that nucleation occurs by the homogeneous deformation of a small
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Figure 4.6 Degrees of freedom in

the specification of a bicrystal. The

orientation of the interface can be

changed without altering the orienta-

tion relationship between the crystals.

Alternatively, the orientation relation-

ship can be changed without changing

the orientation of the interface.

region of the parent lattice [12]. This deformation would have to be of the kind that minimises strain

energy. Of all possible ways of accomplishing the lattice change by homogeneous deformation, only

a few might satisfy the minimum strain energy criterion, explaining the occurrence of preferred

orientation relationships.

It has in practice been difficult to determine which of these factors control the existence of repro-

ducible orientation relations. Nevertheless, it is found that when the α and γ have a low-energy

orientation relationship, Widmanstätten ferrite which grows by a displacive mechanism, can initiate

from the α with an almost, but not exactly the same orientation [16]. This indicates that the nu-

cleation mechanism of αW is different (Chapter 7) and that of allotriomorphic ferrite is controlled

by the minimisation of interfacial energy. Additional evidence for this is described in Section 4.4.1

which describes the nucleation of iron deposited from the vapour phase.

In the case of ferrite and reconstructive transformations in general, the growth process is not limited

to the grain in which nucleation occurred. The experimental determination of the orientation rela-

tionship then becomes uncertain if the austenite grain which initiated the ferrite cannot be identified.

The homogeneous deformation which might create the nucleus from the parent phase is not unique

and various criteria have be used to select the most favoured deformation. Ryder and Pitsch [12]

proposed specifically that a coherent nucleus forms as a small, thin platelet such that the plate plane

and one direction within that plane are unrotated, though not necessarily undistorted during the

deformation. A pair of corresponding planes from the two lattices and corresponding directions

within those planes then remain parallel in the interface during nucleation. Such deformations can

be described as the combination of the Bain strain with a small rigid body rotation (Chapter 5). It

was found in this way that all γ/α orientation relationships should lie within about 11◦ of the Bain

orientation3 The classical Kurdjumov-Sachs [17] orientation relationship (i.e., {111}γ ‖ {011}α
and 〈011〉γ ‖ 〈111〉α) and that due to Nishiyama-Wasserman [18, 19] (i.e., {111}γ ‖ {011}α and

〈011〉γ about 5.3◦ from 〈111〉α towards 〈111〉α) both lie within the 11◦ region about the Bain

orientation.
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Ryder and Pitsch went on to suggest that for precipitates which nucleate homogeneously in the

austenite, the unrotated planes and directions of the two lattices should be the most closely packed

planes and directions respectively. For heterogeneous nucleation at a grain boundary, the unrotated

plane should correspond to the plane of the grain boundary and need not be a close-packed plane.

There is a possibility that strains induced during nucleation make this displacive mechanism unlikely

at low supersaturations [20], although this relies on various assumptions about the nucleus shape,

composition and stored energy.

The crystallography of grain boundary nucleated ferrite indicates that the ferrite has a good-fit orien-

tation relationship with at least one of the adjacent austenite grains [21]. The good-fit orientation is

close to the classical Kurdjumov-Sachs (KS) or Nishiyama-Wasserman (NW) relationships. In fact,

the range of orientations detected is more restricted than the 11◦ Bain region of Ryder and Pitsch.

The orientations tend, within the limits of experimental error, to cluster at and around the KS and

to a lesser extent the NW relations. It was always possible to find a close-packed plane of austen-

ite which was within 2◦ of a close-packed plane from ferrite.4 Within these planes, a close-packed

direction of the austenite could always be found within about 8◦ of a similar direction in the allotri-

omorphic ferrite. There is now a vast literature on the crystallography of allotriomorphic ferrite that

essentially confirms these observations, although there are violations of the general principle if the

ferrite is nucleated at an intragranularly located inclusion that has the domineering influence at the

nucleation stage [22].

King and Bell also found that over half of the ferrite allotriomorphs examined had a KS/NW type

orientation relationship with both the adjacent austenite grains. This is unexpected since for a ran-

dom population of austenite grain boundaries, about one in three might allow a ferrite orientation to

be chosen which is within the Bain regions of both the adjacent matrix grains. The higher observed

proportion is because of the austenite is crystallographic textured, as is inevitable in processed steels.

The most likely scenario for the ferrite fitting well with both adjacent austenite grains if they have

a Σ = 3 or Σ = 11 coincidence site lattice [23], although if there is some flexibility in the deviation

from KS/NW, then the chances of a dual orientation developing increase monotonically with the

magnitude of the “tolerable” deviation [22].

The early research used an indirect determination of the austenite orientation, based on assumed

indices for the habit plane of Widmanstätten ferrite plates. It then became possible to retain the

austenite. These studies have revealed a different result, that the fraction of allotriomorphs exhibiting

a reproducible orientation relationship with the austenite is quite small, Figure 4.7a [23, 24]. This

is because of the greater mobility of more incoherent α/γ boundaries. Smith [25] proposed that

when a ferrite allotriomorph nucleates at an austenite grain boundary, it has a good-fit orientation

with one of the austenite grains and hence advances by the stepped motion of the α/γ1 interface,

and a random orientation with the other grain (Figure 4.7b,c). Growth, however, occurs into both of

the adjacent grains, but at a more rapid pace into the austenite with which the ferrite is randomly

oriented. Indeed, the ferrite can continue growing along other boundaries which had little or no

influence in determining its orientation during nucleation.

The probability of finding ferrite that is well related to the adjacent austenite therefore depends
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(a) (b)

(c)

Figure 4.7 (a) The α-γ orientation relationship, where θ is the angle between {111}γ and {011}α and φ

is that between 〈101〉γ and 〈111〉α, with an accuracy of about ±5◦. The orientations for the bainite are well

within the Bain region whereas those for allotriomorphic ferrite are not necessarily so. (b) An allotriomorph of

ferrite at an austenite grain boundary. The allotriomorph is related to γ1 by an orientation relationship which is

close to KS, but is randomly orientated with respect to the lower grain. Bainite has been able to nucleate from

the allotriomorph only on the side where the orientation is suitable. (c) Enlarged version of (b) to show the

steps at the α/γ1 interface [24].

on the growth stage and this explains the small fraction of allotriomorphs that are reproducibly

orientated with the austenite in which they grow. The nucleation mechanism cannot be deduced un-

ambiguously from the observed orientations. Both interfacial energy minimisation and strain energy

minimisation could lead to similar non-random distributions of orientation relations. Experiments

on the nucleation of fcc α-brass rods from bcc brass, showed that rods nucleated near free surfaces

always had their invariant-lines parallel to the free surface [26]. This indicates an attempt to min-

imise the strain energy, consistent with the existence of co-ordinated atomic displacements during

nucleation. If nucleation is controlled by the minimisation of interfacial energy, then other surface

nucleation events are possible but were not found.
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4.3.2 THE γ/α INTERFACE

High-resolution transmission electron microscopy of allotriomorphic ferrite/austenite interfaces has

revealed regularly spaced linear discontinuities in the interface [27]. The spacing of these disconti-

nuities varied as a function of the orientation of the interface plane.

Other studies on duplex stainless steel containing a mixture of δ-ferrite and austenite [28] where the

orientation relationship was measured to be

(1 1 1)γ ‖ (1 1 0)δ [0 1 1]γ ‖ [1 1 1]δ

indicated that an interface parallel to (1 0 2)γ contained at least two sets of intrinsic dislocations,

with Burgers vectors parallel to [1 1 0]γ and [1 0 1]γ respectively, making the semi-coherent inter-

face sessile.

Both sets of observations are consistent with a dislocation model of a partially coherent interface.

4.4 NUCLEATION OF ALLOTRIOMORPHIC AND IDIOMORPHIC FERRITE

Classical nucleation theory and the associated atomic nuances have been documented in consider-

able depth [4, 29]. The focus here is on the nucleation of ferrite and the difficulties of applying it in

practice. There has never been an observation of the homogeneous nucleation of ferrite so that will

only be discussed in order to provide context. Nucleation theory is fraught with difficulties when

it comes to actual application. In the solid state, a nucleus is an enclosed particle, surrounded by a

variety of interfacial orientations; most applications use a single γ/α interfacial energy, which in

any case is a function of variables such as chemical composition, impurity content, crystallography

and perhaps, size. The number density of nucleation sites cannot be predicted; even if measured data

are used, it still is necessary to fix the fraction of the site that actually participates in the process.

During heterogeneous nucleation it often is assumed that defects can be characterised by a single

parameter, such as the boundary area per unit volume or a dislocation density. In reality, it is well

established that there will be a spectrum of grain boundary energies, and that only a small fraction

of γ/γ boundaries participate in the nucleation of ferrite [30]; similarly dislocation characteristics

and configurations, and the non-uniform nature of plastic strain, are not single-valued. This level

of complexity is challenging if not impossible to handle in practice. This pessimistic view can be

substituted by pragmatism in the hope that a generic set of parameters can be determined by fitting

to a large variety of steels and accepting that models will be approximate or indicative.

Consider the nucleation of α from the parent phase γ. The transformation does not occur sponta-

neously when on undercooling because the excess energy ∆Gσ associated with the creation of the

interface must be accounted for. This energy scales with the surface area of the new particle, which

will be some function of the square of the particle size (r), Figure 4.8. The driving force for transfor-

mation, ∆G
αγ
V , scales with the volume of the particle, i.e., with the cube of its size. The combined

effect is in an increase in free energy when an embryo of the product phase forms because at small

sizes, the total energy due to the interface (∝ r2) overwhelms the reduction in free energy (∝ r3). At

some critical size r∗, the volume-dependent term begins to dominate and the net free energy change

∆G begins to decrease monotonically towards zero and then becomes negative.
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Figure 4.8 Change in free energy

accompanying the nucleation of a

transformation.

There is therefore an activation barrier G∗ to overcome before an embryo can begin to grow; prior to

reaching r∗ it exists only when during thermally-induced agitation, a region of the parent by chance

momentarily adopts the appropriate structure and composition in order for it to be classified as α.

Such a fluctuation will not be stable when r < r∗. Suppose that the embryo is spherical with radius

r, then

∆G = 4σαγπr2

︸ ︷︷ ︸

∆Gσ

+
4

3
πr3∆G

γα
V

︸ ︷︷ ︸

∆Gchem

(4.1)

where σαγ is the constant interfacial energy per unit area and ∆G
γα
V = Gα−Gγ is the chemical

free energy change per unit volume. The activation energy and critical size can be obtained by

differentiating this equation for the maximum in ∆G, giving

r∗ =−
2σαγ

∆G
γα
V

and G∗ =
16

3

πσ3
αγ

(∆G
γα
V )2

. (4.2)

For transformations in the solid state, the formation of a new phase causes elastic strains with an

associated strain energy ∆Gm which is a cost to be accounted for in the nucleation process. Any

component of ∆Ge scales with the interfacial energy can simply be added to the latter; that which

scales with the volume of the embryo can be added to ∆G
γα
V , having the effect of reducing the

driving force. There is an additional constant activation barrier Q for the transfer of atoms across

the interface, which must be added to G∗. There also is a probability that an embryo that makes it

to the top of the barrier may dissolve; this involves the so-called Zeldovich factor, neglected here

given the pragmatic approach. A spherical shape was assumed in deriving G∗, but it would not be

difficult to do so for other shapes although the strain energy terms may differ significantly [4]. The

steady-state nucleation rate must depend on the attempt frequency ν which often is written as kTD/h

but this atomic vibration frequency may not be representative given that the fluctuations considered

are for clusters of atoms attempting to surmount barriers. The steady-state nucleation rate per unit

time and volume is then given by:

IV = NVν exp

{

−
G∗+Q

RT

}

(4.3)
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where the units of the activation energies must be consistent with those of RT and NV is the num-

ber per unit volume of potential nucleation sites. Q often is related to some large fraction of the

activation energy for self-diffusion in iron, given that the nucleus will have a high level of forced-

coherency with the matrix and that transport occurs across the interface rather than along it in order

to achieve the structural change (p. 142).

Heterogeneous nucleation on defects such as the austenite grain surfaces and dislocations is much

easier than when nucleation occurs homogeneously, because there is an energy gain when a part of

the defect is destroyed in the process. In grain boundary nucleation, the surface per unit volume is

SV = 2/Lγ, where the quantity in the denominator is the mean lineal intercept defining the austenite

grain size. Therefore, the number density NA per unit area of grain-surface nucleation sites will be

proportional to SV. The fraction of atoms located at the boundary surfaces of thickness δb is obtained

as δb × SV. The number density grain boundary nucleation sites per unit volume is therefore

N
grain faces
V = NV

2δb

Lγ

(4.4)

A good representation of an equiaxed grain structure in three dimensions is the Kelvin truncated-

octahedron (Figure 4.9) [31]. It has 14 faces, 36 edges each of length a and 24 corners, which in an

array that fills space would be shared by 2, 3 and 4 truncated octahedra respectively. The volume

per grain Vgrain = 11.314a3, and since L = 1.69a, the volume can be written 2.639(Lγ)3; similar

relationships exist for other shapes [32–35].

(a) (b)

Figure 4.9 (a) A regular octahedron consisting of eight triangles. The dark regions represent the bits that

have to be cut off to create the truncated octahedron consisting of eight hexagons and six squares. Adapted

from [36]. (b) Truncated octahedron as a representation of an equiaxed grain. These objects can be stacked to

fill space.

Assuming that grain edges have a cross-section δ 2
b and the fact that each of the edges is shared

between two of the truncated octahedra, the fraction of sites at grain edges is calculated by noting

that each of the 36 edges is shared between 3 grains, so the edge length per grain is 36a/3 = 7.1Lγ

and the volume per grain is 2.639(Lγ)3, so the fraction of sites at edges, per unit volume is

N
grain edges
V = NV

δ 2
b × 7.1Lγ

2.639(Lγ)3
= 2.69NV

(
δb

Lγ

)2

. (4.5)

There are 24 corners per grain but each is shared with four other grains. The fraction of sites at
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corners, assuming that δ 3
b is the volume of each corner, is therefore (24/4)δ 3

b /2.639(Lγ)3 so

N
grain corners
V =

6δ 3
b

2.639(Lγ)3
= 2.274

(
δb

Lγ

)3

. (4.6)

Because there is more potential for disorder at locations where large numbers of grains meet, the

activation energies for nucleation increase on progressing from corner, edge, face and homogeneous

sites. However, the number density of nucleation sites also increases in that order. The greatest

contribution to nucleation at low driving forces (|∆Gγα|) will be at corners, but as the driving force

increases, the other sites will also be active and may overwhelm the corner sites because of their

greater number densities.

Equation 4.3 is said to represent the steady-state nucleation rate. Assuming that the supercooled

austenite does not contain ferrite-like clusters of atoms, it would take time to establish the distribu-

tion of embryos of ferrite up to the critical size. This time represents an incubation period τ during

which the nucleation rate increases towards the steady state. This transient can be represented by

multiplying the steady-state rate by exp{−τ/t} [37]. Russell developed a theory for the incubation

time in the context of a variety of scenarios dealing with grain boundary nucleation kinetics [38].

The result can be expressed approximately as [39]

τ ∝
T

(|∆G|)pD
(4.7)

where p is an exponent depending on the state of coherency of the embryo and D is an effective

diffusion coefficient. This method has been used empirically to model the initiation of transforma-

tion in time-temperature-transformation diagrams [39]. ∆G here is the driving force for nucleation,

written previously as ∆Gγα = Gα−Gγ. While this is correct when there is no composition change

during transformation, different considerations apply for an alloy. Consider a steel containing only

carbon; when the austenite of composition x is supercooled into the α+γ field and transformation

allowed to proceed to equilibrium, there will exist a mixture of the two phases with a concomi-

tant reduction in free energy relative to the fully austenitic state of ∆Gγ→α+γ′
, where γ′ refers to

austenite of an enriched equilibrium composition xγα with the corresponding ferrite composition at

equilibrium given by xαγ. The equilibrium fraction of ferrite is given by (xγα− x)/(xγα− xαγ).

So the free energy change ∆Gγ→α+γ′
divided by this fraction of ferrite is ∆G3, Figure 4.10a.

However, the formation of a nucleus cannot substantially alter the composition of the austenite

which remains essentially at x. In Figure 4.10a, as the fraction of ferrite is reduced, the composition

of the austenite changes from xγα towards x. In the limit there is no change, the line ‘ab’ becomes a

tangent to the austenite curve at x, Figure 4.10b. Any vertical arrow from that line to the ferrite curve

gives the free energy reduction on forming a very small quantity of ferrite. ∆G3 is the reduction if

the terminal point of the arrow touches the ferrite free energy curve at its minimum. The maximum

reduction, ∆Gm, corresponds to the ferrite composition xαm defined by a parallel tangent to the ferrite

curve. This can be used in the nucleation rate equations.
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Figure 4.10 Plots of free energy versus carbon concentration at a constant temperature. (a) The equilib-

rium compositions of the ferrite and austenite are given by the common tangent and the arrows indicate the

overall free energy change ∆Gγ→α+γ′
when austenite of composition x decomposes into a mixture of ferrite

and enriched-austenite. The second arrow indicates the overall free energy change divided by the equilibrium

fraction of ferrite. (b) Similar diagram but showing how the parallel tangent construction leads to the biggest

reduction in free energy when a ferrite nucleus forms without substantially altering the composition of the

remaining austenite.

4.4.1 HETEROGENEOUS NUCLEATION FROM VAPOUR

There are obvious reasons why it has not yet been possible to demonstrate subtle details about the

early stages of nucleation. Nucleation is dependent on random fluctuations in space and time. The

dimensions of a nucleus are, for all practical purposes, minute, requiring the use of high-resolution

techniques. This in turn limits the amount of material that can be studied, thereby greatly reducing

the probability of capturing a nucleation event. Work on the deposition of thin films of iron from

its vapour phase is interesting because it demonstrates the overriding influence of crystallography

and lattice matching in heterogeneous nucleation, while at the same time revealing properties not

obvious in bulk samples.5 When depositing on to a single-crystal substrate, all orientations of iron

can in principle nucleate from the vapour, but only those with the smallest activation energy will

tend to do so, particularly when there is a two-dimensional match with the substrate.

The accumulated data are remarkable, obtained using techniques such as Auger electron spec-

troscopy, reflection high-energy electron diffraction, low-energy electron diffraction, surface X-ray

diffraction etc. They include the time-dependence of the crystallography of the substrate and de-

posit, the chemical composition of the layers of atoms as they form, together with a myriad of

revelations of the physical properties of the films of iron.

The main substrates for the deposition of iron have been Cu, Pd, Ag, Al and Ru, all of which are fcc

with the exception of ruthenium which has a hcp crystal structure. The deposits are made on specific

crystallographic planes, usually {100}fcc, {111}fcc and {0001}hcp. The deposition process has

sufficient control to enable fractions of monolayers to be deposited.

Table 4.1 shows the lattice parameters of a variety of substrates used during single-crystal thin-film

preparation. The deposit tends to be epitaxial when the iron is evaporated onto a low-misfit substrate

such as copper. Since the structure of copper is fcc, the iron is deposited as austenite as long as the
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thickness of the deposit is less than a few monolayers. Thicker films tend to become ferritic. This

structural transition occurs at a smaller thickness as the misfit with the substrate becomes larger.

In fact, the mechanism of deposition changes at large misfits, from layer-by-layer growth to island

growth.

Other results come from the deposition of iron on high-misfit substrates such as Pd, Ag and Al.

On {111}Pd the first monolayer of iron deposits pseudomorphically with the Pd but there is an

intermixing of Fe and Pd for experiments at both room temperature and 200◦C [40].6 Beyond a few

layer equivalents, the iron morphs into large bcc {110} islands which have a Kurdjumov-Sachs

orientation relation with the Pd substrate. The misfit is so large when the substrate is silver, that

the iron always deposits bcc islands, apparently in a Nishiyama-Wasserman orientation with the

substrate. The islands tend to be elongated along 〈110〉Ag directions.

The mismatch of iron with aluminium is similar to that with silver, but the observed effect is quite

different, that the iron at first has an amorphous structure. It has been speculated that this is because

the iron atoms rapidly diffuse into the aluminium to form an amorphous surface-alloy. An alternative

possibility is that because aluminium has such an incredibly strong affinity for oxygen, it may be

difficult to ensure a pure aluminium oxide-free surface prior to the deposition of iron. It would

therefore be interesting to see whether similar effects are observed when iron is deposited on an

appropriately oriented alumina surface.

The growth of iron on ruthenium (0001) occurs at first by the formation of a single pseudomorphic

layer, with some interdiffusion of Ru into the deposited layer. All subsequent growth is by the

formation of three-dimensional bcc Fe {110} domains which are in Kurdjumov-Sachs orientation

with the pseudomorphous layer of iron. These bcc islands never form directly on the ruthenium even

though the pseudomorphic iron has the same atomic pattern as the substrate ruthenium [41].

It is worth emphasising that the pattern in which the atoms of a clean substrate are arranged may

reconstruct into one of a series of possible surface structures; it cannot be assumed that the surface

structure reflects that of parallel planes within the bulk of the sample. Thus, {100}Au surface is

known to reconstruct into a (5× 20) structure.7 This must affect the nucleation of iron; it has been

shown that the deposition of iron leads to a change in the surface structure of, for example, gold

[42].

It is possible to reach some general conclusions about heterogeneous nucleation from these thin-film

experiments:

(i) The atomic structure of the nucleus can evolve as the particle grows. The initial arrange-

ment might comply more with the substrate than the thermodynamically most stable form

of the iron.

(ii) The atomic structure of the substrate itself may be altered during the nucleation event.

(iii) There may be an intermixing of atoms when the substrate and nucleus are chemically

different.

(iv) Contamination of the substrate surface with, for example, the segregation of impurities

or reaction with impurities may have a major influence on the early stages of nucleus

formation.
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(v) Any substrate/iron-deposit orientation is in principle possible when condensing from the

vapour phase, but the observed relationships are specific and identical to those gener-

ated during transformation in bulk steels. Therefore, the crystallography during bulk-

transformation is controlled by the need to minimise interfacial and strain energies at the

nucleation stage, irrespective of whether the mechanism is reconstructive or displacive.

Table 4.1

Lattice parameters (a,c) of iron and of substrates used during the deposition of thin
films.

a / nm a / nm c / nm

Austenite 0.3567 Ferrite 0.2866

Nickel 0.3524 Copper 0.3615
Palladium 0.3890 Platinum 0.3923

Gold 0.4078 Silver 0.4086
Aluminium 0.4050 Ruthenium 0.2705 0.4281
GaAs 0.5653

4.4.2 HETEROGENEOUS NUCLEATION ON INCLUSIONS

Much of the work on the inclusion-stimulated nucleation of ferrite comes from research on welding

alloys where the structure can be refined by the intragranular nucleation of ferrite plates. Although

these are not allotriomorphs, the discussion of inclusion effects remains relevant and hence will be

included here.

Figure 4.11a shows that if a truncated sphere of ferrite forms on a spherical, unfaceted inclu-

sion, the activation energy for nucleation is greater than if it nucleates at austenite grain surfaces,

assuming that the inclusion has the same interfacial energy with austenite and ferrite, and that

σαγ = 0.75Jm−2 [43]. The grain surface result will depend on the assumed values of σαγ and

the interfacial energy between the inclusion and γ or α. The cosine of the contact angle for the

geometries assumed is cosθ = (σIγ−σIα)/σγα. Figure 4.11b illustrates the potency of vanadium

nitride as the substrate for ferrite nucleation, as a function of these parameters [44]. Whereas it

is difficult to verify most of the quantities needed for these calculations, the size at which inclu-

sions become more effective than austenite grain boundaries can be measured and used to fit the

parameters.

In some cases, inclusions may become the most favoured site at a sufficiently large size. However,

large inclusions are avoided in steel design because they compromise toughness. This model ob-

viously has limits in its assumptions because there exist mechanisms described below that render

inclusions particularly effective in stimulating ferrite.

Ferrite may deposit epitaxially on a faceted crystalline-inclusion within the austenite, but that would

require some sort of a dimensional match between the two lattices at the plane of contact.8 Given that
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Figure 4.11 (a) Activation energy for nucleation, normalised relative to that for homogeneous nucleation, as

a function of the radius of spherical, unfaceted inclusions. Also plotted is the activation energy for nucleation

on an austenite grain boundary. Adapted from Ricks et al. [43]. (b) Similar calculations for ferrite nucleation

on vanadium nitride, for two different sets of interfacial energy parameters. The interfacial energies are in units

of Jm−2. The cosine of the ferrite-inclusion contact angle is also different for the two curves. Adapted from

Mu et al. [44].

the nucleation occurs in the solid state, the match must be good in order to avoid the accumulation of

strains. An important consequence is that there will be reproducible, oriented growth of the ferrite

with respect to the inclusion lattice. This immediately raises a problem that is not considered in

most treatments of inclusion stimulated nucleation, that the ferrite orientation may be constrained

by the surrounding austenite. If this is the case then the probability of simultaneously satisfying a

low-energy orientation with the inclusion and austenite is likely to be small unless the inclusion

precipitates in the austenite and is not inherited from the liquid state. In addition, the chemical

elements and crystal structures of the non-metallic inclusions are more complex than of iron; the

topography, atomic constitution and charge states of inclusion surfaces may not be consistent with

the rational planes of ferrite. Such topographic matching has not been considered in any treatment

of inclusion-stimulated nucleation in steel.

Dimensional matching is expressed as a mean percentage planar misfit κm [45]. Suppose that the

inclusion is faceted on (hkl)I and that the ferrite deposits epitaxially with (hkl)α ‖ (hkl)I, with a

pair of corresponding rational directions [uvw]I and [uvw]α inclined at an angle φ to each other.

The interatomic spacings d along three such directions within the plane of epitaxy are examined to

obtain:

κm =
100

3

3

∑
j=1

|dI
j cosφ − dα

j |
dα

j

. (4.8)

Table 4.2 lists some misfit data estimated assuming that epitaxy would be confined to planes of low

crystallographic indices: {001}, {011} and {111}. The assumed orientation relationships include:

the Bain orientation which implies {100}α ‖ {100}I and 〈100〉α ‖ 〈011〉I. The cube orientation

occurs when the cell edges of the two crystals are parallel.

Other mechanisms of inclusion-assisted nucleation include stimulation by thermal strains and chem-

ical heterogeneities in the vicinity of the inclusion/matrix interface; alternatively, they may simply
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Table 4.2

Ambient temperature dimensional match on particular crystallographic planes of
substrates and ferrite. The data are from a more detailed set published by [46, 47] for
cases where the misfit is found to be less than 5%. The inclusions all have a cubic-
F lattice; the ferrite is body-centred cubic. The data for MnS are from [48] with the
misfit values calculated for 727◦C and for the experimentally observed orientation
relationship. The data for MgO are from [49].

Inclusion Orientation Plane of epitaxy Misfit %

TiO Bain {100}α 3.0

TiO {111}TiO ‖ {110}α {110}α 13.0
{110}TiO ‖ {111}α

TiN Bain {100}α 4.6
γ-alumina Bain {100}α 3.2

MgO Bain {100}α 3.8

MgO {111}MgO ‖ {110}α {110}α 13.8
{110}MgO ‖ {111}α

Galaxite Bain {100}α 1.8

Cu1.8S Cube {111}α 2.8

α-MnS {420}MnS ‖ {110}α {110}α 5.48
〈110〉MnS ‖ 〈002〉α

β -MnS {420}MnS ‖ {110}α {110}α 2.25
〈110〉MnS ‖ 〈002〉α

BN {110}BN ‖ {111}α {111}α 6.5
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be inert sites for heterogeneous nucleation. Pressure bonded ceramic-steel composites have been

studied to reveal the potency of pure ceramic phases in stimulating the nucleation of bainite, Ta-

ble 4.3 [50–53]. A simple interpretation emerges from these experiments, that the ceramics that

interact chemically with steel are most effective in nucleating bainite. A significant exception is

TiO, which remains inert and yet enhances bainite formation.

Table 4.3

Chemically active ceramics in experiments designed to test for ferrite nucleation at
ceramic/steel bonds.

Chemically Active Chemically Inactive

TiO2 TiO, Ti2O3, TiC, TiB2, TiN

Al2Si2O7 Al2O3

MnO2 MnO

SiC, Si Si3N4, SiO2

CoO, V2O5 ZrO2, FeS, Y2O3

The bond experiments show that some minerals act as sources of oxygen that cause the adjacent steel

to decarburise, thereby stimulating ferrite. One such mineral is TiO2; structural and behavioural ana-

logues of TiO2 (SnO2, MnO2 and PbO2) show similar features. TiO2 and related minerals tend to

form oxygen vacancy defects at elevated temperatures, thus releasing oxygen, which then penetrates

into the steel. Therefore, all oxygen producing minerals would be expected to stimulate ferrite nu-

cleation, while non-oxygen producing minerals would not. Normal perovskites (ABO3 type) are

structurally similar to defect perovskites (BO3 type) but the ability of defect perovskites to pro-

duce oxygen is much greater. Therefore, WO3, which is a defect perovskite, is an effective nucleant

whereas the normal perovskite CaTiO3 is not. Indeed, any oxygen source, for example, KNO3,

stimulates the nucleation of ferrite.

Neither Ti2O3 nor TiO is an oxygen source but both are effective nucleants. Ti2O3 does this by

absorbing manganese; the resulting local depletion of Mn increases the driving force for transfor-

mation [51, 52, 54–56]. Therefore, Ti2O3 is ineffective as a nucleation site when introduced in

manganese-free steel [57]. Steel deoxidised with a combination of Mn, Ti and Si, can contain Mn-

Ti oxides which are enveloped by manganese depletion zones which stimulate the intragranular

nucleation of ferrite. The depletion is a result of the growth of the MnTi2O4 phase rather than the

absorption of manganese into the oxide [58].

TiO remains chemically inert but it has a better fit with ferrite than TiN or MgO, neither of which

are as effective as TiO in stimulating nucleation. The orientation relationship between TiO and the

matrix is important in determining its efficacy. When thin, vapour deposited amorphous layers of

TiO on steel are heat treated, they crystallise into a variety of textures. Ferrite forms readily when

the texture is such that {1 0 0}TiO planes are parallel to the steel surface, with a much reduced effect

when the texture similarly is dominated by {1 1 1}TiO [49]. The misfit data in Table 4.2 show that

this is expected on the basis of coherency with the ferrite.
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The nucleation mechanisms are summarised in Table 4.4.

Table 4.4

Mineral classification according bainite or ferrite nucleation potency.

Effective: oxygen sources Effective: other mechanisms Ineffective

TiO2, SnO2 Ti2O3 TiN, CaTiO3

MnO2, PbO2 TiO SrTiO3, α-Al2O3

WO3, MoO3 MgO γ-Al2O3, MnAl2O4

KNO3 NbC

4.5 INTERFACE MOTION: RATE-CONTROLLING PROCESSES

An electrical current i flowing through a resistor will dissipate energy in the form of heat. When the

current passes through a pair of resistors in series, the dissipations are i∆V1 and i∆V2 where ∆V1 and

∆V2 are the voltage drops across the respective resistors, Figure 4.12a. The total potential difference

across the circuit is ∆V1 +∆V2. The current that flows is identical through both of the resistors

in series. Because the resistors have different i−V characteristics, the potential drop across each

resistor has to be such that they both yield an identical current, i.e., i◦ = f{∆V1,R1}= g{∆V2,R2}
through each resistor; the functions f and g are as illustrated in Figure 4.12b. If ∆V1 . ∆V2 then

the resistor R1 is said to control the current. If, on the other hand, ∆V1 ≈ ∆V2 then the current is

said to be under mixed control.

(a)

oo o

(b)

Figure 4.12 Electrical analogy for interface response functions. (a) The current flowing through each re-

sistance is identical though the potential drop is not. (b) The two resistors have different characteristics when

operating in isolation. One has a linear variation in current with voltage whereas the other is nonlinear. The

actual current that passes through the circuit will be i◦ where the two curves intersect.

This electrical circuit is an excellent analogy to the motion of an interface, with the interface ve-

locity and driving force (free energy change) relating to the current and applied potential difference

respectively. The resistors are then the processes that impede the motion of the interface, such as

diffusion or the barrier to the transfer of atoms across the interface. When most of the driving force

is dissipated in diffusion, the interface is said to move at a rate controlled by diffusion.
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More formally, the rate at which an interface moves depends both on its intrinsic mobility and

on the ease with which any alloying elements partitioned during transformation diffuse ahead of

the moving interface.9 It is important to realise that these dissipative processes are in series so

the interface velocity as calculated from the interface mobility must equal that calculated from

the diffusion of solute ahead of the transformation front. If the free energy ∆G′ available to drive

the interface is used primarily in driving the diffusion, growth is said to be diffusion-controlled.

Interface-controlled growth occurs when most of ∆G′ is dissipated in the process of transferring

atoms across the interface.

Consider the growth of ferrite from supersaturated austenite in a Fe-C alloy transformed isother-

mally in the α+γ phase field. Figure 4.13 shows carbon concentration profiles across the α/γ

interface, for a variety of scenarios; xαγ is the concentration in α in equilibrium with γ and a simi-

lar interpretation applies to xγα. x refers to the average concentration in the alloy, assumed here to

represent a constant far-field concentration in the austenite.

(a) distance

co
nc

en
tra

tio
n

(b) (c)

(d) (e)

Figure 4.13 (a) The form of the concentration profile that develops in the vicinity of the moving α/γ in-

terface when the solute-solubility α in contact with γ is less than in the γ. (b) Diffusion-control, (c) interface-

control, (d) mixed interface and diffusion-control and (e) solute trapping.

Figure 4.13a describes the composition profile that develops at the α/γ interface during growth in

which the ferrite is depleted and the austenite enriched in solute. The ferrite and austenite at the

interface have the compositions xαI = xαγ and x
γ
I respectively. Assuming that the interface is flat,

the total composition difference between the ferrite and austenite remote from the interface is

∆x = ∆x∞ +∆xI+∆xD (4.9)

where ∆x∞ = xγα− xαγ, ∆xI = x
γ
I − xγα, ∆xD = x− x

γ
I .

∆xI and ∆xD are related to the free energies GI and GD dissipated in the interface and diffusion

processes respectively, such that GD = 0 when ∆xD = 0 and GI = 0 when ∆xI = 0. Similarly, ∆G′ is

related to (∆x∞ −∆x) and is zero when xγα = x.
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In practice the rate of interface motion always is under mixed control since the processes are in

series but it is reasonable to designate it as diffusion-controlled if |∆xD| . |∆xI|, in which case

variations in the parameters defining interface mobility have virtually no effect on velocity (Fig-

ure 4.13b). It is common, for example, in phase field modelling, to assume an infinite interface

mobility for simulations involving the partitioning of solute during transformation in the solid state.

Similarly, interface-control implies that |∆xD| - |∆xI| and variations in diffusion parameters then

have a negligible effect (Figure 4.13c). True mixed control implies that ∆xD and ∆xI are of compa-

rable magnitude (Figure 4.13d).

The reconstructive growth of ferrite when austenite is supercooled into the α+γ phase field requires

the partitioning of carbon. Consider a case where the interface motion is under mixed diffusion-

and interface-control. A possible carbon concentration profile developed at the α/γ interface is

illustrated in Figure 4.13d, where x
γ
I 3= xγα and xαI need not equal xαγ.

Displacement of a flat α/γ interface to produce ferrite is equivalent to taking a small amount of ma-

terial of composition xαC from austenite of composition xC and after transformation at constant com-

position, adding it to ferrite of composition xαC . The molar Gibbs free energy change ∆G′{xαC ,xC}
for this process is the driving force for interface motion; from the definition of the chemical potential

it follows that:

∆G′{xαC ,xC} = xαFe[µ
α
Fe{xαFe}− µγ

Fe{xFe}]+ xαC [µ
α
C {xαC}− µγ

C {xC}]

= xαFe

(

∆G
γα
Fe +RT ln

aαFe{xαFe}
a
γ
Fe{xFe}

)

+ xαC RT ln
aαC{xαC}
a
γ
C{xC}

(4.10)

where µγ
i and a

γ
i represent the chemical potential and activity respectively, of component i in the

austenite. The activities aαFe and a
γ
Fe are defined with respect to pure α-iron and pure γ-iron as the

respective standard states while that of carbon is relative to pure graphite as the standard state. ∆G
γα
3

is the molar Gibbs free energy for the γ→ α transformation in pure iron.

∆G′ is dissipated irreversibly in driving the diffusion of carbon ahead of the interface and in the

process of transferring atoms across the interface. If GD and GI are the dissipations due to diffusion

and interface processes respectively, then

GI = ∆G′ −GD

= xαFe

(

∆G
γα
3 +RT ln

aαFe{xαFe}
a
γ
Fe{x

γ
Fe}

)

+ xαC RT ln
aαC {xαC}
a
γ
C{x

γ
C}

. (4.11)

When x
γ
C & xC (so |∆xD|. |∆xI|), most of ∆G′ is dissipated in interface processes and the reaction

is interface-controlled; if x
γ
C = x

γα
C then all of ∆G′ is dissipated in driving the diffusion of carbon

in γ ahead of the interface which moves at a rate controlled by this diffusion.

A reasonable approximation for diffusion-controlled growth, given that ∆xI is then small, is that

the compositions of the phases in contact at the interface are in equilibrium, i.e., local equilibrium

is said to exist at the interface. The implication is that the concentration profile can be divided

into a large number of thin slices (subsystems), each of which has a definite concentration. Each

of the subsystems can be considered be in local equilibrium with its neighbours, even though free
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energy is being dissipated in the diffusion process. These assumptions are valid if perturbations from

equilibrium are not “too” large (p. 90). Equilibrium thermodynamics can then be applied locally,

but not if the concentration gradients are very large [59].

An interesting consequence of the assumption of local equilibrium is that the diffusion-controlled

growth and dissolution of a precipitate must occur at the same rate because the forward rate along

any a reaction path must equal the reverse rate along that path [4, 60]; this is known as the principle

of detailed balance.

Figure 4.13b–d represents cases where the ferrite grows with its equilibrium composition. In con-

trast, the ferrite in Figure 4.13e has an excess concentration of solute (xα > xαγ), which is said

to be trapped because its chemical potential is increased on transfer across the interface. When

the concentration of the solute is smaller than expected from equilibrium, it is the solvent that is

trapped. Non-equilibrium transformations and unrealistically large concentration gradients are dis-

cussed later in the text.

4.6 DIFFUSION-CONTROLLED GROWTH

In what follows, the subscripts 1, 2, 3 will designate C, substitutional solute and iron respectively,

when applied to concentration terms or diffusion coefficients.

4.6.1 GROWTH IN Fe-C ALLOYS

Consider the one-dimensional advance of a planar α/γ interface. If the rate is controlled by the

diffusion of carbon in the austenite ahead of the moving interface and assuming that local equilib-

rium persists at the interface,10 then c
γ
1 = c

γα
1 and cα1 = c

αγ
1 . It is assumed in addition that the

concentration of carbon in the austenite remote from the interface remains c1, equivalent to making

the austenite semi-infinite extent along the growth direction.

Since cα1 < c
γ
1 , carbon is partitioned as the ferrite grows with the excess accumulating in the γ

ahead of the interface. Given the local equilibrium constraint, the maximum concentration in the

austenite at the interface is limited to c
γα
1 . The extent of the diffusion field must then increase with

the fraction of ferrite so its growth rate decreases with time. From dimensional arguments11 it can

be demonstrated that the thickness Z of the ferrite is related to time t:

Z = α1d

√
t (4.12)

where Z = 0 at t = 0 and Z defines the position of the interface along the coordinate z which is

normal to the interface (and is positive in the austenite). α1d is called the parabolic-thickening rate

constant for one-dimensional growth. The concentration c1 in the austenite satisfies the equation:

∂c1

∂ t
=

∂

∂ z

(

D11{c1}
∂c1

∂ z

)

(4.13)

subject to the boundary conditions

c1 = c
γα
1 z = Z{t}; t > 0

c1 = c1 t = 0

}
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A further boundary condition relates the interface velocity to the concentration gradient at the inter-

face. The rate at which solute is partitioned must equal that at which it is carried away by diffusion

if c
γα
1 is to remain constant:

(cαγ
1 − c

γα
1 )

α1d

2t
1
2

= D11{c
γα
1 }

∂c1

∂ z

∣
∣
∣
∣
z=Z

(4.14)

A general solution to Equation 4.13 in which the diffusion coefficient is concentration dependent

exists, albeit for special forms of the function D11{c1}. Atkinson [61], following a method due to

Philip [62, 63], has shown that when one-dimensional diffusion-controlled growth is parabolic with

respect to time with a concentration-dependent diffusion coefficient, it is possible to obtain exact

solutions to Equation 4.13 subject to the associated boundary conditions:

z

t
1
2

= F

{
c1 − c1

c
γα
1 − c1

f{α1d}
}

(4.15)

where F is any single-valued function of c1 such that

D11{c1}=
1

2

dF

dc1

c1∫

0

F dc1

and
c1 − c1

c
γα
1 − c1

= f

{
z

t
1
2

}/

f

{
Z

t
1
2

}

(4.16)

where F = f−1. The form of Equation 4.15 is reasonable since when c1 = c
γα
1 , z = Z and

F
{

f{α1d}
}

= α1d so the parabolic relation Z = α1dt
1
2 is recovered.

Differentiation of Equation 4.15 gives

∂c1

∂ z

∣
∣
∣
∣
z=Z

=
c
γα
1 − c1

f{α1d}F ′{ f{α1d}}
1

t
1
2

(4.17)

where the prime denotes differentiation with respect to z. This equation is the generalised analogy of

Equation 4.14. On combining it with the parabolic growth law, and the definition that F
{

f{α1d}
}

=

α1d, the generalised equation for the parabolic rate constant is obtained:

f{α1d}F
{

f{α1d}
}

F ′{ f{α1d}
}

=
2D11(c

γα
1 − c1)

c
αγ
1 − c

γα
1

. (4.18)

Consider again the case where the diffusion coefficient is constant [1, 61, 64]. The variation of con-

centration in the austenite ahead of the interface is expected to show an error function profile. This

can be seen from the nature of an error function. When a thin layer of solute is sandwiched between

semi-infinite bars of pure material, the solute diffuses and the resulting concentration profile decays

in exponentially with distance and time. Now suppose that two semi-infinite bars of different mate-

rials form a diffusion couple, then the solute-rich bar can be considered as a set of thin exponential
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sources distributed over the extent of the bar. The diffusion profile is then the summation of all these

exponential sources, i.e., the error function. Since in our case the concentration at the interface re-

mains constant, the error function should describe the variation of concentration so the function f

in Equation 4.16 may be written

f

{
z

t
1
2

}

= erfc

{
z

(4D11t)
1
2

}

. (4.19)

It follows that the concentration profile is

c1 − c1

c
γα
1 − c1

= Θ1{z,D11} (4.20)

where

Θ1{z, t,Dii}= erfc
z

(4Diit)
1
2

/

erfc
Z

(4Diit)
1
2

. (4.21)

Given that F = f−1,

F{y}= 2D
1
2
11inverfc{y} and F ′{y}=−D

1
2
11π

1
2 exp{[inverfc{y}]2}

where inverfc is the inverse function of the complimentary error function erfc. These functions can

be substituted into Equation 4.18, to give an implicit relation for α1d as follows:

f1 = Φ1{D11} (4.22)

where Φ1{Dii} =

(
π

4Dii

) 1
2

α1derfc

{
α1d

2D
1
2
ii

}

exp

{
α2

1d

4Dii

}

and f1 is a fractional supersaturation,

f1 =
c1 − c

γα
1

c
αγ
1 − c

γα
1

.

The case for concentration-dependent diffusivity is more complex. As pointed out previously, exact

solutions such as these can only be obtained if corresponding pairs of the functions D11 and F can

be found that satisfy Equation 4.15. Whilst mathematicians do not find this difficult to do [65],

the functions D11 obtained are convoluted and ill-adapted to fitting experimental data on D11 [66].

Nevertheless, when, as for carbon in austenite, D11 increases with the concentration, it has shown

that the following equation can be used to approximate the parabolic rate constant α1d when the

growth is diffusion-controlled [61]:

f1 = Φ1{D11{c1}}
D11{c1}

D11{c
γα
1 }

.

It is interesting that the growth rate is found to be more sensitive to the maximum and minimum

values of the diffusivity than the detailed form of the variation along the concentration profile in the

austenite.
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The problem of defining matching pairs of F and D functions has been circumvented using a numer-

ical method for solving Equation 4.13 [67]. The method is expected to work for any given diffusion

coefficient represented as a function, graph or table. Grain boundary allotriomorphs sometimes have

an initial shape that approximates an oblate ellipsoid; Atkinson [68] has developed a similar numeri-

cal method for this morphology, assuming shape preservation during growth. An analytical solution

to the same problem, for a constant diffusion coefficient, has been given by Horvay and Cahn [69].

4.6.2 LENGTHENING OF FERRITE ALLOTRIOMORPHS

Grain boundary ferrite allotriomorphs acquire their characteristic shape because the transformation

rate along the γ/γ boundary is faster than that in the direction normal to the boundary plane. The

initial shape of the allotriomorph is approximately that of an oblate ellipsoid [70]. The lengthening

rate of allotriomorphs was at first thought to be constant, the process being described in terms of

the plate lengthening theory [71, 72] but later work [73, 74] has shown that it too is parabolic with

respect to time, Figure 4.14. The rate constant describing the lengthening process is simply α1d

divided by the thickness to length ratio (the aspect ratio) of the allotriomorph.

Figure 4.14 Measured parabolic

lengthening-kinetics of allotriomorphic

ferrite in Fe-0.11C wt% at 800◦C.

Selected data from Atkinson et al. [74].

The aspect ratio is found to be about 1/3, independent of time at transformation temperature [70].

This is consistent with Horvay and Cahn’s [69] theory for the diffusion-controlled growth of oblate

ellipsoids. The observed aspect ratio is smaller than that expected from the balancing of interfacial

tensions at the allotriomorph edges. It is suggested that this inconsistency probably arises because

the shape of the allotriomorph during growth is not controlled by interfacial energy considerations

alone [70]. The oblate ellipsoid is an idealisation whereas in reality the structure of the γ/γ grain

boundary and the inevitable difference in the orientation relationship of the allotriomorph with each

of its adjacent γ-grains must complicate the actual shape.
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4.6.3 SOFT IMPINGEMENT

Many of the solutions to the diffusion equations are derived assuming that the concentration of solute

far from the interface remains constant. The austenite is therefore assumed to extend to infinity

beyond the α/γ interface so the continued partitioning of solute as α grows does not alter the far-

field concentration. The boundary conditions for isothermal diffusion-controlled growth therefore

remain constant, as does the composition of the ferrite. A different implication relevant to ternary

or higher order alloys is that there is no diffusion within the ferrite since c
αγ
i do not change as the

transformation progresses.

In reality, the diffusion fields of particles growing from different locations must eventually interfere.

Even if transformation involves the growth of just one precipitate, its diffusion field may be limited

by a variety of surfaces. This interference is called “soft impingement” and leads to boundary condi-

tions that change with time. Soft-impingement is actually a difficult problem to treat exactly because

it is necessary to have a prior knowledge of the distribution of all the particles. This often is the aim

of the calculations rather than an input. All methods therefore use one of two approximations: (i)

that the microstructure evolves from a assumed distribution of nuclei, with no subsequent nucle-

ation; (ii) that the effect of soft impingement can be described by distributing and solute enrichment

or depletion over the whole of the remaining matrix phase. The latter procedure often is called the

mean field approximation in physics.

In one analytical method [75] the microstructure is specified by considering a sphere of austenite

of an appropriate size. This is decorated on its surface by an infinitely thin, continuous layer of

ferrite (there is no nucleation in this model). Using a solution due to Crank [66] for the radial

diffusion of solute into a sphere on the surface of which, the concentration is maintained constant,

the radial thickness of the ferrite at any time t is given by rI − r, where rI and r are the initial and

instantaneous radii, respectively, of the remaining sphere of austenite. The time required to achieve

a given thickness of ferrite is taken to be that necessary to partition the excess carbon from the

specified thickness of ferrite, into the remaining austenite, bearing in mind that the concentration in

the austenite at the transformation front is restricted to the value c
γα
1 . From Crank’s solution,

Mt

M∞
= Θ0

where

Θ0 = 6

(
D11t

r2

) 1
2
[

π− 1
2 + 2∑

n

ierfc
nr

(D11t)
1
2

]

− 3
D11t

r2

and Mt represents mass of carbon which enters the stationary sphere of residual austenite and M∞ is

the maximum possible amount of carbon that the austenite can accommodate. It follows that:

Mt =
4

3
π(r3

I − r3)(c1 − c
αγ
1 )

and

M∞ =
4

3
πr3(cγα1 − c1).
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On combining these equations, it is evident that

r3

r3
I

=
1− f1

1− f1 + f1Θ0
.

The derivation can account for any difference in the molar volumes Vα
m and V

γ
m of the ferrite and

austenite respectively:

r3

r3
I

=
1− f1

1− f1 +(Vα
m /V

γ
m ) f1Θ0

. (4.23)

From a series of calculations of the times required to achieve the level of carbon in the austenite for

each specified value of ferrite thickness, it is possible to generate the time-thickness dataset for the

thickening kinetics, while accounting for soft impingement effects. The effect of soft impingement

is always to retard the rate of reaction (Figure 4.15).

10-5 10-1 103

Time / s

10-3

10-1

101

without soft
impingement

with soft
impingement

Figure 4.15 Comparison of the evolution of

calculated volume fraction of allotriomorphic

ferrite for cases where soft-impingement has,

or has not been taken into account. The volume

fraction VV is normalised to the equilibrium

value. Isothermal transformation at 900 K for

a low carbon steel (after Vandermeer, Vold and

King [75]).

4.6.4 PHASE FIELDS

The phase field method is in principle able to deal with soft-impingement, rate-control and other

phenomena associated with the kinetics of transformation, some of which have been described in

the preceding section. The method is introduced here but there exist many excellent reviews and

articles on the subject [76–79]. Consider the growth of a precipitate that is isolated from the matrix

by an interface, the motion of which is controlled according to the boundary conditions consistent

with the mechanism of transformation. The interface in this mathematical description is simply a

two-dimensional surface with no width or structure; it is said to be a sharp interface. There are,

therefore, three discrete quantities to deal with, the precipitate, interface and parent phase.

In the phase-field method, the state of the entire microstructure is represented continuously by a

single variable known as the order parameter ψ . For example, ψ = 1, ψ = 0 and 0<ψ < 1 represent

the precipitate, matrix and interface respectively. The latter is therefore located by the region over

which ψ changes from its precipitate-value to its matrix-value (Figure 4.16). The range over which

it changes is the width of the interface. The set of values of the order parameter over the whole

microstructure is the phase field.

The evolution of the microstructure with time is assumed to be proportional to the variation of the
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0

1

Distance

Figure 4.16 An illustration of the

difference between a sharp and a dif-

fuse interface in the context of phase

field modelling. The diagram on the

left shows a sharp interface between

the parent γ (ψ = 0) and precipitate

α (ψ = 1), whereas that on the right

has a diffuse and wide interface with

ψ = 0.5 at its centre.

free energy functional with respect to the order parameter:

∂ψ

∂ t
= M

∂g

∂ψ
(4.24)

where M is a mobility. The term g describes how the free energy varies as a function of the order

parameter; at constant T and P, this takes the typical form (p. 205):

g =
∫

V

[

g0{ψ ,T,x}+ ε(∇ψ)2

]

dV (4.25)

where the integral is over the volume V. The second term in the brackets depends on the gradient of

ψ and hence is non-zero only in the interfacial region, with ∇ψ 3= 0; it is a description therefore of

the interfacial energy. The term g0 is a function of the free energies of the precipitate and matrix,

the temperature and the composition x; it can contain a term describing the activation barrier across

the interface. The homogeneous part of the free energy can be formulated as

g0 = hgα{xα,T}+(1− h)gγ{xγ,T}+Q f (4.26)

where gα and gγ refer to the free energies of the phase identified in the superscript, h is a function

to interpolate the free energy densities of the two phases and Q is the height of the activation barrier

at the interface, with f defined as a double-well potential

f = ψ2(1−ψ)2 and x = ψxα+(1−ψ)xγ.

The function h for the iron-carbon system is often set as [80]

h = ψ3(6ψ2 − 15ψ + 10)

although it can be fitted into alternative forms using thermodynamic databases [81]. Notice that the

term hgα+Q f vanishes when ψ = 0 (i.e., only γ is present), and similarly, (1−h)gγ+Q f vanishes

when ψ = 1 (i.e., only α is present). As expected, it is only when both phases are present that Q f

becomes non-zero. The time dependence of the phase field according to Equation 4.24 then defines

microstructural evolution provided parameter such as Q, ε and M are measured or derived assuming

some mechanism of transformation.
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The obvious advantages of the phase field method is that it is routinely able to deal with complexity

with the numerical solution of a a few equations, much fewer than the number of particles in the

system. And there are many adaptations of the method to deal with the combined effects of nu-

merous variables. It would be nice if the method were to be used to make predictions followed by

verification experiments. Otherwise, the work to date on steels falls into the category of “the perfect

computation [which] simply reproduces Nature, does not explain her” [82]. Further discussion on

these particular issues is available in [83, 84].

4.6.5 FERRITE GROWTH IN Fe-X-C ALLOYS: LOCAL EQUILIBRIUM

The diffusion-controlled growth of ferrite in Fe-X-C alloys is complicated by the fact that both

interstitial and substitutional solutes are mobile during transformation. There is a large disparity

in the diffusivities of substitutional and interstitial species (Figure 4.17), leading to difficulties in

maintaining equilibrium at the interface if the tie-line defining the interface compositions is not

properly chosen [85–88].

The compositions of the phases at the interface must be connected by a tie-line of the α+γ phase

field in the equilibrium Fe-X-C phase diagram if the two phases are to be in local equilibrium at the

transformation front. For the discussion that follows, X≡Mn (identified in concentration terms by

the subscript i = 2); manganese is an austenite stabilising element but the concepts discussed are

general to all substitutional alloying elements that dissolve in austenite.

Figure 4.17 A comparison of the

diffusivities of iron and substitutional

solutes relative to that of carbon. Bear-

ing in mind that the diffusivity of car-

bon in austenite is strongly concen-

tration dependent, the data for austen-

ite refer to a specific carbon concen-

tration, 0.4C wt% (selected data from

Fridberg, Torndhäl and Hillert [89]).

It might seem from our knowledge of binary alloys, that the tie-line defining interface compositions

should pass through the point c1,c2, i.e., the average composition of the alloy. However, there is a

large discrepancy in the rates at which substitutional solutes and carbon diffuse, which complicates

matters if the local equilibrium condition is to be retained. Conservation of mass at a planar interface
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moving with a speed v in the direction z (normal to the interface plane) requires that

(cγα1 − c
αγ
1 )v =−D11

∂c1

∂ z
−D12

∂c2

∂ z

(cγα2 − c
αγ
2 )v =−D22

∂c2

∂ z
−D21

∂c1

∂ z

(4.27)

where all the concentration gradients are in the austenite and are evaluated at the position of the

interface (z = Z). Since D12 and D21 are relatively small, these equations may be reduced to

(cγα1 − c
αγ
1 )v =−D11

∂c1

∂ z

(cγα2 − c
αγ
2 )v =−D22

∂c2

∂ z
.

(4.28)

Because D11 . D22, these equations cannot in general be simultaneously satisfied for the tie-line

passing through the average composition c1,c2. Referring to Figure 4.18, it is possible to select other

tie-lines that satisfy Equation 4.28, given that the entire α+γ phase field is defined by tie-lines at

a constant temperature in a ternary alloy. If the tie-line is such that c
γα
1 ≈ c1 (e.g. line cd for alloy

A of Figure 4.18a), then ∂c1/∂ z will become so small that the driving force for carbon diffusion is

reduced; the consequent reduced flux of carbon becomes consistent with the diffusion of manganese.

Ferrite forming by this mechanism is said to grow by a “partitioning, local equilibrium” (PLE)

mechanism, in recognition of the fact that c
αγ
2 can differ significantly from c2, giving considerable

partitioning and long-range diffusion of manganese into the austenite [85].
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Figure 4.18 Schematic isothermal sections of the Fe-Mn-C system, illustrating ferrite growth occurring

with local equilibrium at the α/γ interface. Points A and B represent c1,c2, designated by the symbol • in

each case. (a) Growth at low supersaturations (P-LE) with bulk redistribution of manganese, (b) growth at high

supersaturations (NP-LE) with negligible partitioning of manganese during transformation.

An alternative choice of tie-line could allow c
αγ
2 → c2 (e.g. line cd for alloy B of Figure 4.18b), so

∂c2/∂ z is increased because of the reduced partitioning of Mn into the austenite. The flux of man-

ganese atoms at the interface therefore increases, allowing it to keep pace with that of carbon, while
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satisfying Equation 4.28. The growth of ferrite in this manner is said to occur by a “negligible par-

titioning, local equilibrium” (or NP-LE) mechanism, in recognition of the fact that the manganese

content of the ferrite approximately equals c2, so only the quantity of manganese needed to maintain

local equilibrium at the interface partitions into austenite [85].

The exact choice of tie-line will be discussed quantitatively at a later stage; consider first some

general points about tie-line choice. In a Fe-Mn-C alloy, both carbon and manganese are austenite

stabilisers, tending to partition into austenite. It follows that c
γα
1 and c

γα
2 must always be greater

than or equal to c1 and c2 respectively. c
αγ
1 and c

αγ
2 will always be less than or equal to c1 and

c2 respectively. Tie-lines such as ef (Figure 4.18) are therefore inappropriate for the average alloy

compositions illustrated. This leads to the division of the γ+α phase field into regimes where either

the PLE or NP-LE mechanism can operate (Figure 4.19), in a mutually exclusive manner. It easily

is demonstrated that these regions are exclusive; in a given domain, only one will lead to physically

satisfactory concentration profiles at the transformation interface.

m
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N

Figure 4.19 Division of the α+ γ

phase field into domains where either

the P-LE (shaded) or the NP-LE mech-

anisms can operate.

When austenite is supercooled into a region close to the γ/γ+α phase boundary (i.e., transforming

at a low supersaturation), c
αγ
2 will be significantly smaller than c2. Therefore, it can only transform

by the PLE mechanism. Similarly, for austenite quenched into the region close to the α/α+γ phase

boundary (i.e., transforming at a high degree of supersaturation), c
γα
1 will be much greater than c1,

making only the NP-LE mechanism feasible.

In summary, assuming that the growth of ferrite from ternary austenite is constrained to occur at

a rate which is diffusion-controlled, with local equilibrium at the moving interface, the tie-line of

the α+γ phase field that defines the interface compositions does not in general pass through the

point in the α+γ phase field which identifies the alloy composition. This is because the diffusivities

of interstitial and substitutional alloying elements in the austenite are so different. The appropriate

tie-line must be chosen to satisfy mass conservation conditions at the moving interface and must

be consistent with the partitioning behaviour of the alloying elements. For this reason, the tie-line

for an alloy transforming at a low supersaturation is such that there is considerable partitioning and

long-range diffusion of substitutional alloying element, while the driving force for carbon diffusion

is reduced to a level which allows the substitutional element flux to keep up with the carbon flux at

the interface. This is the PLE mode of transformation.

At greater supersaturations, the determining tie-line is that which causes negligible partitioning of
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substitutional solute between the α and γ lattices, so the gradient of the X element in the austenite

near the interface is large. This increases the driving force for X diffusion in austenite and allows the

flux of X to keep pace with the long-range diffusion of C in austenite. This is the NP-LE mode of

transformation, where the diffusion of X in austenite is short-range, being confined to the immediate

vicinity of the interface.

Both of these modes of transformation involve local equilibrium at the interface and are therefore

equally favoured on thermodynamic considerations alone. Both C and X diffuse during growth

and their fluxes satisfy the equations for conservation of mass at the interface; it follows that the

velocity calculated from the diffusion of carbon in austenite will be identical to that calculated from

the diffusion of manganese in austenite. Both elements control the growth rate and neither can be

said to restrict the interface motion on its own.

Quantitative determination of the tie-line and interface velocity

It may be assumed, for Fe-X-C alloys, that the distribution of carbon in austenite has a negligible ef-

fect on the diffusion of X in austenite [90, 91]. This is because D11 . D22, so |∂c2/∂ z|. |∂c1/∂ z|.
This justifies neglect of the cross diffusion coefficient D21, giving:

J1 = −D11
∂c1

∂ z
−D12

∂c2

∂ z

J2 = −D22
∂c2

∂ z
. (4.29)

Using this together with Fick’s second law of diffusion, assuming one dimensional growth along a

coordinate z, the differential equations for the matrix are:

∂c1

∂ t
= D11

∂ 2c1

∂ z2
+D12

∂ 2c2

∂ z2

∂c2

∂ t
= D22

∂ 2c2

∂ t2
(4.30)

as long as the diffusion coefficients are concentration independent.

Kirkaldy [87] has given solutions for multicomponent diffusion during the growth of linear, cylin-

drical and spherical precipitates (1, 2 and 3 dimensional growth, respectively) of uniform compo-

sition in an infinite medium, for composition independent diffusion coefficients. For the boundary

conditions corresponding to the one-dimensional, diffusion-controlled growth of ferrite of uniform

composition along the coordinate z, Kirkaldy’s solutions show that provided D11 does not equal
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D22, the concentrations in the matrix as a function of time and distance are given by [91]:

c1{z, t} = c1 +
D12(c

γα
2 − c2)Θ1{z,D22}
(D22 −D11)

+
[

(cγα1 − c1)−
D12(c

γα
2 − c2)

(D22 −D11)

]

Θ1{z,D11} (4.31)

and c2{z, t} = c2 +(cγα2 − c2)Θ1{z,D22} (4.32)

with Θ1{z, t,Dii} = erfc
z

(4Diit)
1
2

/

erfc
Z

(4Diit)
1
2

where z = Z defines the position of the interface, so

Z = α1dt
1
2 = η1(D11t)

1
2 = η2(D22t)

1
2 . (4.33)

ηi are growth constants, related to α1d, the parabolic rate constant for one-dimensional growth. The

equation for carbon (c1) can be applied to Fe-C alloys by setting D12 to zero, in which case it reduces

to Equation 4.20. By combining Equations 4.31-4.33 with the flux conditions (Equation 4.28 with

D21 = 0), Coates [90] showed that

f1 = Φ1{D11}−
c
γα
2 − c

αγ
2

c
γα
1 − c

αγ
1

D12

D11 −D22
[Φ1{D22}−Φ1{D11}] (4.34)

f2 = Φ1{D22}.

The function Φ1 is defined on p. 189. When D12 = 0, then Equation 4.34 becomes identical with

Equation 4.22 for an unalloyed steel.

For transformations occurring under conditions of local equilibrium at the interface, only one of

c
αγ
1 ,cγα1 ,cαγ

2 ,cγα2 is independent, since they are all linked by a tie-line of the α+γ phase field

of the equilibrium phase diagram. The kinetic equations therefore contain only two unknowns and

can be simultaneously solved to determine the growth velocity and the tie-line governing interface

compositions during growth.

Two- and three-dimensional growth with local equilibrium

Coates [92], using the general solutions of Kirkaldy [87], determined the diffusion equations for

two-dimensional and three-dimensional growth (radial growth of cylinders, and growth of spheres,

respectively) involving local equilibrium at the γ/α interface in Fe-X-C alloys. The assumptions

involved are the same as those used in the analysis of one-dimensional growth, with the additional

approximation that capillarity effects may be neglected. Coates found that for two-dimensional
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growth,

f1 = Φ2{D11}−
c
γα
2 − c

αγ
2

c
γα
1 − c

αγ
1

D12

D11 −D22
[Φ2{D22}−Φ2{D11}]

f2 = Φ2{D22} (4.35)

where Φ2{Dii} =
α2

2d

4Dii
exp

α2
2d

4Dii
Ei

{
α2

2d

4Dii

}

.

Ei is the (tabulated) exponential integral function [93].

For three-dimensional growth,

f1 =
α2

3d

2D11
[1−Φ1{D11}]

−
c
γα
2 − c

αγ
2

c
γα
1 − c

αγ
1

D12

2(D11 −D22)
α2

3d

(
1−Φ1{D22}

D22
−

1−Φ1{D11}
D11

)

f2 =
α2

3d

2D22[1−Φ1{D22}]
. (4.36)

α2d and α3d are the parabolic rate constants for two- and three-dimensional growth respectively.

The concentration distributions in austenite during two- and three-dimensional growth can be ob-

tained by substituting the functions Θ2 or Θ3 (respectively) for Θ1 into Equations 4.31 and 4.32,

where

Θ2{z, t,Dii} =
Ei{z2/(4Diit)}
Ei{Z2/(4Diit)}

and Θ3{z, t,Dii} =

1
z exp z2

4Diit
−
√

4π erfc z√
4Diit

1
Z exp Z2√

4Diit
−
√

4π erfc Z√
4Diit

.

These ternary equations for the concentration distributions in the matrix can be used to calculate

two- and three-dimensional growth rates in binary alloys (e.g. Fe-C), if D12 is set to zero. The

equations for binary growth were first obtained by Zener [64] and Frank [94].

Concentration-dependent diffusion coefficients

The above theory for diffusion-controlled growth is based on the assumption that the diffusion

coefficients are concentration independent, and this is recognised to be an unrealistic assumption.

The concentration dependence of D11 can be taken into account by substituting the weighted average

diffusivity [95]:

D11 =
∫ x

x
γ
I

D11{x,T}
dx

x− x
γ
I

(4.37)

for D11, even though this equation is strictly valid only for steady-state growth situations.

The ratio D12/D11 is also concentration dependent, but the numerical calculations of Bolze et al.

[96] suggest that the use of a constant D12/D11, evaluated at the composition (cγα1 ,cγα2 ), gives an

adequate approximation to the problem [85].
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4.6.6 INTERFACE-COMPOSITION CONTOURS

For growth constrained by local equilibrium, the compositions of the ferrite and austenite at the

transformation interface, (cαγ
1 ,cαγ

2 ,cγα1 ,cγα2 ), for a ternary alloy of mean composition (c1,c2),

are obtained from a tie-line of the equilibrium phase diagram. When D11 = D22, all alloys that

lie on a given tie-line transform at different rates, but with identical compositions at the moving

interface. If an “interface-composition contour” [90] is defined as a curve straddling the two phase

α+γ phase field, identifying all alloys which transform with the same compositions at the interface,

then the tie-line corresponds to an interface-composition (IC) contour for all binary alloys and also

for ternary alloys where D11 = D12. When D11 does not equal D22, the tie-line determining the

interface compositions does not pass through the point defining the average alloy composition and

IC contours no longer coincide with tie-lines. The derivation of an IC contour depends on the ratio

D11/D22 and on the nature of interactions between components 1 and 2.

(a) (b)

Figure 4.20 Typical IC contours for a substitutionally alloyed steel, given that the tie-line slope

c
γα
2 −c

αγ
2 /c

γα
1 −c

αγ
1 is unity [85]. (a) IC contours for a system where D11/D22 = 10,D12/D11 = 0.1,0,−0.1

for curves 1, 2 and 3 respectively; b) IC contours for a system where D11/D22 = 106,D12/D1 = −0.3,0,0.3

for curves 1, 2 and 3 respectively.

The set of alloys that for a given tie line satisfies the flux balance conditions (Equation 4.28) defines

the IC contour. The composition c1 that ensures conservation for component 1 will depend on η1D
1
2
11

and similarly for component 2 it is the term η2D
1
2
22 that matters. Noting that η1D

1
2
11 = η2D

1
2
22, both

c1 and c2 which satisfy their respective mass conservation conditions can be written as a function of

just η1:

c1 = c1{η1}

c2 = c2{η1).

Elimination of η1 gives the composition c2,c1 which jointly satisfy mass conservation at the inter-

face for the specified tie-line:

c2 = c2{c1}. (4.38)

This defines an IC contour joining the points (cαγ
1 ,cαγ

2 ) and (cγα1 ,cγα2 ); the straight line joining

these points is the tie-line defining interface compositions during the local equilibrium growth of
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ferrite from austenite the composition of which lies on the IC contour. With these interface compo-

sitions, the conservation conditions at the interface (Equation 4.28) are satisfied automatically for

all alloys on the IC contour. All alloys on this IC contour transform with the same compositions at

the interface.

The functional relation of Equation 4.38 will in general be complex but can be resolved numerically

to yield the IC contours. Figure 4.20 illustrates some IC contours for a variety of D11/D22 ratios and

f3D12/D11, for a given tie-line. As (D11/D22) becomes large, the IC contour consists essentially of

two straight segments which, together with the tie-line, form a triangle within the two-phase field. In

the horizontal segment, f2 = 1 whereas in the near vertical segment, f1 =− f3D12/D11 with f2 = 0.

For all alloys lying on the vertical segment, the fast diffuser has its driving force for diffusion

reduced to nearly zero, down to the pace of the slow diffuser; there is also considerable partitioning

of component 2, giving PLE growth.

On the other hand, for all alloy compositions falling on the horizontal segment, the amount of

partitioning of component 2 is reduced to minute levels so growth occurs by the NP-LE mode.

The transition between these two modes of growth is logically taken to be the point ( f2 = 1, f1 =

− f3D12/D11), the vertex of the triangle formed by the tie-line and the two segments of the IC

curve. This clearly is an approximation, because the vertex is not sharp. By joining all such points

on the phase diagram, the α+γ phase field can be divided into regions, one involving growth with

negligible partitioning of the substitutional-solute (NP-LE), and the other in which the fast diffuser

is forced to keep pace with the slow diffuser (PLE).

Given that D12/D11 is evaluated at c2 = c
γα
2 , and assuming that Equation 3.87 which gives this

ratio as a function of thermodynamic parameters applies, Coates [90] has shown that the line f1 =

− f3D12/D11 corresponds to the carbon isoactivity line passing through (cγα1 ,cγα2 ). This was first

deduced qualitatively by Hillert [86]. The model of Kirkaldy and Coates is quite general and is not

restricted to cases where D11 . D22, as is that of Hillert.

4.6.7 INTERFACE-VELOCITY (IV) CONTOURS

Each point on an IV contour defines a bulk composition for which precipitate grows at the same

rate. The α/α+γ and γ/γ+α phase boundaries represent two such contours since the interface

velocity will be infinite and zero respectively for all alloys falling on these boundaries, assuming

that interface motion remains diffusion-controlled even for large velocities.

For large D11/D22, the boundary between the PLE and NP-LE regions is also an IV contour. All

other contours in the α+γ phase field can be derived using Equation 4.34. The velocity is in this

case a function of time. The contours really represent lines with a constant parabolic rate constant

α1d, from which the velocity may be derived for any given value of time.

The contours are in general curves, which for D11 = D22, follow roughly parallel paths to the two

phase boundaries. As the ratio D11/D22 increases, there is a progressively increased tendency for

the IV contours to radiate from the point f1 = 0 on the c1 axis in the PLE region, and from the point

f2 = 1 on the c2 axis in the NP-LE region. Typical IV contours are illustrated in Figure 4.21.
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Figure 4.21 Typical IV contours

for the Fe-Mn-C system (after Coates

[85]). Curves 1, 2, 3, 4, and 5 cor-

respond to 100η1 = 0.01, 0.05, 0.1,

100 and 500 respectively. The region

shaded corresponds to PLE growth.

4.6.8 TIE-LINE SHIFTING DUE TO SOFT IMPINGEMENT

It is clear that in substitutionally alloyed steels, the tie-line representing interface compositions

during growth constrained by local equilibrium at the transformation front, does not pass through

the average alloy composition. For such alloys, the effect of soft impingement is to shift the operative

tie-line closer to the average composition, until eventually it does pass through the latter, causing

reaction to cease as the α+γ mixture reaches equilibrium. During this process, the composition of

the ferrite at the interface changes with time so the resultant gradients extend into the ferrite from

the interface in the −z direction, driving diffusion within the ferrite. A case such as this is treated by

setting up diffusion equations for both ferrite and austenite. The mass conservation conditions must

then take into account the additional flux at z = Z, due to the diffusion in ferrite [97–99].

Goldstein and Randich [99] applied numerical methods to study tie-line shifting during isothermal

transformation as a function of precipitate size in Fe-Ni-P alloys (P≡1, Ni≡2, Fe≡3). In this alloy,

D11 = 100D22. The major part of the precipitate growth was found to occur during the initial stages

of transformation, prior to significant soft-impingement of the more mobile phosphorus. During

this period, the interface tie-line remains constant without changing much even after the onset of P

impingement. Furthermore, precipitate growth remains parabolic with respect to time, prior to the

beginning of nickel impingement. It then slows down considerably when the nickel diffusion fields

begin to overlap. The operative tie-line shifts towards that passing through the bulk composition.

The precipitate hardly grows during this stage but the concentration gradients within the individual

phases tend to homogenise by diffusion. The transformation ceases completely when the interface

tie-line actually passes through the bulk composition. Goldstein and Randich point out that in a

real system, where impingement distances may vary, it should not be surprising to find precipitates

that have different compositions in the same alloy for the same growth time; this implies lack of

equilibrium, but equilibrium in this sense may take too long to establish.

The numerical method becomes time consuming to implement when D11 . 100D22. Gilmour et

al. [100] have presented an approximate but analytical treatment (for ferrite formation by the NP-

LE mechanism) of the soft impingement problem in Fe-X-C alloys. They consider the movement
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of a planar α/γ interface in a direction z which is normal to the interface plane; z is positive in

the austenite, and z = Z defines the position of the interface at any time t, with Z = 0 at t = 0. The

austenite is taken to have a finite size L in the z direction and the one-dimensional growth of ferrite is

assumed to begin by the NP-LE mechanism. Any diffusion fields in the austenite should strictly have

the form of an error function but the profile can be approximated by assuming that the concentration

varies linearly with z. The concentration profile is therefore approximated as a straight line whose

end point lies a distance zid ahead of the interface (Figure 4.22). The concentration gradient in

austenite is uniform in this approximation, given by (cγαi −ci)/zid , where zid is an effective diffusion

distance for component i, defining the region of the austenite in which the concentration differs from

ci. This is the Zener [64] linearised gradient approximation and implies that the diffusion field (of

element i) extends only a finite distance zid into the austenite, instead of the infinite distance implied

by an error function.

Figure 4.22 The soft-impingement process de-

scribed by Gilmour, Purdy and Kirkaldy [100].

The carbon concentration of the ferrite is assumed

to be zero, and x
γα
1 refers to the paraequilibrium

carbon concentration of the γ, since Mn does not

redistribute during the first two stages of soft-

impingement. The first stage is completed when

Z = Z1, and the second when Z = Z2.

The soft impingement process can be considered to occur in the three fairly distinct stages illustrated

in Figure 4.22. In the first stage, the interface moves as if it is in a semi-infinite matrix, with z1d <

(L−Z) and ci{L}= ci, and Z varying parabolically with time (Equation 4.12).

During the second stage, the carbon diffusion field impinges with the boundary at z = L since

z1d > (L− Z). The position of the interface at this point is defined by Z = Z1, and the next stage

begins at t = t1. During this stage, the carbon concentration rises everywhere in the austenite ahead

of the transformation front and c1{L} > c1, although c2{L} = c2 since impingement of component

2 has yet to occur. When the carbon achieves uniform activity (i.e., when Z = Z2, t = t2) in the

austenite, c1{L} & c
γα
1 ; notice that this latter equation is approximate because of the existence of

the concentration gradient of component 2. By balancing the amount of carbon enrichment of the

austenite against the carbon depletion of the ferrite (assuming c
αγ
1 = 0), it can be demonstrated that

for Z2 . Z1,

c1{L}=
2Lc1 − c

γα
1 (L−Z)

(L−Z)
.

When this is combined the condition for mass conservation at the interface (Equation 4.28), integra-

tion of the resulting differential equation gives the interface position as a function of time, during

stage 2:

t − t1

D11
& (Z2

1 −Z2)+ (4!+ 2Z2)− 2!2 ln
Z2 −Z

Z2 −Z1
(4.39)
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where ! = Lc1/c
γα
1 and Z > Z1. This is not a parabolic relation between Z and t and hence is

inconsistent with the more rigorous finite element method of Goldstein and Randich [99]. The time

t1 can be similarly derived:

t1 &
L2c1c

γα
1

D11(c
γα
1 − c1)2

. (4.40)

For both of these time-equations, D11 = D11{c
γα
1 }. The period t2 can be obtained by substituting

say Z = 0.99Z2 into Equation 4.40.

For a Fe-Mn-C alloy, t1 + t2 turns out to be small compared with the time required for subsequent

manganese diffusion and hence suggested that the tie-line governing interface compositions does

not shift at all during the first two stages.

At the end of the second stage, the chemical potential of the carbon may be approximately uniform

throughout; the third stage involves the slow partitioning of X from ferrite to austenite. Gilmour et

al. dealt specifically with the Fe-Mn-C system; because Mn diffuses much faster in α then in γ, the

concentration gradients in α were assumed to be negligible. During the third stage, the interface

tie-line shifts such that the rapidly adjusting carbon distribution remains close to the conditions of

uniform activity. Using methods similar to those used in deriving Equation 4.39, it can be demon-

strated that the time (t − t2) taken for c
αγ
2 to change from c

αγ
2 {t2} to any subsequent value c

αγ
2 {t},

is given by

t − t2 =
L2

D22

F2

{

c
αγ
2 {t}

}

∫

F1

{

c
αγ
2 {t2}

}

d
[

F1

{

c
αγ
2 {t}

}]2

F2

{

c
αγ
2 {t2}

} (4.41)

where F1{c
αγ
2 } = (cγα1 − c1)/c

γα
1

and F2{c
αγ
2 } =

(cγα2 − c2)2

(c2 − c
αγ
2 )(cγα2 − c

αγ
2 )

.

F1 and F2 can be defined to be functions of just c
αγ
2 because the other three interface compositions

are not independent, being specified by a tie-line. The maximum time for the third stage depends

on the equilibrium X content of the α, as determined by the equilibrium tie-line passing through the

bulk composition. The model is in reasonable agreement with experimental evidence on Fe-Mn-C

alloys. The method can be used to treat soft impingement in Fe-C alloys after making appropriate

substitutions for the various concentration terms.

4.6.9 INVALIDITY OF THE NP-LE CONCEPT

The negligible-partitioning local-equilibrium mode becomes unphysical when transformation oc-

curs at large undercoolings. The extent of the diffusion field for the substitutional solute decreases

so much, that it becomes a mathematical formality [86, 92, 101]. There actually are no experimental

data that confirm the existence of the sharp concentration spikes predicted theoretically in domains

where the transformation is supposed to occur by the NP-LE mechanism [e.g., 102, 103].12
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Coates estimated that for one-dimensional growth with local equilibrium at the interface, the extent

of the substitutional-solute diffusion field in the austenite is given approximately by

zMn ≈ 2DMn/v. (4.42)

Coates appreciated that with steep concentration gradients, the dependence of the diffusion coef-

ficient on the concentration gradient itself should become important. During spinodal decomposi-

tion, a homogeneous solution can develop spontaneous composition-waves that grow in amplitude.

Small wavelengths are not favoured because there is a cost in creating large concentration gradients.

Spinodal decomposition has been reviewed by Hilliard [104], whose treatment is followed here to

estimate the energy cost of the substitutional solute spike in the austenite.

The free energy of a heterogeneous solution can be expressed by a multivariable Taylor expansion

[e.g. 104, 105]:

g{a,b, . . .} = g{c}+ a
∂g

∂a
+ b

∂g

∂b
+ . . .

+
1

2

[

a2 ∂ 2g

∂a2
+ b2 ∂ 2g

∂b2
+ 2ab

∂ 2g

∂a∂b
+ . . .

]

+ . . . (4.43)

in which the variables, a,b, . . . are the spatial composition derivatives (dc/dz, d2c/dz2, etc.). For

the free energy of a small volume element containing a one-dimensional composition variation (and

neglecting third and high-order terms), this gives

g = g{c}+κ1
dc

dz
+κ2

d2c

dz2
+κ3

(
dc

dz

)2

(4.44)

where c is the average composition and

κ1 =
∂g

∂ (dc/dz)
(4.45)

κ2 =
∂g

∂ (d2c/dz2)
(4.46)

κ3 =
1

2

∂ 2g

∂ (dc/dz)2
. (4.47)

In this, κ1 is zero for a centrosymmetric crystal since the free energy must be invariant to a change

in the sign of the coordinate z.

The total free energy per atom, gih for the inhomogeneous solution, is obtained by integrating over

the volume V:

gih =
∫

V

[

g{c}+κ2
d2c

dz2
+κ3

(
dc

dz

)2]

(4.48)

On integrating the third term in this equation by parts:

∫

κ2
d2c

dz2
= κ2

dc

dz
−
∫

dκ2

dc

(
dc

dz

)2

dz. (4.49)
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As before, the first term on the right is zero, so an equation of the form below is obtained for the

free energy per atom of a heterogeneous system:

gih =
∫ [

g{c}+ v3
aκ

(
dc

dz

)2]

dV (4.50)

where va is the volume per atom and κ is known as the gradient energy coefficient. The term g{c}
is the free energy of a homogeneous solution with the average concentration c. The interpretation

of this equation is that the creation of gradients of concentration lead to an increase in the free

energy, so steep gradients will reduce or even overcome the driving force for diffusion. There is

an additional term due to strain caused by the variation of the lattice parameter with concentration.

The quantity η is defined as d ln a/dx, where a is the lattice parameter and x the atomic fraction

of concentration, then the strain energy per atom has two components. The first is approximately

η2v3
aE(c−c)2/(1−ν) where E is the Young’s modulus and ν is the Poisson’s ratio, and the second

contribution has a dependence on (dc/dz)2 and hence can be incorporated into the gradient energy

coefficient [104, 106].

The strain energy term turns out to be rather small when considering the NP-LE mode [103], so the

focus instead is on the gradient energy component. Figure 4.23 shows the increase in free energy

of the solution as a consequence of the substitutional solute concentration spike in the austenite at

the γ/α interface during negligible partitioning local equilibrium growth. The diffusion distance is

intended to represent the width of the spike. The calculations assume a gradient energy coefficient

of 3.85×10−10 Jm−1 based on the Fe-Cr system [107, 108] and that (x− x) = 0.03.

Figure 4.23 Estimate of the penalty

on free energy due to the gradient of

concentration in the austenite ahead of

the α/γ interface [103].

Allotriomorphic ferrite growth rate calculations by Zhang et al. [109], who also conducted rate

measurements over the temperature range where a transition from P-LE to NP-LE is expected, can

be used to illustrate the problem. Using a value for the manganese diffusion coefficient (1.05×
10−5 exp(−286000/RT)m2 s−1, R = 8.3143JK−1 mol−1) from [89], the parabolic rate constant

(5.17× 10−7 ms−0.5) for 775◦C, the diffusion distance can be estimated using Equation 4.42 to be

just 0.03 nm. This clearly is physically unrealistic and associated with an intolerable penalty from

the gradient energy term. There are many other data in the literature that claim consistency with the
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NP-LE mode based on unphysical gradients and without verifying the existence of the appropriate

concentration spike.

This means that the NP-LE calculations as implemented currently are wrong because they fail to

account for the gradient energy term. If such a term is incorporated, the concentration spike would

be moderated to much larger widths, making the extent of partitioning greater and the growth rate

slower. This is precisely analogous to spinodal decomposition, where there is a wavenumber that

receives maximum amplification [Figure 4, 104], so the actual wavelength observed is of the order

of 10-20 nm [104].

In conclusion, if the constraint of local equilibrium at the α/γ interface is retained, then it is neces-

sary to account for gradient energy terms in dealing with sharp concentration profiles. The penalty

due to gradient energy will stop concentration profiles from becoming unrealistically narrow – judg-

ing from work on spinodal decomposition, a diffusion distance of the order 10–20 nm should be min-

imum although the actual number will depend on the magnitude of the free energy change available

for transformation. Naturally, the partitioning of solute would not then be negligible, making the

NP-LE concept redundant.

4.7 BREAKDOWN OF LOCAL EQUILIBRIUM

4.7.1 PARAEQUILIBRIUM

Kinetic phenomena often prevent transformations from occurring under equilibrium conditions

[59, 110–112]. Steels are special in that they contain atoms with strikingly different mobilities, so

it becomes possible for some atoms to attain a uniform chemical potential across the phases while

others cannot do so. In particular, it is possible to imagine circumstances where the sluggish sub-

stitutional solutes are unable to partition during transformation while carbon can do so [113–116].

Hultgren introduced the term paraequilibrium to describe the constrained equilibrium between two

phases that are forced to have the same substitutional-solute to iron atom ratio, but which (subject

to this constraint) achieve equilibrium with respect to carbon.

In a Fe-X-C alloy, equilibrium between austenite and ferrite of homogeneous compositions is said

to exist when

µα
i {x1α,x2α,x3α}= µγ

i {x1γ,x2γ,x3γ} (4.51)

i=1, 2 or 3. This is illustrated, for a fixed temperature, in Figure 4.24 where the equilibrium condition

is defined by a common tangent-plane touching the free energy surfaces of ferrite and austenite. The

intercepts on the pure-component axes represent the values of their respective chemical potentials.

When Equation 4.51 is satisfied, xiα = x
αγ
i and xiγ = x

γα
i , because there are no gradients of chem-

ical potential in a system at equilibrium, either within a given phase or across phase boundaries.

Austenite and ferrite are said to be in paraequilibrium when

x2α/x3α = x2γ/x3γ = x2/x3

µα
1 = µγ

1

}

. (4.52)

The Gibbs free energy change ∆G per mole reacted for reactions in a closed system when an in-

finitesimal amount of material of composition xiα is transferred from austenite of composition xiγ
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Figure 4.24 Extension of the common-tangent construction to ternary alloys. The contact points of the

tangent plane to both the γ and α free energy surfaces define a tie-line on an isothermal section of the Fe-

C-Mn phase diagram. The plane can be rocked whilst maintaining contact with both free energy surfaces, to

generate the set of tie lines that define the α+γ equilibrium phase field. The intercepts of the tangent plane

with the vertical axes give the chemical potentials of each component.

to ferrite of composition xiα is given by:

∆G = x1α(µ
α
1 − µγ

1 )+ x2α(µ
α
2 − µγ

2 )+ x3α(µ
α
3 − µγ

3 ) (4.53)

where the chemical potentials in the austenite and ferrite are evaluated at the compositions xiγ and

xiα respectively.

∆G becomes zero when ferrite and austenite are in equilibrium because all elements then have

uniform chemical potentials across all phases. The paraequilibrium state can also be specified by

setting ∆G = 0 (subject to Equation 4.52); combining Equations 4.52 and 4.53 gives [117]

µγ
2 − µα

2 +(µγ
3 − µα

3 )
x3

x2
= 0. (4.54)

The state of paraequilibrium is illustrated in Figure 4.25 using tangent planes and the free energy

surfaces of austenite and ferrite. There is now no common tangent plane, but instead two planes,

each of which is tangential only to one phase, the austenite or ferrite. However, these two tangent

planes have a common origin on the carbon axis, because the chemical potential of carbon must be

identical in both phases during paraequilibrium. The chemical potentials of the other two elements

are clearly not uniform across the phases since the tangent planes do not have common intersections

on either the iron or Mn axes. For the case illustrated, the chemical potential of Mn is raised on

transformation whereas that of Fe is reduced, in such a way that the two effects cancel to give a zero

net free energy difference between austenite and ferrite. Equation 4.54 simply expresses this in a

mathematical form.

Another notable feature from Figure 4.25 is that the two tangent planes share a line of intersection,

which when projected onto the isothermal section of the phase diagram, gives the locus of all points
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along which there is a constant ratio of Fe/Mn, as required by the definition of paraequilibrium.

Consistent with Equation 4.54, it is seen from the geometry in Figure 4.25 that

(µγ
Mn − µα

Mn)xMn = (µα
Fe − µγ

Fe)xFe. (4.55)

Equation 4.55 can be generalised to define the paraequilibrium condition for a multicomponent

system in which there are n mobile components and m immobile components [118]. By analogy

with the ternary case, there is a uniform chemical potential for all the mobile components:

µα
i = µγ

i for i = 1 to n (4.56)

but for the immobile components,

m

∑
j=1

x j

x1
(µγ

j − µα
j ) = 0 for j = 1 to m. (4.57)

Figure 4.25 The paraequilibrium state illustrated using the austenite and ferrite free energy surfaces for a

substitutionally alloyed steel at a fixed temperature. There are two tangent planes, each plane being tangential to

just one of the phases whilst cutting the free energy surface of the other phase. It is only the chemical potential

of carbon that is identical in austenite and ferrite during paraequilibrium. Note also that the paraequilibrium

tie line is parallel to a construction line radiating from the carbon corner of the isothermal section of the

phase diagram. Unlike the case for equilibrium, the α+γ two-phase field constricts to a point as the carbon

concentration tends to zero.

The equilibrium and paraequilibrium concentrations of carbon in ferrite and in austenite will in gen-

eral be different because the chemical potential of carbon is a function of all elements in solution.

The substitutional solute concentrations are not identical for the two cases. The paraequilibrium

phase diagram is constructed on the basis of Equations 4.52-4.54 rather than Equation 4.51. Hillert
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[114] has shown that the paraequilibrium phase boundaries lie within the α+γ phase field of the

equilibrium phase diagram. Furthermore, the tie-lines of the paraequilibrium α+γ phase field all

satisfy Equation 4.52 and hence represent lines along which the substitutional to iron atom ratio

is constant.13 Typical paraequilibrium and equilibrium Fe-Mn-C diagrams are illustrated in Fig-

ure 4.26. For any given alloy, a degree of undercooling below the equilibrium transformation tem-

perature is necessary before paraequilibrium transformation becomes feasible. This is a reflection

of the lower free energy change accompanying the formation of ferrite which is forced to accept a

non-equilibrium substitutional alloy content.
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Figure 4.26 Typical calculated isothermal sections of the equilibrium and paraequilibrium phase diagrams

of the Fe-Mn-C system: (a) 1053 K, (b) 1013 K (after Bhadeshia [119]). The tie-lines for the paraequilibrium

diagram should be almost horizontal because the Fe/Mn ratio is constant everywhere and the carbon concen-

tration is relatively small.

Given that only carbon partitions, its diffusion will be rate limiting, which then represents the major

dissipation of the driving force, assuming that interfacial kinetics are relatively rapid. The substitu-

tional solutes influence kinetics only through their effect on the limiting carbon concentrations at

the interface; they alter the thermodynamics of the γ→ α transformation, i.e., the phase diagram.

There may be a smaller effect on the diffusion coefficient of carbon through the influence of X el-

ements on the activity of carbon in austenite (Chapter 2). Having established the paraequilibrium

phase diagram, the diffusion-controlled growth rate for ferrite can be calculated using the theory

relevant for Fe-C alloys, after substituting the paraequilibrium carbon concentrations for x
γα
1 and

x
αγ
1 . This carries the assumption that paraequilibrium exists locally at the interface.

4.7.2 SOLUTE AND SOLVENT TRAPPING

During the paraequilibrium growth of ferrite in Fe-Mn-C, the chemical potential of manganese is

increased on transfer from the austenite. The manganese normally would partition preferentially

into austenite, it is, after all, the classic austenite stabilising element. Manganese is therefore pas-

sively transferred into the ferrite by the advancing α/γ interface. That its free energy is increased

on transfer means that it is “solute-trapped” [120], rather like when excess carbon is inherited by
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martensite but would rather reside in the austenite.

If a Fe-Si-C alloy undergoes paraequilibrium transformation to α, then since silicon is a ferrite

stabiliser its chemical potential must decrease on entering the α lattice. To compensate for this, the

chemical potential of the major component iron must increase; this is known “solvent trapping”.

The change in chemical potential during the transfer of a species i is

∆µi = µα
i − µγ

i

= RT ln
xiαx

γα
i

xiγx
αγ
i

. (4.58)

Component i is said to be trapped when ∆µi is positive - i.e., when (xiαx
γα
i )/(xiγx

αγ
i )> 1.

Although ferrite growth is considered usually to occur either by paraequilibrium or equilibrium

transformation, an infinite number of other possibilities exist. All compositions of ferrite which

allow ∆G in Equation 4.53 to be zero or negative constitute possible α compositions that can in

principle grow from austenite. For a binary alloy, this means that α formation can involve: 1) equi-

librium transformation, 2) transformation in which one of the species is trapped (with ∆µ = 0 for the

other element) and 3) non-equilibrium transformation in which neither solute nor solvent is trapped

(with ∆µ < 0 for both elements). For a ternary alloy, the following possibilities arise:

• equilibrium transformation;

• transformation in which one of the species is trapped, with another species having equal

chemical potential in both phases (e.g. paraequilibrium) as long as there is a net reduction

in free energy;

• transformation in which one of the species is trapped, with no species having equal chem-

ical potential in both phases;

• transformation in which two components are trapped; and

• non-equilibrium transformation.

Baker and Cahn [111] have pointed out that in circumstances where some components are trapped,

the transfer of components across the interface cannot be independent if there is to be a net reduction

in free energy.

There is an important contradiction in applying the paraequilibrium concept to a reconstructive

transformation. The substitutional lattice is configurational frozen, but the phase transformation re-

quires reconstructive diffusion (p. 168). It is not clear why the reconstructive diffusion is not accom-

panied by solute partitioning. There are no experimental data that verify directly the paraequilibrium

state for allotriomorphic ferrite [121]. It is telling that the phase field method has never been able to

predict a transition from PLE into the NP-LE or the paraequilibrium growth of ferrite; it probably

is not possible to do this even in principle given the way in which the interface is modelled. It is

likely that the paraequilibrium mechanism applies only to a carbon-diffusion controlled displacive

transformation (Chapter 7). The items discussed in the next section should be considered along with

these caveats.
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Transition from local-equilibrium to paraequilibrium

When D11 . D22, ferrite growth with local equilibrium at the interface has been considered to oc-

cur in two fairly distinct ways. At low supersaturations, there is the bulk partitioning of the slow

diffuser, the activity gradient of the fast diffuser (in γ) being reduced reduced almost to zero. At

large supersaturations, there is little partitioning of the slow diffuser, so its activity gradient in the

austenite becomes large enough to allow it to keep pace with the faster diffusing solute; this partic-

ular mode has fundamental difficulties as described in previous sections, but there is some value in

discussing it further.

Paraequilibrium transformation has zero partitioning of substitutional solutes during transformation,

the ratio x2/x3 being constant across the interface, on the finest conceivable scale.

Hillert [101], and Coates [90] have considered the conditions leading to the onset of paraequilibrium

transformation. Coates has shown that for one-dimensional growth occurring at high supersatura-

tions, with local equilibrium at the interface, the approximate extent (z2d) of the diffusion field of

component 2 in the austenite ahead of the interface is given by:

z2d = 2D22/v (4.59)

z2d is therefore a function of temperature, driving force and particle size Z. As z2d decreases, either

due to an increase in v or a decrease in D22, the composition perturbation in the γ ahead of the

interface becomes smaller in extent until z2d becomes small compared with atomic dimensions and

loses physical significance. Indeed, Coates [90] has suggested that the perturbation then becomes

a part of the interface, since the dependence of the diffusivity on concentration gradient becomes

significant, giving rise to a gradient-energy term as in spinodal decomposition. These considerations

led him to suggest that growth switches from local equilibrium to the paraequilibrium mode when

z2d & 1 nm 14.

Since z2d increases with particle size, it must be the case that a particle may begin isothermal growth

by a paraequilibrium mechanism but then slip into growth by the local equilibrium mechanism.

Hillert [101] has applied similar reasoning to the problem and has concluded that with increasing

undercooling below the equilibrium transformation temperature, local equilibrium growth gives way

to paraequilibrium but this depends on the unlikely assumption that interface velocity increases

monotonically with decreasing temperature.

Whereas it seems intuitively reasonable that deviations from local equilibrium must arise when z2d

becomes comparable to atomic dimensions, Hillert [122] has pointed out that this reasoning fails

in the case of pearlite and massive transformations. In fact, pearlite never exhibits paraequilibrium

transformation, nor any mechanism which would lead the phases involved to inherit the Fe/X ratio

of the austenite (Figure 12.12). A large quantity of data on the effect of alloying elements on pearlite

growth show the partitioning of substitutional solutes even where the calculated values of z2d are

in most cases less than 0.1 nm. It may not even be reasonable to consider that a reconstructive

transformation can transition into paraequilibrium.
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Aziz model for solute trapping

This is a model which allows the estimation of solute trapping given an interface velocity; solute-

trapping is a feature of paraequilibrium so it is relevant to understanding the onset of transformations

that occur without the partitioning of substitutional solutes in a Fe-C-X system.

Figure 4.27 illustrates a transformation front between the shaded and unshaded crystals, in a binary

alloy containing “A” (solvent) and “B” (solute) atoms. The smaller solute atoms in this image have

a preference for the parent phase (γ). The atoms in the central layer have to move along the vectors

indicated in order to transform into the product phase (α). δs is a typical diffusion jump distance

for the solute atom; the motions required for the atoms in the interfacial layer to adjust to the new

crystal structure are rather smaller. The model does not contain information about the structure of

the interface.

AA
δs

Figure 4.27 Choreography of so-

lute trapping, adapted from Aziz [123].

The solvent is labelled A, solute B and

the product phase is shaded dark. The

transformation front is advancing to-

wards the right.

Solute is trapped if the interface velocity v is larger than that at which solute atoms can diffuse

away into its desired phase. The maximum diffusion speed is approximately D/δs since δs is the

minimum diffusion distance, so trapping occurs when v > D/δs. There will be no accumulation or

depletion of solute so a steady state is maintained. Writing J{z} and c{z} as the diffusive flux across

the interface and concentration respectively, both of which are functions of distance z, a steady state

is obtained when
∂

∂ z
(J − vc) = 0

since diffusive flux must balance the rate of change in concentration caused by the partitioning

of solute between the two phases as the interface moves (cf. Equation 4.14). The thickness of the

interface is about the same as the minimum diffusion distance δs; in addition, ∂J/∂ z = (Jαγ −
Jγα)/δs and ∂c/∂ z = (cγα− cαγ)/δs, the steady-state requirement simplifies to:

v(cγα− cαγ) = Jαγ− Jγα. (4.60)

Referring to Figure 4.28 and using the theory and terminology outlined in Section 3.6.1, it is seen

that

Jαγ =
kTD

h

δsΓαcαγ

Γm

1

m+
exp

{

−
G∗

RT

}

Jγα =
kTD

h

δsΓγcγα

Γm

1

m− exp

{

−
G∗+∆µ

RT

}

.
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It follows that

v(cγα− cαγ) =
kTD

h

δs

Γm

1

m+
exp

{

−
G∗

RT

}(

Γαcαγ−Γγcγα exp

{

−
∆µ

RT

})

=
D

δs
(cαγ− kecγα) (4.61)

where D is the diffusion coefficient, the substitution being made according to the theory in Sec-

tion 3.6.1, and ke is the equilibrium partition coefficient obtained by setting µγ
B = µα

B , so

ke =
cαγ

cγα
=

Γγ

Γα
exp

{

−
µα

B − µγ
B

RT

}

(4.62)

The solid that forms need not have a composition consistent with equilibrium since solute trapping is

a possibility. Therefore, on replacing cαγ by cα to emphasise this point, on adapting Equation 4.62

accordingly, the actual partitioning coefficient kp = cα/cγα is given by

kp =
cα

cγα
=

βp + ke

βp + 1
where βp =

vδs

D
.

This equation enables the composition of a growing phase to be estimated even when it deviates

from equilibrium, as long as the velocity of the interface is known. It can be used to interpret

experimental data on the mechanism by which allotriomorphic ferrite grows.

Figure 4.28 The activation energy bar-

rier G∗ for diffusion across the interface,

on a plot of the chemical potential of the

solute versus distance. The solute poten-

tial is lowest in the parent phase γ. The

change in the solute chemical potential is

∆µ = µα−µγ on transfer from γ to α.

Consider two experiments on the growth of allotriomorphic ferrite in Fe-Mn-Si-C alloys [24]. In

one case (a), the alloy was transformed isothermally at a high temperature where paraequilibrium

transformation is impossible and in the second instance (b), ferrite was induced at a lower temper-

ature where paraequilibrium transformation is thermodynamically possible. Microanalysis in each

case indicated long-range solute redistribution during transformation, ruling out the paraequilib-

rium mechanism. Paraequilibrium would have been expected on the basis of the calculated diffu-

sion distances in the austenite at the transformation interface (Equation 4.59). Table 4.5 shows that

for case (b) these distances are very small indeed. These results are consistent with Hillert’s [122]

evidence that pearlite grows with partitioning of substitutional solutes even when Equation 4.59

indicates incredibly small diffusion distances. It is not reasonable therefore to model the kinetic

transition on the basis of the diffusion distance alone. On the other hand, the Aziz equation cor-

rectly predicts partitioning for case (b) so it is a more rigorous approach.
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Table 4.5

Calculated diffusion distances (zd) and partition coefficients kp for Fe-Mn-Si-C alloys
transformed isothermally [24].

Case (a) Case (b)

zMn 18 nm 0.08 nm

zSi 4 nm 0.14 nm

kMn
p 0.7

kSi
p 1.7

4.8 INTERFACE-CONTROLLED GROWTH

4.8.1 PURE IRON

In pure iron, the growth of ferrite must be limited by the transfer of atoms across the interface.

Consider first the case where a flat interface moves as a whole rather than by a step mechanism.

It can be deduced from Figure 4.28 that the speed at which the interface moves during the γ→ α

transformation is given by

v = δb f ∗ exp

{

−
G∗

RT

}[

1− exp

{

−
∆G

αγ
3

RT

}]

(4.63)

where δb is the thickness of the interface, f ∗ is an attempt frequency for atomic jumps across the

interface and the chemical potential difference ∆µ for pure iron becomes the free energy difference

∆G
αγ
3 = Gγ −Gα; consistent with earlier notation, the subscript “3” identifies iron. When the

undercooling below the equilibrium transformation temperature is small, Equation 4.63 simplifies

to

v = δb f ∗ exp

{

−
G∗

RT

}
∆G

αγ
3

RT

= Mb
∆G

αγ
3

RT
(4.64)

where the term Mb is a grain boundary mobility. The interface velocity thus becomes proportional to

∆G
αγ
3 . The available free energy is dissipated entirely in interfacial processes (Equation 4.11) with

GI = ∆G
αγ
3 . If the interface is curved then the net free energy change accompanying its motion

is reduced in proportion to the increase in interface area due to the growth process, leading to a

reduction in the growth rate, but this effect will be significant only for particles with a large surface

to volume ratio. On the other hand, grain curvature is the motivation for coarsening in the theory of

grain growth (Chapter 13).

The mobility Mb = M0 exp{−G∗/RT} of the α/γ interface is difficult to measure experimentally,

usually determined from analysis of overall transformation kinetics. Furthermore, any measurement

on polycrystalline samples will tend to be some global average (Table 4.6). Studies of grain growth
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in single-phase ferritic samples have sometimes been used to represent the α/γ interface, but it has

been shown that the mobility in the latter case is much smaller than for α/α boundaries [124].

Molecular dynamics simulations of the α/γ interfaces have the advantage that the mobility can be

studied with the full specification of the crystallography involved. Such a study on the reconstructive

transformation in pure iron covered an interphase boundary orientation {110}α ‖ {776}γ, 〈001〉α ‖
〈110〉γ. The orientation relationship between the austenite and ferrite was significantly tilted away

from those normally observed in order to ensure that the {776}γ plane is parallel to {110}α. This

is because the simulations apparently are not able to deal with flat interfaces, which do not seem

to move over the typical timescales of the molecular dynamics simulations.15 The imposition of

the tilt introduced steps on the austenite side of the interface, presumably making it more mobile

and introducing misfit dislocations with Burgers vectors within the plane of the boundary. A large

driving force, approximately 1350 J mol1 was applied to move the interface; this would require the

austenite in the pure iron to be undercooled by about 410 ◦C with the simulation covering less than

20 ns. The resulting mobility was found to be extraordinarily large (Table 4.6). Possible reasons for

this have been proposed but are not established. It is obvious that the procedure taken to increase

the mobility of the boundary by introducing one-sided steps that also increase the free volume

associated with the boundary has consequences. This procedure was necessary to complete the

simulation because that the interface otherwise does not move within the simulation timescale. The

high mobility may therefore be an artefact of the simulation method.

Table 4.6

Mobility data for the α/γ interface. Note that ∆µFe does not fully represent the driving
force, hence the approximation symbols.

M0 /mmol J−1 s−1 G∗ /kJmol−1 Comments

5.8× 10−2 140 Fe-Mn alloy, analysis of overall transformation ki-
netics, ∆G

αγ
3 ≈ ∆µFe [125].

0.1-15 140 Fe-Cu, Fe-Co, Fe-Si, Fe-Al, FeCr alloys, analysis
of overall transformation kinetics, G∗ from [125–
127], ∆G

αγ
3 ≈ ∆µFe, M0 found to be composition

dependent, [128].

7.8± 1.8× 10−3 16.5± 5.3 Molecular dynamics simulation, very large driv-
ing force, pure iron [129]
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4.8.2 IRON ALLOYS

There is nothing especially different about alloys when it comes to applying Equation 4.63 other

than replacing the term ∆G
αγ
3 by the overall free energy change ∆G′ (p. 184):

v = δb f ∗ exp

{

−
∆G∗

RT

}[

1− exp

{

−
∆G′

RT

}]

& Mb
∆G′

RT
. (4.65)

This assumes that almost all the free energy available is dissipated in the interface processes (GI &
∆G′). Unlike diffusion-controlled growth, the composition of the matrix at the interface deviates so

much from equilibrium that there is only a shallow concentration gradient ahead of the interface

(Figure 4.13c). Consequently, only a small fraction of the free energy is dissipated in diffusion.

The practice of substituting ∆µFe for ∆G′ is not justified because all elements participate in the

transformation. This is easy to see by considering composition-invariant γ→ α transformation in

an Fe-Si alloy. Transformation occurs even though the chemical potential of iron is increased as it

transfers into ferrite.

In the absence of local equilibrium at the interface, the chemical potential of one or more of the

components must obviously be discontinuous at the phase boundary. Neglecting any cross-effects,

the flux Ji of solute across the boundary must then be some function of the chemical potential

discontinuity ∆µi [130]:

Ji ∝ µα
i {cαi }− µγ

i {c
γ
i }.

If it is assumed that the product phase α grows with its equilibrium composition, then the following

proportionalities hold approximately:

Ji ∝ µα
i {c

αγ
i }− µγ

i {c
γ
i }

∝ µγ
i {c

γα
i }− µγ

i {c
γ
i }

∝ c
γα
i − c

γ
i .

If the interface velocity v is now taken to be related linearly to Ji, then

v ∝ (cγαi − c
γ
i ). (4.66)

This is interesting because it shows that the velocity, for interface-controlled growth, increases as

the composition of the parent γ deviates more from its equilibrium composition. This is expected

since as c
γ
i → ci, less of the total free energy is dissipated in diffusion.

4.9 GROWTH WITH MIXED CONTROL

As discussed in Section 4.5, a variety of processes that affect the motion of an interface occur

in series. Each of these processes has an associated interface response function, the simultaneous

solution of which yields a single interfacial velocity and determines the free energy dissipated in
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each process. The process that dissipates the majority of the available free energy is said to be rate

controlling. If the dissipations are similar then the interface is said to be under mixed-control.

The central problem in the calculation of the interface velocity when under mixed-control is the

partitioning of the available free energy into the mobility and diffusion dissipations. Figure 4.29

shows for a Fe-C alloy how GI and GD depend on the concentration profile at the transformation

front, which for a given set of compositions at the interface, can be calculated using Equations 4.10

and 4.11. GD becomes an increasing fraction of ∆G′ as the concentration in the austenite at the inter-

face approaches the equilibrium concentration xγα, since the rate-controlling process then becomes

diffusion. Similarly, as x
γ
I → x, the motion becomes interface-controlled.

(a) (b) (c)
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100
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Figure 4.29 (a) An illustration of how the available free energy is dissipated in diffusion (GD) or in the

transfer of atoms across the boundary (GI), as a function of the concentrations x, xα and x
γ
I . (b) The resulting

concentration profile at the transformation front. The concentration xI will in general differ from the equilibrium

value xγα. (c) Typical calculations for Fe-0.1C wt% steel at 700◦C. A greater proportion of the available free

energy is dissipated in diffusion as x
γ
I approaches xγα.

The actual velocity is that given by the intersection of the diffusion and mobility functions. Typical

examples are plotted for the growth of allotriomorphic ferrite in Figure 4.30, in which the horizontal

scale represents GD; the dissipation GI increases in the opposite direction since GI = ∆G′ −GD.

There are three values of interface mobility used for the sake of illustration; very low, low and high

corresponding to decreasing values of G∗. Diffusion-controlled growth does not occur at a constant

rate:
∂Z

∂ t
=

1

2

α1d

t
1
2

.

Because of this time dependence, the diffusion-controlled growth velocity is plotted for two stages,

after 1 s and 100 s – the velocity in the latter case is ten times slower than the former.

Figure 4.30a shows a case where the transformation temperature is so high that in spite of the low

interface mobility, virtually all of ∆G′ is dissipated in diffusion, giving diffusion-controlled growth.

The response functions for diffusion and mobility intersect almost perpendicularly so the velocities

given by the marked intersections are nearly identical to those expected from a consideration of just

the diffusion functions. The mobility response function can be neglected altogether and growth will

occur parabolically with time and x
γ
I & xγα.

In order for growth to remain diffusion-controlled at a lower transformation temperature (500 ◦C),

the interface would have to have a greater mobility in which case the time dependent velocities

would be given by the intersections a and b in Figure 4.30b. But if the mobility is limited, then
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growth clearly occurs under mixed-control with the velocity remaining time dependent (intersec-

tions c and d). Even though the growth process begins with mixed control, it tends towards diffusion

control as time proceeds, as can be seen from a comparison of the dissipations at c and d. This is

because at first x
γ
I = x but increases with the build-up of solute in front of the interface; note that

this is not a soft-impingement effect since the far-field composition remains x in the calculations

illustrated.

Figure 4.30c shows a case where the growth is interface-controlled so the velocity is less sensitive

to time.
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Figure 4.30 The mobility and diffusion interface-response functions for Fe-0.1C wt%, assuming that the

far-field concentration remains at x. Because ∆G′ = GD +GI, the horizontal scales on each of these plots also

represent GI increasing from right to left. The curves labelled 1 s and 100 s represent the carbon diffusion-

controlled growth velocities for those time periods. The actual velocity is given by the intersection of the

diffusion and mobility functions. (a) Diffusion-controlled growth at 700◦C; (b) mixed control when the inter-

face mobility is limited, and diffusion-controlled when the mobility is high, for transformation at 500◦C; (c)

interface-controlled growth.

The effect of soft-impingement on all of these examples would be to make interface-controlled

growth time-dependent and diffusion-controlled growth a different function of time. A calculated

example of a case where soft-impingement is taken into consideration is given in Figure 4.31a.

Growth in this case begins at a rate which is interface-controlled, changes to mixed control and

then evolves towards diffusion-control. The concentration x
γ
I remains below equilibrium during a

substantial portion of the thickening process. Figure 4.31b shows that as expected, the thickness does
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not scale with the square root of time, the retardation at long times being due to soft-impingement.
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Figure 4.31 Calculations of the thickening of allotriomorphic ferrite for Fe-0.2C wt% steel transformed

isothermally at 1025 K (after Krielaart [131]). (a) The development of the carbon concentration profile as a

function of time; the extent of the austenite on the horizontal axis is 25µm. (b) Corresponding plot of the

ferrite thickness as a function of the square root of time.

4.10 STEP MECHANISM OF INTERFACIAL MOTION

4.10.1 BOUNDARY TOPOLOGY, LEDGE NUCLEATION

A boundary can translate in two ways: atoms may cross all parts of the interface causing it to prop-

agate as a whole. They may alternatively attach themselves to the product phase only at favourable

sites such as steps, in which case the translation of the interface as a whole requires that only the

steps move. The normal displacement of the stationary part of the boundary then occurs by the

passage of the steps parallel to the boundary, the magnitude of displacement depending on the step

height and spacing. The term “step” is a general term, but the term “ledge” refers to a step that is

linear.

When the orientation of the interface corresponds to a sharp minimum in interfacial free energy, it

will tend to move by a step mechanism, rather than by the continuous displacement of every element

of the interface [132–134]. Interfaces like these are said to be singular. Stepped growth depends on

the existence of periodic, minimum-energy configurations, the spacing of which determines the

height of the steps, but there is a dependence on the driving force for transformation [6]. Stepped

growth becomes less likely at large undercoolings. Figure 4.32 shows how the free energy of the

system varies as a function of the position of the boundary and of the magnitude of the driving force.

Continuous motion therefore becomes possible at large driving forces. The obvious physical origin

of the periodic equilibrium configurations lies in the spacing of planes within the crystal structure,

when the interface is parallel to a low-index lattice plane. The step height would then equal the

spacing of those lattice planes, i.e., the steps would have atomic height. This is not generally what

is meant by steps in the context of allotriomorphic ferrite. The steps usually are large enough to be

visible using optical microscopy or conventional transmission electron microscopy.

One possibility is that these supersteps occur because of the difficulty of step nucleation [135].

Figure 4.33 illustrates a ferrite allotriomorph that has grown along the prior austenite grain bound-

ary; the form of the allotriomorph is assumed not to change in the direction normal to the plane
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 of interface

δs

Figure 4.32 The free energy of the

system as a function of interface posi-

tion. The driving force increases in the

order (a), (b), (c). δs is the distance be-

tween adjacent equilibrium positions

of the interface.

of the diagram. One of the interfaces is assumed to be in a singular orientation. An idealised ledge

abcd nucleates preferentially at the corner a since nucleation on a plane front would be energeti-

cally more costly. Nucleation of a ledge with cross-sectional area A and unit length in the normal

direction becomes possible when

|A∆Gγα/Vm|≥ σ++σ− (4.67)

where σ+ and σ− are the energies per unit length of the positive and negative corners of the ledge

and Vm is the molar volume. Since there are no restrictions in this equation on the ratio ab/bc, the

height of the ledge is free to vary without violating this criterion. This model is therefore unable to

predict any of the geometrical features of the ledge such as the height ρ , whereas in practice the

ledge height is known to vary systematically with temperature and alloy chemical-composition.

The difficulty for the step-shape illustrated in Figure 4.33a is that there is no net increase in the

interfacial area when the step forms. In reality, the corner a should act as a pivot during nucleation

when the interface ab attempts forward motion. Furthermore, the dissipation of partitioned solute

will be most difficult at the corner a when compared with the positive edge at c. The process of

step nucleation is therefore better represented by Figure 4.33b, a scenario verified experimentally

Figure 4.33c [135, 136]. The free energy change per unit length of the step illustrated in Figure 4.33b

is given by

∆G = σγαz+σ++
∆Gγαzρ

2Vm
where ∆Gγα

︸ ︷︷ ︸

−ve

= Gα−Gγ =−∆Gαγ
︸ ︷︷ ︸

+ve

, (4.68)

and σγα is the interfacial energy per unit area of the low-energy facet plane. The ledge cross-

sectional area is A & zρ/2. Differentiating Equation 4.68 with respect to the volume of the nucleus
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Figure 4.33 (a) Nucleation of a ledge at an α/γ interface junction. (b) Nucleation of an inclined ledge. (c)

Inclined growth ledges (arrowed) on allotriomorphic ferrite in a Fe-0.39C-4.08Ni-2.05Si wt% steel transformed

isothermally at 514◦C for 120 s followed by quenching to ambient temperature [135].

gives

d(∆G)

dA
=

dρ

dA

∂ (∆G)

∂ρ
+

dz

dA

∂ (∆G)

∂ z

=
2σγα

ρ
− 2

∆Gαγ

Vm
.

From classical nucleation theory, the growth of an embryo into a successful nucleus becomes pos-

sible when the ledge height exceeds a critical value

ρ∗ =
σγαVm

∆Gαγ
(4.69)

where ρ∗ represents the lower limit to the ledge height for a given value of the driving force. This

result, and the inverse relationship with the driving force, has been observed experimentally for the

growth of allotriomorphic ferrite in steels (Figure 4.34).

It is worth considering further the geometry of a ledged interface with respect to the ratio bs of the

ledge height to the spacing between adjacent ledges. A ledged interface consists of a low-energy,

low-mobility sessile-facet and high-energy, high-mobility ledge that translates in order to accom-

plish the advance of the interface as a whole. The motion of the ledges with a velocity vs is equiv-

alent to the motion of the facets with a velocity vl which is related to the detailed geometry of the

interface.
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Figure 4.34 Variation in the ledge height at

allotriomorphic ferrite/austenite interfaces as a

function of the isothermal transformation tem-

perature. The data are from Batte and Honey-

combe [137]; the curve represents ρ∗, the calcu-

lated lower limit for the ledge height.

Figure 4.35 illustrates how the interface with bs > 1 or < 1 can be displaced by the motion of the

ledges or for comparison, of facets. Although the same displacement can be achieved by moving

either component of the interface, it is not reasonable to consider cases where the ledge height

is much smaller than the ledge spacing, as is sometimes considered in calculations of the type

discussed later.

(a)

(b) (c) (d)

Figure 4.35 Motion of a stepped interface. The continuous lines represent the original position of the inter-

face, the dashed lines the final position, and the arrows are velocity vectors. (a) Case where the ledge height

is smaller than the ledge spacing. (b) Illustrates that the same interface displacement can be achieved as in (a)

by moving the facets at a smaller velocity. (c) Case where the ledge height is smaller than the spacing. (d) The

same displacement as (c) can be achieved but by moving the facets at a greater velocity.

4.10.2 MOTION OF ISOLATED LEDGE

Consider now the rate of motion of an isolated step, noting that theory has only been formulated for

binary diffusion. The method is therefore restricted to Fe-C or Fe-X alloys and also Fe-X-C alloys

that transform by the paraequilibrium mechanism.

For a series of ledges each of height ρ , the velocity v with which the stationary part of the interface

is normally displaced (by the motion of ledges) is given by [138]

v = ρnsvs (4.70)
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where ns is the number of ledges per unit length and vs is the mean ledge velocity; it is assumed that

there is no interference between the diffusion fields of neighbouring ledges.

Jones and Trivedi [139] first considered the problem of determining vs for solid-state transforma-

tions. They studied the steady-state motion of a square ended ledge moving in the direction y, the

normal to the interface being in the direction z, Figure 4.36.

(a) (b)

Figure 4.36 Diagram illustrating

the geometry of a ledge; (a) single

ledge, (b) two-ledge train.

The concentration gradient in the matrix at the ledge face is assumed constant. This is inconsistent

with the steady-state growth assumption because both the concentration and its gradient should vary

along the ledge face, but the approximation is not too severe [140].

For solid-state transformations, step motion can be controlled by the diffusion of atoms to the step

or by the transfer of atoms across the step or by some combination of the two processes. Since it is

assumed that the volume diffusion of solute in the matrix adjacent to the riser controls the growth

rate, the dependence of vs on diffusion in the parent phase can be obtained by performing a flux

balance across the ledge face (cf. Equation 4.14):

vs =
D11

cα1 − c
γ
1

∂c1

∂y

∣
∣
∣
∣
ledge

. (4.71)

If growth occurs under interfacial-control, then c
γ
1 & c

γα
1 and assuming that vs is proportional to

the deviation of c
γ
1 from equilibrium (Equation 4.66), then:

vs = Mb(c
γα
1 − c

γ
1 ) (4.72)

where Mb is as usual, a mobility.

Rosenthal [141] developed a number of mathematical solutions for the problem of welding in which

there is a heat source that moves with a constant speed. These are steady-state solutions in the sense

that an observer moving with the coordinates of the heat source does not notice any change in

the environmental variables.16 In the present context, it is the ledge that is assumed to move at a

constant speed, the concentration distribution c1{y′,z′} with respect to a moving coordinate system

(y′,z′, Figure 4.36) attached to the ledge cannot change with time. c1{y′,z′} must therefore obey a

time-independent diffusion equation in two-dimensions. By analogy with Rosenthal’s work on the

temperature distribution around a moving heat source, the normalised diffusion equation is given

by:

∇ · (D11∇c′1{y′,z′})+ 2p
∂c′1
∂y′

= 0 (4.73)

where p is the Péclet number (a dimensionless velocity),

p = vsρ/2D11
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and the normalised, moving coordinates are defined by

y′′ = (y− vst)/ρ

z′′ = z/ρ . (4.74)

c′1 is a dimensionless solute concentration in the matrix:

c′1 =
c1{y′,z′}− c1

c
γ
1 − c1

. (4.75)

Using Equation 4.73, a function Φ3{p} can be defined as follows:

Φ3{p} = −
(

∂c′1
∂y′

)−1

ledge

=
c1 − c

γ
1

ρ(∂c1/∂y)ledge
. (4.76)

By combining Equations 4.71, 4.73 and 4.76, Jones and Trivedi [139] derived the step velocity to

be:

vs =
Mb(c1 − c

γα
1 )

1+Mb(c
αγ
1 − c

γα
1 )(ρ/D11)Φ3{p}− 2pΦ3{p}

. (4.77)

The relationship takes account of both matrix diffusion and interface kinetics effects. It remains to

obtain the function Φ3 (which is the negative of the reciprocal of the concentration gradient at the

ledge), by solving the differential Equation 4.73 subject to boundary conditions which allow the

concentration gradient at the step face to be constant, and which include the condition that the step

progresses without change of shape. The boundary conditions are [139, 140]

∂c′1/∂ z′′ = 0 on z′ = 1, y′ < 0

∂c′1/∂ z′′ = 0 on z′ = 0, y′ 0

∂c′1/∂ z′′ =−(Φ3)−1 on y′ = 0, 0 < z′ < 1.

0 3 4 6
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10 0
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b
Figure 4.37 The functions Φ3{p};

curves (a) and (b) represent a numerical

solution and an approximate solution us-

ing singular perturbation theory respec-

tively (after Atkinson [140]).
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The first two boundary conditions ensure that the isoconcentration contours around the ledge (in

the matrix) are always normal to the stationary parts of the interface. The last condition specifies

a constant concentration gradient at the step face. Atkinson used two methods to solve for Φ3: the

more rigorous method was numerical and another used a singular perturbation technique (valid for

p - 1) in which an “outer” solution is obtained for the region where step geometry is less important

and an “inner” solution in the vicinity of the step where details of its geometry are important. The

two solutions are then matched to provide a complete solution. Atkinson’s solutions for Φ3 are

shown in Figure 4.37, but for p < 0.01, singular perturbation theory gives

Φ3{p}=
1

π
[1−C− ln{4π/p}] (4.78)

where C is the Euler constant equal approximately to 0.5772.

Both Atkinson, and Jones and Trivedi found the concentration distribution around the ledge to be

asymmetrical in y′, the type of asymmetry differing in detail, since in Jones and Trivedi’s treatment

c′1 becomes zero at some finite distance from the ledge. According to Atkinson, c′1 should only be

zero at infinity, the concentration distribution (in the “outer” region) being defined by

c′{y′,z′}=
1

Φ3π
exp{−py′}K0{p[(y′)2 +(z′)2]

1
2 } (4.79)

where K0 is a modified Bessel function of zero order.

The diffusion profile decays exponentially to zero in front of the step, but decays as p[(y′)2+(z′)2]0.5

behind the step. The fact that the extent of the field is larger behind the ledge contradicts the results

of Jones and Trivedi. Equation 4.79 is obtained using the singular perturbation method and is valid

for p < 0.01. The diffusion field of an isolated step is shown in Figure 4.38.

0.1

0.2

0.3
0

20

40

60

80

-40 0

 

20 40

Figure 4.38 The diffusion field about an iso-

lated ledge of height z′ = 1, p = 0.01 for a variety

of normalized concentrations c′1. Adapted from

Enomoto, Aaronson, Avila and Atkinson [142].

A useful form of Equation 4.71, relating f1 to p, is as follows [139]:

f1 = 2pΦ3 +
p

q
[1− 2pΦ3] (4.80)

where q =
M(cαγ

1 − c
γα
1 )

2D11/ρ
. (4.81)

As interface mobility tends to infinity, Equation 4.80 reduces to

f1 = 2pΦ3. (4.82)
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Since a given value of the supersaturation f1 is associated with a unique value of the Péclet number

p = ρvs/2D11, it follows that the ledge velocity is related inversely to the ledge height. This is

physically expected since the distance that the carbon has to diffuse in order to be left in the wake

of the ledge must increase with the ledge height.

As the interface mobility Mb → 0, so the velocity vs → Mb(c
γα
1 − c1).

4.10.3 MULTILEDGE INTERACTIONS

An analysis of the growth characteristics of trains of ledges was first considered by Jones and Trivedi

[143], Atkinson [144] re-analysed the problem with a corrected Φ3 for the case where volume

diffusion in the parent phase is assumed to be rate-controlling.

If the ledges in the trains all are of equal height they cannot have identical speeds. In a two-ledge

train, the leading ledge always advances into fresh parent phase, whereas that which is trailing is

influenced by the back diffusion field of the leading step. Therefore, for steady-state motion, the

trailing ledge must have a smaller height in order to keep up with the leading ledge [144].

For the purposes of kinetic theory, a two-ledge train can be characterised in terms of dimensions

normalised relative to the height ρ of the leading ledge. The normalised height of the leading ledge

is then unity. The height of the trailing ledge divided by ρ is its normalised height ρ1 and the nor-

malised separation of the ledges is written h1 (Figure 4.36b). When h1 . 1, the diffusion field of a

two-ledge train, in the “outer” region can be approximated by considering the ledges as line sources

located at (y′ = −h1,z′ = 0) and (y′ = 0,z′ = 0). For diffusion-controlled growth, Equations 4.82

and 4.79 give

c′{y′,z′} = [2p/(π f1)][exp{−py′}K0{p[(y′)2 +(z′)2]
1
2 }

+ρ1 exp{−py′+ ph1}K0{p[(y′+ h1)
2 +(z′ − 1)2]

1
2 }]. (4.83)

(4.84)

For a specified separation h1, a value of ρ1 and p consistent with the two-ledge train moving with a

constant speed can be obtained by the simultaneous solution of

ρ1 exp{−ph1}K0{−ph1}+[1−C− ln{p/4π}] = f1π/2p

exp{ph1}K0{−ph1}+ρ1[1−C− ln{pρ1/4π}] = f1π/2p. (4.85)

These equations show that for a pair of widely spaced ledges moving at the same speed, the size

of the trailing ledge is smaller than that of the leading step for a given value of p. For h1 . 1, ρ1

decreases as h1 becomes smaller. Extension of the analysis to include closely spaced ledges shows

that ρ1 goes through a minimum as h1 decreases; the value of ρ1 at the minimum decreases as p

increases (Figure 4.39). The form of the curves in Figure 4.39 implies that for values of ρ1 above

the minimum, there are two spacings for which the steps travel at the same speed, the larger spacing

corresponding to the stable configuration of the train. If ρ1 becomes smaller than the minimum

value, the train becomes unstable, the trailing ledge catches up and merges with the leading ledge.
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Figure 4.39 Plots of normalised

height (ρ1) of trailing ledge versus

normalised ledge separation (h1) for

a two-ledge train in which the nor-

malised height of the leading ledge

is unity (after Atkinson [144]). Each

curve gives the locus of conditions for

which a two-step train can move at a

constant speed.

Equation 4.85 can be used to show that if the heights of the two ledges are forced to be equal, then

the concentration gradient at the trailing ledge will be reduced due to the dumping of solute from

the diffusion field of the leading ledge. The trailing ledge will then have a smaller velocity.

Atkinson has generalised these results to trains containing many ledges, and in all cases where

h1 . 1, it is found that vs is reduced as the number of steps in the train increases. Other results can

be summarised as follows:

(i) For closely spaced pairs of ledges travelling with equal speed, ρ1 increases as h1 decreases

(Figure 4.39).

(ii) As the separation of ledges moving with equal speed decreases, so does their velocity.

(iii) Ledges of equal height tend to separate when h1 is large, but tend to coalesce when h1 is

small, the changeover occurring at a smaller value of h1 as p increases.

4.10.4 LEDGE MOTION IN FINITE MEDIUM

Atkinson [145] also investigated the problem of steady-state ledge motion during solid-state

diffusion-controlled transformation in a phase the extent of which is limited to a finite length L

in the z′ direction. The concentration gradient at an isolated step moving at a constant speed is in

such circumstances a function of L and for p - 1,L/ρ . 1, is given by

−
(

∂c′1
∂y′

)−1

= Φ4{p}=
1

π

[

1−C+Φ5 + ln

{
4π

p

}]

(4.86)

where Φ5 is a complicated function of L/ρ and p such that Φ5 → 0 as L/ρ → ∞. Φ5 is positive as

L/ρ becomes finite and for pL/ρ - 1, is given approximately by

Φ5 = πρ/2pL.

If follows that Φ4 → Φ3 as L/ρ → ∞ (cf. Equations 4.86 and 4.78). The concentration gradient (and

velocity) at a ledge moving in a finite medium is, as expected, smaller when compared with one that

is in an infinite medium. The concentration distribution around such a ledge, in the “outer” region,
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is given by

c′{y′,z′}=
1

Φ4π
exp{−py′}[K0{p[(y′)2 +(z′)2]

1
2 }+Φ5].

The concentration at any point in the matrix is therefore higher relative to the case where the medium

is infinite. Atkinson showed that as L/ρ increases, so does vs, but that for p > 0.1, L/ρ > 10, vs

becomes insensitive to further increases in L/ρ .

A surprising result is that vs = 0 if f1 =ρ/L, because the movement of a ledge in these circumstances

would force the concentration in the matrix behind the ledge to a level higher than c
γα
1 . This is an

artefact of the steady-state approximation; if fresh steps nucleate then they can propagate until the

steady-state diffusion field is established [146].

4.10.5 RELATIVE KINETICS OF STEPPED AND CONTINUOUS GROWTH

The velocity at which the sessile component of a regularly stepped interface is displaced by a ledge

mechanism is [138]

vl = bsvs

where bs is the assumed ratio of the ledge height to the spacing between ledges. The corresponding

velocity for the one-dimensional diffusion-controlled continuous motion of a planar interface is

vd =
1

2
α1dt−

1
2 .

Because atoms are attached only to the product phase at a fraction of the boundary, the piecewise dis-

placement of the boundary by a step mechanism must initially be slower than continuous growth, in

which every element of the interface is displaced simultaneously. However, for diffusion-controlled

growth in the absence of soft-impingement effects, the rate of continuous growth decreases with

time whereas the step velocity vs is apparently independent of time. It has been argued that for this

reason, ledged motion must eventually overtake continuous growth [142, 147]. On the other hand,

the movement of a step across an interface causes an accumulation of solute along the interface so

the boundary conditions governing the motion of any succeeding step must be altered (i.e., the su-

persaturation reduced). There should therefore be a progressive change in the boundary conditions

of successive steps, and hence a progressive reduction in their velocity [4]. In these circumstances,

stepped growth may never give a larger growth rate than that for continuous growth, as predicted by

the respective linear and parabolic growth laws.

All the early analytical solutions for the isolated ledge have been for steady-state motion. This

assumption might seem reasonable since the isolated ledge advances always into fresh austenite.

However, Enomoto [148, 149], using a numerical analysis to solve the diffusion equation in the

matrix, demonstrated that the step velocity is time dependent. The ledge velocity initially is very

large (infinite at zero time, Figure 4.40) but then rapidly tends to a terminal value which is in good

agreement with Atkinson’s analysis of the steady motion of ledges. The steady-state analysis must

therefore always underestimate the average velocity given the more rapid transients in the initial

stages, although it must be recognised that there will be a similar transient in the motion of a flat

interface.
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Figure 4.40 (a) Calculated variation in the dimensionless ledge velocity (ρvs/D) with dimensionless time

(Dt/ρ2), the velocity eventually tending towards a terminal value as the steady-state condition is approached.

(b) An illustration of how a particular dimensionless-concentration ([c− c]/[cγα− c]) contour changes with

time as the steady-state condition is approached. After Enomoto [148].

The isolated ledge model can in principle be used to study infinite trains of ledges by using pe-

riodic boundary conditions in the finite difference model. This artificially constrains the interface

to maintain its shape with the ledges equally spaced and to move at a constant speed even though

there may not be a steady state in these circumstances. It appears that as bs → 1, the ratio vl/vd

can indeed exceed unity, implying that the facet plane can in principle migrate more rapidly by a

ledge mechanism (Figure 4.41). Enomoto’s [149] numerical model for a finite set of ledges is more

rigorous, allowing ledge spacings to vary as the trains move; it is found that when precipitate plates

thicken by the motion of a small number of ledges it again is possible for the plates to thicken at a

rate that is greater than vd.
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0 1000 2000 3000

    0.1

0.5

1.0 Figure 4.41 The ratio of the normal velocity of

the sessile component of ledged interface to the

corresponding velocity if a plane parallel to the

sessile component were to move as a whole. The

calculations are for an infinite train of ledges con-

strained to preserve the interface shape. bs is the

ratio of the ledge height to ledge spacing. Adapted

from Enomoto [148].

An analytical treatment of the transient motion of ledges when p - 1 has been formulated as a

generalisation of the steady-state theory [146]. One interesting outcome for a continuous distribution

of steps is that the far-field solutions indicate parabolic growth kinetics even though on a finer scale

the interface propagates by a step mechanism, although the parabolic rate constant is not identical

to that for a flat interface.

It is worth emphasising that the theory for the growth of a particle by a ledge mechanism is worry-

ingly incomplete. Its application must begin with an assumed interface shape in terms of the step

heights and spacings. It is often argued that the ledges themselves move by the propagation of

kinks (steps on the ledges) and there is theoretical work in this respect [146]. However, this level

of sophistication hardly seems justified given that there is no method for calculating the interface
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topology.

4.11 SOLUTE DRAG: GRAIN BOUNDARIES

Small concentrations of solute can lead to dramatic changes in the mobility of grain boundaries

in recrystallisation experiments. This is because the solute atoms associate with the moving grain

boundary, causing a retarding effect known as solute-drag. There are no known circumstances in

which solute/boundary interactions can enhance the mobility of the boundary. The first theory de-

scribing solute-drag was by Lücke and Detert [150], developed subsequently by Cahn [151] and

others. Although the interest here is primarily with interphase boundaries, the theory is better estab-

lished for grain boundaries which are consequently considered first.

The effect of the solute can be described in terms of a solute-boundary molar interaction energy Gs

which can be negative or positive, depending on whether there is adsorption or desorption (respec-

tively) of the impurity at the boundary:

cb{z}= c exp

{

−
Gs{z}

RT

}

(4.87)

where cb is the concentration (moles per unit volume) in the stationary boundary at a distance z from

its central plane and c the average concentration. The continuum treatment that follows describes

the essential details of the solute-drag phenomenon and is due to Cahn [151]. There are a number

of other useful papers which reveal additional information; Lücke and Stüwe [152] proposed an

approximate atomistic equivalent of the continuum model; Shirley [153] has extended the theory to

concentrated solutions.

Cahn’s model treats the boundary as a finite though inhomogeneous phase in which the equilibrium

solute concentration varies with position. Given that drag effects are normally associated with dilute

solutions, the activity may be replaced by concentration giving the chemical potential as

µ = RT ln
{

c{z}Vm

}

+Gs{z}+ constant (4.88)

where the constant includes µ◦ and is chosen such that the interaction energy is zero as z → ∞;

Vm is the molar volume. From Equation 2.93 and assuming that for a dilute solution the activity

coefficient does not vary with concentration, the flux of solute atoms is

−J =
Dc

RT

∂ µ

∂ z

= D
∂c

∂ z
+

Dc

RT

∂Gs

∂ z
.

On substituting this into Fick’s second law (∂c/∂ t =−∂J/∂ z) and noting that the diffusion coeffi-

cient is also a function of position z:

∂c

∂ t
= D

∂ 2c

∂ z2
+

∂D

∂ z

∂c

∂ z

+

[
D

RT

∂Gs

∂ z

]
∂c

∂ z
+

c

RT

[
∂D

∂ z

∂Gs

∂ z
+D

∂ 2Gs

∂ z2

]

.
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If the concentration profile is to reach a steady state then this change in composition due to diffusion

must be balanced by the change in concentration due to the motion of the interface at a velocity v

(the usual conservation condition at the interface):

∂c

∂ t
=−v

∂c

∂ z
v > 0

so for the steady state,

0 = D
∂ 2c

∂ z2
+

[
∂D

∂ z
+

D

RT

∂Gs

∂ z
+ v

]
∂c

∂ z

+
c

RT

[
∂D

∂ z

∂Gs

∂ z
+D

∂ 2Gs

∂ z2

]

(4.89)

which describes the concentration profile for arbitrary Gs and D and has the solution [151]

c = cvexp

{

−
Gs{z}

RT
− v

∫ z

z0

dz′

D{z′}

}

×
∫ z

−∞
exp

{
Gs{z′′}

RT
+ v

∫ z

z0

dz′

D{z′}

}
dz”

D{z′}
(4.90)

The form of this equation is such that the composition behind the moving interface is always c as

if the interface had never traversed that region [151]. This must be so otherwise the motion of the

grain boundary would lead to a non-equilibrium long-range redistribution of solute.

The force exerted by each excess solute atom on the boundary is −N−1
a (dGs/dz), giving a total

drag-stress

σd =−Na

∫ +∞

−∞
(c− c)

dGs

dz
dz. (4.91)

The sense of the stress depends on that of the gradient dGs/dz. If the concentration profile in the

boundary is symmetrical, then the forces due to each side of the boundary cancel exactly giving

zero drag. Cahn has obtained exact solutions Equation 4.90 for the segregation profiles illustrated

in Figure 4.42, but has derived for the same profiles, a reasonable and simpler approximation to the

drag stress is:

σd =
φ1vc

1+φ2
2 v2

(4.92)

where φ1 =
(RT )2

Gs{0}D

(

sinh
Gs{0}

RT
−

Gs{0}
RT

)

φ2
2 =

φ1RTδb

4Gs{0}2D

where δb is the thickness of the boundary and Gs{0} is the solute-boundary interaction energy at

the centre of the boundary.

The drag theories either predict [151] or are designed [101, 154] so the solute concentration behind

the interface during steady-state motion is always equal to the bulk value ci, as if the boundary did
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not exist (Figure 4.42). The solute concentration at z−Z - −0.5δb is thus always ci; as usual, Z

defines the location of the boundary along z. For a stationary boundary, the concentration of solute

differs from ci within the region (−δb/2)< z−Z - δb/2). For a moving boundary, the composition

differs from ci not only within the boundary, but also in front of it, irrespective of whether Gs is less

than or greater than zero. The extent of penetration into the region beyond z−Z = (δb/2) depends

on interface velocity amongst other factors.

The function Gs{z} is quite general but for simplicity, it is assumed it to be a symmetrical wedge-

shape with constant dGs/dz on either side, changing sign at the minimum in the middle of the

boundary. For such a function, Figure 4.42a shows how the concentration distribution changes with

the velocity. It is the asymmetry of the solute distribution at the boundary that gives a drag stress.

For the stationary boundary, the concentration profile is the expected symmetrical distribution, but

desorption occurs everywhere, particularly at the leading edge, with some depletion in the region in

front of the boundary. The drag due to these effects is shown in Figure 4.42b; at first it increases as

the velocity tends towards vφ2 =
1
2 because of the increasing deviation of the distribution of solute

from the equilibrium state. It reaches a maximum when vφ2 = 1 and then falls gradually as the solute

atoms fail to keep pace with the moving boundary.
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Figure 4.42 (a) Composition profiles associated with a stationary and moving boundary when there is a

tendency for solute to segregate into the boundary. (b) The impurity drag as a function of velocity. (c) Plot of

dimensionless velocity versus dimensionless driving force. (a) Linear relation for a pure material. (b) Corre-

sponding material containing a small concentration of solute. There is a region where the velocity increases

sharply with a small change in the concentration. (c) Corresponding material with a solute concentration which

is large enough to cause the formation of an unstable branch which is shaded (after Cahn [151]).

For a pure material the grain boundary velocity is v = Mb∆G where Mb is the grain boundary mobil-

ity and ∆G is the driving force (Section 4.8). This driving force could be written as a driving stress

σ0 = Vm∆G so the net stress on a boundary moving in an impure material is σ = σ0 +σd, which

with Equation 4.92 becomes

σ =
vVm

Mb
+

φ1cv

1+φ2
s v2

Referring to Figure 4.42c, the velocity and stress are related linearly since the former is proportional

to the driving force (curve a). The effect of the impurity is to cause a severe reduction in the velocity

for a given driving force (curve b), though as expected, the effect diminishes at large velocities.

There is a region of instability illustrated for curve c, where the boundary is able to break away and

accelerate from the solute atmosphere.
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4.11.1 SOLUTE DRAG AND DIFFUSION COEFFICIENTS

Solute-drag requires a segregation or desegregation of solute atoms to the interface - i.e., the con-

centration in the boundary differs from that in the bulk material. The interface itself is assumed to

have a finite width δb, defined usually as the distance normal to the interface plane over which the

solute-interface interaction free energy Gs is substantially non-zero for a stationary interface. The

drag force on the boundary is obviously zero when segregation does not occur or when the compo-

sition profile due to the segregation is symmetrical with respect to the central plane of the interface.

For a moving boundary, drag occurs when it becomes necessary to diffuse the solute atoms in the

direction of boundary motion. One of the major difficulties in applying solute-drag theory to real

problems is the suitable choice of a diffusion coefficient describing this process. A large diffusivity

leads to a symmetrical distribution of solute in the boundary and consequently a zero drag force.

Cahn’s model assumed the diffusion coefficient to be a function of the distance from the centre of

the boundary, approaching the value of the bulk diffusivity at sufficiently large distances from the

interface, and a grain boundary value as the centre of the interface is approached. The diffusivity

could therefore increase typically by a factor of 106 towards the core of the boundary [155], but this

may exaggerate the real situation because grain boundary diffusion coefficients refer to transport

along the boundary rather than across it. The mobility of atoms within an interface must in general

be anisotropic, reflecting the nature of its defect structure. These problems are compounded because

the theories generally treat the boundary width δb to be several interatomic distances. This is nec-

essary because Gs may be non-zero over that range, but the diffusivity is expected to rapidly reach

that of the defect-free lattice. It has also been proposed that the diffusion coefficient of a moving

boundary may be larger than that of one which is stationary [156, 157]. It is not obvious how these

complications can be resolved in practice.

4.11.2 INTERACTION FREE ENERGY

While both D and Gs can be expressed as functions of the distance (z−Z), it usually is necessary to

make simplifying assumptions about the forms of these functions. The way in which the drag force

might vary with Gs has been considered by Hillert and Sundman [154]. For cases where Gs changes

gently from zero (at z−Z =±−0.5δb) to some other value within the boundary, the drag force goes

through a maximum as the interface velocity increases. However, if Gs changes discontinuously

from a constant value within the boundary to zero at z−Z = ±− 0.5δb, then the drag stress never

decreases with increasing velocity. As Hillert [101] pointed out, the former choice of Gs is probably

more realistic, especially when the discrete nature of lattices is taken into account. Nevertheless, it

is recognised that in the absence of detailed knowledge on solute/interface interactions, the choice

of Gs must be somewhat uncertain. The form of Gs also determines the region of the boundary from

which the main component of the drag force originates [151, 154]. The value of diffusivity in those

particular regions would then control the drag effect. This complication may be minimised if D was

always close to bulk diffusivity as might be the case for semi-coherent interfaces.
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4.12 SOLUTE DRAG: INTERPHASE BOUNDARIES

The discussion of rate-controlling processes during interfacial motion was based on the dissipation

of the free energy that is available to drive the interface (Section 4.5). Each of the dissipative pro-

cesses is associated with a response function relating the dissipation to the velocity. Solute-drag

clearly involves diffusion which dissipates free energy and hence can be treated within the same

framework of rate controlling phenomena. This is the basis of Hillert’s [101, 158] generalised model

for solute-drag at boundaries and interphase interfaces.

The rate at which free energy is dissipated per unit volume is given by the product of the diffusion

flux and the force driving the diffusion (Equation 2.89):

dG

dt
=−Vm

∫

V
JB

(
∂ µB

∂ z
−

V B

V A

∂ µA

∂ z

)

dV (4.93)

where V i is the partial molar volume of component i. V is the volume in which the solute B is

diffusing in a binary A-B alloy. With the usual notation, JB is the flux defined with respect to the

volume-fixed frame of reference and ∂ µA/∂ z represents the gradient of the chemical potential of

the species A. It follows that the dissipation due to solute-drag as a unit area of interface sweeps a

mole of material at a constant velocity, is:

GSD =−
Vm

v

∫ +∞

−∞
JB

(
∂ µB

∂ z
−

V B

V A

∂ µA

∂ z

)

dz.

This equation is for a constant interface velocity so the flux can be written as JB = (xγα−xαγ)v/Vm

when the theory is applied to a phase boundary between γ and α. The compositions are those in the

matrix on either side of the interface and immediately adjacent to the interface.

There is a variety of other approximations to this equation. Notable amongst these is one in which

the drag dissipation is taken to be that due to diffusion within the boundary only [159]. The dissipa-

tion itself will depend on specific assumptions about the diffusion coefficient and the interaction free

energy function Gs. Hillert and Sundman [154] have shown that Cahn’s results can be reproduced by

relating the dissipation to the drag stress. The dissipation due to solute-drag must be accounted for

when estimating terms such as GI, the dissipation in the process of atom transfer across boundaries.

4.12.1 SEGREGATION TO α/γ INTERFACES

Interfaces are defects so it is expected that misfitting solute atoms may tend to segregate there.

There are significant difficulties in characterising solute partitioning into the allotriomorphic ferrite-

austenite boundary, particularly with respect to spatial resolution. Scanning transmission electron

microscopy (STEM) data have been reported using a foil thicknesses of 200 nm, in which case

the spatial resolution should not be less than this, making the results doubtful in terms of inter-

face analysis. In some cases, deconvolution methods are used for data obtained using a particular

STEM raster window scanning technique, but the extraction of the information requires a variety

of assumptions that cloud the interpretation. Similarly, atom-probe data themselves have problems

with spatial resolution, including small movements of atoms as they field evaporate, differences in
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the evaporation fields of adjacent phases leading to magnification and trajectory aberrations, larger

atoms being pushed out preferentially just prior to evaporation, and surface roughness contributing

to the spread [160, 161]. The data discussed here should be considered in view of these caveats.

Manganese segregation has been observed using STEM analysis at allotriomorphic-ferrite/austenite

interfaces in a Fe-0.37C-3Mn-1.9Si wt% steel [162]. In some cases the monolayer coverage of the

boundaries was very high, in the range 0.4-0.9, whereas in others it was much smaller at 0.07-0.27.

It was speculated that in the latter case the boundaries were more coherent and less mobile, but

there is no study relating the nature of the boundary to the extent of segregation. Similar data were

obtained using the STEM raster window technique and simulation [163].

In atom-probe tomography of Fe-Mn-C and Fe-Mn-N, manganese was found to α/γ interfaces in

the steel but not in the nitrogen alloy [164]. The thickness of the segregated region was of the order

of 8 nm which is much greater than the expected width of the interfacial region. The concentration

profile of the manganese about the deduced centre of the interface was symmetrical indicating a

more or less stationary interface. All of these studies and others [165] address “incoherent inter-

faces” obtained in decarburisation or denitriding experiments. Incoherent boundaries in particular

should not have long-range strain fields so it is difficult to explain the large widths of the concen-

tration profiles that are supposed to represent segregation. When segregation is not detected it is

sometimes attributed to the movement of the interface during quenching to room temperature.

4.13 MASSIVE FERRITE

A massive transformation is reconstructive in nature but with the product phase growing with the

same bulk chemical composition as the parent [166]. Because of the diffusion inherent in the mecha-

nism of transformation, the product phase is not limited by the grain boundaries of the parent phase.

This ability of the product crystals to cross boundaries seems particularly pronounced in massive

transformations which results in coarse α-grains the size of which may exceed that of the parent

γ-phase (Figure 4.43).

As with normal allotriomorphic ferrite, there is an orientation relation with at least one of the par-

ent crystals in contact with the product phase [168, 169]; the transformation interface is believed

to be incoherent [170], consistent with the reconstructive transformation mechanism and with the

fact that there is no shape change of the type expected with a displacive transformation. There is

no overall change in the chemical composition but the transformation cannot occur without diffu-

sion. Local variations in composition in the vicinity of the transformation interface have not been

characterised. The reaction occurs at a rate that is interface-controlled, consistent with the observed

constant growth rate [171]. The interface sometimes moves continuously, adopting a characteristic

ragged contour (Figure 4.43), but there is evidence that it can migrate by a step mechanism [172].

In binary alloys, precipitation can occur without a composition change only if the temperature is

below T0 where the parent and product phases of the same chemical composition have identical free

energies. The curve representing the T0 temperature as a function of solute concentration lies within

the two-phase field where the parent and product phases are in equilibrium. However, it is found ex-

perimentally that massive transformation seems to occur only when the parent phase is transformed
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Figure 4.43 Massive ferrite in a Fe-P alloy [167]. The dark-etching lines are the massive ferrite grain bound-

aries whereas the thermal grooves represent the finer austenite grains (arrowed). Picture courtesy of Jeong In

Kim.

at a temperature within the single-phase field where only the product phase is thermodynamically

stable. This is because at small undercoolings below T0, the massive transformation initiates at

nuclei, the composition of which differs from that of the matrix. As a result, the nuclei become

surrounded by a solute enriched or depleted zone. For the nucleus to develop into a massive phase,

it has to be able to consume the excess solute and accelerate to the steady-state massive growth rate,

a sequence that is feasible only when the parent phase is supercooled into the single-phase field

representing the product [171].

Much of the work on the massive transformation in iron (γ → α) and its substitutional alloys is

based on continuous cooling experiments because the rate of reaction tends to be too rapid to permit

isothermal measurements. The cooling curve exhibits a thermal arrest at a temperature Ta due to the

enthalpy of transformation.

In pure iron, massive ferrite can form as soon as it can nucleate under the conditions of the ex-

periment. Gilbert and Owen [173] found that the reconstructive formation of ferrite is suppressed

beyond a cooling rate of about 5500◦C s−1 the austenite eventually transforming into martensite at

545◦C (although martensite formation was not verified by testing for surface relief effects). Some

of their results are presented in Figure 4.44 which shows that Ta decreases sharply at first and then

levels out at higher cooling rates. The values of Ta at a zero cooling rate represent transformation

temperatures obtained from the relevant binary phase diagrams. It is evident that the influence of

alloying elements on Ta depends on their corresponding effect on the equilibrium transformation

temperature (i.e., on ∆Gαγ). Indeed, Gilbert and Owen found ∆Gαγ at the plateau temperature to



238 Theory of Transformations in Steels

(a)

Cr

0 4000 6000
600

800

1000

(b)

0

100

200

300

400

0 2 4 6 8 10

Cr

Figure 4.44 (a) Results of continuous cooling experiments on Fe-X alloys (the Ni, Si and Cr alloys contain

2.7, 2.7 and 2.6 at.% of solute respectively); (b) Magnitude of the driving force |∆Gγα| for massive reaction,

evaluated at the plateau temperature (after Gilbert and Owen [173]).

be independent of the type of alloying element used (Figure 4.44b). This is not the whole explana-

tion since ∆Gαγ at the plateau temperature increases gently with alloy concentration (though not

with alloy type).

The driving force required to initiate massive transformation is always much less than that necessary

to induce martensitic reaction. In pure iron it has been demonstrated that the growth of martensite

causes an invariant-plane strain shape deformation with a large shear component, which massive

ferrite does not [174]. Nevertheless, there is a volume change associated with the transformation

which is not entirely relieved by diffusion due to the rapid rate at which massive ferrite grows. As a

result, the massive ferrite is left with a dislocation density that is less than that typically associated

with martensite in low-alloy steels, but greater than that in allotriomorphic ferrite, Figure 4.45 [175].

Figure 4.45 Dislocation density in massive ferrite introduced in interstitial-free iron containing a small

concentration of phosphorus, by the effect of laser welding where the cooling rates are large. The dislocation

density measured to be (1.2± 0.4)× 1014 m−2; that in allotriomorphic ferrite in the same alloy contained an

order of magnitude smaller dislocation density. Reproduced from open access article by Liu et al. [175].
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4.14 INTERPHASE PRECIPITATION

Sometimes, a third minority-phase precipitates at the α/γ interface as the ferrite grows. The phase

may be cementite, alloy carbides, Laves phase [176] or other particles such as those of copper [177]

or gold [178] that have limited solubility in α-iron. There is no suggestion that the ferrite and the

precipitate grow cooperatively as in the pearlite reaction. An example of interphase precipitation

is illustrated in Figure 4.46, which shows Cr23C6 particles nucleated at the sessile part of the γ/α

interface during ferrite growth by a step mechanism. The carbide particles seem to grow whilst in

contact with the austenite, growth terminating after the carbides become enclosed in ferrite follow-

ing the passage of a trailing step. The small concentration of carbon in the ferrite then prevents

further carbide growth.

(a) (b)

Figure 4.46 Bright-field and Cr23C6 corresponding dark-field transmission electron micrographs showing

interphase carbide precipitation during the stepped growth of ferrite from austenite [179].

Interphase precipitation was recognised first in alloy steels containing ternary additions of strong

carbide-forming elements [180, 181]. Fine dispersions of alloy carbides were observed as regular

rows of particles, all of which usually have the same crystallographic orientation in any given ferrite

grain. Electron microscopy of partially transformed specimens revealed that the rows of carbides

are actually parts of sheets of carbides in three dimensions, the carbides nucleating at γ/α inter-

faces during transformation [182]. The rows only become apparent during transmission electron

microscopy (using thin foil specimens) if the planes on which the carbides precipitate are virtually

parallel to the beam direction [182], particularly if the sheet spacings are small compared with the

foil thickness.

Interphase precipitation is for the most part associated with the step mechanism of α/γ interface

motion when the carbides precipitate on the stationary component of the interface [179]. The steps

themselves move too rapidly to allow successful precipitate nuclei to develop [183, 184].

Because the precipitates nucleate in contact with both the ferrite and austenite lattices, they tend

to adopt a crystallographic orientation which allows good lattice matching with either phase. This

restricts the number of crystallographic variants of carbide that can form [185].

Interphase precipitation is also found in cases where the α/γ boundary does not move by a rigid-

step mechanism, but is displaced continuously [186, 187]. The precipitates pin the α/γ interface.

The resulting precipitate dispersions in the ferrite can be random, or in the form of regular, non-

planar sheets of carbides. Where random dispersions of carbides are formed, the α/γ boundary

migrates by bowing in between coarsely spaced carbide particles. When the precipitation at the

α/γ interface is so copious that interface bowing becomes difficult, a “quasi-ledge” mechanism

operates as illustrated in Figure 4.47. The curvedα/γ interface becomes pinned by the finely spaced
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particles, but at some position where the particle spacing is locally large, an interface bulge develops

and subsequently becomes pinned but is able to spread laterally, giving in effect a ledge mechanism

even though the interface energy may not be orientation dependent.

4
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2

3
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m

e

Figure 4.47 Schematic diagram showing the op-

eration of a quasi-ledge mechanism resulting in the

production of curved rows of interphase precipitates.

Non-uniformly spaced particles first pin the bound-

ary. The boundary then develops a bulge where par-

ticle spacing is locally large, only to be pinned again

by further precipitation, so the bulge is only free to

move laterally, giving a quasi-ledge mechanism of

growth. Adapted from Ricks and Howell [187].

4.14.1 INTERPHASE PRECIPITATION: THEORY

The primary goal of any theory of interphase precipitation would be to estimate the precipitate

size (r), precipitate spacing on the plane parallel to the sessile component of the ledge d, and the

ledge height ρ which also is the spacing between sheets of particles. Given a volume fraction V
p
V of

precipitates assumed to be spherical, it follows that [188]

V
p
V ∝

r3

ρd2
so that r ∝ (V p

Vρd2)
1
3 . (4.94)

This relationship simply states that there is a fixed volume fraction of precipitate so its size must

scale appropriately with the segment of ferrite associated with one precipitate particle, with consid-

erable experimental data that support this trend [188]. It could also be argued that if the nucleation

rate of precipitates at the γ/α interface is large then the precipitates will necessarily be small.

Interphase precipitation can occur only when austenite is supercooled into the equilibrium phase-

domain where both ferrite and the precipitate can be stable. In typical steels designed for this mi-

crostructure, the process must begin with the formation of the majority phase ferrite. The associated

local enrichment of the adjacent austenite with carbon induces the precipitate to nucleate.

There are three possible factors that control ledge height during interphase precipitation: the driving

force for transformation, diffusion coefficients, particle pinning of the interface and processes during

ledge nucleation.

Figure 4.48 shows that ρ increases with temperature, the increase being at a greater rate at higher

temperatures. The steel containing the lower carbon and vanadium concentrations has relatively

large values of the ledge height even when a comparison is made at the same transformation temper-

ature. Both of these trends indicate that a larger magnitude of the driving force for ferrite formation

leads to coarser ledge heights at a constant temperature. So in cases where the stepped motion of

the interface is associated with precipitation, it is likely that particle pinning limits the size of steps;
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in the comparison of the steels in Figure 4.48, the alloy with the greater V and C concentrations has

a much finer microstructure.

Nucleation control of ρ can be ruled out because Equation 4.69 indicates a smaller critical size ρ∗

with increasing |∆Gαγ|. Diffusion during growth must play a role but given the differences observed

at a constant temperature it cannot explain the data consistently, and the dependence of diffusion on

temperature cannot explain why the two steels transformed at the same temperature have a different

ρ . It is likely therefore that |∆Gαγ| and the tendency for particle pinning determines ledge height

during interphase precipitation. In the latter context, Davenport and Honeycombe [182] first pro-

posed that precipitates pin the γ/α interfaces with local breakaway leading to the formation of the

migrating steps. A number of mathematical models have been expressed for interphase precipitation

(a) (b)

Figure 4.48 Selected data for interphase precipitation in vanadium-containing steels, as a function of the

isothermal transformation temperature [189]. ρ represents the experimentally determined sheet spacing (ledge

height) and r the vanadium carbide precipitate size. (a) Fe-0.09C-0.48V-0.016Nb wt%. (b) Fe-0.20C-1.04V-

0.023Nb wt%.

[190–193].

The microstructure consists of arrays of particles, each of size r with intervening ferrite, separated

by precipitate-free layers of ferrite of thickness ρ . The first model due to Todd and co-workers,

treated the arrays as plates of average composition xpV
p
V + xα(1−V

p
V) so the nucleation of individ-

ual particles is neglected [190, 191]; V
p
V is the equilibrium fraction of precipitate. The plates and

intervening ferrite then grow together into the austenite at a common front, rather like a eutectoid

reaction in a binary system where the far-field composition of the austenite is maintained constant.

The growth velocity of the composite is therefore constant with the theory formulated on the basis

of the diffusion of the substitutional solute alone (e.g., vanadium in the case of vanadium carbide)

and so does not satisfy local equilibrium at the interface. Rios has formulated a somewhat simpler

model but following similar assumptions [192].

Another effort treats the condition for a carbide particle to form at the γ/α interface as a critical

driving force determined experimentally, which then is substituted into the classical nucleation rate

equation scaled by a constant critical concentration for nucleation [194]. Diffusion through the γ/α

interface is included in the analysis and an interesting part of the model is that ledges are generated

by bowing of the interface between carbide particles as illustrated in Figure 4.47 – this implies that
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it is not the orientation dependence of interfacial energy that determines the step mechanism since

the facet between the steps must be mobile. This model was further adapted to account for solute

segregation at the interface and the resulting solute drag [193].

All of these models require fitting parameters, but none is capable of predicting the interface topol-

ogy in terms of the combination of critical parameters: ledge height and ledge spacing, without

appealing to experimental data. It is emphasised that a stepped mechanism of growth can occur be-

tween austenite and ferrite in the absence of interphase precipitation, when the interfacial energy is

sufficiently orientation dependent.
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1952, 136, 91–112.

116. H. I. Aaronson, H. A. Domian, and G. M. Pound: ‘Thermodynamics of the austenite – proeu-

tectoid ferrite transformation II, Fe-C-X alloys’, TMS-AIME, 1966, 236, 768–780.

117. J. B. Gilmour, G. R. Purdy, and J. S. Kirkaldy: ‘Thermodynamics controlling the proeutectoid

ferrite transformations in Fe-C-Mn alloys’, Metallurgical Transactions, 1972, 3, 1455–1469.

118. M. Enomoto, and H. I. Aaronson: ‘Derivation of general conditions for paraequilibrium in

multicomponent systems’, Scripta Metallurgica, 1985, 19, 1–3.

119. H. K. D. H. Bhadeshia: ‘Ferrite formation in heterogeneous dual-phase steels’, Scripta Met-

allurgica, 1983, 17, 857–860.

120. J. C. Baker, and J. W. Cahn: ‘Solute trapping by rapid solidification’, Acta Metallurgica, 1969,



REFERENCES 249

17, 575–578.

121. H. K. D. H. Bhadeshia: ‘Some unresolved issues in phase transformation theory: the role of

microanalysis’, Journal de Physique Colloque, 1989, 50, C8–389–394.

122. M. Hillert: ‘An analysis of the effect of alloying elements on the pearlite reaction’, In: M. S.

H. I. Aaronson, D. E. Laughlin:, and C. M. Wayman, eds. Solid-Solid Phase Transformations.

Materials Park, Ohio, USA: TMS-AIME, 1981:789–806.

123. M. J. Aziz: ‘Model for solute redistribution during rapid solidification’, Journal of Applied

Physics, 1982, 53, 1150–1168.
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Notes

1For solid-state transformations in steels, the temperature fields are in general minimal because of the relatively slow rates

of reaction. Some martensitic transformations can occur at very high speeds, sufficient to produce microstructural effects that

are due to recalescence, e.g., [195].

2In a diffusionless transformation, labelled rows of atoms in the parent crystal remain in the correct sequence in the

product lattice. It is therefore possible to identify that a particular atom in the product must have originated from a corre-

sponding particular atom in the parent crystal. A formal way of expressing this property is to say that there exists an atomic

correspondence between the parent and product lattices.

3The Bain orientation (Figure 1.10) follows from the nature of the Bain strain:

〈100〉γ ‖ 〈110〉α,〈001〉γ ‖ 〈001〉α.

The Bain strain alone does not rotate any plane or direction by more than about 11◦, so any set of corresponding planes and

directions can be made parallel after this strain by a rotation of not more than 11◦ [26].

4Ferrite does not have a close-packed plane but planes of the form {110} are the most densely packed planes. To avoid

clumsy terminology we shall refer to these as close-packed.

5Some of the properties of such films have already been discussed in Chapter 2 where original references can be found.

6A pseudomorphic deposit describes an epitaxial layer that is strained to match the substrate.
7A 1× 1 surface structure means that the atoms have the same configuration at the surface as the bulk. For the same

surface, a 2× 1 reconstructed surface structure means that the unit cell of the surface has its edges parallel to the 1× 1 cell,

but is twice the length along one of the edges.

8The term lattice matching often is used but the analyses of inclusion potency are confined to two-dimensional matching

at particular contact planes between the partners. Lattice matching has a more general meaning, covered for example by

coincidence site or O-lattice theories [196].
9There may be other dissipative processes, such as solute drag and the emission of sound or heat

10It was emphasised earlier that all interfaces strictly move under mixed-control, but that |∆xI| - |∆xD| for diffusion-

controlled growth so the assumption of local equilibrium is reasonable. Unless otherwise stated, in all subsequent treatments

we assume the existence of local equilibrium at the interface during diffusion-controlled growth, bearing in mind that this is

an approximation since ∆xI is never zero.
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11 The flux of solute from the interface must equal the rate at which solute is partitioned:

(cγα− cαγ)
∂Z

∂ t
︸ ︷︷ ︸

rate solute partitioned

= −D
∂c

∂ z
︸ ︷︷ ︸

diffusion flux from interface

&−D
c− cγα

zd

where zd is a diffusion distance assuming that the concentration in the austenite varies linearly with distance. From overall

conservation of mass:

(cαγ− c)Z =
1

2
(c− cγα)zd (4.95)

∴
∂Z

∂ t
=

D(c− cγα)2

2Z(cαγ− cγα)(cαγ− c)
and Z ∝

√
Dt. (4.96)

12A recent claim [197] that NP-LE is observed with cementite growth in ferrite is not justified. The atom probe

composition-data are not of a sufficient resolution because the concentration distributions at the interface are too wide and

there has been no effort to compare the experimental data against theory to demonstrate the existence of local equilibrium.
13It is stated sometimes, that the concentration of X does not change during paraequilibrium transformation. This is not

correct since some change is inevitable given that the concentration of carbon changes. However, the ratio of the iron to

substitutional solute atoms is fixed during paraequilibrium transformation
14Karlyn et al. [171] used a similar criterion to define the onset of the massive transformation in binary alloys.
15If the simulation dealt with an enclosed particle, the surrounding interfaces would in any case show curvature from

junction pinning [198].
16The differential equation for heat, in two dimensions, for the stationary rectangular coordinates y,z referred to a fixed

origin is

(∂ 2T/∂y2)+(∂ 2T/∂ z2) = 2DT(∂T/∂ t)

where DT is the thermal diffusivity. This equation simply states that the change in temperature with time depends on the

divergence of the heat flux. For a moving heat source which has reached steady state, the equation referred to moving

coordinates y′ = y− vt, z′ = z located at the heat source the equation becomes

(∂ 2T/∂y′2)+(∂ 2T/∂ z′2) =−2DTv(∂T/∂y′)+2DT(∂T/∂ t).

However, the derivative with respect to time is zero since the equation describes the steady state relative to the moving

coordinates located at the heat source.



5 Martensite

5.1 DIFFUSIONLESS TRANSFORMATIONS

The periodic pattern in which atoms are arranged within a crystal can in principle be changed with-

out the need for atoms to diffuse, in which case an atomic correspondence is maintained between

the parent and product crystal structures. The structure of martensite is generated in this way by a

deformation, that has important consequences on the properties of the material. In steels this leads

to certain combinations of strength, toughness and fitness for purpose that are unmatched by any

other engineering material [1].

There are other diffusionless transformations in which the lattice deformation does not place all the

atoms into their final positions; some of the atoms therefore have to undergo additional movements

over distances that are fractions of the interatomic spacing. These movements are called shuffles

to distinguish them from diffusion which involves the uncoordinated transport of atoms between

lattice sites. Diffusionless transformations can therefore be categorised into those dominated by the

shuffling of atoms and others in which the larger proportion of atoms is displaced into their final

locations by the homogeneous deformation of the parent lattice [2, 3].

shuf
deformation

(a)

(c)(d)

(b)

(e)

Figure 5.1 Shuffle dominant and lattice-deformation dominant mechanisms of displacive transformations

(adapted from Cohen, Olson and Clapp, [2]). There are no distortions normal to the plane of the diagram.

A shuffle involves the correlated displacement of a fraction of the atoms within a unit cell, Fig-

ure 5.1a. Omega phase formation is an example common in bcc titanium alloys. The {111}bcc

planes of titanium have a stacking sequence with a repeat period of three: . . .ABCABCABC . . ..

255
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During the ω-transformation, the atoms move in such a way that the A planes remain unchanged

whereas the B and C planes move symmetrically towards each other to form a single B′ plane,

Figure 5.2. This results in a new stacking sequence . . .AB′AB′AB′ . . . corresponding to a structure

with the hexagonal symmetry of the ω-phase [4]. The B′ planes no longer are equivalent to the A

planes because of their doubled number density of atoms. Although a shuffle transformation such

as this is diffusionless, the change in atomic positions is not dominated by macroscopic strain, so

the ω-transformation is not considered to be martensitic [2].

(a)

A B C A

(b)

A

B

C

A

A

B'

A

bcc ) l

Figure 5.2 (a) Displacement wave associated with the β (bcc) to ω transformation. The A atoms are unaf-

fected because they lie on the nodes of the wave. (b) How the stacking sequence and density of atoms in each

plane changes on transformation (adapted from Sikka et al. [5]).

The mechanisms shown in Figure 5.1b-d all involve a homogeneous deformation of the lattice.

Such deformations can be detected macroscopically because they alter the shape of the transformed

region. The uniform dilatation shown in Figure 5.1d does not leave any vector undistorted, for

example, when the lattice parameter of cerium contracts by 16% on cooling below 96 K [6]. The

change is associated with an electronic transition that reduces the size of the ion, so the process is

not considered to be martensitic even though it is diffusionless.

It is accepted that martensitic transformation must lead to a product that is in the form of a thin

plate, because this shape minimises strain energy. It will be demonstrated later (page 271) that this

requires at least one line to remain invariant to the total transformation strain in order to ensure a

glissile interface that can move without diffusion.

Both of the cases illustrated in Figure 5.1b,c fall into the category of martensitic transformation

because they leave at least one line undistorted. Each of the deformations illustrated leaves a plane

invariant to the transformation strain, the normal to which is parallel to the displacement vector in

Figure 5.1c but perpendicular to the shear direction in Figure 5.1b. These strains are both described

as invariant-plane strains, the general form of which consists of both shear and dilatational compo-

nents parallel and normal (respectively) to the invariant-plane (Figure 5.1e). This is representative

of martensitic transformation in ordinary steels, where the shear component is of the order of 0.25

and the dilatational strain is about 0.03 (cf. typical magnitude of an elastic strain is about 10−3).

The particle shape that minimises elastic strain energy due to the invariant-plane strain shape change

is a thin lenticular plate on the invariant-plane [7]. Martensite is therefore always in the form of

thin plates whenever the transformation is constrained. The growth of a plate is arrested following
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a collision with other plates, austenite grain surfaces or austenite twin boundaries. Boundaries in

general pose formidable crystallographic discontinuities to the coordinated movement of atoms. A

plate that has been halted by collision with a hard obstacle may still continue thickening until the

accumulation of strain energy can no longer be tolerated, Figure 5.3.

Figure 5.3 A martensite plate marked ‘A’ thickening by bowing between obstacles to achieve elastic equilib-

rium, even though its length is fixed. The steel has the chemical composition Fe-30.1Ni-0.3C wt%. The same

phenomenon applies to plates of bainite which can continue thickening after their longitudinal growth is halted

[8].

The fact that plates of martensite stop growing when obstructed also means that there always will be

some austenite that is left untransformed, even though its chemical composition is not altered. Some

austenite persists even when the alloy is cooled to cryogenic temperatures so there is no theoretically

justified martensite-finish temperature; a practical value can be defined as the temperature where the

fraction of austenite remaining is, for example, 0.05.

5.2 OTHER CHARACTERISTICS OF MARTENSITE

The term “martensite” was coined in honour of Adolf Martens (1850-1914) to describe a hard

phase found in steels. It is now known that martensite need not be hard and that it can occur in

many materials such as nonferrous alloys, pure metals, ceramics, minerals, inorganic compounds,

solidified gases and polymers, even biological entities (Table 5.1). It nevertheless remains the case

that the transformation is of the greatest technological importance in steels.

An obvious indicator that martensitic transformation is diffusionless is that it can occur at tempera-

tures that are incredibly low (Table 5.1). The mobility of atoms must then be negligible over the time

scale of a typical transformation experiment. That it not to say that all martensitic transformations

occur at low temperatures. Indeed, many start at very high temperatures, but these too do not require

the diffusion of atoms to accomplish the change in crystal structure.
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Table 5.1

The temperature MS at which martensite is first detected to form on cooling. Where
available, the approximate Vickers hardness is quoted for the stated alloy or of an-
other of similar composition.

Composition MS / K Hardness HV Reference

ZrO2 1320 ≈ 900 [9]
Fe-31Ni-0.23C wt% 83 300

Fe-34Ni-0.22C wt% < 4 250
Fe-3Mn-2Si-0.4C wt% 493 600

Cu-13Al wt% 512 240 [10]
Ytterbium 260 [11]
Ar-40N2 39 [12]

In-25Tl at% 198 [13]
In-29Tl at% 86 [13]

Gd-35Ce at% 763 [14]
Liquid crystal MLC-2412 315 [15]

In a Fe-30Ni wt% alloy, Bunshah and Mehl recorded plates of martensite to grow at speeds in ex-

cess of 1100 ms−1, at temperatures as low as 78 K [16]. This compares with the terminal speed

of a ballistic missile at 5000 ms−1. Each transformation event takes place in just 50–500 ns. Fur-

thermore, the growth rate appears to be insensitive to temperature, indicating that there is a small

activation barrier to the propagation of the martensite/austenite interface. In contrast, two of the

fastest solidification front velocities ever reported are for pure-nickel at about 70 ms−1 [17], and

for an Ni-36Fe at.% alloy at about 88 ms−1 [18]. For a given undercooling a pure metal is likely to

solidify more rapidly but an alloy may achieve a greater undercooling before solidification begins.

The very large rate at which martensite can grow is inconsistent with any diffusion of atoms and

shows that the transformation interface is exceptionally mobile. Any discontinuities in the interface

must be able to move conservatively, i.e. without diffusion. The speed of the boundary is limited

by that of the interfacial dislocations. The slow movement of dislocations (as in most deformation

experiments) does not require any special consideration of dynamic effects. However, the energy

of a dislocation increases dramatically as its velocity approaches that of transverse sound waves in

the metal [19]. The velocity of sound in the metal sets an upper limit for that of dislocations. Since

the martensite interface has a dislocation structure, the upper limit to its speed should be about

3000 ms−1 in steel.

It is known that deformation by mechanical twinning leads to the emission of sound in the form

of audible clicks [20, 21]. The so-called “tin cry” on “indium cry” is due to the rapid propagation

and subsequent arrest of mechanical twins. A similar effect is found for martensitic transformation,

where the rapid formation of a plate causes acoustic emissions which can be used to study the nu-

cleation and growth rates. With this method, Takashima et al. [22] determined the growth rate of

martensite in austenitic stainless steel to be about 110-200 ms−1 at 138 K. The growth rate has been
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measured to be about 10−5 ms−1 for isothermal martensite in Fe-21Ni-4Mn wt% [23]. These values

are less than the rates reported by Bunshah and Mehl, emphasising that although martensite can

grow very rapidly, it need not do so as long as interfacial velocity is greater than the ratio of the dif-

fusion coefficient to interatomic spacing, where the ratio defines the speed of atomic diffusion across

the interface. The actual velocity will depend on alloying additions, the driving force for transfor-

mation and on many other factors. In the case of thermoelastic or single-interface transformation

experiments, the interface motion can be followed visually by small changes in the temperature or

stress, i.e., the chemical or mechanical driving forces [24].

Martensite first forms when the austenite is cooled below a critical temperature known as the

martensite-start or MS temperature. The transformation is in most cases so rapid that the amount

of martensite obtained can be expressed simply as a function of the undercooling below the MS

temperature rather than the time at that temperature. This characteristic athermal behaviour is il-

lustrated in Figure 5.4 where it is seen that time does not feature in the plot, where MS −Tq is the

undercooling below MS.

It is a common misconception that martensite can only be obtained by quenching rapidly from the

temperature at which the austenite is stable. The rate required to achieve martensitic transformation

depends strictly on the kinetics of the reactions that precede martensite. The required cooling rate

can be very slow indeed if the steel has a high hardenability.

Figure 5.4 Logarithm of the volume

fraction V
γ
V of austenite remaining un-

transformed, as a function of the un-

dercooling below the martensite-start

temperature (after Koistinen and Mar-

burger [25]). Tq is the temperature to

which the sample is cooled below the

MS temperature.

The interface between the martensite and its parent must have a structure that can translate without

diffusion although there may still exist a small activation barrier akin to the Peierls barrier for

dislocation motion in a periodic lattice. Such a glissile interface must be coherent or semi-coherent,

depending upon the crystallography of the particular material undergoing transformation.

For the γ → α′ martensitic transformation, the interface will be semi-coherent because the two

lattices can only be forced into coherency over small regions of the boundary surface. The misfit,

as it accumulates, is relieved periodically by features such as dislocations that leave the interface

glissile. Stress-free coherency is only possible for large interfaces when the parent crystal can be

converted into the product phase by a homogeneous deformation which is an invariant-plane strain.

This is true for the γ → ε martensitic transformation where the habit plane is fully coherent. The

growth of the martensite then causes a change of shape which mimics the strain that convertsγ→ ε .

In contrast, the shape change caused by the movement of a semi-coherent martensite interface is



260 Theory of Transformations in Steels

related in a more complex way to the strain which converts the parent into the product lattice. More

discussion of interfaces will follow later, but for now it is emphasised that both semi-coherent and

coherent interfaces must be glissile for martensitic transformation. It follows that the motion of

the interface can in principle and in practice be reversed with a consequent reversal of the shape

deformation and lattice change [26].

Martensitic transformations are achieved by the coordinated movement of atoms. The crystallogra-

phy of the transformation is therefore well-defined and hence reveals a great deal about the mecha-

nism of transformation. An elastically accommodated single plate of α′ martensite has the following

entirely reproducible features:

(a) A habit plane with indices that are irrational, meaning that its crystallographic indices can-

not be expressed as ratios of integers. Decimal expansions of these indices do not terminate

or become periodic.

(b) An α′/γ orientation relationship which in general is also irrational.

(c) The shape deformation consists of a shear on the habit plane and in the case of steels a

smaller dilatation normal to the habit plane.

(d) The crystallographic variant of the habit plane, shape deformation and orientation relation-

ship are related uniquely. For example, it is not possible to have a different shape deforma-

tion for the same habit plane.

5.2.1 HABIT PLANE

The largest interface plane between the austenite and martensite is designated the “habit plane”

(Figure 5.5). The macroscopic fit between the austenite and martensite is optimum on this plane but

the shape is not determined by interfacial energy minimisation, rather by strain energy minimisation.

The habit plane is flat when the transformation occurs without constraint. In the more usual case

where the transformation is constrained by the surrounding material, the martensite grows in the

form of a thin lenticular plate or a lath. The definition of a habit plane is less clear for constrained

transformation because of the curvature in the shape of the plate. However, it is found experimentally

that the average plane containing the major circumference of the lens corresponds closely to that

expected from crystallographic theory and to that determined from unconstrained transformation.

The plate aspect ratio, i.e. its thickness divided by its length, is small, typically at about 0.05, so

that the average plane of the plate is a good representation of the habit plane. Some examples of the

crystallographic indices of habit planes are given in Table 5.2.

5.2.2 ORIENTATION RELATIONSHIPS

The absence of diffusion ensures without exception, that there is a reproducible crystallographic

relationship between the martensite and the austenite in which it grows. This is described in terms

of a pair of closely parallel corresponding planes from each phase and a pair of related directions

within those planes. For martensite in steels it is the most densely packed planes that are very

nearly parallel together with the close-packed directions from these planes. Examples of orientation
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Figure 5.5 (a) The habit plane of martensite during constrained and unconstrained transformation of a single

crystal of austenite. When unconstrained, the single interface moves to divide the crystal into γ and α′. When

any change in the shape of the austenite is resisted by its surroundings, the α′ adopts a lenticular shape, with

the average crystallographic indices of its habit plane being about the same as that of the single-interface. (b)

Single-interface martensitic transformation of α→ γ in a single-crystal of pure iron, by the translation of a flat

interface along its length. The originally straight whisker, which has a width of about 50µm, is kinked by the

shape deformation accompanying diffusionless transformation. Reproduced from Zerwekh and Wayman [27]

with permission from Elsevier.

Table 5.2

Some indices of the habit plane normal p. The stated indices are an approximation
because p in fact has irrational indices. Experimental data may show some real scat-
ter due to local changes in the strain field around the plate being measured, due for
example to the formation of other plates. Results obtained using trace analysis of
fully transformed samples are excluded as the boundaries between laths are not
representative of the habit plane with respect to austenite.

Composition / wt% Approximate indices Measured indices Reference

Fe-20Ni-5Mn, low alloy steels {575}γ scattered around {575}γ [28, 29]

Fe-53.13Pt {243}γ {0.19100.75990.6360}γ [30]

Fe-1.19C {225}γ {0.35760.40370.8421}γ [31]

Fe-7.9Cr-1.11C {225}γ {0.35820.37880.8533}γ [32]

Fe-6.14Mn-0.95C {225}γ {0.38920.41100.8243}γ [31]

Fe-21.89Ni-0.82C {259}γ {0.15930.55960.8132}γ [31]

Fe-53.1Pt, disordered {31510}γ {0.19200.75990.6214}γ [33]

ε-martensite in 18/8 stainless steel {111}γ Exact [34]

relations as found in steels are given below, stated in a way that emphasises the close-packed planes

and directions, as illustrated in Figure 5.6:

Kurdjumov-Sachs orientation relationship [35]:

{1 1 1}γ‖ {0 1 1}α′ ,

〈1 0 1〉γ‖ 〈1 1 1〉α′ ,
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Nishiyama-Wasserman orientation relationship [36, 37]:

{1 1 1}γ ‖ {0 1 1}α′ ,

〈1 0 1〉γ about 5.3◦ from〈1 1 1〉α′ towards 〈1 1 1〉α′ ,

Greninger-Troiano orientation relationship [38, 39]:

{1 1 1}γ about 0.2◦ from {0 1 1}α′ ,

〈1 0 1〉γ about 2.7◦ from 〈1 1 1〉α′ towards 〈1 1 1〉α′ .

(a) (b)

Figure 5.6 Stereographic representation of the Kurdjumov-Sachs (KS) and Nishiyama-Wasserman (NW)

orientation relationships. The stereograms are both centred on (111)γ ‖ (011)α′ . It is seen that the NW orien-

tation can be generated from KS by an appropriate small rotation (5.25◦) about [011]α′ . Only a few of the poles

are marked to allow a comparison with the Bain orientation relationship. The neighbouring pairs of poles would

superpose exactly for the Bain orientation in which [001]γ ‖ [001]α′ , [100]γ ‖ [110]α′ and [010]γ ‖ [110]′α.

These are the classic orientation relationships of which the first two are reported frequently in the

literature. The vast majority of citations are on based on measurements that are not accurate enough

to establish the stated exact parallelism of close-packed planes. Indeed, it is expected theoretically

that they should not be exactly parallel if an invariant-line is to be obtained in the interface between

the austenite and martensite [40]. Precise measurements, both on γ/α bicrystals or on hundreds

of thousands of bicrystals, confirm that the exact orientations stated above do not occur in practice

[41, 42]. This is illustrated in Figure 5.6, where the angle θ gives the necessary rotation about

[111]γ, relative to the NW orientation, that yields an invariant-line, assuming that the close-packed

planes are exactly parallel; θ = 0◦ gives the NW relation and θ = 5.25◦ the KS orientation. For

lattice parameters typical of steel, Figure 5.7 shows that there is no invariant-line for the exact KS

or NW orientation relations.

The martensite structure can be generated by applying the Bain deformation to the austenite, Fig-

ure 1.10. This involves a compression along [001]γ and expansions along [110]γ and [110]γ. The
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Figure 5.7 The orientation relationship required to ensure

an invariant-line as a function of the austenite/martensite

lattice parameter ratio. The orientation relation is repre-

sented by the angle θ , which is the rotation from the ex-

act Nishiyama-Wasserman orientation relation assuming that

the close-packed planes are exactly parallel. The dashed line

gives the lattice parameter ratio typical of steel. Adapted

from Knowles, Smith and Clark [40].

deformation naturally implies the (Bain) orientation relationship:

[001]γ ‖ [001]α′

[110]γ ‖ [100]α′

[110]γ ‖ [010]α′

Figure 5.6 has these six poles plotted, the filled symbols representing the martensite and the unfilled

ones the austenite. Although it is clear that the exact Bain orientation is not observed experimentally,

the measured KS and NW orientations are not far from Bain. It would not take a large rotation to

covert from Bain to KS or NW. But why is the Bain orientation not observed experimentally?

5.2.3 STRUCTURE OF THE INTERFACE

It is useful to consider the state of interfaces around an enclosed particle rather than focus on a

particular interfacial orientation [43]. If all the interfaces around the particle are incoherent, i.e.,

without continuity of planes or vectors across the boundaries, then there is no correlation of atomic

positions across the interface. Such boundaries are displaced only by individual atom migrations

and growth can continue across the grain boundaries of the parent phase. If this migration permits

long-range diffusion to remove any volume change, the strain energy becomes zero. This is the

mechanism of reconstructive transformation. The interface can be semi-coherent for a reconstructive

transformation, but with a structure that requires diffusion in order for it to move. The shape of the

product will only be anisotropic if there is a strong variation in the interfacial energy as a function

of the orientation of the interface.

Suppose now that a particle is generated by a displacive mechanism through a lattice deformation

BR which in general consists of a pure strain and a rigid body rotation. This deformation defines

the relationships between small lattice vectors in the parent and product. If BR = P1 where P1 is

the shape deformation observed macroscopically, then the interface is fully coherent, an invariant

plane.1 It will be demonstrated later that a stress-free coherent interface is not possible during the

α ↔ γ transformations. In such a case there will be additional structure in the interface, a set of

glissile interface dislocations that introduce a lattice-invariant shear that permits the macroscopic

shape deformation to be an invariant-plane strain. The number of atoms is conserved as the interface

advances, eliminating the need for diffusion. An enclosed particle like this can only have coherent
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or semi-coherent interfaces; its shape will be in the form of a thin plate that minimises the strain

energy due to the shape deformation.

The criteria that ensure a glissile interface that is able to move without the creation or destruction of

lattice sites are as follows [44]:

(a) The interfacial dislocations glide on planes which intersect the interface plane. These glide

planes will in general be differently oriented in the parent and product phases but they must

meet edge-to-edge in the interface, along the dislocation lines.

(b) If more than one set of intrinsic dislocations exist, then these should either have the same

line vector in the interface, or their respective Burgers vectors must be parallel. This condi-

tion ensures that the interface can move as an integral unit. It implies that the deformation

caused by the interface dislocations as the interface moves, can be described as a simple

shear caused by a resultant intrinsic dislocation that is a combination of all the intrinsic

dislocations. This resultant shear would be on a plane that makes a finite angle relative to

the interface and intersects it along the line vector of the resultant intrinsic dislocation.

If the glissile interface has just a single set of parallel dislocations, or a set of different dislocations

that can be summed to give a single glissile intrinsic dislocation, then it follows that there must exist

in the interface, a line which is parallel to the resultant intrinsic dislocation line vector, along which

there is zero distortion and is unrotated by the transformation, i.e., an invariant-line. Therefore, for

an interface to be glissile, the transformation strain relating the two lattices must at the very least

leave a line in the interface plane invariant; such a strain is called an invariant-line strain (ILS). An

invariant-plane strain also qualifies because all the lines within that plane are invariant.

The pure strain that can transform the austenite into the martensite lattice is known as the Bain

strain (B) [45]. There are other possibilities but the deformations involved are larger. The Bain

correspondence has also been established experimentally in Fe3Pt where the austenite is ordered

with the iron atoms at the face-centres of the cubic cell and the platinum atoms at the corners [46].

On martensitic transformation, the disposition of the Fe and Pt atoms in the unit cell of martensite

is entirely as expected from the Bain strain.

Consider now whether the Bain Strain (B, Figure 5.8) is consistent with the existence of an invariant-

line in the interface between austenite and martensite. There is a compression along [001]γ and

expansions along [110]γ and [110]γ such that all vectors in (001)γ are uniformly expanded. The

Bain strain is a pure deformation because it leaves three mutually perpendicular directions unrotated,

though distorted. The principal distortions ηi along these unrotated axes are given by the ratios of

the final to the initial lengths. The Bain strain is also a homogeneous deformation which completes

the lattice change, so any additional deformations associated with the formation of martensite serve

other purposes.

Figure 5.9a,b shows the austenite represented as a sphere, where ai with i = 1,2,3 are the basis

vectors of the unit cell. The Bain strain changes the sphere into an ellipsoid of revolution about a1.

There are no lines in the (001)γ plane that are undistorted. It is possible to find lines such as wx and

yz that are undistorted by the deformation, but are rotated to the new positions w′x′ and y′z′ so they
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(a) (b)

Figure 5.8 The Bain correspondence and deformation. (a) A pair of cubic austenite unit cells, with the

face-centred tetragonal (fct) unit cell incorporated, showing also the orientation relationship expected with the

martensite generated by the Bain strain. (b) The martensite unit cell following the Bain strain.

are not invariant. The Bain strain clearly is not an invariant-line strain, but can be converted into one

by adding an appropriate rigid body rotation (R) that reorients the α′ without affecting its crystal

structure (Figure 5.9c ), to enable one of the original undistorted lines (in this case yz) to be invariant.

A combination BR is indeed an invariant-line strain. This is why the observed irrational orientation

relationship differs from that implied by the Bain strain. The rotation required to generate convert

B into an ILS yields the observed orientation of the martensite relative to the austenite.

(a) (b) (c)

Figure 5.9 (a) and (b) show the effect of the Bain strain on austenite, which when undeformed is represented

as a sphere of diameter wx = yz in three-dimensions. The strain transforms it into an ellipsoid of revolution. (c)

Shows the invariant-line strain obtained by combining the Bain strain with a rigid body rotation.

Figure 5.9c shows that there is no rotation that can convert B into an invariant-plane strain because

there is no rotation capable of making two of the non-parallel undistorted lines into invariant-lines.

It is impossible to convert γ into α′ by a deformation that is an invariant-plane strain. The two

crystals cannot ever be joined at an interface which is coherent and stress-free.

The principal distortions of B are such that η1 = η2 > 1 and η3 < 1. In order to obtain an invariant-

plane strain, the pure component of the total strain must be such that η1 > 1, η2 = 1 and η3 < 1.

Figure 5.10a shows that the pure strain itself is an invariant-line strain, because uv is undistorted

and unrotated. A rotation about uv produces another non-parallel invariant-line yz = y′z′, making

the net deformation an invariant-plane strain. This diagram is representative of the γ → ε fcc to
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(a) (b) (c)

Figure 5.10 Illustration of a case where the pure strain has one of its principal distortions equal to unity,

with the other two being greater or less than unity. When the pure strain is combined with a rigid body rotation

the total strain is an invariant-plane strain.

hcp transformation. A fully coherent γ/ε interface is therefore possible if the principal distortions

associated with the pure strain η1,η3 > 1 and η2 = 1.

It is safe to conclude that the minimum condition for martensitic transformation to be possible at all

(in any material) is that the deformation that carries the parent lattice into that of the product must

as a minimum be an invariant-line strain in order to ensure a glissile interface. The caveat to this

statement is that very small particles, whether constrained or not, may undergo such transformation

even if they violate this condition given that they can be forced into coherency. Small, spherical

iron particles precipitated in copper assume a fcc structure and can be induced to transform as a

whole, into internally-twinned martensite [47]. In the Olson and Cohen theory for α′ nucleation

of assumes a somewhat different crystallography for the embryo which then evolves into the final

macroscopically observed orientation and habit plane (Section 5.7).

The discussion thus far has been limited to the necessary condition for martensitic transformation,

but the dislocations described are intrinsic with Burgers vectors that are such that they implement

lattice-invariant deformation rather than phase transformation. There are other features, atom-sized

steps, in the irrational interface that translate to accomplish the lattice change without diffusion.

These are the coherency dislocations [48, 49], illustrated in Figure 5.11, with the step highlighted

by the multi-shaded atoms at the interface. The atomic-height step has a dislocation character but

there is no extra half-plane, just a tolerable distortion, which means that it can both glide and if

necessary, climb without requiring diffusion. This is important because there usually is a change in

density when one crystal structure is transformed into another. The coherency dislocations accom-

plish the lattice change but are associated with long-range strain fields surrounding the transformed

particle. These fields are mitigated by introducing the anti-coherency (intrinsic) dislocations de-

scribed earlier, that deform the lattice without changing its structure. The Burgers vector of the

steps is determined by the closure failure of a Burgers circuit spanning the interface [50, 51]. The

Burgers vector content crossing a vector p in the interface (Figure 5.12, OP) can be determined from

the closure failure of a Burgers circuit. The closed circuit AOBP spans the two different crystals. If

a deformation (A S A) is now applied to convert one of the crystals into the other (reference crys-

tal), then the closure failure P′P represents the required Burgers vector content bt which can then

be de-convoluted into individual dislocations to define the possible structure of the interface [40].
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Figure 5.11 The concept of a co-

herency dislocation, where the lattices

are joined at a stepped interface. The

dislocation represented by the step can

move without creating or destroying lat-

tice sites, i.e. it can glide and climb con-

servatively.

These operations are expressed formally as:

[A;bt] = {I− (A S A)−1}[A;p]. (5.1)

In general therefore, a martensite-austenite interface will contain coherent steps of small height

which for an irrational interface are arranged aperiodically, and intrinsic dislocations to accomplish

the lattice invariant deformation that reduces the extent of the strain field due to the former. High-

resolution imaging of martensite-austenite interfaces in steels has confirmed that the significant

strain-field associated with its structure extends only 0.2-0.8 nm [52].The interface plane is then the

average plane containing both components, as verified experimentally for lath martensite [28].

(a) (b)

Figure 5.12 (a) Burgers circuit drawn across an interface between two different crystal structures [53]. (b)

One of the structures is deformed into the other to discover the closure failure that defines the Burgers vector

content crossing a vector (OP) in the interface. The homogeneous deformation (A S A) converts the assembly

of crystals into a single reference-crystal with basis symbol ‘A’ and bt = P′P is the total Burgers vector content

crossing a vector p = OP in the interface. bt can then be attributed to individual defects in the interface [40].

It is possible that in some martensitic transformations there are two lattice-invariant shears. As

pointed out by Ross and Crocker, if these are independent shears then the interfacial dislocations

would interact to render the interface sessile, although this might be avoided if growth involves the

translation of two parallel interfaces, each containing only one set of intrinsic dislocations [54]. It

has been argued that the region between the two interfaces must have a different crystallography so

therefore the interfaces may not be parallel [55] but there may nevertheless be other factors such as

a fault energy that could attract them. There have been no direct observations of the double-interface

but molecular dynamics simulations indicate the possibility of paired interfaces that maintain a gap
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in-between as the martensite grows [56].2

5.2.4 SHAPE DEFORMATION

The shape of the pattern in which the atoms in austenite are arranged changes on transformation

into martensite. Given that the atoms do not diffuse, there must be a corresponding change in the

macroscopic shape of the transformed region. This deformation when observed on an initially flat

surface shows that the latter becomes tilted uniformly about the line formed by the intersection

of the habit plane with the surface (Figure 5.13a). Any scratch traversing the transformed region

is similarly deflected while remaining connected at the α′/γ interface. These observations, and

others, confirm that the measured shape deformation is an invariant-plane strain with a large shear

component (& 0.22) and a small dilatational strain (& 0.03) directed normal to the habit plane.

The observation of this specific shape deformation obviously contradicts the fact that austenite can-

not be transformed into α′-martensite by a strain that is an invariant-plane strain (Figure 5.9). The

Bain strain, when combined with a rigid body rotation, can at best produce just one invariant-line.

Consequently, if the observed shape deformation is applied to the austenite then it generates the

wrong crystal structure.

(a) (b)

Figure 5.13 Mixture of martensite and retained austenite. (a) Fe-31Ni-10Co-Ti wt%, MS = 133K. Surface

relief of thin plates of martensite embedded in austenite, revealed using Tolansky interference microscopy.

Displacements caused by the formation of a plate of martensite at the surface of austenite that was polished flat

before transformation. (b) Fe-30Ni-0.3C wt%, MS = 83K. Transmission electron micrograph showing finely

spaced transformation-twins inside a plate of martensite. Micrographs courtesy of T. Maki.

5.2.5 MICROSTRUCTURE

Martensite is in some cases found to contain finely spaced twins when observed using transmission

electron microscopy (Figure 5.13b). These twins are an intrinsic feature of the martensite in the

sense that they are created during the formation of the plate as the γ/α′ interface translates. Fur-

thermore, both the austenite and the martensite regions in this thin-plate martensite are free from

dislocation contrast. Although martensite is traditionally associated with a large dislocation den-

sity in the range 1014-1016 m−2 [57–59], this need not be the case when its shape deformation is

accommodated elastically.
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The shape deformation has a strain field. The strain energy due to this can in elasticity theory

be partitioned into that which resides in the precipitate and surrounding matrix, in our case the

austenite [p. 467, 53]. For a shear dominated transformation, this ratio is about twice the aspect

ratio at approximately 2zt/z! (known as the accommodation factor) where zt is the plate thickness

and z! the plate length. It is clear that for typical aspect ratios of martensite plates the majority of

strain energy would be located in the austenite.

The variety of martensite morphologies that have been observed experimentally are summarised in

Figure 5.14 [60]. Although focused on the Fe-Ni-C system, the mapping has generic significance.

The thin plate martensite is elastically accommodated with no deformation visible of the adjacent

austenite as verified using precision diffraction and imaging techniques [61]. Given the absence of

dislocation debris, the interface between the thin plate and austenite is found to be reversible, with

a behaviour consistent with a shape memory effect [62, 63]. A thin plate has the smallest of aspect

ratios of all the common morphologies of martensite so it is not surprising that it is accommodated

elastically.
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Figure 5.14 Lath, lenticular and thin-plate martensite morphologies mapped according to the transformation

temperature and carbon concentration. Adapted from Maki et al. [60]. The lath martensite typically shows

a great deal of dislocation contrast. The characteristic lens-like martensite occurs when the transformation

temperature is depressed, giving way eventually to the thin-plate morphology.

The elastic model is less useful when considering martensite that forms at elevated temperatures.

The strength of austenite decreases with temperature so it becomes prone to relax by plastic defor-
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mation when subjected to the shape deformation during transformation. But the martensite plate it-

self does not relax in this manner because of the low accommodation factor. Any dislocations within

the lath martensite are therefore mostly inherited from the deformed austenite into which it grows

[64]. The reversal of the interface then becomes more difficult, with interface velocities recorded at

just 10-230 nm s−1 during heating of partially martensitic Fe-Ni-C alloys [65]. Dislocation debris in

the austenite can limit the size of martensite laths by blocking the glissile transformation-interface,

resulting in interrupted growth akin to the sub-unit mechanism of the bainite transformation (Fig-

ure 6.4).

There are other defects caused by the accommodation of the shape deformation due to marten-

sitic transformation. Mechanical twinning is induced when differently oriented plates collide Fig-

ure 5.15; the collisions can cause microscopic cracking at the contact zones if the martensite is

brittle [66].

(a) (b)

Figure 5.15 Two platelets of martensite which have collided during the course of transformation. The

steel has the composition Fe-0.44C-1.74Si-0.67Mn-0.83Cr-0.39Mo-1.85Ni-0.15V wt%. (a) Bright field im-

age showing mechanical twins in the plate that experienced the collision. (b) Corresponding dark field image

highlighting the mechanical twins at the contact surface [8].

5.2.6 SUMMARY

The difficulties in reconciling the observations thus far can be summarised as follows:

(a) The lattice deformation implies the Bain orientation which is not observed experimentally.

This is resolved because B must be combined with R in order to permit the existence of a

line that remains invariant to the net operation. It is this rotation R which corrects the Bain

orientation to that observed experimentally.
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(b) The habit plane indices of martensite are irrational [67] and often peculiar, for example,

≈ {31015}γ. Why is this?

(c) The observed shape deformation is an invariant-plane strain. However, an invariant-plane

strain cannot change the austenite structure into that of α′.

(d) The microstructure of the martensite sometimes contains finely spaced transformation-

twins [68] that need to be explained.

These issues were all resolved independently by Wechsler, Lieberman and Read [69] and Bowles

and MacKenzie [70–72]. Their phenomenological theory of martensite crystallography is sum-

marised next.

5.2.7 CRYSTALLOGRAPHIC THEORY

The Bain strain converts the crystal structure of the austenite into that of the martensite, but the ac-

companying distortions are too large to sustain so there are additional mitigating operations needed

to ensure that there is a good macroscopic fit between the two phases.

Referring to Figure 5.16, B is combined with an appropriate rigid body rotation R such that RB is

an invariant-line strain (step a to c) that passes through x and is normal to the plane of the diagram.

Inconsistent with this, the observed shape deformation is an invariant-plane strain P1 (step a to b)

but this gives the wrong crystal structure. The invariant-plane of the shape deformation is defined by

xw. If, however, a second homogeneous shear P2 is combined with P1 (step b to c), then the correct

structure is obtained but the wrong shape since3

P1P2 = RB.

The discrepancies are all resolved if the shape changing effect of P2 is cancelled macroscopically

by an inhomogeneous lattice-invariant deformation, which may be slip or twinning. Notice that

the habit plane in Figure 5.16e,f is given by a fragmentation of the original plane xw, due to the

inhomogeneous lattice-invariant shear. This is why the habit plane of martensite has peculiar indices.

In the absence of a lattice-invariant deformation as in the γ→ ε transformation, the sequence stops

at step b and therefore the habit plane has rational indices {111}γ.

The theory in essence explains all the important features of the martensite crystallography. The

orientation relationship is predicted by setting R such that BR is an invariant-line strain. The habit

plane does not have rational indices because the amount of lattice-invariant deformation needed to

recover the correct the macroscopic shape is not usually rational. A substructure is predicted, either

transformation twins or slip steps, both of which have been observed experimentally. The fact that

the macroscopic deformation accompanying martensitic transformation is an invariant-plane strain

reduces the strain energy when compared with the Bain distortion.

If is self-evident that when the lattice-invariant deformation is slip, the translated regions retain the

same correspondences and lattice deformations. When it is twinning, the twinned orientations share

the same γ/α′ correspondence so the twin plane in the martensite must correspond to a mirror plane

in the austenite [72].
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Figure 5.16 Schematic illustration of the phenomenological theory of martensite. (a) represents single crys-

tal of austenite and (c) has a bcc structure. (b) has a structure between fcc and bcc, p is the habit plane unit

normal and q is the unit normal to the plane on which the lattice-invariant shear occurs. The heavy horizontal

lines in (e) are coherent twin boundaries. The vector e is normal to q but does not lie in the plane of the dia-

gram.

5.3 QUANTITATIVE THEORY

It is important to note that the crystallographic theory places a firm mathematical connection be-

tween the habit plane, orientation relationship and shape deformation, characteristics that are not

independent. The mathematical treatment requires an understanding of vector and matrix methods

that are described elsewhere [73, 74].

5.3.1 FCC TO BCC MARTENSITIC TRANSFORMATION

Undistorted Vectors

The first task is to find the lines that are not distorted by the lattice deformation. The Bain strain is

given by

(F B F) =





η1 0 0
0 η2 0
0 0 η3





where ‘F’ is an orthonormal basis consisting of unit basis vectors fi parallel to the crystallographic

axes of the conventional fcc austenite unit cell: f1 ‖ a1, f2 ‖ a2 and f3 ‖ a3 and the principal deforma-

tions of the Bain Strain are typically η1 = η2 = 1.136071 and η3 = 0.803324. The strain produces

a cone of undistorted lines which are generated from an original cone prior to the deformation. The
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concentric cones have axes parallel to a3. If a rigid body rotation (FJF) is added which makes these

two cones touch along a line, then that line becomes invariant to the total strain (F S F). It is obvious

though, that there is an infinite choice of rotations that can make the cones touch along a line. The

proper rotation is that which ensures that the invariant-line is at the intersection of the habit plane

and the plane on which the lattice-invariant deformation occurs.4 Similarly, the normal of the plane

left invariant by (F S F) must contain the displacement directions of the lattice-invariant deforma-

tion and the shape deformation. It therefore is necessary to choose the lattice-invariant shear system.

It is assumed here the lattice-invariant shear occurs on (101)F in the [101]F direction.

Suppose the invariant-line is written as a unit vector u. For it to lie in (101)F, requires its compo-

nents to satisfy the equation u1 = −u3. As a result of the Bain strain this becomes a new vector w;

bearing in mind that the basis F is orthonormal, the magnitude of the new vector is given by:

|w|2 = (w;F)[F;w]

= (u;F)(FB′ F)(F B F)[F;u]

= (u;F)(F B F)2[F;u].

Since the magnitude of u does not is not changed by the Bain strain, it follows that |u|= |w|, i.e.,

u2
1 + u2

2 + u2
3 = η2

1 u2
1 +η2

2 u2
2 +η2

3 u2
3 = 1.

These equations can be solved simultaneously to give two solutions for undistorted lines:5

[F;u] = [−0.671120 −0.314952 0.671120]

[F;v] = [−0.671120 0.314952 0.671120.]

For h to contain the direction of the lattice-invariant shear [101]F, its components must satisfy

h1 = h3 and (h;F∗)[F∗;h] = 1.

As a consequence of the Bain strain h becomes a new plane normal l and if |h|= |l| then

|l|2 = (l;F∗)[F∗; l]

= (h;F∗)(FBF)−1(FB′F)
−1
[F∗;h]

so that h2
1 + h2

2 + h2
3 = (l1/η1)

2 +(l2/η2)
2 +(l3/η3)

2.

When solved simultaneously, the two solutions for the undistorted-normals are found to be

(h;F∗) = (0.539127 0.647058 0.539127)

(k;F∗) = (0.539127 −0.647058 0.539127) .

Invariant-line strain

To convert (F B F) into an invariant-line strain (F S F) it is necessary to employ a rigid body rotation

(F J F) which simultaneously brings an undistorted line (such as w) and an undistorted normal (such
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as l) back into their original directions along u and h respectively. This is possible because the angle

between w and l is the same as that between u and h:

l.w = (l;F∗)[F;w]

= (h;F∗)(F B F)−1(F B F)[F;u]

= (h;F∗)[F;u]

= h.u.

One possibility is to rotate l into h and w into u. This choice is not unique given that there is a pair

each of undistorted lines and plane normals, giving four equivalent solutions for the case where the

invariant-line must lie in (101)F and that the invariant normal defines a plane containing [101]. For

the solution obtained using the pair u and h:

l = (h;F∗)(F B F)−1 = ( 0.474554 0.569558 0.671120)

w = (F B F)[F;u] = [−0.762440 − 0.357809 0.539127]

a = u∧h = (−0.604053 0.723638 − 0.264454)

b = w∧ l = (−0.547197 0.767534 − 0.264454).

The required rigid body rotation brings w back to u, l back to h and b to a, respectively, giving the

three equations:

[F;u] = (F J F)[F;w]

[F;h] = (F J F)[F; l]

[F;a] = (F J F)[F;b]

(5.2)

which when solved gives

(F J F) =

(
0.990534 −0.035103 0.132700
0.021102 0.994197 0.105482

−0.135633 −0.101683 0.985527

)

which is a rotation of 9.89◦ about [0.602879 − 0.780887 0.163563]F. The invariant-line strain

(F S F) = (F J F)(F B F) is therefore,

(F S F) =

(
1.125317 −0.039880 0.106601
0.023973 1.129478 0.084736

−0.154089 −0.115519 0.791698

)

(F S F)−1 =

(
0.871896 0.018574 −0.119388

−0.030899 0.875120 −0.089504
0.165189 0.131307 1.226811

)

.
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Orientation relationship

The co-ordinate transformation matrix relating the austenite and martensite (α′) can be obtained

using the total transformation strain S and the correspondence matrix C:

(α′ J γ)(γ S γ) = (α′ C γ) and (α′ J γ) = (α′ C γ)(γ S γ)−1

where (α′ C γ) is the Bain correspondence.6 Therefore,

(α′ J γ) =

(
0.902795 −0.856546 −0.029884
0.840997 0.893694 −0.208892
0.165189 0.131307 1.226811

)

so that

(111)γ = (0.010561 0.984639 0.983036)α′

[101]γ = [−0.932679 − 1.049889 1.061622]α′.

(111)γ is very nearly but not exactly parallel to (011)α′ and [101]γ is about 3◦ from [111]α′ . The

orientation relationship is illustrated in Figure 5.17.

Figure 5.17 Stereographic representa-

tion of the orientation relationship be-

tween martensite and austenite. The

lattice-invariant shear plane q and direc-

tion −e, the habit plane p and unit dis-

placement vector d are also shown.

Habit plane and shape deformation

It was assumed that the lattice-invariant shear is applied inhomogeneously on (101)[101]F, the ef-

fect of which is to cancel the shape change due to the homogeneous deformation (F P2 F) which

must also occur on (101)[101]F. (F S F) is an invariant-line strain with the condition that the

invariant-line u is in (101)F and that the plane defined by the invariant-normal h contains the

direction [101]F.

The habit plane unit-normal p can be obtained by the factorisation S = P1P2:

(F S F) = (F P1 F)(F P2 F)

=
[

I+m[F;d](p;F∗)
][

I+ n[F;e](q;F∗)
]
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(F S F)−1 = (F P2 F)−1(F P1 F)−1

=
[

I− n[F;e](q;F∗)
][

I− am[F;d](p;F∗)
]

(5.3)

where a−1 = det(F P1 F) and det(F P2 F) = 1 since the latter is just a shear that does not cause a

change in volume. Using Equation 5.3, it follows that

(q;F∗)(F S F)−1 = (q;F∗)− b(p;F∗) where b = am(q;F∗)[F;d],

so that:

(p;F∗) ‖ (0.197162 0.796841 0.571115).

As expected, this habit plane is irrational. To completely describe the shape deformation matrix P1

it is necessary to determine m and the unit displacement direction d. Using Equation 5.3,

(F S F)[F;e] = [F;e]+m[F;d](p;F∗)[F;e]

giving

[F;d] = [−0.223961 0.727229 − 0.648829]F

and

m = |md|= 0.223435.

The magnitude m of the displacement can be factorised into a shear component s parallel to the habit

plane and a dilatational component ζ normal to the habit plane. Hence, ζ = md.p = 0.0368161 and

s = (m2 − ζ 2)
1
2 = 0.220381. These are typical values of the dilatational and shear components of

the shape strain for ferrous martensites. Finally, the shape deformation matrix is given by:

(F P1 F) =

(
0.990134 −0.039875 −0.028579
0.032037 1.129478 0.092800

−0.028583 −0.115519 0.917205

)

.

Lattice-invariant shear

The shape deformation P1 does not change the fcc lattice to that of bcc martensite. A further ho-

mogeneous lattice deformation P2 is necessary to complete the structural change. Nevertheless,

its effect is not visible when the shape deformation is measured experimentally. This is because

the homogeneous deformation associated with P2 is offset by an inhomogeneously applied lattice-

invariant shear. Therefore, the lattice-invariant deformation must on average be the inverse of P2,

i.e., on the plane defined by the unit normal q but in the opposite direction −e. The magnitude of

the lattice-invariant shear should on average equal that of P2. Given that S = P1P2, it follows that

for the case at hand,

(F P2 F) =

(
1.132700 0.000000 0.132700
0.000000 1.000000 0.000000

−0.132700 0.000000 0.867299

)

which is a homogeneous shear on the system (1 0 1)[1 0 1]F with a magnitude n = 0.2654. The

lattice-invariant shear is on (1 0 1)[1 0 1]F. In practice this shear occurs as the interface moves and
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the interface dislocations glide with it. These dislocations might have a Burgers vector b = a
2 [1 0 1]γ

and if they are located on every K’th slip plane, then

n = |b|/Kd = 1/K so that K = 1/0.2654= 3.7679

where d is the spacing of the (1 0 1)γ planes. Because K should be an integral number of plane-

spacings, the result must be taken to mean that there will on average be a dislocation located on

every 3.7679 th slip plane. In reality, the dislocations will be non-uniformly placed, either 3 or 4

(1 0 1) planes apart.

The line vector of the dislocations is the invariant-line u and the spacing of the intrinsic dislocations

as measured on the habit plane is Kd/(u∧p.q) where all the vectors are unit vectors. The average

spacing is therefore expected to be

3.7679(
√

2aγ)/0.8395675= 3.1734aγ.

Taking aγ = 0.356 nm gives an average spacing of 1.13 nm.

If the lattice-invariant shear is twinning rather than slip, then the martensite plate will contain finely

spaced transformation twins. The mismatch between the parent and product lattices is in the slip case

accommodated with the help of intrinsic dislocations, whereas for the internally twinned martensite

there are no such dislocations. Each twin terminates in the interface to give a facet between the

parent and product lattices, a facet that is forced into coherency. The width of the twin and the size

of the facet is sufficiently small to enable this forced coherency to exist. The alternating twin-related

regions therefore prevent misfit from accumulating over large distances along the habit plane.

If the (fixed) magnitude of the twinning shear is denoted sT, then the volume fraction V T
V of the

twin orientation, necessary to cancel the effect of P2, is given by V T
V = n/sT, assuming that n < sT.

Lattice-invariant shear on (1 0 1)[1 0 1]γ corresponds to (1 1 2)α′ [1 1 1]α′ and twinning on this

latter system involves a shear s = 1/
√

2, giving V T
V = 0.375.

It is important to note that the twin plane in the martensite corresponds to a mirror plane in the

austenite; this is a necessary condition when the lattice-invariant shear involves twinning, because

the twinned and untwinned regions of the martensite must undergo Bain strain along different

though crystallographically equivalent principal axes [72].

The theory predicts the fraction of twins in each martensite plate, when the lattice-invariant shear

is twinning. However, the factors governing the spacing of the twins are less established. The finer

the spacing of the twins, the smaller will be the strain energy associated with the matching of each

twin variant with the parent lattice at the interface. On the other hand, the amount of coherent twin

boundary within the martensite increases as the spacing of the twins decreases.

The lattice-invariant shear is an integral part of the transformation; it does not happen as a separate

event after the lattice change has occurred. The transformation and the lattice-invariant shear oc-

cur simultaneously as the interface migrates. It is well known that in ordinary plastic deformation,

twinning rather than slip tends to be the favoured deformation mode at low temperatures or when

high strain rates are imposed. It often is suggested that martensite with low martensite-start tem-

peratures will tend to be twinned rather than slipped, but this cannot be formally justified because
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the lattice-invariant shear is an integral part of the transformation and not a physical deformation

mode on its own. Indeed, it is possible to find lattice-invariant deformation modes in martensite

which do not occur in ordinary plastic deformation experiments. The reasons why some martensites

are internally twinned and others slipped are not clearly understood [75]. When the spacing of the

transformation twins is roughly comparable to that of the dislocations in slipped martensite, the

interface energies are roughly equal. The interface energy increases with twin thickness and at the

observed thicknesses is large compared with the corresponding interface in slipped martensite. The

combination of the relatively large interfacial energy and the twin boundaries left in the martensite

plate means that internally twinned martensite is never thermodynamically favoured relative to the

slipped version. It is possible that the greater mobility of the twinned interface favours that mode

when the growth rate is very large and the plate is elastically accommodated.

5.4 ε-MARTENSITE

There is interest in steels containing substantial concentrations of manganese, some of which can

transform in part into ε-martensite, either during cooling or by deformation of the austenite [76]. It

is worth noting, however, that because of the suppression of transformation temperatures by these

large solute concentrations, the ε-hcp-phase has only ever been observed as martensite; there are

no reported observations of the phase at equilibrium with the austenite, in the form of say allotri-

omorphs that grow by reconstructive transformation.

The microstructure of ε-martensite appears simple because the habit plane is exactly {111}γ, the

octahedral plane of austenite, of which there are only four non-parallel variants, Figure 5.18. The

parallel-sided plates are slender when compared with lenticular α′-martensite and there is evidence

to suggest that the ε is associated with less dislocation debris and plastic accommodation in the ad-

jacent austenite, rather like the thin-plate α′-martensite in iron-nickel alloys (p. 269). X-ray diffrac-

tion peaks from ε-martensite exhibit widths that are identical to those associated with undeformed

austenite [77], an indication that the martensite is well accommodated, with a low defect density

within the plates, although stacking faults have been observed parallel to the basal plane [78]. Con-

sistent with these observations, Fe-Mn-Si alloys can exhibit a shape memory effect [79]. In mixtures

of thin and thick plates, the thicker ones are less well accommodated, making it more difficult for

the transformation interface to reverse direction [80]. Figure 5.18b,c shows the surface relief due

to martensitic transformation, some of which is reversed on heating to induce austenite formation –

the arrows indicate positions where a thin-plate has disappeared completely while the thicker ones

persist.

5.4.1 CRYSTALLOGRAPHY: FCC TO HCP TRANSFORMATION

Suppose austenite transforms into ε-martensite without a change in density. The transformation

strain is then a shear on the close-packed {111}γ plane (the invariant-plane) along 〈112〉γ, Fig-

ure 5.19. The magnitude of the shear is 8−
1
2 , which is half the normal twinning shear for austenite.

Using an orthonormal basis Z, consisting of unit basis vectors parallel to [100]γ, [010]γ and [001]γ

directions respectively, and with (p;Z∗)= 3−
1
2 (111), [Z;d] = 6−

1
2 [112] and m= 8−

1
2 gives the total
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(a)

Figure 5.18 (a) ε-Martensite in a Fe-

25.3Mn-2.8Si wt% alloy with Mε
S = 70 ◦C.

Micrograph courtesy of Hong-Seok Yang. (b)

Fe-32.7Mn-6.2Si wt% alloy showing surface

relief due to ε-martensite Mε
S = 23 ◦C. (c)

Changes in the surface relief due to reversion

to austenite on heating to 600 ◦C. Micrographs

(b,c) courtesy of Professor Kaneaki Tsuzaki.

(b) (c)

deformation, an invariant-plane strain:

(Z P Z) =
1

12

(
13 1 −2

1 13 1
−2 −2 10

)

. (5.4)

It is instructive to factorise this shear into a pure strain (Z Q Z) and a rigid body rotation (Z J Z). The

eigenvectors of (Z Q Z) represent the directions of maximum linear strain. The matrix (Z T Z) =

(Z P′ Z)(Z P Z) is:

(Z T Z) =
1

144

(
174 30 −6

30 174 −6
−6 −6 102

)

(5.5)

the eigenvalues and eigenvectors of which are:

η1 = 1.421535 [Z;u] = [0.704706 0.704706 −0.082341]

η2 = 1.000000 [Z : v] = [0.707107 −0.707107 0.000000]

η3 = 0.703465 [Z;w] = [0.058224 0.058224 0.996604].

The eigenvectors form an orthogonal set and since v lies in the invariant-plane. The vectors u, v

and w also are the eigenvectors of (Z Q Z), the eigenvalues of which are the square roots of the

eigenvalues of (Z T Z); they are 1.192282, 1.0 and 0.838728 respectively. Therefore, the maximum

extensions and contractions during the γ → ε martensitic transformation are less than 20%. The

matrix (Z Q Z) is now obtained by a similarity transformation with rotation matrices formed from
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(a) (b) (c)

Figure 5.19 (a) (111)γ close-packed plane showing how a unit lattice dislocation can dissociate into two

Shockley partials. The positions B,C mark possible positions of subsequent planes in the stacking sequence. (b)

Stacking sequence of the close-packed planes in a fcc crystal. (c) The passage of a Shockley partial dislocation

produces an intrinsic stacking fault which amounts to a two-layer thick region in which the stacking sequence

is for the close-packed planes of the hcp crystal. Notice that for this region to truly represent hcp there has to

be an additional displacement which is a contraction normal to the close-packed planes in order to obtain the

correct hcp density which exceeds that of fcc-iron.

the eigenvectors:

(Z Q Z) =

(
0.70471 0.70711 0.05822
0.70471 −0.70711 0.05822

−0.08234 0.00000 0.99660

)

×

(
1.19228 0

0 1 0
0 0 0.83873

)

×

(
0.70471 0.70471 −0.08234
0.70711 −0.70711 0.00000
0.05822 0.05822 0.99660

)

=

(
1.094944 0.094943 −0.020515
0.094943 1.094944 −0.020515

−0.020515 −0.020515 0.841125

)

. (5.6)

The pure rotation can now be derived from (Z J Z) = (Z P Z)(Z Q Z)−1

(Z J Z) =

(
0.992365 −0.007635 0.123091

−0.007635 0.992365 0.123091
−0.123092 −0.123092 0.984732

)

which is a right-handed rotation of 10.03◦ about [110]Z axis.

The fcc to hcp transformation physically occurs by the movement of a single set of Shockley partial

dislocations, Burgers vector b = a
6 〈112〉γ on alternate close-packed {111}γ planes. To produce a

fair thickness of hcp martensite, a mechanism has to be sought which allows Shockley partials to be

generated on every other slip plane. Motion of the partials would cause a shearing of the austenite

lattice on the system {111}γ 〈112〉γ. The average magnitude of the shear strain is s = |b|/2d

where d is the spacing of the close-packed planes. This is exactly the shear system described by
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(Z P Z) and its physical effect is to tilt an originally flat surface about a line given by its intersection

with the habit plane, through some angle dependent on the indices of the free surface. By measuring

such tilts it is possible to measure s, which is confirmed to equal half the twinning shear.

In fcc crystals, the close-packed planes have a stacking sequence . . .ABCABC . . .. The passage of

a single Shockley partial causes the sequence to change to . . .ABA . . . creating a three layer thick

region of hcp phase whose close-packed planes are stacked with a periodicity of 2. It is natural

therefore for the habit plane to be {111}γ. If the habit plane deviates slightly from {111}γ then

the interface will consist of stepped sections of close-packed plane, the steps representing the Shock-

ley partial transformation dislocations. The spacing of the partials along 〈111〉γ would be 2d, the

partials located on every alternate plane of the fcc crystal.

The homogeneous deformation matrix (Z P Z) is compatible with the dislocation mechanism of

transformation. It predicts the correct macroscopic surface relief effect and its invariant-plane is the

habit plane of the martensite. However, if (Z P Z) is considered to act homogeneously over the

entire crystal, then it would carry half the atoms into the wrong positions. For instance, if the habit

plane is designated A in the sequence ABC of close-packed planes, then the effect of (Z P Z) is to

leave A unchanged, shift the atoms on plane C by 2sd and those on plane B by sd along the shear

direction. This puts the atoms originally in C sites into A sites as required for hcp stacking. However,

the B atoms are located at positions half way between B and C sites, through a distance a
12〈112〉γ.

Shuffles are thus necessary to bring these atoms back into the original B positions and to restore

the . . .ABA . . . hcp sequence. The shuffle here is a purely formal concept; consistent with the fact

that the Shockley partials glide over alternate close-packed planes, the deformation (Z P Z) must in

fact be considered homogeneous only on a scale of every two planes. By locking the close-packed

planes together in pairs, displacement of the B atoms to the wrong positions is avoided.

The Bain strain (Figure 5.8) did not necessitate shuffles because a vector u defining the position of

an atom in the austenite unit cell corresponds to a vector in the ferrite lattice which also terminates

at an atom. The Bain correspondence thus defines the position of each and every atom in the ferrite

lattice relative to the austenite lattice. It is only possible to obtain a correspondence matrix like this

when the primitive cells of each of the lattices concerned contain just one atom. If this is not the case

then any lattice correspondence defines the final positions of an integral fraction of the atoms, the

remainder having to shuffle into their correct positions in the product lattice. The hcp structure has

two atoms in the primitive cell so only 1/2 are placed in their final positions by the homogeneous

deformation, the other one having to shuffle.

5.4.2 α→ ε TRANSFORMATION

This transformation is of particular interest for alloys subjected to shock deformation by impact,

explosive detonation, magnetic means or laser impingement [81]. The large strain rates involved

(≈ 106 s−1) lead to transient pressures of about 13 GPa, causing the martensitic transformation of

ferrite at ambient temperature in time scales ranging from ns to µs. The release of pressure following

the shock causes the ε → α′ reversion at a pressure of about 10 GPa, indicating hysteresis. The

α′ → ε start pressure is in the range 8.6–15.3 GPa, and ε′ →α covering 7–16.2 GPa [82], depending
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on the monitoring technique used and the state of the sample. First principles calculations indicate an

α/ε equilibrium pressure of 8.4 GPa at 0 K [82, 83]. Experimental measurements should in principle

bound this value during heating and cooling because the transformations are martensitic and the

rates involved are too rapid to be consistent with equilibrium.

The addition of a solute to form a binary iron alloy naturally alters the transition pressures, Fig-

ure 5.20. The general trends are consistent with those calculated using thermodynamic data [84]

though that calculated for chromium is the opposite of the behaviour measured. Using data from
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Figure 5.20 Compilation of exper-

imental data on the effect of solutes

in binary iron alloys, on the pressure

for the transition α→ ε. Adapted from

Duvall and Graham [81].

shock induced α → ε transformation, Forbes [85] was able to derive a relationship between the

fraction transformed and the free energy of transformation:

1−Vε
V = exp{b27(∆Gα→ε−∆Gα→ε

Mε
S

)}

which is similar in form to the Koistinen and Marburger equation (p. 284).

Given the short time scales of the α→ ε transformation and because the ε is not retained, there is

no clear evidence for its microstructure. The orientation relationship is probably the same as that

observed for zirconium [86], (0001)hcp ‖ (110)bcc, [1120]hcp ‖ [111]bcc.

5.5 MARTENSITE-START TEMPERATURE

If austenite can be supercooled sufficiently then martensite eventually forms at a start-temperature

MS. Some monitoring techniques are more sensitive than others, so MS temperatures measured us-

ing different methods are unlikely to be identical. The uncertainty has been demonstrated to be

approximately ±20◦C [87]. Figure 5.21 shows some dilatometric data where the deviation of the

curve from a straight line extrapolated from the fully austenitic state represents martensitic transfor-

mation. However, there are difficulties in defining the exact temperature at which the data deviate

from the thermal contraction of austenite.

One way to make measurements more reproducible is the offset method, where the MS temperature

is defined by a critical strain calculated for 1 volume percent of martensitic transformation assuming

that the latter occurs at room temperature, using equations for the lattice parameters of austenite

and martensite. The technique preserves the notion that the early stages of martensite formation

correspond to the start temperature. When reported MS data, to state at the same time the sensitivity
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of the analysis technique. This concept is similar to the offset used in defining the 0.2% proof

strength from a stress-strain curve for a material that shows gradual yielding.

austenite contraction

offset line
Figure 5.21 Offset method to ob-

jectively and reproducibly determine

the MS temperature from dilatometric

data. The offset line is parallel to the

thermal contraction line of austenite.

The MS temperature is found not to be sensitive to the austenite grain size or the austenitisation

temperature as long as the temperature is high enough to dissolve residual phases such as carbides.

This is why empirical equations are able to successfully estimate MS as a function of the chemical

composition alone, for example, the classic equation due to Steven and Haynes [88]:

Mα′
S /◦C = 561− 474wC− 33wMn − 17wNi− 17wCr − 21wMo (5.7)

C Mn Ni Cr Mo

Minimum/wt% 0.10 0.20 0.0 0.0 0.0

Maximum/wt% 0.55 1.70 5.0 3.5 1.0

Martensitic transformation can occur only below the T0 temperature where austenite and ferrite of

the same chemical composition have identical free energies, Figure 5.22, with additional under-

cooling to account for nucleation and any stored energy terms due for example to the shape defor-

mation and transformation twinning. The manner in which the martensite-start temperature can be

expressed empirically as in Equation 5.7 without any dependence on time suggests that there may

be a critical value of the driving force ∆Gγα that must be achieved for the onset of transformation.

This critical value ∆G
γα
MS

is illustrated in Figure 5.22. The only effect of alloying elements would be

to modify the relative thermodynamic stabilities of the austenite and martensite phases.

For dilute steels, the critical value of the driving force is found to be about −1100 Jmol−1, varying

a little with the carbon concentration although more so with nickel [89–92]. 7

It is surprising that ∆G
γα
MS

is found to be insensitive to the chemical composition. Martensitic trans-

formation occurs by the propagation of a glissile interface. Anything that impedes the glide of the

interfacial dislocations must therefore depress the transformation temperature. Solute additions gen-

erally strengthen the austenite and there is considerable evidence that the ability of austenite to resist

deformation is an important factor in its decomposition to martensite [93]. Since the resistance to
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Figure 5.22 Plots of the free ener-

gies of austenite and ferrite of the same

chemical composition as a function of

temperature. Martensite occurs when

the free energy difference Gγ→α be-

tween these two phases reaches a criti-

cal value G
γ→α
MS

.

dislocation motion varies with the square root of the solute concentration, it is found that the critical

driving force should vary with the concentration as follows [94]:

−∆G
γ→α
MS

/Jmol−1 = 1010+[(40092xC + 30972xN)]
1
2

+ [18792xSi + 19802xMn + 14182xMo + 18682xCr + 16182xV + 16532xNb]
1
2

+ [2802xAl + 7522xCu + 1722xNi + 7142xW]
1
2 − 352x

1
2
Co. (5.8)

This gives much improved predictions of the MS temperature when the steels is richly alloyed, in

which case |∆G
γ→α
MS

| can be as large in magnitude as 3000 Jmol−1.

The development of transformation below MS is given empirically by the Koistinen and Marburger

equation [25], the derivation of which is described in Section 5.8.2:

1−Vα′
V = exp{−b2(MS −Tq)}.

Start temperature for HCP martensite

The hexagonal close-packed form of iron is not stable under ambient conditions of temperature and

pressure, but it can be stabilised by adding substantial concentrations of solutes such as manganese

which reduce the stacking fault energy of the austenite. For ambient pressures, the martensite-start

temperature, like that of α′-martensite, has been expressed empirically for the concentration and

temperature range indicated below [95]:

Mε
S /K = 576± 8− (489±31)wC− (9.1± 0.4)wMn− (17.6± 2)wNi

−(9.2± 1)wCr+(21.3± 2)wAl+(4.1± 1)wSi− (19.4± 5)wMo

−(1± 1)wCo− (41.3± 6)wCu− (50± 18)wNb− (86± 12)wTi

−(34± 10)wV− (13± 5)wW (5.9)
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C 0− 0.35 Co 0− 8 Ni 0− 6.8 Nb 0− 1.21
Mn 11.2− 35.9 Cu 0− 3.1 Cr 0− 13.7 Ti 0− 1.72

Al 0− 5 V 0− 2.2 Si 0− 7.1 W 0− 4.48

Mo 0− 4.46 MS/K 167− 467

An analysis in terms of a critical driving force at Mε
S has not been possible because the thermo-

dynamic data necessary are inaccurate [95]. Figure 5.23 shows that ∆G
γε
MS

sometimes yields large

positive values which oppose transformation.

Figure 5.23 The driving force calculated at the

martensite-start temperature for a variety of al-

loys. All values of driving force should represent

a reduction in free energy, but in many cases they

do not because the thermodynamic data used for

the estimates are not reliable at very large solute

concentrations. After Yang et al. [95].

5.5.1 EFFECT OF AUSTENITE GRAIN SIZE ON MS

The martensite-start temperature varies with the austenite grain size [96–103]. There is, therefore,

a dependence of MS on the austenitisation temperature and time [97, 104], assuming that there are

no other phases, such as undissolved carbides, present during austenitisation [105]. The stability

of austenite to martensitic transformation is increased dramatically as the austenite grain size is

reduced from 60 to 0.6µm in a Fe-Ni alloy [106].

Figure 5.24 The dependence of the

α′-martensite start-temperature on the

γ-grain size, as measured using the

acoustic emission or the less precise

electrical resistance techniques [107].

All of these observations are somewhat related to the method used to measure MS. In Figure 5.24,

measurements of MS versus Lγ conducted using the less sensitive electrical resistance method show

a different trend than the more sensitive acoustic emission data. A technique that requires a greater
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amount of martensite to form before it is detected will naturally lead to a lower MS. The austenite

grain size determines the volume per plate of martensite, so more plates are needed to reach a

detectable volume fraction when the grain size is reduced.

A model can be formulated on this basis, beginning with a description of how the volume per

plate of martensite evolves as the austenite grain is partitioned by martensite. The change in the

fraction of martensite due to a corresponding change in NV, the number of martensite plates per

unit volume, will be related to the fraction of untransformed austenite (1−Vα′
V ), the volume per

plate (aspect ratio zt/z! multiplied by the average size V C of the geometrically partitioned austenite

compartment) [108]:

dVα′
V

dNV
=

zt

z!
(1−Vα′

V )V C ≡
zt

z!

1−Vα′
V

NC
V

(5.10)

with zt/z! ≈ 0.05 and NC
V is the the number of compartments per unit volume. Assuming that each

plate produces one additional compartment,

NC
V =

1

Vγ
+NV (5.11)

where Vγ is the average austenite grain volume. Using Equations 5.10 and 5.11,

NV =
1

Vγ

[

exp

{

−
ln(1−Vα′

V )

zt/z!

}

− 1

]

. (5.12)

Based on experimental data, the number per unit volume can also be expressed as [109]

NV ≈ b25[exp{b26(M
◦
S −T )}− 1] (5.13)

where Mo
S is defined as a fundamental martensite-start temperature for an austenite grain size that

is so large that the formation of just one martensite plate is detectable using routine methods. On

combining Equations 5.12 and 5.13 gives [109]

Mo
S −T =

1

b25
ln

[
1

b26L
3
γ

{

exp

(

−
ln(1−Vα′

V )

zt/z!

)

− 1

}

+ 1

]

(5.14)

where b25 = 0.2689, b26 = 1mm3 and the mean lineal intercept Lγ is in mm. Mo
S is given by the point

where ∆Gγ→α = −700Jmol−1, i.e. the stored energy of martensite due to the shape deformation

and twin interfaces. Mo
S is therefore purely a thermodynamic quantity with no consideration given

to kinetic effects. If MS is defined to correspond to the point where the fraction Vα′
V = 0.01, then by

setting T = MS in Equation 5.14 gives the grain size dependence of the martensite-start temperature

as illustrated in Figure 5.25.

Equation 5.14 has been shown to apply also to ε martensite, but with b25 = 0.33 and the plate aspect

ratio consistent with experimental data of 0.03 [95].
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Figure 5.25 Measured variation in

the martensite-start temperature as a

function of austenite grain size, de-

termined from dilatometric data (after

Yang et al. [109]).

5.6 THERMODYNAMICS

There is a reduction in free energy when martensite grows from supercooled austenite; some of this

energy is dissipated as heat. When the rate of transformation is rapid, the associated enthalpy change

can lead to a local rise in temperature that is sufficiently large to induce a change in microstructure.

Martensite plates which at first have the mode of lattice-invariant shear as twinning, change into slip

as the local temperature during growth increases due recalescence associated with the rapid release

of the heat of transformation, Figure 5.26 [110]. The average rise in the temperature due to recales-

cence has been measured for Fe-31Ni wt% to be about 30◦C from a starting temperature of −60◦C.

Not all of the free energy is dissipated as heat – the latent heat of transformation is substantially

less than that expected from independent thermodynamic data. A large fraction therefore remains

as energy stored in the steel.

Figure 5.26 A martensite plate in

Fe-32Ni wt% alloy. The central region

of the martensite plate is twinned but

its peripheries are not. Reproduced

from Patterson and Wayman [110],

with the permission of Elsevier.

A substantial fraction of the stored energy is attributed to the shape deformation, a defining feature

of martensitic transformation. The strain energy per unit volume (Ge
V) when this deformation is
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elastically accommodated is given, for an isolated plate constrained by austenite, as [7]

1−ν

Es
Ge

V =

contribution from volume change
︷ ︸︸ ︷

2

9
(1+ν)∆2 +

πzt

4z!
ζ 2 +

πzt

3z!
(1+ν)∆ζ

+
π

8
(2−ν)

zt

z!
s2

︸ ︷︷ ︸

contribution due to shear

(5.15)

where s is the shear strain, ζ the expansion normal to the habit plane and ∆ any uniform dilation.8 zt

and z! are the thickness and diameter of the oblate spheroid shape used to represent the martensite

plate, Es is the shear modulus of the austenite and ν is its Poisson’s ratio. Notice that even in the

absence of a shear strain, the strain energy is dependent on the plate aspect ratio zt/z! because the

strain ζ is directed normal to the habit plane. In the absence of any uniform dilatation, the equation

can be simplified to Ge
V = E ′zt/z! where E ′ agglomerates all the other terms in Equation 5.15.

The equation was derived by Christian [7] using Eshelby’s theory for a constrained transformation

in which the phases maintain coherency, but there is a simple interpretation useful in understanding

the shape of a martensite plate. If a tensile stress σ is applied to obtain an elastic strain ε then the

strain energy per unit volume is proportional to σε = Eε2. It is reasonable therefore to expect all

the strain terms in Equation 5.15 to be squared. The proportionality Ge
V ∝ zt/z! is more difficult

to explain. The magnitude of the displacement vector increases with distance normal to the habit

plane, Figure 5.27. When pushing against the surrounding material, it obviously is an advantage to

minimise the absolute displacement. The martensite therefore adopts a thin, lenticular-plate shape

which ensures a minimal displacement at the plate tip; the small zt/z! ratio in turn ensures that the

displacements never become too large. These considerations apply also to mechanical twins which

adopt the lenticular morphology with sharp tips.

e

Figure 5.27 Schematic illustration of the shape de-

formation due to unconstrained γ→ α′ transformation,

and a lenticular plate when the transformation is con-

strained. The black arrows are displacement vectors, in-

creasing in magnitude with vertical distance from the

invariant-plane.

For representative values of the parameters in Equation 5.15, Ge
V for an elastically accommodated

plate comes to about 600 Jmol−1 [111], which is less than typical values of |∆G
γα
MS

|. The partitioning

of the strain energy between the austenite and martensite depends on the plate aspect ratio. The shear

strain is by far the dominant component of the shape deformation; considering that strain alone,

the proportion of the total strain energy stored in the martensite is approximately 2zt/z! [p. 467

53]. A thin plate is therefore well-accommodated and most of the strain energy is contained in the

surrounding austenite.This stored energy does not contribute to the latent heat of transformation.
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This becomes particularly relevant in the design of bulk nanostructured steels where the heat of

transformation can otherwise frustrate attempts to generate the fine structures by suppressing the

transformation to low temperatures [112, 113].

The martensite plates in many alloys contain finely spaced transformation twins resulting from the

lattice-invariant deformation. The stored energy per unit volume due to this internal microstructure

is approximately σt/dt where σt ≈ 0.2Jm−2 is the coherent twin boundary energy per unit area and

dt ≈ 20nm the twin spacing. This gives an energy of about 100 Jmol−1.

Steel martensites often contain a substantial density of dislocations, which might be taken to con-

tribute to the overall stored energy. However, the dislocations are generated when the strains due

to the shape deformation are relaxed by plastic deformation. They do not therefore form a separate

contribution to the stored energy because it is the shape change that drives the deformation. The

stored energy due to an elastically accommodated plate should therefore form the upper limit of the

stored energy even when plastic relaxation occurs [111].

The total stored energy thus amounts to about 700 Jmol−1 which is, as it should be, less than the

magnitude of the available driving force at MS of about 1100–3000Jmol−1. The need to undercool

the austenite to a temperature below that required to account for the stored energy comes from the

nucleation stage, which is discussed later.

The γ→ ε-martensite transformation seems to occur at temperatures where the free energy change

is much smaller, in the range ∆G
εγ
MS

≈ 100−300 Jmol−1 (Table 5.3). It is odd that the stored energy

terms for ε-martensite must be much smaller than for α-martensite which has a smaller shear strain.

This may be a consequence of the smaller aspect ratio of the ε-martensite, the thickening of which

is limited by the availability of appropriately placed Shockley partials on every second close-packed

plane. The absence of an easy thickening mechanism must contribute to a small aspect ratio.

Table 5.3

The driving force for the austenite to ε-martensite transformation at the martensite-
start temperature. Many more data can be found in [95].

Alloy ∆G
γε
MS

/Jmol−1 Ref. Alloy ∆G
γε
MS

/Jmol−1 Ref.

Fe-Ru (10-20 at.%) −210 [114] Fe-18Cr-12Ni wt% −126 [115]

Fe-16Cr-13Ni wt% −142 [115] Fe-Mn (15-30 at.%) −270 [116]

5.6.1 THERMOELASTIC EQUILIBRIUM

Martensitic transformation is in principle reversible by virtue of its glissile interface. A reversal

of driving force should change the direction of interface motion once the intrinsic resistance of

the lattice is overcome. The driving force can originate in the chemical free energy change, an

applied stress or magnetic field. Perfect reversibility can be achieved when the interface can glide

conservatively, i.e., the shape deformation is elastically accommodated.
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In thermoelastic equilibrium, the assembly attains a minimum free energy at some finite volume

fraction of martensite [111]. A change in the driving force stimulates an increment of martensite.

This is illustrated in Figure 5.28 for a plate of martensite which has grown to a limiting length

between hard obstacles. For any given set of conditions the plate will thicken at constant length z!

until the thickness becomes zt = z!|∆G|/E ′.
e Figure 5.28 An illustration of ther-

moelastic equilibrium. The plate of

martensite ideally shrinks when the

temperature is raised or when the con-

centration of austenite-stabilising ele-

ments is increased. Both of these lead

to a reduction in the driving force for

martensitic transformation.

Whether martensitic transformation in any particular alloy will be thermoelastic or not can be pre-

dicted from an estimated stress field to see whether it is sufficiently large to induce significant plastic

deformation in the adjacent austenite [117, 118]. This is illustrated vividly by iron-platinum alloys

that undergo an order-disorder transformation in the austenite with an accompanying large change

in the mechanical properties. The ordered austenite is better able to elastically accommodate the

martensite because it has a much lower shear modulus and a high yield strength. Martensite that

grows from ordered austenite is therefore thermoelastic whereas that forming in disordered austen-

ite is not. Ling and Owen’s calculations for disordered and partially ordered austenite are illustrated

in Figure 5.29. It is apparent that the extent of plastic accommodation is greatest in the disordered

case. Not surprisingly, martensite in the fully ordered austenite exhibits reversibility; calculations

suggest a plastic field that is so small that it may not exist in practice. This criterion for thermoelas-

ticity is unambiguous.
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Figure 5.29 (a) Ling and Owen’s calculations showing the contours where the matrix satisfies the yield

criterion, as a function of the aspect ratio (zt/z!) of the martensite plate and the degree of ordering (order pa-

rameter L). The region between each contour and the martensite plate represents plastically deformed austenite.

Reproduced and adapted for clarity from [118], with the permission of Elsevier. (b,c) Atomic force microscope

scans across the surface relief produced when a Fe-24Pt at% austenite is transformed partially into martensite.

εp refers to the plastic accommodation in the austenite adjacent to the martensite plate. L = 0 and L = 0.7 for

(b) and (c) respectively. After Vevecka et al. [119].

5.7 MARTENSITE: NUCLEATION MECHANISM

5.7.1 FCC TO HCP TRANSFORMATION

The onset of martensitic transformation requires a much larger driving force than can be accounted

for by the stored energy terms put together. This is because of the need to nucleate martensite, a

process which in the vast majority of circumstances is heterogeneous and requires activation.

Classical nucleation relies on chance fluctuations of structure and composition, induced by the nat-

ural thermal vibrations of atoms. Such events are most unlikely at the very low temperatures where

martensite can be demonstrated to form readily.

The nucleation of ε-martensite from austenite is most readily visualised in terms of the dissociation

of a unit lattice dislocation into a pair of Shockley partials on a close-packed plane (Figure 5.19):

aγ

2
〈110〉γ →

aγ

6
〈211〉γ+

aγ

6
〈121〉γ on {111}γ (5.16)

The resulting fault separating the partials gives a two-layer thick region with the hcp stacking se-

quence of close-packed planes.
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The hexagonal form has a different density to fcc iron. Just altering the stacking sequence of the

close-packed planes does not achieve a change in their spacing. That the spacing does change is

demonstrated by the analysis of fault contrast using transmission electron microscopy, which indi-

cates that there is a displacement normal to the fault [120–122]. The magnitude of the displacement

is proportional to the number of parallel faults and in the direction expected from the difference in

the densities of the two phases. The transformation strain is therefore an invariant-plane strain rather

than just a shear.9

The energy of the fault representing the hcp embryo has a variety of components: the chemical free

energy change per mole (∆Gγε), the strain energy per mole (Ge) and a term σγε & 0.01Jm−2 due

to the interface between the austenite and ε-martensite [123]:

σf = nρA(∆Gγε+Ge)+ 2σγε (5.17)

where σf is the fault energy per unit area, n is the number of planes involved in the faulting process

(n = 2 for an intrinsic stacking fault) and ρA is the density of atoms in the close-packed plane in

moles per unit area. The term σγε is strictly a function of n but such data are not available in practice

so a constant value has to be assumed.

The net fault energy can be zero if the magnitude of the chemical free energy change is sufficiently

large. The fault would then be expected to extend spontaneously.10 The process can begin from

defects including isolated dislocations and groups of dislocations in arrays akin to symmetrical tilt

boundaries that are spaced two close-packed planes apart, i.e. in a configuration suitable to generate

the hcp structure from fcc. Since it is energetically more favourable for thicker faults (n > 2) to

dissociate (Figure 5.30), it is possible for martensitic nucleation to occur at temperatures where the

stacking fault energy is still positive (n = 2). This also means that isolated faults and dissociated

dislocations can be observed in the austenite alongside larger regions of fully developed martensite.

Those regions which have not yet developed into martensite nuclei, i.e. for which the fault energy

σf is still much greater than zero, can be regarded as embryos, a term normally reserved in classical

nucleation theory for fluctuations which have not surmounted the activation barrier.

Figure 5.30 Variation in the fault energy

σf as a function of the fault thickness n. The

martensite-start temperature can therefore be

higher than that at which the stacking-fault

(n = 2) energy becomes negative [123]. The γ

and ε phases have the same free energy (when

strain energy is accounted for) at the T ′
0 tem-

perature.

Classical structural and compositional fluctuations are not relevant in this model of martensitic

nucleation based on dislocation dissociation. The concept of barrierless nucleation is illustrated

in Figure 5.31; the embryo has an equilibrium size when σf > 0. Although there is a minimum
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in the free energy as a function of the separation of partials, there is no maximum that follows

if the size increases by chance so the embryo cannot develop into a viable nucleus. On the other

hand, nucleation occurs spontaneously when the fault energy becomes zero at a sufficiently low

temperature. The embryo is then stimulated into growth without the need to overcome an activation

barrier; this is barrierless nucleation with the property that it is athermal.

Olson and Cohen’s model is consistent with experimental data when comparisons are made using

reasonable values of the interfacial energies and defect number densities. The thickness of the fault

at MS for the γ → ε transformation is estimated to be n = 10, corresponding to a wall of five

dislocations spaced two close-packed planes apart. There should be about 1012 m−3 such defects

present in annealed austenite, consistent with typical experimental data of about 2×1012 m−3 plates

per unit volume, considered to be the quantity detectable using standard experimental techniques

such as dilatometry or electrical resistance measurements [124].
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Figure 5.31 Variation in the total

free energy as a function of the sepa-

ration of the partial dislocations in the

process leading to the nucleation of

martensite [123].

That stacking faults can be regarded as potential nuclei for hcp martensite has a long history, with

the destruction of the defect in the process contributing to facilitating heterogeneous nucleation

[125]. In contrast, in the Olson and Cohen model, the defect evolves into a nucleus so that there is no

explicit gain from the originating defect. The difference is illustrated in Figure 5.32, which compares

the free energy versus size curves for homogeneous nucleation, for heterogeneous nucleation in

which energy is gained by the destruction of a defect and finally, barrierless nucleation. There is no

maximum illustrated in the curves in Figure 5.31.

(a) (b) (c)

Figure 5.32 The difference between (a) homogeneous nucleation; (b) heterogeneous nucleation; (c) barrier-

less nucleation. After Olson and Cohen, [75]. GD is the energy of a defect which is either consumed during the

nucleation process as in (b), or which evolves into the nucleus as in (c).

The fault model is verified experimentally for hcp martensite and there are many direct observations

to confirm the mechanism. As might be expected, a large plate of hcp martensite has a curved inter-

face made up of Shockley partials [34]. Hot-stage microscopy has revealed the spontaneous increase

in the separation of partials as the temperature is reduced [126, 127]. As pointed out earlier, Brooks
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et al. have vividly demonstrated the dilatational strain associated with faulting [120–122]. And the

athermal character of martensitic nucleation in appropriate circumstances is predicted naturally by

the model.

5.7.2 ROLE OF THERMAL ACTIVATION

For dislocations to move, they must surmount the barriers between equilibrium positions in the

perfect lattice. It follows that unless the driving force is very large, both the nucleation and growth

of martensite will require some thermal activation. This is why isothermal martensite is observed at

very low temperatures where even a small activation barrier becomes important.

The partials bounding a fault repel each other. Their equilibrium separation becomes infinite when

σf = 0, assuming that the dislocations can move freely. However, even a perfect crystal resists dislo-

cation motion since there is an activation barrier between successive equilibrium positions, making

the yield strength τy temperature dependent (Figure 5.33a). Although the net resistance becomes

smaller at high temperatures, it never vanishes but reaches a limiting value τµ known as the ather-

mal resistance which scales only with the shear modulus and hence does not vary greatly with

temperature. The athermal resistance arises from the long-range stress fields of obstacles. Fluctu-

ations caused by thermal vibrations are important over distances of the order of a few atoms and

hence cannot assist the dislocations to overcome any fields that extend over large distances. When

the temperature is such that τy = τµ, thermal vibrations readily overcome any short-range obstacles.

This activation barrier to dislocation motion may be written G∗
o in the absence of any applied stress.

However, its magnitude is reduced when an applied shear stress helps the dislocation to surmount the

barrier. The applied shear stress τ promotes the dislocation up the activation barrier (Figure 5.33b)

so that the activation energy is reduced [128, 129]:

G∗ = G∗
o − (τ − τµ)V

∗ (5.18)

where V ∗ is an activation volume. The activation energy G∗ for a unit length of dislocation is the

total energy under the curve illustrated in Figure 5.33b. The effective applied stress is τ − τµ.

The work done by the applied stress for a unit length of dislocation is therefore (τ − τµ)b ×
distance along reaction coordinate. Since the term multiplying the shear stress has units of volume

for a unit length of dislocation, it is called an activation volume.

The stress τ can be provided either by applying a load or via the chemical driving force (a transfor-

mational stress) given by:

τ =−
σf

nb
(5.19)

On substituting into Equation 5.18 for σf (Equation 5.17) and for τ (Equation 5.19), the activation

energy is expressed in terms of the driving force:

G∗ = G∗
o

[

τµ+
ρA

b
Ge +

2σεγ

nb

]

V ∗+
ρAV ∗

b
∆Gγε (5.20)

This relationship is useful not only in dealing with martensite kinetics but also in the estimation

of the rates of the bainite and Widmanstätten ferrite transformations. The important result is that
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Figure 5.33 (a) Temperature dependence of the resistance to dislocation motion. (b) Schematic illustration

of how an applied stress has the effect of reducing the activation barrier by the total area less the shaded area

(after Conrad, [128]).

the activation energy is found to be proportional directly to the driving force, which contrasts with

the inverse-power relationship associated with classical nucleation theory. The link between ther-

mally activated plastic deformation and indeed the linear dependence of the activation energy on the

chemical driving force was proposed first by Magee and Paxton [124, 130].

The Olson and Cohen model is consistent with observations that martensitic transformation can

sometimes occur isothermally. If τy is the resistance to the motion of dislocations, then nucleation is

possible when σf <−nbτy. The nucleation is athermal when the intersection between σf and −nbτy

curves occurs in a regime where τy = τµ, the resistance to dislocation motion becomes independent

of temperature (Figure 5.34). For the case where the resistance τy is temperature dependent, the

rate of motion will vary with temperature. Furthermore, because of the curvature of the σf function,

the rate must go through a maximum; there are two intersections identified in Figure 5.34 at points

x and y where the rate is zero. The model therefore predicts the experimentally observed C-curve

behaviour for isothermal martensite.

In all cases, transformation will stop at a given temperature once the embryos capable of developing

into nuclei are exhausted. There will therefore exist a limiting volume fraction of martensite at a

given temperature for both isothermal and athermal transformations. For isothermal transformation

embryos develop towards the limiting volume fraction by a process in which they are assisted over

the activation barrier by thermal fluctuations so the time dependence of the reaction is well-defined

in terms of a nucleation rate. For anisothermal transformation, all of the appropriate embryos would

spontaneously develop into plates of martensite. However, if the rate of isothermal transformation

is rapid then it becomes impossible to distinguish experimentally between isothermal and athermal

transformation.

5.7.3 FCC TO BCC TRANSFORMATION

That hcp martensite nucleates by the dissociation of dislocations is now well-established both ex-

perimentally and from the viewpoint of dislocation theory. The model of the nucleus is intuitively

satisfying because the hcp structure can be generated from fcc by an invariant-plane strain on the

fault plane.
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isothermal athermal

Temperature

Figure 5.34 The conditions appro-

priate for isothermal and anisother-

mal martensitic nucleation [123]. The

bold curve represents the total resis-

tance to dislocation motion. This has

a minimum, temperature-independent

value τµ. Detectable nucleation be-

comes possible when the σf curve

crosses below the −nτyb curve.

However, austenite cannot be transformed into bcc martensite by an invariant-plane strain. The

nucleation process must therefore be more complex than faulting on a single plane. Since the trans-

formation strain is an invariant-line strain at least two sets of partials with slip planes that are not

coplanar are required.

Olson and Cohen emphasised faulting on the close packed plane. A possible mechanism can be

explained phenomenologically as illustrated in Figure 5.35. A unit dislocation
aγ
2 [110] dissociates

into six partials via the reaction:

aγ

2
[110]→ 3

[
aγ

18
[121]+

aγ

18
[211]

]

.

The partials are distributed over three adjacent (111)γ planes (Figure 5.35b). Notice that each of

the partials has a magnitude that is a third of a Shockley partial.

This faulting alone cannot lead to a bcc crystal structure. An additional invariant-plane strain on

(111)γ ‖ (011)α finishes the structural change (Figure 5.35c). The shear is accomplished by seven
aα
8 [011] partial dislocations followed on the eighth plane by a aα

8 [011] and a
aγ
6 [112] Shockley

partial, all of which reside in the structure of the interface. Their dislocation lines lie along the

[110]γ direction, giving a semi-coherent embryo with the following variant of the Kurdjumov-

Sachs orientation relationship:

(111)γ ‖ (101)α

[110]γ ‖ [111]α.

This peculiar combination of seven partials and another pair on the eighth plane, is necessary to

leave the original (111)γ fault plane unrotated. Finally, a further set of screw dislocations is added

that cancel out the remaining long-range strain field of the partial dislocations (Figure 5.35d), still

leaving the original fault plane unrotated.

Obviously, the thicker embryos can develop into martensite more readily. Thicker faults can be

produced by the “initial” dissociation of
aγ
2 [110] every three planes, but this would require the

existence of a suitable array of these dislocations in the untransformed austenite. Whatever the
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details of the proposed fault mechanism, the idea that nucleation occurs from an array of lattice

dislocations seems to be justified experimentally [111] although direct evidence for the development

of faults remains illusive.

Figure 5.35 The Olson and Cohen model for the development of a semicoherent body-centred cubic embryo

from a perfect screw dislocation (a) in a face-centred cubic austenite. (b) Three-dimensional dissociation of

dislocation over a set of three close-packed planes. The structure thus produced is not yet body-centred cubic.

(c) Relaxation of fault to a body-centred cubic structure, involving the introduction of partial dislocations in

the interface. (d) Addition of perfect screw dislocations which cancel the long-range strain field of the partial

dislocations introduced in (c).

5.7.4 NUCLEATION AT LARGE DRIVING FORCES

Austenite can in principle be deformed continuously into the structure of martensite. Zener pointed

out in 1948 that the elastic constant of the lattice can be used as a measure of its stability to shear

deformation. In particular, for a cubic crystal, the two moduli characterising the resistance to shear

deformation are C44 and C′ = 1
2 (C11 −C12). The former is a measure of the resistance to shear

on the system (010)[001] whereas the latter is the corresponding resistance on (110)[110]. C44

is larger than C′ so their ratio is a measure of the elastic anisotropy. C′ sometimes softens as the

transformation temperature is approached. If it actually approaches zero then the austenite becomes

mechanically unstable and deforms spontaneously into the structure of martensite, passing through
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a continuous series of transition structures in the process.11

The onset of mechanical instability during transformation is illustrated in Figure 5.36 which shows

total energy calculations for the fcc↔bcc transformation in sodium. The state of the transition is

characterised by an “order parameter” which is 1 and 0 for the fcc and bcc structures respectively,

with intermediate values representing transition structures. Since the calculations are for 0 K, the

driving force for transformation is simulated by altering the pressure. The fcc and bcc allotropes in

sodium are in stable equilibrium at P = 87.6 kbar. They are stable to any mechanical deformation

(change in η) since they both lie in energy minima separated by an energy barrier which at equi-

librium is about 150Jmol−1. This intervening barrier becomes smaller for the bcc→fcc transforma-

tion as the pressure is reduced. Similarly, it becomes smaller for the reverse transformation as the

pressure is increased. However, both phases remain mechanically stable when the barrier remains

finite. The cases where the fcc and bcc structures become mechanically unstable are illustrated with

curves a and b respectively (cf. Figure 5.32).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

400

bcc fcc

a

b

Figure 5.36 The computed free en-

ergy at 0 K for the fcc to bcc homo-

geneous lattice deformation in sodium

for a variety of pressures (after Olson

[131]). Curves a and b are schematic.

The case for iron is more complicated because magnetic properties must be accounted for. One

difficulty is that many first principles calculations which use the local density approximation predict

the incorrect ground state for iron. Krasko and Olson [132] avoided this by introducing a parameter

fitted to experimental data, to enable ferromagnetic iron to be set as the ground state for iron at

0 K. Their results are shown in Figure 5.37 where at the equilibrium pressure (about 140 kbar),

the ferrite is stable in the ferromagnetic state whereas the austenite is stable in the nonmagnetic

state. The latter is used as an approximation to the paramagnetic state. There is an energy barrier of

nearly 13 kJmol−1 separating the ferrite and austenite which are in equilibrium, much larger than

that associated with sodium. Given that the austenite and ferrite are in different magnetic states

and because the minimum enthalpy curves in Figure 5.37 are calculated allowing the volume to

vary, there is a discontinuity in volume at the α/γ intersection. The cusp at the intersection is quite

different from the smooth maximum in the case of sodium.

This cusp-like barrier persists at all pressures where nonmagnetic austenite is more stable than

ferromagnetic austenite. However, at a critical pressure of −110 kbar (equivalent to a chemical
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driving force of −14.5kJmol−1), ferromagnetic austenite has a lower free energy than nonmagnetic

austenite. This abrupt change in the magnetic properties of the austenite causes elastic softening

which in turn leads to mechanical instability. In fact, Krasko and Olson predict that ferromagnetic

austenite in pure iron is always mechanically unstable, but at low driving forces it is the nonmagnetic

form which is of lower energy and that state is not unstable. One difficulty with their calculations is

that the antiferromagnetic state was not included; it is the ground state of austenite (Chapter 2).

These results demonstrate that the mechanical instability of austenite is not an important issue

for all practical situations where the driving force for martensitic transformation is far less than the

estimated 14.5 kJmol−1.

(a) (b)

(c)

Figure 5.37 The computed free en-

ergy at 0 K for the fcc to bcc homo-

geneous lattice deformation in iron for

a variety of pressures (Krasko and Ol-

son, [132]) A c/a lattice parameter ra-

tio of unity corresponds to the body-

centred cubic structure and
√

2 to the

face-centred cubic structure.

As pointed out by Christian [111], it is unlikely that the martensitic transformation in steels can be

described in terms of the wholesale mechanical collapse of austenite. Such a mechanism would not

lead to the observed morphology which consists of well-defined plates which grow by the propaga-

tion of equally well-defined sharp interfaces that separate perfect regions of the co-existing parent

and product phases.

Figure 5.38a illustrates the experimental features of a martensite plate in steel. The order parameter

η changes abruptly at the interface between the fully formed martensite and the matrix austenite.

Figure 5.38b shows the corresponding case where the austenite becomes mechanically unstable and

evolves gradually into the structure of the martensite as the order parameter increases towards unity.

The interface is now quite diffuse. It is possible that the morphology illustrated is incorrect because

the transformation would tend to develop along elastically soft directions. But the final shape may

not be plate-like if the austenite as a whole becomes mechanically unstable.
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0

1

scratch

Figure 5.38 (a) Classical mechanism

in which the nucleus has its final struc-

ture and a sharp boundary with the austen-

ite. (b) Case where the structural change

happens gradually with an ill-defined in-

terface.

It is worth exploring whether mechanical instability might assist the nucleation of martensite. Fig-

ure 5.39 shows schematically the variation in the free energy as a function of temperature and order

parameter for a sodium-like material. At T = T1, it is possible that the deformation field of a defect

can nudge a small region of the austenite to a point beyond η1, where ∂ 2∆G/∂η2 is negative so

martensite can form spontaneously in a process described as a strain spinodal by analogy with a

chemical spinodal [111, 133]. There is therefore a gradient energy term to account for the cost of

the soft interface due to the inhomogeneous strains [134]. Continuing the analogy with the chemical

spinodal, whereas thermally activated nucleation (involving the large fluctuations needed to over-

come a barrier) is necessary outside of the spinodal, spontaneous nucleation can occur within the

strain spinodal because the system is then unstable to infinitesimal perturbations. The actual driving

force at which spontaneous nucleation becomes possible depends on the “strength” of the nucleat-

ing defect. It is, however, reasonable to assume that in steels, mechanical instability does not play a

significant role: the driving force at the MS temperature is small when compared with that required

to induce instability [135].

0

Figure 5.39 Schematic free-energy

versus order parameter relations for a

sodium-like material. The γ and α have

the same free energy at T0; the austenite

has a higher free energy for temperatures

below T0. The austenite becomes me-

chanically unstable at temperatures be-

low Tu. After Christian [111].

5.8 OVERALL TRANSFORMATION KINETICS

Three kinds of kinetic behaviour occur in iron alloys (Figure 5.40). The most common is ather-

mal transformation in which the volume fraction is a function only of the undercooling below the
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martensite-start temperature.12 Almost all commercial steels exhibit athermal martensitic transfor-

mation; these alloys tend to have an MS temperature which is above ambient and insensitive to the

cooling rate up to ≈ 50,000Ks−1. Isothermal transformation has been studied in systems with MS

temperatures well below room temperature, particularly in alloys with very small interstitial solute

concentrations.

The third kind of behaviour is abrupt, with a burst of transformation that consumes a large fraction

of the austenite over a narrow temperature range. Following this burst, subsequent transformation

can only be promoted by further cooling. The enthalpy released during the sudden transformation

can lead to recalescence and often to the emission of audible noise in the form of clicks.

(a) (b) (c)

Figure 5.40 The three different kinds of kinetic behaviour observed during the formation of martensite (after

Raghavan [136]), where the volume fraction is that of martensite.

5.8.1 PARTITIONING OF AUSTENITE

The essential idea of all theoretical treatments of martensite kinetics is that plates of martensite

partition the austenite grains into smaller regions in which new plates form and further refine the

residual austenite.13A typical transformation experiment might involve the measurement of the vol-

ume fraction of martensite as a function of either the temperature during continuous cooling, or the

time during isothermal treatment. The growth of the first generation of martensite plates is halted

by the austenite grain boundaries. Subsequent generations are limited by the size of the remaining

“compartments” of austenite. The estimation of transformation curves requires a knowledge of the

mean volume per plate (V ).

Suppose that martensite plates form at random within a given grain of austenite of volume Vγ.

The first plate to form will have a volume Vα′
1 , resulting in a reduction in the fraction of austenite

available for transformation and at the same time partitioning the austenite grain into two. Assuming

that each new plate transforms a constant fraction ψ =Vα′
1 /Vγ of the compartment of austenite, the

second plate of martensite (n = 2) will have a volume Vα′
2 =Vγ(1−V

α′,1
V )ψ/2 where V

α′ ,1
V is the

fraction of martensite present prior to the formation of the second plate. More generally, the volume

of the n’th plate is given by [108, 137]:

Vα′
n =Vγ(1−V

α′,n−1
V )

ψ

n
.
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Assuming that the formation of each plate results in one new compartment of austenite, the number

of austenite compartments per unit volume is

Nc
V =

1

Vγ
+Nα′

V

where the first term on the right hand side is the number of austenite grains per unit volume and

Nα′
V = n/Vγ is the number of martensite plates per unit volume, assuming that all austenite grains

behave identically. The rate of change of volume fraction with Nα ′
V is

dV α ′
V

dNα ′
V

= ψ(1−Vα ′
V )

1

Nc
V

= ψ(1−Vα ′
V )

/(
1

Vγ
+Nα ′

V

)

which on integration between limit gives [137]:

ln{1−Vα′
V }=−ψ ln{1+Nα′

V Vγ} (5.21)

and the mean volume per plate of martensite,

V =Vγ

(
Vα′

V

(1−Vα′
V )−1/ψ − 1

)

. (5.22)

Figure 5.41 The average, nor-

malised plate-volume as a function

of the fraction of martensite (Equa-

tion 5.22). ψ is the fraction of a

compartment of austenite which is

transformed by the formation of a

plate of martensite.

The process just described is one in which successive generations of plates “fill-in” the untrans-

formed austenite (Figure 5.42). However, there are other circumstances where the transformation

spreads from grain to grain as illustrated in Figure 5.42b, in which case the mean volume per

plate does not depend on the fraction of transformation and this has been verified experimentally

[137, 138]. Some quantitative data to this effect are listed in Table 5.4. It is clear that the mean vol-

ume per plate can be assumed to be approximately constant; the data also illustrate typical number

densities of martensite plates and their apparent aspect ratios. The number density data are from
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direct metallographic measurements and compare well with values of about 107 cm−3 derived from

indirect measurements, for example, by fitting to isothermal transformation data. Although the as-

pect ratio is approximately constant for the results presented in Table 5.4, there are other data which

indicate that it increases sharply during the course of the transformation and then begins to diminish

when the volume fraction is beyond about 0.6 [139, 140].

Table 5.4

Quantitative metallographic data on martensite plates in two Fe-Ni-C alloys. The as-
pect ratio here is the thickness of the plate divided by its length. The results are due
to McMurtrie and Magee [124] whose data are more comprehensive than illustrated
here.

Alloy VV Aspect ratio zt
z!

Nα′
V /107 × cm−3 V /10−9 × cm3

Fe-23.8Ni-0.42C wt% 0.144 0.243 2.47 5.84
0.177 0.207 1.8 9.85
0.246 0.257 4.95 4.98
0.451 0.241 6.32 7.13
0.548 0.233 8.28 6.61

Fe-28.5Ni-0.40C wt% 0.075 0.197 1.11 6.75
0.29 0.234 7.22 3.70
0.51 0.163 9.03 5.65

(a) (b)

Figure 5.42 Schematic illustration

of the partitioning of austenite. (a)

“Fill-in” mode of transformation,

where the mean volume per plate

decreases as the volume fraction of

martensite increases. (b) “Spreading”

transformation with sequential decom-

position of austenite grains, giving a

constant mean volume per plate as

transformation progresses.

The detailed distribution in the size of martensite plates within a given austenite grain can depend

on kinetic parameters such as the growth velocity and the nucleation rate. The partitioning model by

Fisher and co-workers assumes that each new plate subdivides the remaining austenite. It has been

shown that this leads to a size distribution which is scale-invariant [141]. The number of plates of

a given size increases as the γ-grain size decreases, with an upper cut-off length Lγ and the lower

cut-off determined by the total number of plates of martensite within the γ-grain. In the alternative

extreme where all the plates are nucleated simultaneously, there is a smaller spread in the size of
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martensite plates and a size distribution that peaks at a value ∝ Lγ/
√

N. Assuming that nucleation

occurs at random and that the rate of nucleation is constant, Rao and Sengupta argue that it should

be possible in principle to use an experimental plate size distribution to derive the product of the

plate growth velocity (also assumed constant) and the total time required to nucleate N plates.

5.8.2 ATHERMAL TRANSFORMATION

Athermal transformation is illustrated in Figure 5.4 which shows that the logarithm of the fraction

of transformation varies linearly with the degree of undercooling MS − Tq below the martensite-

start temperature. The interpretation of these experimental observations was given by Magee [124],

whose analysis is presented here. If it is assumed that the change in the number of martensite plates

per unit volume of austenite, dNVγ , is proportional to the increase in the driving force for transfor-

mation then:

dNVγ =−b1Vmd(∆Gαγ)

where b1 is a positive proportionality constant and Vm is the molar volume. The corresponding

change in the volume fraction of martensite is

dVα′
V =VdNα′

V (5.23)

where V is the mean volume per plate and Nα′
V is the number of plates per unit volume with (1−

Vα′
V )dNVγ = dNα′

V . Writing

d(∆Gαγ) =
d(∆Gαγ)

dT
dT

and substituting into Equation 5.23 gives

dVα′
V =−V (1−Vα′

V )b1Vm
d(∆Gγα)

dT
dT.

Integration from MS to Tq assuming that V , b1 and d(∆Gαγ)/dT remain constant gives

1−Vα′
V = exp

{

Vb1Vm

(
d(∆Gαγ)

dT

)

(MS −Tq)

}

.

There are experimental data to show that the variation in the fraction of martensite with

d(∆Gαγ)/dT ) is correctly predicted by this equation, which compares well with the empirical rela-

tionship derived by Koistinen and Marburger (Equation 5.9), although b2 in the latter must clearly

vary with the chemical composition of the alloy. The form of the equation implies that there will

always be some austenite retained. This is correct in practice because the build up of elastic strain

energy means that plates of martensite stop growing when they are obstructed and consistent with

the assumption that each plate transforms only a finite volume of austenite.

However, the assumption of a constant volume per plate is questionable, though Magee points out

that for cases where autocatalysis14 occurs, the transformation progresses by spreading from grain

to grain rather than uniformly throughout the specimen (Figure 5.42b). Although there will be a

distribution of plate sizes within any given grain, the mean volume per plate for each increment in

the overall fraction of transformation will not vary when the austenite grains transform in sequence.



Martensite 305

5.8.3 ISOTHERMAL MARTENSITE

Martensite, in the vast majority of steels, occurs by athermal transformation with the fraction of

martensite depending only on the undercooling below the MS temperature. Isothermal transforma-

tion is rare, found mostly in alloys with an MS temperature less than about 400 K. It was discovered

by Kurdjumov and Maksimova in 1948 [142] and most subsequent investigations (e.g., [143]) have

supported the suggestion that because martensite plates grow rapidly, it is their nucleation that con-

trols the rate of isothermal transformation. This does not rule out the possibility that slow growth

might be the rate-limiting step; Yeo [144] reported isothermal martensite in which the growth rate

was only 1× 10−4 ms−1. Figure 5.43 shows a TTT diagram for martensite where the classical C-

curve characteristic of isothermal reactions is apparent. A sufficiently rapid quench can therefore

completely suppress martensitic transformation, which can then be stimulated by warming to a tem-

perature where the rate of reaction is significant [142, 145].

e / s

-50

-100

-150

Figure 5.43 An isothermal

martensitic-transformation diagram

for an Fe-3.62Mn-23.2Ni wt% alloy,

adapted from Shih, Averbach and

Cohen [146].

Athermal martensite sometimes precedes isothermal decomposition and influences the location and

form of the C-curves on the TTT diagram [146]. Figure 5.44 shows isothermal transformation curves

for a Fe-15Ni wt% alloy; in each case, the fraction present at zero time is the amount of martensite

that forms athermally. It is natural that when martensite forms isothermally, the temperature at which

it begins to form should depend on the cooling rate to the transformation temperature. However, for

alloys where athermal transformation precedes isothermal decomposition, the amount of martensite

that forms above the athermal-MS is very small indeed [147]. Solutes that increase the stability of the

austenite shift the C-curves for isothermal transformation to longer times and lower temperatures.

Isothermal martensite can form after bursts of martensitic transformation [145, 148]. There are con-

tradictory reports about the shape of isothermal martensite when compared with the athermal vari-

ety (including that formed during bursts of transformation). Some studies indicate that isothermal

martensite tends to be in the form of very thin plates, frequently containing a dislocation substructure

rather than twinning. Others claim that there is no great difference in the two microstructures. These

difficulties might be reconciled by the work of Okamoto and Oka [149], who showed that when

thin-plate isothermal martensite is cooled, it thickens into lenticular plates reminiscent of athermal

martensite. The final lenticular plates contain little evidence of the original thin-plate martensite.

When the isothermally formed thin-plate martensite is warmed, it develops into lower bainite with
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the characteristic carbide microstructure. The final lenticular plate then contains the original mid-rib

of the isothermal martensite surrounded by the lower bainite.

Figure 5.44 Isothermal transforma-

tion in samples that have already

partially transformed athermally to

martensite. The MS temperature of the

alloy is 672 K. After Tsuzaki et al.

[147]

Table 5.5 lists some of the alloys where isothermal martensite has been positively identified. Al-

though many of the alloys contain very little carbon, there are others with large concentrations of

carbon. Isothermal martensite is not confined to carbon-free alloys of iron.

Table 5.5

Iron alloys in which martensite has been reported to form isothermally. In some
cases, athermal transformation precedes isothermal decomposition. The chemical
compositions are in wt%.

Ni Mn C Other References

6 0.6 [142]
23 3.5 [142]

28.83 0.008 [144]
25.9 1.94 0.025 [150]

0.02 0.38 1.44 0.17Cr [151]
23.7 0.53 [148]
20.2 5.65 0.009 [152]

22.88 3.81 < 0.003 [153, 154]
21.94 3.61 0.10 [155]

1.1-1.8 [149]
14.99-23.46 < 0.05 < 0.005 [147]

9 1.4 [156]
18 0.7 [156]

33 [145]
23.2 2.8 0.009 [157]

Isothermal martensite is predicted by nucleation theory for regimes in which the development of the

embryo requires help from thermal fluctuations (Section 5.7.2). In steels, plates of martensite plate

tend to grow extremely rapidly. They are halted abruptly at hard obstacles such as grain boundaries
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or other plates. It is possible, therefore, to develop a kinetic theory for isothermal martensite, based

on concepts of nucleation alone, with the assumption that each nucleus transforms a known quantity

of austenite.

Any consideration of the nucleation rate must include the effect of autocatalysis since the number

of new nuclei created per initial nucleus can be very large indeed [150, 158]. The instantaneous

number density of nucleation sites NV is therefore given by

NV =

(

No
V + pa

Vα′
V

V
−N′

V

)

(1−Vα′
V ) (5.24)

where No
V is the initial number density of nucleation sites and pa represents the autocatalytic addi-

tional number of sites introduced by one plate of martensite, V is the volume per martensite plate.

The number of sites already used up by martensite nucleation events is N′
V. Each plate also trans-

forms a certain volume of austenite and any of the sites in that volume are eliminated; hence the

term (1−Vα′
V ). The nucleation rate per unit volume at any instant is therefore given by:

IV = NVν exp

{

−
G∗

RT

}

where ν is an empirical attempt frequency in the range 107–1013 s−1. G∗ is an empirical activa-

tion free energy. During a time interval t = τ to t = τ + dτ , the change in the volume fraction of

martensite is, assuming a constant volume V per plate, given by

dVα′
V = IVV dτ

This equation would need to be integrated numerically given that IV is not constant and is a function

of Vα′
V . For small volume fractions of martensite:

Vα′
V ∝ exp{Φ6t − 1} where Φ6 = paν exp

{

−
G∗

RT

}

It appears, therefore, that the fraction transformed is dependent exponentially on the autocatalytic

factor but linearly on the initial number of nucleation sites. A number of experimental observations

are consistent with this conclusion [124], not surprising given the number of new sites generated by

autocatalysis is many thousands of time greater than the initial number density.

A further result obtained by fitting experimental data to the kinetic theory is that the activation

energy is found to be proportional to the chemical driving force (Figure 5.45). This, of course, is

consistent with martensite nucleation theory, Equation 5.20.

The theory above has been useful in understanding the form of the isothermal transformations curves

and indeed, of the effects of plastic strain and magnetic fields on the transformation behaviour. It

has also revealed the potency of autocatalytic effects. There remain some significant assumptions.

The argument that the volume per plate is constant may not in general be justified; V is expected to

be a function of Vα′
V . The variation is sometimes taken into account by replacing V in Equation 5.24

by the term
(

V +
dV

d(lnNV)

)
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Figure 5.45 Activation energy ver-

sus the chemical free energy change

for martensitic transformation [124]. The

concentrations for these alloys of iron are

in wt% and the data are obtained by fitting

to isothermal transformation experiments

using a value paν = 1023 cm−3 s−1. Ex-

perimentally measured values of V were

used in the analysis.

but this in turn introduces a further empirical parameter since the dependence of the volume on the

number density is not generally known.

Martensite nucleation theory suggests that there is likely to be a distribution of activation energies,

corresponding to that of defect potencies. Although this effect can in principle be accounted for, the

potency distribution must necessarily be obtained by fitting to experimental data.

5.8.4 BURSTS OF TRANSFORMATION

The burst phenomenon (Figure 5.40) is attributed to intense autocatalysis, observed both in steels

and interstitial-free iron-alloys (Table 5.6). Autocatalysis is not the complete explanation if the term

simply represents the generation of additional nuclei. Additional nucleation defects are known to

be generated during many martensitic reactions (e.g., isothermal) that do not transform violently.

Bokros and Parker [159] studied the crystallography of the plates participating in bursts and con-

cluded that there has to be a degree of mechanical coupling between them for a burst to operate.

Only those plates that couple effectively lead to the classical zig-zag formations, consisting of four

plates with nearly parallel {31015}γ habit planes, the poles of which cluster about common 〈110〉γ
directions (Figure 5.46). In subsequent work on a large series of alloys, Brook and Entwisle [160]

found that pronounced bursts occurred in alloys with a martensite habit plane close to {259}γ but

not when the habit was close to {225}γ. This was attributed to better mechanical coupling in the

former case.

Mechanical coupling relieves some of the strain energy associated with an isolated plate. This allows

the martensite plates to grow with larger aspect ratios (Section 5.6.1). The plates associated with

burst transformations are routinely thicker for the same length when compared with those in steels

where gradual transformation occurs [140].

The hypothesis that good mechanical coupling is essential for the development of bursts of transfor-

mation seems reasonable. There is, however, the alternative possibility that the nature of autocatalyt-

ically generated nuclei might be depend on the alloy. It may be feasible that the defects created by

plate formation are suitable only for the nucleation of particular variants. The nature of the defects

generated might vary with the strength and stacking fault energy of the parent austenite. In such

circumstances, burst formation might be better described in terms of strain-affected transformation,
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instead of the stress-affected transformation implicit in mechanical coupling.

Table 5.6

Examples of alloys in which martensitic transformation begins with a burst of trans-
formation.

Alloy Composition / wt% Reference

Fe-31.75Ni-0.01C [159]
Fe-32Ni-0.035C [161]

Fe-30.7Ni-0.28C [105]
Fe-24Ni-0.5C [160, 162]
Fe-28Ni-0.4C [163]

(a)

(1
5 

3 
10

)

(1
0 

3 
15

)

(1
0 

3 
15

)

(1
5 

3 
10

)

austenite

martensite

(b)

001 010

100

101

Figure 5.46 (a) An autocatalytic burst of martensitic transformation in a single crystal of austenite. There is

a mechanical coupling between adjacent plates as they partly accommodate their shape deformations. Adapted

from Bokros and Parker [159]. (b) Stereographic projection relative to the austenite orientation showing poles

of the habit planes participating in the burst, clustered around [101]γ.

The quantity of martensite that forms during the burst decreases as the austenite grain size is re-

duced. The shear stress concentration at the tip of each plate is proportional to the square of its

diameter, which in turn depends on the austenite grain size; bursts are therefore easier to trigger in

large-grained samples [105].15 This also makes it difficult to spread of bursts into adjacent grains in

fine-grained samples.

Bursts of transformation do not occur in all austenite grains at the same instant. However, the frac-

tion of martensite per transforming grain is found to be larger when the γ-grains are coarse, Fig-

ure 5.47. The dependence on temperature is because the fraction of austenite transformed during

the burst increases if the driving force available at MS is large [164]. The addition of carbon to an

Fe-Ni alloy, leading to a reduction in driving force at a given temperature, has been shown to lead to

smaller bursts of transformation [105]. Plastic deformation of austenite prior to transformation can

limit bursts due to mechanical stabilisation [159].
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Figure 5.47 Fraction of austenite grains

that show martensite as a function of the

temperature to which the sample is cooled

below the MS temperature and of the

austenite grain size. Selected data from

[165].

5.9 STRESS AND STRAIN EFFECTS

The displacement vector and the habit plane of martensite constitute a deformation system, just

as a slip plane and slip direction form a slip system. There would therefore be 24 independent

deformation-systems associated with the γ → α′ and 12 for γ → ε transformations. During slip,

the system that operates will be that which has the largest resolved shear stress on the slip plane

in the slip direction [166]. An external stress imposed on austenite will similarly tend to favour

those crystallographic variants that comply best with the stress [167]. This can be expressed as

an interaction energy ∆Gmech which would add to or oppose any chemical driving force ∆Gchem

depending on the nature of the stress. If the 3×3 tensor σi j represents the applied system of stresses

then the traction t on the habit plane is obtained product tiσi j = p j where p j represent the direction

cosines of the habit plane normal p. The traction represents the total stress on the habit plane,

consisting of a normal stress σN and shear stress τ with

σN = |t|cos{θ} τ = |t|cos{β}cos{φ}

where θ is the angle between the p and t; β is the angle between t and the direction of the maximum

resolved shear stress, with φ defining the angle between that resolved shear stress and the direction

of shear of the the shape deformation. The mechanical interaction energy is then

∆Gmech =−(τs+σNζ ) (5.25)

where the negative sign makes ∆Gmech a reduction if stress favours transformation. Referring to

Figure 5.48, the driving force ∆G
γα
MS

defines the martensite-start temperature in the absence of ex-

ternal influence. If a stress that is below the yield strength of the austenite is applied, then the net

sum ∆Gchem + ∆Gmech can equal ∆G
γα
MS

at Mσ > MS because the contribution required from the

chemical term is reduced.

The basic principle therefore is that the net driving force which is the sum of the chemical and me-

chanical terms must be equal to or greater in magnitude than ∆G
γα
MS

. ∆Gchem opposes transformation

at T > T ′
0 in which case transformation depends entirely on ∆Gmech. Eventually, the γ yield stress is

exceeded which limits the stress that can be applied and a point is reached where ∆Gmech = ∆G
γα
MS

at a temperature Md, beyond which martensitic transformation ceases.



Martensite 311

0

Figure 5.48 The martensite-start temperature as a function of temperature and applied stress. Note that the

resistance to the plastic deformation of austenite decreases as the temperature increases.

The transformation is said to be stress-assisted in the range MS-Md because the stress is expressed

through a purely thermodynamic term defined by Equation 5.25. Once the austenite yields prior

to transformation, the thermodynamic term persists, but defects within the austenite may stimulate

transformation by other mechanisms such as by increasing the number density of nucleation sites,

an effect that could amplify through autocatalysis [168]. It is important to understand that the region

between Mσ -Md therefore covers the combined effects of stress and strain. In many cases the entire

range beyond MS can be explained by ∆Gmech alone because the stress during and after yielding is

the highest that can be imposed on the austenite [169, 170].

To study strain-affected transformation requires the austenite to be deformed first, the stress removed

and then transformed into martensite. A model for strain-induced martensite based on nucleation at

deformation-band intersections due to Olson and Cohen [171] is simplified here to deal with generic

defects. If the number density of nucleation sites introduced by deformation, per unit volume of

austenite is NV, the change in the number of plates of martensite per unit volume is dNα′
V = p×dNV,

where p is the probability that the site will develop into a plate. The increment in the volume fraction

of martensite is then:

dVα′
V

1−Vα′
V

= V dNα′
V =V pdNV

∴ Vα′
V = 1− exp{−V pNV} (5.26)

where V is the average volume per plate of martensite. The function NV (for example its strain
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dependence) and p would require additional expression depending on the nature of defects involved.

In the original work, the fraction of deformation bands was assumed to vary with strain as 1−
exp{−b28ε} and the number of such bands per unit volume N∗

V = (1− exp{−b28ε})/V
∗
, where V

∗

is the volume per shear band, and that NV = b29(N∗
V)

b30 . The bi are all constants derived by fitting

to experimental data due to [172], but it is noteworthy that those data included the simultaneous

effects of stress and strain, so the inevitable contribution from ∆Gmech was neglected.

Other empirical models have been reviewed [173], one of which includes the combined effects of

stress, plastic strain and the chemical driving force (and hence the composition of the steel) [174].

These have considerable value in that once the fitting parameters are established, they can be applied

to a large class of steels without further measurements:

• Sugimoto [175] assumed that the change in the fraction of martensite with plastic strain is

proportional to the fraction of austenite, giving

ln{V
γo
V }− ln{V

γ
V }= b31εp (5.27)

where V
γo
V is the volume fraction of austenite prior to deformation. This equation is a good

representation of experimental data, but b31 needs to be calibrated for each new austenite

composition. The equation has been applied widely in the analysis of data where both stress

and strain are applied simultaneously.

• Sherif et al. [176] incorporated ∆Gαγ = Gγ−Gα into the Sugimoto framework to enable

predictions as a function of the austenite composition:

ln{V
γo
V }− ln{V

γ
V }= b32∆Gαγεp (5.28)

where b31 = 0.002017molJ−1

• Mukherjee et al. [174] took account of ∆Gγα, Ge
V = 1.2×108 Jm−3 and a function f{ε}=

b33εb34 to arrive at

V
γ
V

V
γo
V

=
∆Gγα+Ge

V

∆Gγα+Ge
V − b33εb34

p

(5.29)

with b33 = 1.056× 109 Jm−3 and b34 = 1.03.

5.9.1 TRANSFORMATION TEXTURE

Figure 5.49 shows martensite induced in an initially austenitic polycrystalline sample by applying a

uniaxial tension at T > MS; at a small stress, this has the effect of inducing plates of martensite that

form at ≈ 45◦ to the stress axis, where the shear stress would be at its maximum. Even though the

individual austenite grains present different orientations, there are 24 variants possible per grain so

one or more could find itself in a near-optimum orientation with respect to the stress. The amount

of martensite that forms increases with stress, a reflection of the mechanical driving force (Equa-

tion 5.25). To calculate texture requires both variant selection and the fraction of each variant to be

estimated; selection implies the favouring of some crystallographic variants over others within the

set of 24 available within a single crystal of austenite.
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(a) (b)

Figure 5.49 Polycrystalline

austenitic Fe-28.1Ni-0.4C wt%

(MS = −80◦C) transformed

at −44◦C by applying a ten-

sile stress along the direction

indicated. (a) Small stress. (b)

Relatively large stress [163].

Given that each martensite plate can be defined by the mathematically connected set p, d and (α J γ),

it should be possible to calculate the orientations of the variants that are induced by stress given

the crystallographic texture of the austenite. Each variant in a given grain of austenite will have a

different MS temperature because each variant will be associated with a different ∆Gmech. If each

variant is identified to be different in this respect then there will be (24× Nγ) martensite-start

temperatures (Nγ is the number of austenite grains).

The orientations of martensite can be referred to the sample axes to present a crystallographic tex-

ture. This can be misleading because although the crystallographic distribution is determined, the

volume fractions of each variant, which contribute to intensities in a texture plot are not calculated.

This is illustrated in Figure 5.50; with this approach an austenite grain containing two variants of

martensite of equal size will display the same calculated distribution of poles as that in which one

variant is a hundred times larger in volume than the other. To account for the difference in volume

Figure 5.50 Distribution of 〈100〉α poles

from two martensite plates, referred to the

austenite frame. (a) Pole figure for plates of

identical size. (b) Pole figure showing differ-

ent intensities for the large and small plate.

fractions of the distinct entities requires thermodynamic and kinetic theory to be incorporated into

the texture calculation. There have been two attempts at doing this, one of which uses the Bain strain

as the transformation strain [177] and the other the shape deformation [178] which is relevant to the

interaction with stress and forms the basis for the discussion that follows.

The evolution of the martensite fraction as a function of undercooling below MS is described by

Equation 5.9 which can be adapted to deal with the many different transformation temperatures

within the sample using the simultaneous transformations adaptation of the Avrami extended vol-
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ume concept as described in Section 13.4; in a temperature interval dT [178]:

dV
α′

1
V = b2

(

1−
24

∑
i=0

V
α′

i
V

)

dT, with dV
α′

1
V = 0 if MS1 < T

...

dV
α′

24
V = b2

(

1−
24

∑
i=0

V
α′

i
V

)

dT, with dV
α′

24
V = 0 if MS24 < T (5.30)

with each equation obtained by differentiating Equation 5.9. The fractions from individual austen-

ite grains are then summed over all the Nγ austenite grains, assuming that there is no interaction

between the grains. Figure 5.51a shows calculations for transformation in 500 austenite grains ar-

ranged to achieve a random γ-texture; an interesting observation is that the application of stress

increases the temperature range over which the martensite forms because the dominant favoured-

variants are induced at high temperatures and those that are not optimally oriented with respect to

the stress form at lower temperatures than the case where there is no stress applied. The starting tex-

ture of the austenite (random, Goss, Copper and Cube) does not affect these results [178] because

under stress, much of the contribution to the volume fraction is from the favoured variants.

(a) (b)

Figure 5.51 (a) The evolution of martensite content as a function of temperature and applied tensile-stress,

assuming that the polycrystalline austenite has a random texture [178].

The interaction of each variant with the applied stress is well-described by ∆Gmech but it is useful

to understand the extent of variant selection. Those “selected” can be defined as those that comply

best with the applied stress and the intensity of selection can reasonably be approximated by the

magnitude of the ratio ∆Gmech/(∆Gchem+∆Gmech). It turns out that there is almost a linear variation

between this ratio and the number of variants (of the 24 possible) is active in any particular grain of

austenite, Figure 5.51b [179].

5.9.2 MECHANICAL STABILISATION

Whereas the defects induced by the plastic deformation of austenite can enhance nucleation rates,

there comes a point where the defect density interferes with the progress of the glissile interfaces
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that are a necessary feature of displacive transformations, or indeed, mechanical twinning. The

overall transformation rate would then decrease even though the nucleation rate might increase. A

critical plastic strain is not appropriate to define the onset of mechanical stabilisation because the

ability of the interface to absorb the defects into the product lattice and continue its motion depends

also on the driving force. The balance between the force and the resistance the interface encounters

forms the basis of a theory for mechanical stabilisation [180]. The stress τT driving the motion of

the interface originates from the chemical free energy change ∆Gαγ of transformation:

τT = b35∆Gαγ (5.31)

where b35 is a constant assumed to be equal to unity and ∆Gαγ = Gγ−Gα, i.e., the magnitude

of the driving force. The stored energy of martensite is about 600 Jmol−1 [111], values which are

subtracted from ∆Gαγ. When multiplied by the magnitude of the Burgers vector, b, this gives the

force per unit length available for the austenite-martensite interface to move.

The plastic strain when dislocations with a density ρ⊥ and Burgers vector of magnitude b translate

in austenite on average through a distance z is given by [181]

εp = ρ⊥bz. (5.32)

For a given dislocation density, the spacing between the dislocations is ρ− 1
2 . The mean shear stress

τ needed to force dislocations past each other is, in these circumstances:

τ =
Esbρ

1
2
⊥

8π(1−ν)
(5.33)

where Es is the shear modulus and ν the Poisson’s ratio. On combining with Equation 5.32 and

noting that the force per unit length is τb,

τb =
Gb

3
2

8π(1−ν)

√

εp

z
. (5.34)

The mean free distance z must decrease as the plastic strain increases [182]

z =
b36Lγ

b36 +Lγεp
(5.35)

where Lγ is the original grain size of austenite prior to deformation and b36 is a coefficient about

equal to 1µm [182]. Solid-solution hardening and other mechanisms will also contribute τS to the

resistance to interface motion so this must be added to τ . Once this is done, the onset of mechanical

stabilisation is when the stress driving the interface equals that opposing its motion:

τT = τ + τS

b∆Gαγ =
1

8π(1−ν)
Esb

3
2

√

εp

z
+ τSb (5.36)

This equation can therefore be used to calculate the critical strain for mechanical stabilisation and

examples of its application can be found elsewhere [180].
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5.10 TETRAGONALITY OF MARTENSITE

Comprehensive experiments on the state of carbon within steel were reported by Abel around 1883,

published formally in 1885 [183]. It was found that “the carbon in cold-rollled steel exists in the

form of a definite iron carbide, approximating the formula Fe3C or to a multiple of that formula”.

In the same experiments, hardened steel (presumably martensitic) “appeared to have the effect of

preventing or arresting the separation of carbon, as a definite carbide”. Subsequent work [184] had

suggested that the carbon should be in interstitial solution in martensite; using lattice parameter

determinations Honda and Nishiyama [185] demonstrated that the observed density proved that

the carbon does indeed exist in interstices rather than as pairs C2 that substitute for iron atoms.

Figure 5.52a shows carbon atoms located on equivalent octahedral sites in the austenite on all three

edges of the fcc unit cell. When the Bain distortion is applied as indicated, all of the carbon atoms

end up in just one of three sub-lattices of the martensite interstices that have their shortest axes

aligned to the compression axis, thereby rendering the α′-lattice tetragonal.

The tetragonality as a function of the carbon concentration of martensite is shown in Figure 5.52b;

first principles calculations have shown that the trends illustrated are maintained to 3 wt% carbon

[186]. Carbon causes an expansion along the shortest axis and a slight contraction along the other

two orthogonal axes. Given that the Bain strain causes all of the carbon atoms in austenite to end

up in just one sub-lattice of the martensite interstices, the lattice itself adopts a tetragonal symmetry

for all concentrations of carbon greater than zero. If the temperature at which martensite forms is

greater than the ordering temperature (p. 71) then there may be a subsequent redistribution of carbon

atoms that makes the martensite cubic. This is one reason why low carbon martensites do not exhibit

tetragonality in practice.

(a)

C

(b)

Figure 5.52 (a) Four fcc austenite unit cells (black) and the bct versions of the austenite unit cells (red).

Austenite has one octahedral interstice per Fe atom whereas martensite has three. The orientation of the com-

pression axis during the Bain distortion is illustrated. (b) Lattice parameters of martensite and austenite in Fe-C

alloys, adapted using data from Honda and Nishiyama [185]. The cα′/aα′ ratio is 1+0.045wC.

There are other aspects of the tetragonality of ferrous martensite, reviewed by Christian [187].

The c/a ratio in Fe-Ni-C, Fe-Al-C and Fe-Al-Mn-C alloys is found to be larger for twinned thin-

plate martensite than for untwinned martensite [188, 189]. The plastic accommodation of the shape

change in the latter case leads to the displacement of carbon atoms from the positions inherited via
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the Bain deformation. Twinned martensite in Fe-7Al-2C and Fe-8Al-2C wt% alloys tend to exhibit

an abnormally large c/a ratio because of the coherent precipitation of fine κ-carbide (Section 11.8)

in the austenite; this coherency is inherited by the martensite. The precipitates themselves undergo

the Bain deformation leaving their large density of carbon atoms along the c-axis. Other contri-

butions to tetragonality come from specific carbon atom configurations in the austenite when the

alloy contains a large aluminium concentration [190]. These explanations seem to fail for Fe-20Ni-

1C wt% and similar alloys, where an anomalously large tetragonality is observed [188, 189]; recent

first-principles calculations suggest instead that that the cause of the anomaly is that the nickel

makes the alloy more elastically compliant than Fe-C [186].
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der strucktur des kohlenstoffstahls’, Zietschrift für Physik, 1927, 45, 384–408.

185. E. Honda, and Z. Nishiyama: ‘On the nature of the tetragonal and cubic martensites’, Science

Reports of Tohoku Imperial University, 1932, 21, 299–331.

186. R. Chentouf, S. Cazottes, F. Danoix, M. Goune, H. Zapolsky, and P. Maugis: ‘Effect of in-

terstitial carbon distribution and nickel substitution on the tetragonality of martensite: A first-

principles study’, Intermetallics, 2017, 89, 92–99.

187. J. W. Christian: ‘Tetragonal martensites in ferrous alloys – a critique’, Materials Transactions,

JIM, 1992, 33, 208–214.

188. S. Kajiwara, T. Kikuchi, and S. Uehara: ‘Origin for abnormal tetragonalities of martensite in

steels’, In: Proceedings of International Conference on Martensitic Transformations. Tokyo,

Japan: Japan Institute of Metals, 1986:301–306.

189. S. Kajiwara, and T. Kikuchi: ‘On the abnormally large tetragonality of martensite in Fe-Ni-C

alloys’, Acta Metallurgica et Materalia, 1991, 39, 1123–1131.

190. S. Uehara, S. Kajiwara, and T. Kikuchi: ‘Origin of abnormally large tetragonality of martensite

in high carbon iron alloys containing aluminum’, Transactions of JIM, 1992, 33, 220–228.

191. G. F. Bolling, and R. H. Richman: ‘Continual mechanical twinning Parts III, IV’, Acta Metal-

lurgica, 1965, 13, 745–757.



328 NOTES

Notes
1The γ→ ε transformation and martensitic transformation in ordered Fe3Be (simple shearing) [191] are examples where

the transformation strain is an invariant-plane strain.
2The assumption of the exact KS orientation means that there was no invariant line in the interface, an the martensite

modelled was not a three-dimensionally enclosed plate.
3Notice that a combination of two non-coplanar invariant-plane strains gives an invariant-line strain, the invariant-line

lying at the intersection of the two invariant-planes.
4This would be the invariant line in the α′/γ interface. The interfacial dislocations would have their line vectors parallel

to this invariant line.
5This is evident from Figure 5.8b where there are two different undistorted lines in the plane of the diagram.
6The matrices can be converted from the basis F to γ using a similarity transformation. Since fi ‖ ai we find that (F S F) =

(γ S γ).
7The actual magnitude is dependent on the exact thermodynamic model used for the calculations. This is particularly

the case with martensite since the equilibrium data measured at high temperatures have to be extrapolated to much lower

temperatures. Any analysis should therefore be internally consistent in the model and data used, but this has not always been

the case in the published literature.
8We have not considered this term before. It comes from the Bowles and Mackenzie theory where a small uniform

dilatation is in principle permitted. Experiments to date have not revealed such a dilation.
9Similar observations have been reported for martensitic transformation in TiC, Chapter 11.

10The fault energy would in fact have to be negative in order for the partial dislocations to overcome any lattice friction,

such as that arising from the Peierls barrier to dislocation motion.
11A cubic structure will be mechanically stable if C11 −C12 > 0, C11 +2C12 > 0 and C44 > 0.
12 This statement, which is commonly made, is true only when the observations are made with an ordinary time resolution,

i.e. no better than about a millisecond. More precise measurements must obviously reveal that athermal martensite takes time

to form. Thus, Thadhani and Meyers [138] found that martensite normally considered to be athermal exhibits isothermal

character in a microsecond regime.
13 Not all martensite forms in this way; the morphology of lath martensite is in the form of packets of parallel plates. There

do not appear to be any theoretical treatments for the kinetics of lath martensite.
14 Autocatalysis refers to the case where the formation of one plate stimulates the nucleation of many others. This can

lead to a sudden burst of transformation. The cascade of transformation usually is limited to an individual grain of austenite.
15This is analogous to the explanation of Hall and Petch for the decrease in yield strength at the grain size becomes coarser.



6 Bainite

6.1 MICROSTRUCTURE

Bainite is a two-phase, or sometimes a three-phase mixture, but its defining feature is the platelet

of ferrite that determines the evolution of the remaining components of its structure. The platelets

always are found to be thinner than the wavelength of visible light, Figure 6.1.1

In upper bainite (αub), the platelets may be separated in part by austenite, or if the transforma-

tion time is sufficient, by cementite. This austenite could, during cooling from the transformation

temperature, transform in part into martensite.

(a)

(b)

Figure 6.1 The platelets of bainite

are finer than can be resolved using

optical microscopy and it would not

be possible to determine the phases

present without diffraction data.

Prolonged transformation would cause

the regions between the αb platelets

to decompose into Fe3C and ferrite

depositing epitaxially on to the αb.

(a) Structure of upper bainite in

Fe-0.095C-1.63Si-1.99Mn wt%

transformed at 400 ◦C for 800 s.

Micrograph courtesy of L. C. Chang.

(b) Lower bainite in Fe-0.3C-

4.08Cr wt% transformed at 435 ◦C for

10 min.

Lower bainite (αub) has the distinction that additional carbides are found within the platelets as

well as between them. The precipitation within the platelets precedes that from austenite. This is

because the driving force for precipitation from supersaturated ferrite is much greater; this also

raises the possibility of metastable transition-carbides forming within αlb instead of cementite, in

329
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perfect analogy to the tempering reactions that are established for martensite. Like upper bainite,

the precipitation from austenite can be slow or can be suppressed entirely by appropriate alloying,

in which case the austenite can be retained wholly or partially depending on its MS temperature.

The mechanism of the bainite transformation is in essence simple, so it is appropriate to set the

scene before dwelling into detail. The evidence supports a binding similarity with martensitic trans-

formation, but moderated by the smaller driving forces and somewhat increased atomic mobility at

T >MS. The displacive mechanism of transformation ensures that the shape of bainitic ferrite is that

of a thin plate, as established using a high-resolution two-surface analysis, Figure 6.2a [1, 2]. Exper-

iments like these can be done using light microscopy for martensite or Widmanstätten ferrite which

can form coarse plates, whereas the individual platelets of bainite are always fine by comparison.

(a) (b)

Figure 6.2 (a) A two-surface image of an ion-beam machined sample showing in three dimensions the plate-

shaped bainite – reproduced with permission of Elsevier, from Costin et al. [1]. (b) Atomic force microscope

image of the displacements caused by individual plates of bainite at the free surface of austenite [3]. Each plate

has a lenticular shape ending at a sharp tip and is associated with a shear displacement that causes the plastic

deformation in the adjacent austenite (arrowed).

Experiments to characterise the displacements accompanying the growth of individual platelets of

bainite also require a high resolution technique to avoid averaging over intervening phases. Fig-

ure 6.2b shows an atomic force microscope image of a single crystal of austenite which was polished

flat and then transformed into bainite. The displacements are invariant-plane strains with s ≈ 0.26

and ζ estimated to be ≈ 0.03 [3]; given the typical aspect ratio of about 0.02 for bainite plates,

the stored energy due to an elastically accommodated plate is evaluated as ≈ 400Jmol−1; the mag-

nitudes of the strains are similar to those accompanying the γ → α′ martensitic transformation,

Table 7.2. There is clear evidence for irregular deformation in the austenite adjacent to the αub-

platelets; furthermore, Figure 6.3a shows the large dislocation density in both phases, γ and αub in

contact at the interface, akin to the dislocation tangles found at α′/γ interfaces [4]. When a platelet

of bainite forms, the plastic relaxation of the austenite and associated creation of defects has the

effect of stifling the glissile interface so individual platelets are limited by transformation-driven

mechanical stabilisation, even in the absence of impingement with hard obstacles such grain bound-

aries.
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(a) (b)

(c)

Figure 6.3 (a) Dislocation debris at the γ/αub interface due to plastic accommodation effects. (b) A sheaf of

bainite consisting of microscopic platelets (often called subunits [5, 6]). which clearly show a lenticular shape

with sharp tips consistent with the minimisation of strain energy (p. 288). The sample is transformed partially,

so the dark regions are martensite and the films between the platelets are retained austenite. (c) Montage of

a bainite sheaf, the upper part being a continuation of the lower image. There are myriads of platelets, all of

approximately the same size and orientation [7].

The arrest of the platelets has been modelled using the mechanical stabilisation theory described

in Section 5.9.2 [8]. It is predicted therefore that the subunits will tend to become more slender as

the driving force is increased because the onset of mechanical stabilisation is delayed. The conse-

quences of the growth arrests are dramatic, leading to a refinement of the effective grain size; what

appears in an optical microscope to be a single plate of bainite actually is an organised cluster of

platelets when examined at a greater resolution, Figure 6.3b,c [7]. The effective grain size is defined

by the mean free slip-distance, which is about twice the thickness of the platelets.

The individual platelets are referred to as subunits, organised into clusters known as sheafs [5, 6];

the sheaf is not a homogeneous entity but rather a mixture with γ, θ or both located between the

subunits. When the sheaf is a mixture of γ+αb, it is a bicrystal because all the αb subunits are

connected in the same crystallographic orientation and the austenite in which they grow percolates

throughout the structure of the sheaf [9].

It remains to explain the organisation of the subunits within a sheaf. The process begins with het-

erogeneous nucleation at an austenite grain surface or an intragranular inclusion. Once the ini-
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tial platelet is arrested, the local transformation event is propagated by the stimulation of further

platelets, largely at the tip of the original one. This is because the strain field and better elastic ac-

commodation near the tip of a lenticular plate favours the formation of another with the same shape

deformation [10] combined with the easier dissipation of the partitioned-carbon diffusion field at

the tip of the lenticular subunits may also help. That the former is probably the controlling factor is

evident from observations that a subunit-sheaf structure can be induced in martensite that grows in

severely deformed austenite at sub-zero temperatures, Figure 6.4 [11].

Figure 6.4 Fe-29Ni-0.26C wt% pulled at −11 ◦C in tension to an elongation of 71%, showing the morphol-

ogy of martensite that forms in the deformed austenite. The martensite plates have broken up into subunits

rather like the sheaf of bainite in Figure 6.3. The alloy transforms normally into coarse lenticular α′-plates in

undeformed austenite on cooling to −60 ◦C. Micrograph courtesy of Professor Tadashi Maki.

The thickening of a sheaf occurs by subunits stimulated at the sides of the original platelet, albeit

at a smaller rate. This makes the shape highly anisotropic (Figure 6.3e), in fact plate-like in three

dimensions [12], with an averaged shear strain of just 0.129 [13]. The averaging is over the com-

posite structure of the sheaf consisting of individual αb platelets, each of which has a much greater

shear strain, and the other phases such as austenite or carbides that lie between the subunits. This

constitutes a subtle mechanism of mitigating the strain energy by avoiding thick bainite platelets.

6.2 MORE ABOUT THE MECHANISM

To understand other features of the transformation, it is necessary first to consider the atomistic

mechanism; the shape deformation caused by bainite growth and the transformation temperatures

involved rule out the diffusion of host or substitutional solutes. This has been verified repeatedly
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using atom probe measurements which show a flat distribution of the Fe/X atom ratio across the

αb/γ interface [pp. 27-31, 14]. However, the same technique reveals at the point of examination

that some of the carbon has partitioned into the austenite. There is no segregation of any species

to the αb/γ interfaces in the untempered state, consistent with the high level of coherency in the

interface implied by the shape deformation.

diffusionless growth

titions ns
itates

itates itates

high transformation
temperature

low transformation
temperature

Figure 6.5 Diffusionless growth is followed by the partitioning of some of the excess carbon into the resid-

ual austenite and possibly by the precipitation of carbides from supersaturated ferrite. In the latter case, the

transformation results in lower bainite. When the composition of the austenite reaches an appropriate concen-

tration, it becomes possible for cementite to precipitate between the platelets of ferrite.

Consider the case where bainite in the first instance grows without diffusion, Figure 6.5. At the tem-

peratures where it typically forms, tempering reactions can be triggered rapidly after the initial rapid

transformation event. The most rapid of these are the partitioning of carbon from the supersaturated

αb into the residual austenite and the precipitation of carbides from that ferrite. The latter reaction is

common during the tempering of martensite and often involves first the precipitation of fine particles

of cementite or transition carbides such as ε, η and χ (Chapter 9); the crystallography of transition

carbide precipitation is identical in tempered martensite and lower bainite. Precipitation from the

carbon-enriched austenite is slower,2 the original austenite films decomposing into elongated par-

ticles of cementite and ferrite that is deposited epitaxially on to the pre-existing αb. As shown in

Figure 6.5, the upper and lower bainite are distinguished by the absence or presence respectively,

of carbides within the αb platelets, the determining factor being the competition between carbon

partitioning and carbide precipitation.

The evolution of the structure of bainite shown in Figure 6.1 in not a continuous process. There

are distinct stages that can be studied experimentally in isolation. Furthermore, a good deal of the

technology of sophisticated steels depends on the ability to terminate the reaction at different points
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in the sequence:

upper bainite: γ → γ+αub,supersaturated → αub,less saturated + γ′

↓
αs +θ

↑
lower bainite: γ→ γ+αlb,supersaturated → αlb,less saturated + ε,χ,η,θin ferrite + γ′

where γ′ represents carbon-enriched austenite and αs the secondary ferrite that precipitates epitax-

ially on to the pre-existing bainitic ferrite. The stages involved are now discussed in detail.

6.2.1 STAGE 1: VESTIGES

The first stage, the plate that forms without any change in composition, is the most difficult to iso-

late, but there are extraordinary vestiges of this initial event that prove the mechanism. Atom probe

investigations have always revealed carbon concentrations in bainitic ferrite that are far in excess

of equilibrium concentrations, thought originally to be located at dislocations [15–25]. The first ob-

servation using methods where the concentration can be measured in defect-free solid solution was

by Pereloma et al. [26], followed shortly afterwards by Caballero et al. [27, 28]. The concentrations

observed are far greater than expected from equilibrium. Figure 6.6a shows data from an atom probe

experiment, collected from regions that are free from defects. Although the measured concentrations

are less than x, they are much greater than expected from equilibrium. The excess carbon persists in

the ferrite even after holding at the transformation temperature of 200 ◦C for 250 h, so it is not the

mobility of the carbon that prevents it from partitioning into the residual austenite.

(a) (b)

0 0.5 1.0 1.5 2.0
Carbo

 / 
°C

0

400

800

Figure 6.6 (a) Carbon concentration in solid solution within bainitic ferrite as a function of transformation

time at 200 ◦C, Fe-1C-1.5Si-1.9Mn-1.3Cr-0.26Mo wt%. Adapted from Garcia-Mateo et al. [29]. (b) Calculated

phase diagram for the equilibrium between body-centred tetragonal ferrite and austenite. After Jang et al. [30].

The explanation for the reluctance of the carbon to partition from αb lies in the fact that the Bain

strain leaves all the carbon atoms inherited by the αb on one sub-lattice of the interstices, making the

unit cell tetragonal in the first instance (Section 5.10); the tetragonal cell of bainite has been verified

experimentally using a number of techniques [29, 31–36]. As a consequence, the equilibrium to
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be considered is between the body-centred tetragonal ferrite (αbct) and austenite, not that between

bcc-ferrite and austenite. Figure 6.6b shows a calculated Fe-C diagram for the αbct/γ equilibrium

[30]; it is evident that the solubility of carbon is increased significantly relative to bcc-ferrite.

An alternative explanation has been proposed that carbon atoms associate with host vacancies in the

αb and that this reduces the diffusion coefficient of carbon sufficiently to explain its retention in the

plates [37]. However, it is established that the fraction of carbon atoms that pair with host vacancies

is negligibly small (Section 3.5.3), so small that it cannot perceptibly influence the diffusivity of

carbon or iron atoms in the ferrite [38].

6.2.2 STAGE 2A: CARBON PARTITIONING

The decarburisation of bainitic ferrite can be swift, depending on the transformation temperature

and the thermodynamic state at the interface with austenite. Consider a plate of thickness zt with

a one-dimensional flux of carbon along z normal to the α/γ interface, originating at the interface

and positive in the austenite [39]. Mass conservation at the point where decarburisation has been

achieved gives [40]:

1

2
zt(x− xα) =

∫ ∞

0
[xγ{z, td}− x] dz (6.1)

where xα is the concentration that will persist in the ferrite at the termination of decarburisation,

td the time to decarburise the ferrite plate and xγ{z, td} = x
γ
I at z = 0. The diffusivity of carbon in

austenite is slower than in ferrite, it is assumed that the rate of decarburisation is determined by

the flux in the austenite. The concentration x
γ
I in austenite at the interface is assumed to remain

constant for times 0 < t < td, although it must eventually decrease as homogenisation occurs. The

concentration profile in the austenite is given by

xγ = x+(xγI − x)erfc

{
zt

2(Dtd)
1
2

}

(6.2)

which on integration yields:

t
1
2

d =
zt(x− xαI )π

1
2

4D
1
2 (xγI − x)

. (6.3)

It remains to determine the terms xαI and x
γ
I . They could be set to the paraequilibrium concentrations

xαγ and xγα respectively but the former is particularly difficult to justify because the diffusivity

within the ferrite is so much more rapid than in austenite; this would lead to an underestimation

of td. A finite difference method can be used instead that allows xαI to vary freely down to a limit

which may be the paraequilibrium solubility in ferrite or some higher concentration given that it is

now known that αb can retain a substantial excess of carbon in solution during the early stages of

transformation. Figure 6.7a shows that the td can be very small at the typical temperatures where

bainite forms; these particular data assume x
γ
I = xγα, but this can be relaxed [41] although the

outcomes are not substantially different.

The modelling of the partitioning of carbon from supersaturated plates has had a resurgence since

the invention of the quench and partitioning process [43–45]. In this, austenite is partially trans-
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(a) (b) Carbon

Figure 6.7 (a) The time to decarburise a plate of bainitic ferrite of thickness 0.2µm, calculated using a finite

difference method assuming that the concentration eventually diminishes to xαγ [42]. (b) Multiple possibilities

for selecting austenite and ferrite compositions that allow the chemical potential of carbon to be uniform.

formed into martensite and the two-phase mixture is then heated to allow carbon from the martensite

to partition into the austenite,3 the goal being to stabilise the latter. The compositions of the marten-

site and austenite at the interface are set to ensure that the µγ
C = µα

C though µγ
Fe 3= µα

Fe. The scenario

is illustrated in Figure 6.7b where it is clear that the composition-set xα and xγ cannot be selected

uniquely. Additional conditions are therefore required to ensure that the average composition of the

steel lies between those of the two phases and that mass balance is satisfied:

xC 8 xα
C and x

γ
C (6.4)

NC = N
γ
C +Nα

C (6.5)

where NC is the number of carbon atoms in the phase identified by the superscript, and NC is the

total number of carbon atoms. The condition outlined in Relation 6.4 is illustrated in Figure 6.7, and

since during quenching and partitioning, Nα
Fe and N

γ
Fe are fixed, Equation 6.5 leads to:

NC

NFe +NC
=

Nα
Fe

NFe

(
Nα

C

Nα
Fe +Nα

C

)

+
N

γ
Fe

NFe

(
N

γ
C

N
γ
Fe +N

γ
C

)

so that xC = xα
α xα

C + x
γ
γx

γ
C (6.6)

where xα
α and x

γ
γ represent the mole fractions of the ferrite and austenite respectively. With these

conditions, the partitioning times are not essentially different from those reported in Figure 6.7a.

6.2.3 STAGE 2B: PRECIPITATION FROM FERRITE

Matas and Hehemann [46] proposed that the transition from upper to lower bainite depends on the

competition between the partitioning of excess carbon and precipitation of carbides from the su-

persaturated ferrite. If the former is more rapid than the precipitation reaction, an upper bainitic

microstructure is inevitable (Figure 6.5). Lower bainite occurs when td > tθ where tθ is the time to

precipitate a significant amount of cementite (or in the present context, transition carbides of iron).

This simple criterion is able to explain quantitatively the transition between the two microstructures
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of bainite if tθ can be determined [47]. Referring to Figure 6.8, suppose that in a series of exper-

iments, the transformation temperature is reduced at a constant carbon concentration. Then three

possibilities exist as the isothermal transformation-temperature is reduced:

• At low concentrations, pearlite gives way to upper bainite and then to martensite, with no

intervening lower bainite. This is because the carbon concentration is small enough to let

partitioning prevent precipitation, i.e. tθ > td for all temperatures where bainite forms.

• In a narrow concentration range (0.34-0.39 wt%) it is possible to transform isothermally

into pearlite at the highest temperature, followed by αub, then αlb and finally α′.

• Upper bainite does not occur at any temperature because the carbon concentration is so

large that tθ < td for all concentrations greater than ≈ 0.4wt%.

These predictions are consistent with experimental observations on Fe-C alloys [48–51]. If in a

low-carbon steel, the austenite is enriched in carbon during transformation, then αub forms first

to be followed by αlb. It is emphasised that the comparison between td and tθ is not binary; the

two processes occur simultaneously but in some cases one dominates over the other and hence the

observed differences in microstructure.

0 0.2 0.4 0.6

200

400

600

Carbo

 / 
°C

Figure 6.8 The calculated upper-

bainite start, lower-bainite start and

martensite-start temperatures in Fe-C as

a function of the carbon concentration.

After Takahashi and Bhadeshia [47].

6.2.4 STAGE 3: TERMINATION

The final stage of the reaction, γ′ → αs + θ is sensitive to the substitutional solute content of the

steel. It is well-established that the precipitation of cementite can for all intents and purposes be

suppressed completely by adding ≈ 1 wt% of silicon or aluminium to the steel. This extraordinary

retardation is because the cementite is forced at low temperatures to form under paraequilibrium

conditions, thereby trapping Si as it grows [52]. Given these conditions, cementite precipitation can

become impossible if the trapping reduces the driving force towards zero [53].

The chemical composition of the cementite can change from its paraequilibrium state during sub-

sequent heat treatment. Certain steels used in the power generation industries have very large com-

ponents made from bainitic steel, which then serve at mean temperatures ≈ 560 ◦C for periods of

25 years or more. The enrichment of cementite during service by solutes such as chromium can
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then be used forensically as an indicator of the remaining creep-life of the component [54–56]. The

process of cementite enrichment is rather like the reverse of the partitioning of carbon from bainitic

ferrite; it can therefore be treated using Equation 6.3 with appropriately modified concentration and

diffusion terms [40].

The reaction γ′ → αs +θ can also be avoided by limiting the transformation time in alloys that do

not contain significant amounts of cementite suppressing solutes. Figure 6.9 shows such a case for

an alloy containing only 0.05 wt% of carbon, transformed isothermally at 600 ◦C for just 30 s; the

bainite platelets are separated by thin films of retained austenite, which on prolonged holding at the

transformation temperature decompose into cementite [57].

(a) (b)

Figure 6.9 Fe-0.05C-1.55Mn-0.12Si-0.1Nb wt% transformed isothermally at 600 ◦C for 30 s and quenched

to ambient temperature. (a) Bright field image showing bainite plates with intervening retained austenite that

is in the form of films but not continuous given the small carbon concentration. (b) Corresponding dark field

image of retained austenite. After Yan and Bhadeshia [57].

From a technological point of view, it is of considerable interest to prevent the γ′ → αs +θ reac-

tion. When the transformation-induced plasticity steels were first invented [58], they were rich in

expensive alloying elements to ensure a fully austenitic state at ambient temperature, for example,

Fe-0.3C-8Ni-4Mo-2Mn-2Siwt% [59]. With bainite in which cementite precipitation is suppressed,

it becomes possible to stabilise the austenite in a low-alloy steel with the carbon that is partitioned,

so that the average concentration of carbon is small even though xγ ≈ 1.2wt%. This gave rise to

commercially viable TRIP-assisted4 steels and cast irons that have enjoyed tremendous commercial

success because of their low cost and the ability to mass produce without compromising properties

[14].

The theory of the bainite transformation as summarised in Figure 6.5 has been a contributing factor

in the design of these affordable TRIP-assisted iron alloys. It permits the calculation of the volume

fraction and chemical composition of the austenite, assuming that cementite precipitation from γ′

is suppressed. In that case, the formation of bainitic ferrite must stop when diffusionless growth be-

comes impossible. Figure 6.10a shows that the T0 curve is the locus of all points on the temperature

versus carbon concentration plot where austenite and ferrite of the same composition have identical

free energies. The T ′
0 curve is analogous but accounting for any stored energy, primarily due to the

shape deformation. The transformation to bainite must then cease when xγ is equal to the concen-

tration xT ′
0

given by the T ′
0 curve at the transformation temperature. In practice the distribution of
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partitioned carbon in the austenite is not likely to be homogeneous [46, 60, 61] so there will be

some scatter, but the important point is that the concentration xT ′
0
- xAe3 so the reaction will remain

thermodynamically incomplete; there will be no further bainite generated by prolonged holding at

the transformation temperature.5

The process of isothermal transformation is illustrated in Figure 6.10b, where the formation of

each plate followed by partitioning means that successive plates must grow in enriched austenite,

with transformation coming to a halt when xγ = xT ′
0
. This limit is reached at a later stage when

the transformation temperature is lower, but there also is an upper limit x = xT ′
0

beyond which no

bainitic transformation can occur even though that temperature is in the two phase α+γ field.6

Many techniques and alloys have been studied to validate this concept, the incomplete reaction

phenomenon and the implications that follow on the time-temperature transformation diagram [14].

An important outcome is that it becomes possible to calculate many aspects of the microstructure

in steels where the γ′ → αs +θ reaction is suppressed. The maximum volume fraction of bainite is

then given by the simple application of the lever rule:

V
αub
V ≈

xT ′
0
− x

xT ′
0
− xαub

, V
γ′

V = 1−V
αub
V (6.7)

where V
γ′

V is the fraction of residual austenite at the transformation temperature, with carbon con-

centration xT ′
0
; the amount of this retained to ambient temperature can in turn be estimated using the

Koistinen and Marburger Equation 5.9, with MS being that of the austenite with its enriched com-

position. Therefore, the phase fractions, phase compositions of αub, γr and α′ can all be estimated,

forming the basis of the design of TRIP-assisted steels. A similar method can be used to calculate

the thickness of the austenite films between adjacent bainite platelets, by assuming that the carbon

diffusion field due to an existing plate of ferrite prevents the close approach of another parallel plate

because the T0 condition is violated [62].



340 Theory of Transformations in Steels

(a)

(b)

(c)

Figure 6.10 (a) Illustration of the T0 line, which represents the locus of carbon concentrations where austen-

ite and ferrite of the same composition have identical free energy, with the T ′
0 curve incorporating the effect of

strain energy due to the shape deformation. Also illustrated are the Ae1 and Ae3 boundaries given by the com-

positions where the α and γ free energy curves share a common tangent. (b) A schematic plot of temperature

versus the carbon concentration of austenite. x is the concentration in austenite prior to transformation. Bainite

plates that grow without diffusion and then partition carbon are shown; this can only continue until xγ = xT ′
0
.

(c) Experimental data (Fe-0.43C-3Mn-2.12Si wt%) showing the composition of the austenite at the point that

reaction ceases. In (b,c), the Ae′3 curve is equivalent to Ae3 but for the paraequilibrium state.

6.3 KINETICS

It can be more revealing to deal simultaneously with a variety of transformations rather than to

consider each in isolation. For this reason, the quantitative description of the nucleation of bainite

is deferred to Section 7.6 where it is shown that bainite and Widmanstätten ferrite develop from the

same nucleus and that it is the conditions that prevail during growth that make them distinct. They

both require carbon to partition at the nucleation stage and the relationship between the activation

energy for nucleation and the driving force indicates a mechanism consistent with that by which

martensite nucleates, i.e., a manifestation of dislocation dissociation.

This description applies to the initial nucleation event in the development of a sheaf, which then

multiplies by autocatalysis where bits of the mechanically stabilised αb/γ interface are able to break

away and develop into further lenticular subunits of transformation. The initial event can occur at

the austenite grain surfaces or intragranularly on appropriate non-metallic inclusions, Figure 6.11;

the sheaf morphology develops in both cases as long as the austenite grain size is large enough but

both follow an identical thermodynamic framework [63].

Because bainite propagates by a subunit mechanism, the lengthening rate of a sheaf is bound to be
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Figure 6.11 Fe-0.052C-0.44Si-1.51Mn-1.52Ni-0.41M0-0.66Cr wt% and 411 parts per million of oxygen.

Partial transformation at 530 ◦C following austenitisation at 1350 ◦C. Bainite sheaves develop intragranularly

following nucleation on oxide particles. Intragranularly nucleated bainite is sometimes referred to as “acicular

ferrite”. Micrograph courtesy of Gethin Rees.

slower than that of a subunit, with

vsheaf =
vsubunit

1+(∆t/tc)
(6.8)

where tc is the time taken for a subunit to grow to its final length and ∆t is the time taken to

stimulate the next subunit. vsubunit is the average lengthening rate of a subunit, which because of

its fine scale has been measured using a technique such as photoemission electron microscopy,

which has revealed the rate to be some three orders of magnitude greater than expected from carbon

diffusion-controlled rate [64]. Measurements made at lower resolutions should be interpreted to

represent sheaf growth; the first such data are due to Speich and Cohen [65] who used hot-stage

optical microscopy to show that the lengthening rate is constant and that the width develops in

proportion to the length, as might be expected from strain energy considerations. The same rationale

can be applied to the observation that the aspect ratio of the sheaf increases as the transformation

temperature is reduced, given the greater driving force available at lower temperatures.7 An analysis

of low-resolution observations indicates that sheaf lengthening rates also are greater than expected

assuming carbon-diffusion control [66].

The growth rate of an individual subunit can be treated in the same manner as that of martensite,

but is expected to be retarded by the plastic collapse that dominates the development of structure.

Although martensitic transformation can be rapid, plates can grow slowly when limited by disloca-

tion effects at small driving forces [67, 68]. Figure 6.12 compares the isothermal lengthening rates

of bainite sheaves and martensite laths to show that they can be comparable. The bainite data cover

a much greater range of temperatures but it has been shown in all cases that the growth rate if faster

than that expected from carbon diffusion-control [66].

Although there has been no theoretical treatment of the lengthening rate as a function of the plastic

accommodation, the resistance to interface motion is defined by τS (Equation 5.36). In diffusion-

less, displacive transformations where interfacial dislocations benefit from thermal activation, the
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Figure 6.12 The data for the length-

ening rate of bainite sheaves are from

[Figure 6.16, 14] covering a range of

steels. Those for lath martensite are

from [67], for a Fe-21Ni-4Mn alloy

transformed isothermally at −80 ◦C.

velocity of the interface is expressed in a form similar but not identical to Equation 4.64 [69]:

v = vo exp

{

−G∗
(

1−
[

GI

G′
I

] 1
2
)/

kT

}

(6.9)

where vo is set at 30 m s−1 [70], G′
I = 1.22×10−3Es Jm−3 [69] and G∗ = 0.31Va J; all the other terms

have been defined previously. If the evolution of the dislocation debris as a function of the length of

the subunit is known, then the free energy driving the interface, GI, can be adjusted accordingly to

predict arrest using the additional theory outlined in Section 5.9.2.
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Notes

1Historical and evolutionary aspects of bainite have been described elsewhere [14, 71] in considerable depth so will not

be reproduced here.
2A simple calculation of free energy changes explains this slow rate. For a Fe-0.4C wt% alloy transformed at 400 ◦C,

∆Gα′→α+θ =−688Jmol−1. Assuming that the carbon-enriched residual-austenite has a much greater carbon concentration

of 1.2 wt%, ∆Gγ→γ′+θ = −482Jmol−1, which is a significantly smaller magnitude. The difference between the two cal-

culations becomes much greater as the transformation temperature is increased. At 500 ◦C there is no driving force for the

precipitation of cementite from the austenite.
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3Matas and Hehemann first attempted to partition carbon from martensite into residual austenite by tempering at a rela-

tively low temperature [46, 72].
4The term TRIP-assisted is used to indicate that the austenite retained in such alloys is a minority phase, typically below

a volume fraction of 0.2.
5The T0 concept explains incomplete reaction, but none of the theories that xα increases steadily towards x as the driving

force increases can explain premature reaction termination. If the ferrite does form with a partial supersaturation (xαγ ≤
xα ≤ x) and the driving force to sustain that supersaturation diminishes to zero at some point, then there is nothing to stop

the composition of the ferrite adjusting towards paraequilibrium so that the transformation can continue. Growth with partial

supersaturation is therefore inconsistent with incomplete reaction. Solute drag arguments fail on the same basis. The same

argument applies to the use of the NP-LE curve as a limit because as transformation progresses, tie-line shifting leads to

equilibrium (Chapter 4).
6In fact, the BS temperature may fall below the condition satisfying x = xT ′

0
if the nucleation requirement is not met,

Section 7.6.
7Notice that in the diffusion-controlled lengthening of plates, the thickness increases parabolically with time because of

the sideways accumulation of solute.





7 Widmanstätten ferrite

7.1 INTRODUCTION

Widmanstätten ferrite (αW) gets its name from the plate-shaped crystals that are arranged in patterns

reminiscent of the macrostructures found in some meteorite specimens. The patterns were noticed

in 1808 by Alois de Widmanstätten of the Imperial Porcelain Works in Vienna, on the Hradschina

meteorite. In 1900, Osmond reported similar patterns on the head of a steel ingot [1]. This may be

where the analogy between meteoritic αW and that in steels ends, because the chemical composi-

tions of the two varieties are so dramatically different. For obvious reasons, the evolutionary state

of the Widmanstätten ferrite in meteorites is ill-defined; is it the case that the substitutional solute

content was altered during cooling after the growth of the giant plates of meteoric αW?

In steels, the plates that nucleate at the austenite grain boundaries are designated primary whereas

others that develop from ferrite allotriomorphs are called secondary. Widmanstätten ferrite plates

have a lenticular edge with the overall shape replicating a thin wedge. They are typically a few

micrometres in width and lack internal structure; this is why in etched metallographic samples they

usually appear the same white colour as allotriomorphic ferrite (Figure 7.1). In contrast pearlitic

and bainitic microstructures have, on the same length scale, considerable substructure not resolved

in an optical microscope, causing them to etch dark.

Figure 7.1 Widmanstätten ferrite

plates emanating from one side of

a prior-austenite grain boundary with

the remaining austenite transforming

into pearlite during cooling. Micro-

graph courtesy of Rolando M. Núñez

Monrroy of the Pontifical Catholic

University of Peru.

Widmanstätten ferrite is structurally homogeneous. The mechanism of transformation is displacive

so the plates exhibit a reproducible combination of irrational habit-plane, orientation relationship

and shape deformation with the parent austenite. Secondary αW plates therefore can initiate only

from allotriomorphic ferrite (α) that happens to be appropriately orientated with the austenite. The

habit plane, orientation relationship and shape deformation are mathematically connected (Chap-

ter 5) so the habit plane is defined uniquely once the variant of the orientation relationship is fixed

by the α. Therefore, a particular allotriomorph of ferrite can develop into just one, or at most two

349
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degenerate variants of Widmanstätten ferrite. This is why colonies of parallel plates form at allotri-

omorphs. Observations using crystallographic orientation imaging show that there frequently are

low-misorientation boundaries between plates of Widmanstätten ferrite and the allotriomorphs from

which they grow [2], because unlike the αW/γ orientation, the α/γ relationship is not constrained

by the need to ensure a glissile interface during transformation. For the same reason, misorientations

within a colony of parallel plates tend to be negligibly small.

The α/γ orientation relationship fixes the habit plane of the αW that can develop from the allotri-

omorph, because p, (αW J γ) and P1 are not independent (p. 272). To mitigate interference with the

diffusion field of the allotriomorph, p must lie at a large angle to the α/γ interface, Figure 7.2. If

it does not, then that part of the α/γ fails to stimulate secondary αW. This also explains why the

secondary Widmanstätten ferrite forms in sets of parallel plates because the habit plane p is fixed by

the orientation of the allotriomorph with the austenite. This condition is relaxed as the transforma-

tion temperature is reduced, because the greater driving force available can permit αW to penetrate

the diffusion field of the allotriomorph even when p has a shallow inclination to the α/γ interface.

(a) (b)

(c)

Figure 7.2 Fe-0.26C-0.23Mn wt% steel transformed isothermally. (a) Widmanstätten plates generally

lengthen at a large angle to austenite grain boundaries. (b) Plates suppressed when the habit plane makes a

shallow angle with the allotriomorphic ferrite. (c) Number of observations of the apparent angle between the

plates and the α/γ grain boundary. Selected data from Fong and Glover, [3]. Angles plotted represent means

within a range of 10◦. Micrographs courtesy of S. G. Glover.

It will be evident in what follows that Widmanstätten ferrite in steels grows under paraequilibrium

conditions, i.e., the iron to substitutional solute ratio remains constant across the transformation

interface, but subject to that constraint, carbon partitions to maintain a uniform chemical potential

in both phases in contact at the interface. It is emphasised, however, that Widmanstätten ferrite is

common in interstitial-free alloys of iron, Table 7.1, during transformation at temperatures below
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T0. Plates of αW remain supersaturated with substitutional solute in Fe-Ni-Cu when other transfor-

mation products show clear arrays of copper precipitation [4]. An important conclusion, therefore,

is that the displacive transformation mechanism is independent of the presence of carbon. Fig-

ure 7.3 shows primary Widmanstätten ferrite plates in a high-purity Fe-Cr-Ni alloy in a partially

transformed sample.

Table 7.1

Widmanstätten ferrite in interstitial-free iron alloys.

Alloy (wt%) Description Ref.

Fe-9.6Cr Secondary αW generated by transformation in the range 670 ◦C
to 700 ◦C. Particularly clear characterisation showing Wid-
manstätten plates in a partially transformed specimen.

[5]

Fe-7.4Cr-1.8Ni Primary and secondary αW generated by transformation in the
range 600 ◦C to 650 ◦C, later verified to be below T0 [6]. Partic-
ularly revealing characterisation over range of scales, with clear
αW plates shown in a partially transformed specimen.

[7]

Fe-1.8Cu-4.8Ni αW generated by transformation at 600 ◦C. Interesting observa-
tion that αW retained Cu in solution.

[4]

Fe-9.14Ni αW generated in the temperature range 495 ◦C to 565 ◦C with
T0 = 623± 5 ◦C.

[8, 9]

Fe-15Ni αW generated in the temperature range 372 ◦C to 352 ◦C with
T0 = 503± 5 ◦C.

[10]

Figure 7.3 Widmanstätten ferrite

plates in a partially transformed

sample of interstitial-free Fe-7.4Cr-

1.8Ni wt% alloy. Reprinted by

permission from Springer Nature,

Metallurgical Transactions A, copy-

right 1981, Ricks et al. [7].
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7.2 CRYSTALLOGRAPHY

Widmanstätten ferrite shows all the characteristics of a displacive transformation in which only

the carbon is partitioned during growth. As Christian pointed out [11], the movement of interstitial

atoms such as carbon need not affect the crystallography of the deformation that transforms the

host lattice; it is obvious, for example, that the presence of hydrogen in austenite does not influ-

ence the crystallography of the martensite that forms subsequently. The invariant-plane strain shape

deformation (Figure 7.4) occurs on a habit plane that has irrational indices, thereby constraining

the morphology to that of lenticular plates.1 The crystallographic measurements by Watson and

McDougall [12] are summarised below; as already emphasised, a principal feature of the crystal-

lographic theory of martensite (Chapter 5) is that the habit plane, orientation relationship, shape

deformation and lattice-invariant deformation are not independent variables. The following results

are particularly important in that the variables form a related set, i.e., not measured in independent

experiments as is often the case:

(a) (b)

Figure 7.4 (a) The shape deformation due to Widmanstätten ferrite, as viewed on a polished and transformed

sample; the deformation reveals the lenticular shape of the unhindered plates. (b) Corresponding optical mi-

crograph after light polishing and etching. Notice also the lenticular shape of the Widmanstätten ferrite plates,

tapering to a sharp edge, and the lack of the shape deformation in regions containing allotriomorphic ferrite or

pearlite. After Watson and McDougall [12], reproduced with permission of Elsevier.

For the specific variant of the lattice correspondence

(αW C γ) =

(
1 0 1
1 0 1
0 1 0

)

the habit plane normal is

(p;γ∗) = (0.5057 0.4523 0.7346) ,

with the orientation relationship being irrational but close to Kurdjumov-Sachs (Figure 7.5):

(1 0 1)αW ‖ (0.5916 0.5772 0.5628)γ

[1 1 1]αW ‖ [0.6984 0.7157 0.0001]γ
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and the average magnitude of the shape deformation and direction:

m = 0.36

[γ;d] = [0.8670 0.4143 0.2770].

The displacement vector d does not lie precisely within the habit plane p because it describes both

the shear and dilatational strains, the latter being directed normal to the habit plane.

(a) (b)

Figure 7.5 Stereographic projection, referred to austenite, with an angular span less than 2◦, showing the

irrational orientation relationship between austenite and Widmanstätten ferrite, with respect to the standard

correspondence. (a) Centred on (111)γ with the filled points representing the orientations of (110)αW from

three plates. The mean orientation of (110)αW is plotted as an open circle. (b) Centred on (110)γ, with the

circles representing the (111)αW with the interpretation of filled and open circles as in (a). Reproduced with

permission of Elsevier, from [12].

The measurements reported by Watson and McDougall have the precision to prove that consistent

with the crystallographic theory of martensite, neither the habit plane, nor the orientation relation-

ship, is rational. The orientation relationship is irrational to ensure an invariant-line can exist in the

interface; the habit plane is irrational because a lattice-invariant deformation has to be incorporated

in order to render the macroscopically observed shape deformation an invariant-plane strain. A fur-

ther result is that the lattice-invariant deformation probably is not a simple shear, but consists of a

combination of shears on (1 1 1)γ and (1 1 1)γ in the common direction [1 1 0]γ with the shear

on (1 1 1)γ being dominant. An alternative common shear direction [1 1 0]γ was also found to be

compatible with the results, in which case the shears would be shared nearly equally between the

two planes (cf. two lattice-invariant shears theory, p. 267).

In all their experiments, there was a specific association between a given variant of the habit plane

and a given variant of the orientation relationship. This follows necessarily from the crystallographic

theory of martensite.

In summary, the growth of Widmanstätten ferrite is accompanied by a change in the shape of the

transformed region, characterised as an invariant-plane strain that has a shear component that is

large in comparison with other transformations in steels (Table 7.2). This means that there is a co-
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ordinated motion of iron atoms during the transformation, but given that αW can occur above the

T0 temperature, carbon must partition, making this a truly paraequilibrium transformation. The dis-

placive mechanism is compatible with the partitioning of carbon during growth because the carbon

is in interstitial solution and therefore does not affect the observable consequences of the coor-

dinated transfer of Fe and X atoms across the transformation interface [11]. The transformation

interface must be glissile but its velocity will be limited by the diffusion of carbon in the austenite

ahead of the plate tip. When Widmanstätten ferrite occurs in interstitial-free iron alloys, it grows

below the T0 temperature.

Table 7.2

Shape change due to transformation. An invariant-plane strain here implies a large
shear component as well as a dilatational strain normal to the habit plane. The
strains s and ζ refer to the shear and dilatational components respectively. The val-
ues stated are approximate and will vary slightly as a function of lattice parameters
and the details of crystallography. Only mechanical twins occur in ferrite. Thin plates
refers to lenticular plates with sharp edges. Question marks indicate data that are
not experimentally verified.

Shape Change s ζ Morphology

α Volume change 0.00 0.02 Irregular [13]
P Volume change 0.00 0.03 Spheroidal colonies [14]

αW IPS 0.36 0.02 Thin plates [12]
αb IPS 0.26 0.03 Thin plates [15]

α′ IPS 0.20 0.02 Thin plates [16]

θ IPS ? 0.21 ? 0.16 ? Thin plates

α-twin Shear 1/
√

2 0.00 Thin plates
γ annealing-twin – 0.00 0.00 Facetted

γ mechanical-twin Shear 1/
√

2 0.00 Thin plates

ε IPS 1/
√

8 0.02 Thin plates [17]

TiC IPS 1/
√

8 −0.08 Thin plates [18]

η-carbide IPS 0.21 0.157 Thin plates [19]

7.3 ACCOMMODATION OF SHAPE DEFORMATION

Plates of Widmanstätten ferrite taper to a fine edge (Figure 7.4) in order to accommodate the elas-

tic strain associated with the shape deformation accompanying the change in crystal structure. The

experiments by Watson and McDougall [12] have demonstrated that in the transformed regions of

pre-polished samples of austenite, the surface remains plane but is tilted about the lines of intersec-

tion of the Widmanstätten ferrite plates with the free surface. This tilt is an invariant-plane strain on

the Widmanstätten ferrite habit plane, in which the shear strain is by far the largest component.

The yield strength of austenite is typically less than 100 MPa at the elevated temperatures where

Widmanstätten ferrite grows. Not surprisingly, there is considerable evidence that the shape defor-
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(a) (b)

(c)

Figure 7.6 (a) The accommodating shape deformations due to

two adjacent plates Widmanstätten ferrite. Each component of the

tent-like relief is uniform; the scratches when deflected remain

straight. (b) Plastic accommodation adjacent to a single plate of

Widmanstätten ferrite. The deformation within the plate is uniform

but that in austenite causes the Tolansky interference fringes to

curve, with the most intense accommodation adjacent to the plate.

Reproduced with permission of Elsevier, from [12]. (c) Transmis-

sion electron micrograph of low-misorientation boundary between

accommodating plates [20].

mation induces plastic strain in the adjacent austenite, usually localised on one side of the plate.

Whereas the surface corresponding to the transformed region remains planar during tilting, the

plastic strain in the austenite is not uniform, curving away from the plate. However, when the con-

sequences of the transformation strain are mitigated by the adjacent formation of accommodating

plates, each component of the doubly tilted surface remains planar (Figure 7.6). These plates com-

pensate for each other’s shape deformations, thereby obviating the need for plastic relaxation in

the surrounding austenite. These self-accommodating plates are in similar though not identical ori-

entation in space so there is a low-misorientation interface between them [20]. The probability of

simultaneously nucleating an appropriate pair of plates is smaller than that of an isolated plate so the

αW microstructure tends to be coarse. What appears on an optical microscopy scale to be a single

plates in fact consists of a pair of plates with different habit planes and shape deformations, leading

to the typical wedge shape of Widmanstätten ferrite.

Strains due to the displacements can also be relieved by the reconstructive formation of ferrite in the

influenced region. Watson and McDougall elegantly demonstrated such diffusional transformation

localised at the tips of Widmanstätten ferrite plates and confirmed that this additional transformation

does not exhibit any surface relief.

Because of the variety of ways in which the elastic strains due to the shape deformation is accommo-

dated, the stored energy of Widmanstätten ferrite is much smaller than might otherwise be expected,

at about 50Jmol−1 [20]. This is why the plates are able to form at such small undercoolings below
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the equilibrium Ae3 temperature.

7.3.1 INTERFACIAL STRUCTURE

Transmission electron microscopy of the interface between Widmanstätten ferrite and retained

austenite by Rigsbee and Aaronson [21] has revealed two sets of linear defects, steps that are mono-

or tri-atomic in height and intrinsic dislocations. These observations were suggested originally to

rule out a glissile interface but are correctly interpreted in terms of the framework defined by Chris-

tian and Crocker as follows [22–25].

A semi-coherent interface containing a single array of intrinsic dislocations is considered to be glis-

sile when the dislocations are able to move conservatively as the interface migrates. The intrinsic

dislocations can therefore be pure screws or have Burgers vectors that do not lie in the interface

plane.2 The αW/γ orientation relationship of a reference variant selected for discussion is approxi-

mately [110]γ ‖ [111]αW, (111)γ ‖ (110)αW. For this reference variant, the interface plane charac-

terised has the indices (15 21 9)γ with the intrinsic dislocations having a Burgers vector b ‖ [110]γ,

consistent with the first set of data in [21]. Since the interface is 18◦ from (111)γ, the Burgers vector

of the intrinsic dislocations does not lie in the interface plane. A glissile interface also requires that

the glide planes of these dislocations associated with the αW meet those in the γ edge to edge at

the interface along the dislocation lines. This condition is also satisfied because (111)γ ‖ (110)αW.

Such glide would inhomogeneously shear the volume of material swept by the interface without

altering the parent or product structures; the intrinsic dislocations represent the lattice-invariant de-

formation.

The change in structure as the interface is translated is achieved by the motion of the small steps

that have a mono- or tri-atomic height. These steps can be generated by a series of virtual operations

that associate them with a dislocation character and a strain field. They are not pure steps, nor can

their Burgers vector content be identified with a lattice vector. Their translation is conservative and

are best described as coherency dislocations (Section 5.2.3) which accomplish transformation and

can glide without creating or destroying lattice sites.

The Widmanstätten ferrite interface therefore has all the features necessary to achieve displacive

transformation without requiring diffusion in order to move. The next section describes how the

motion of the glissile interface can be stifled by obstacles. This feature, commonly referred to as

mechanical stabilisation, is unique to displacive transformations.

It is noted in passing that in zirconium, the hydride grows by a displacive paraequilibrium mecha-

nism which is identical to that of Widmanstätten ferrite in steels. The hydride has a crystallography

consistent with the theory of martensite, grows as pairs of accommodating plates, with hydrogen

diffusion towards the hydride during the growth process [26, 27].

7.3.2 MECHANICAL STABILISATION

The observed shape deformation and other characteristics of Widmanstätten ferrite indicate a glissile

interface between Widmanstätten ferrite and austenite. The interfacial dislocations are able to glide,

leaving a transformed region in their wake and causing the deformation. It is natural to expect an
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interface like that to be hindered by obstacles in the form of precipitates or other dislocations present

in the austenite. It follows that the growth process during displacive transformation can be disrupted

or suppressed when it occurs in plastically deformed austenite. This is the mechanical stabilisation

referred to in Section 5.9.2.

The Widmanstätten ferrite transformation can be mechanically stabilised [28, 29]. Not only is the

plate-like microstructure of the Widmanstätten ferrite refined and disrupted when it grows in de-

formed austenite, but the total quantity obtained during isothermal transformation is also reduced,

because the extent of transformation per nucleus is also reduced. Allotriomorphic ferrite growth

is accelerated due to the free energy reduced by the elimination of excess defects in the process,

whereas the same defects hinder the growth of Widmanstätten ferrite by obstructing its glissile in-

terface, Figure 7.7.

(a) (b)

Figure 7.7 Widmanstätten

ferrite in Fe-0.059C-1.96Si-

2.88Mn wt% transformed

isothermally at 560 ◦C. (a) Struc-

ture from undeformed austenite.

(b) Structure from austenite

subjected to 40% strain, showing

how αW is suppressed. Repro-

duced from Larn and Yang [29],

with permission from Elsevier.

7.4 TRANSFORMATION-START TEMPERATURE

Time-temperature-transformation diagrams consist essentially of two C-curves (Figure 7.8), one of

which describes reconstructive transformations where all of the atoms move in an uncoordinated

manner. At temperatures below those at which individual atoms are mobile, the change in crystal

structure is achieved by a homogeneous deformation of the austenite. This displacive transformation

to Widmanstätten ferrite and bainite is represented by the lower temperature C-curve.

ve

ime

Figure 7.8 Schematic time-temperature-transformation

diagram illustrating the two C-curves and the Th temperature.
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The lower C-curve has a characteristic flat top at the temperature Th corresponding to the highest

temperature at which displacive transformations occur at a detectable rate. This temperature must be

controlled by nucleation which always is more difficult than growth because of the disproportionate

amount of free energy consumed in creating new interfaces when compared with that released by

the phase change. It therefore is instructive to examine the magnitude of the free energy change

available at the temperature Th for a variety of steels, assuming implicitly that the nucleation rate at

that temperature is identical for all alloys.

Figure 7.9 shows two sets of data, with each point representing a steel with a unique chemical

composition [20]. The first plot is a calculation of the maximum free energy change ∆Gm (p. 177)

accompanying the paraequilibrium nucleation of ferrite at the temperature Th. Carbon is therefore

allowed to partition at will between the ferrite and austenite. The second set is for the case where

nucleation occurs without any composition change. Since the driving force for transformation must

always be negative, it can be concluded that the nucleation of Widmanstätten ferrite or bainite cannot

occur without the partitioning of carbon.

(a) (b)

Figure 7.9 The free energy change at the temperature Th with each point representing a different steel chem-

ical composition. (a) The free energy change ∆Gm calculated assuming paraequilibrium nucleation. (b) The

free energy change ∆Gγα calculated assuming that nucleation occurs without any change in chemical compo-

sition.

A useful result which follows from the analysis is a method for the estimation of Th for any steel.

The best fit linear relationship describing the data in Figure 7.9a is as follows:

GN = 3.637Th − 2540 Jmol−1 (7.1)

where Th is expressed in ◦C. GN defines the free energy change necessary to nucleate Widmanstätten

ferrite or bainite in any steel. For a particular alloy, the free energy change driving nucleation, ∆Gm,

will be a function of temperature T , the slope of which will in general be greater than that of GN.

The intersection of ∆Gm with GN on a plot of free energy versus temperature then yields Th for

that particular steel. The accuracy of this calculation can be assessed from the scatter illustrated in

Figure 7.9a.

GN is a universal nucleation function which is independent of the steel composition [20], whereas

the dependence of ∆Gm on temperature is determined by the steel composition. Although it is em-

pirical and limited to low-alloy steels, it nevertheless is possible to interpret the function in terms

mechanism, as shown in the next section.
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An important outcome of this analysis is that the dependence of WS or BS on alloy composition

cannot be explained on thermodynamic grounds alone. There is a much greater deviation of the

transformation-start temperature from the equilibrium Ae3 temperature as the transformation is sup-

pressed by alloying to low temperatures, where nucleation becomes more difficult, Figure 7.10.

Figure 7.10 Variation of the tem-

perature Th ≡ WS or Th ≡ BS with the

Ae3 temperature. Th is the highest tem-

perature at which displacive transfor-

mation occurs.

7.5 MECHANISM OF NUCLEATION

A phase that has a tendency to transform does not necessarily achieve that change in a reasonable

time because of the cost of creating the interface surrounding the product particle. This cost scales

with the surface to volume ratio and therefore is largest at the point of genesis when the particle is

small. This presents a barrier to the growth of the embryo, a barrier which in classical nucleation

theory must be surmounted by random fluctuations of structure and composition. These chance

events are called heterophase fluctuations. A few of these fluctuations might be large enough to lead

to a reduction in free energy as the particle size increases, in which case they may progress along

that path. The barrier to the sustained growth of the fluctuation is the activation energy (Section 4.4).

However, the detailed characteristics of the fluctuations responsible for the nucleation of Wid-

manstätten ferrite remain to be determined although there are clues in the linearity of the plot of

GN versus Th shown in Figure 7.9a. The nucleation rate per unit volume will depend on an activa-

tion energy G∗:

IV ∝ ν exp

{

−
G∗

kT

}

(7.2a)

where ν is an attempt frequency and all the other terms have their usual meanings. It follows that

−G∗ ∝ β T where β = k ln{IV/ν}. (7.2b)

Bearing in mind that the temperature Th corresponds to the highest temperature on a time-

temperature-transformation (TTT) diagram where displacive transformation occurs, it may be as-

sumed that the nucleation rate has a fixed value for any steel at its Th temperature. The terms β

therefore becomes a constant if T is replaced by Th giving

−G∗ ∝ Th. (7.2c)
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The activation energy is, as expected, a function of the available driving force which at Th has the

value GN. This leads to the important result that the relationship between GN and Th can only be

linear if G∗ ∝ GN.

Figure 4.8 in Section 4.4 shows that for classical theory, an activation barrier G∗ to nucleation by

heterophase fluctuations. It was deduced there that

G∗ ∝
σ3
αγ

(∆Gchem +∆Gstrain)2
.

Classical nucleation theory based on heterophase fluctuations is therefore unable to explain the

linear dependence illustrated in Figure 7.9a. A consideration of alternative shapes or the inclusion

of strain energy in the calculation of G∗ does not change its inverse dependence on ∆Gm although

the exponent can then reach (−4).

An alternative possibility is that nucleation occurs by the dissociation of existing arrays of glissile

dislocations rather than by heterophase fluctuations (e.g., Olson and Cohen [30]). The activation

energy for nucleation is then that for the motion of the dislocations. This activation energy and its

dependence on driving force can be investigated by resorting to standard deformation theory.3

Dislocations in any crystal occupy equilibrium positions. The successive equilibrium positions are

separated by energy barriers (G∗
O), the effect of which is to introduce a friction stress the magni-

tude of which diminishes with increasing temperature as thermal fluctuations assist the dislocation

to overcome the barriers. However, the stress required for deformation does not decrease to zero

because of an athermal friction stress due to very long range interactions (Figure 7.11). The ap-

plication of an external shear stress τA decreases the magnitude of the activation energy to a new

value

G∗ & G∗
O − (τA − τµ)V

∗ (7.3a)

where V ∗ is the activation volume.

Figure 7.11 Temperature depen-

dence of the stress needed to move a

dislocation at a specified strain rate ε̇1.

The stress at any temperature has two

components, thermal (τth) and ather-

mal (τµ ).

The faults created by the dissociation of the array of dislocations have an energy per unit area, which

by analogy with Equation 5.17, is given by

σf = nρA(∆Gm +Ge)+ 2σγα (7.3b)

where ρA is the moles per unit area of fault plane, Ge is the strain energy per mole and ∆Gm, the

chemical component of the molar free energy change. It is possible for the fault energy to be negative

as ∆Gm becomes negative for metastable austenite. The free energy change then effectively becomes
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the equivalent of the applied shear stress τA on the dislocation array, favouring their dissociation

with

τA =−
σf

nb
. (7.3c)

Substituting Equations 7.3b and 7.3c into 7.3a gives

G∗
︸︷︷︸

activation energy

= G∗
O +V ∗

[

τµ +
ρA

b
∆Gm

︸ ︷︷ ︸

driving force term

+
ρA

b
Ge +

2σγα

nb

]

. (7.3d)

This demonstrates that unlike classical nucleation theory, the activation energy is here proportional

to the driving force. Since ∆Gm is negative below the equilibrium transformation temperature, G∗

decreases as the driving force increases. This direct proportionality was recognised by Magee [31]

in his analysis of the Koistinen and Marburger’s equation for the martensite-start temperature.

It appears therefore that Widmanstätten ferrite nucleates by a mechanism consistent with the dis-

sociation of glissile arrays of dislocations (the so-called pre-existing embryos). This mechanism is

displacive in character.

7.6 RATIONALISATION OF SHEAR TRANSFORMATIONS

The analysis of the driving force available at Th, Figure 7.9a, does not distinguish between bai-

nite and Widmanstätten ferrite, and yet the data all fall on the same trend line. This means that

the two transformations have the same nucleation mechanism involving the partitioning of carbon,

i.e., paraequilibrium nucleation. It is appropriate then to identify Th with either the Widmanstätten

ferrite-start temperature (WS) or the bainite-start (BS) temperature, depending on the free energy

available to sustain the growth of each structure.

Widmanstätten ferrite and bainite have the same nucleus; if the available driving force can sustain

the diffusionless growth of this nucleus, then Th = BS; otherwise Th = WS. Nucleation will occur

at a detectable rate when the temperature is Th is reached because the driving force available for

nucleation then becomes less than GN:

∆Gm ≤ GN. (7.4)

The nucleated phase can develop into Widmanstätten ferrite if a further condition is satisfied, that

the driving force for paraequilibrium growth exceeds the stored energy of Widmanstätten ferrite,

which amounts to about 50 Jmol−1 [20, 32]. If, on the other hand, at the temperature Th, the driving

force for partitionless growth exceeds the stored energy for bainite, then Widmanstätten ferrite is not

favoured and Th = BS (Figure 7.12). These conditions can be expressed in terms of the nucleation

function GN and the stored energy terms for Widmanstätten ferrite (GSW ≈ 50Jmol−1) and bainite

(GSB ≈ 400Jmol−1) as follows:

∆Gm < GN

∆Gγ→α+γ′
< GSW

}

defines onset of αW (7.5)
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∆Gm < GN

∆Gγα < GSB

}

defines onset of αb (7.6)

∆Gγα < Gα′
N defines onset of α′ (7.7)

∆Gγ→α+γ′
is the free energy change accompanying the paraequilibrium growth of αW.4 The stored

energies have their origins primarily in the strain energies due to the shape deformation. The require-

ment for martensite, Gα′
N , has been described in Section 5.5 and could additionally include the con-

tributions due to internal twinning. It is assumed here that for common steels, Gα′
N ≈ 1100Jmol−1,

but as described by Equation 5.8, it depends also on the strength of the austenite, a factor that

becomes important when the solute concentrations are large.

Figure 7.12 A pair of free energy curves (∆Gm and ∆Gγα) for each of a low (A), medium (B) and high

(C) alloy steel. The intersections of these curves with the functions defining nucleation and growth yield the

transformation-start temperatures Widmanstätten ferrite •, bainite • and martensite •. They reveal that not

all transformations are possible in all steels.

Figure 7.12 is particularly interesting in that it predicts that not all of the transformations considered

can occur in all steels. In alloy A which at any temperature has a large driving force because of

its low solute content, αW, αb and α′ can all form at successively lower transformation tempera-

tures. This is because Widmanstätten ferrite is able to nucleate at a temperature where its growth

can also be sustained since the driving force at that temperature can account for the stored energy

GSW. Given that Widmanstätten ferrite is able to nucleate, is follows that so can bainite, making
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it possible to stimulate bainite when the driving force for diffusionless transformation exceeds the

stored energy term GSB. Martensite is triggered eventually at a sufficient undercooling to account

for its diffusionless nucleation and growth at MA
S .

In contrast, when nucleation becomes possible for alloy B, there is sufficient driving force for its

diffusionless growth into bainite. It is predicted therefore that Widmanstätten ferrite cannot form in

that alloy, but further undercooling triggers the martensitic transformation.

In alloy C, both Widmanstätten ferrite and bainite are suppressed because at the nucleation condition

for these phases is only satisfied in the domain where martensitic transformation becomes possible.

This steel can therefore only be martensitic.

These concepts have been applied to study whether it is possible to obtain bainite at about 200 ◦C

in low-carbon steel by alloying with substitutional solutes. Both calculations and experiments prove

that the BS and MS temperatures merge as the substitutional solute content is increased, making it

impossible to obtain bainite in the system studied at temperatures less than 300 ◦C, Figure 7.13.

(a) (b)

Figure 7.13 (a) Calculations using the method illustrated in Figure 7.12 illustrating how the bainite-start and

martensite-start temperatures merge as the substitutional solute content is increased [33]. (b) Experimental data

illustrating the same effect [34]. Note that because these are experimental alloys, the concentrations of carbon

and manganese are not entirely constant across the range of nickel concentrations. The three alloys have the

compositions Fe-0.13C-2.28Mn-4.03Ni, Fe-0.13C-2.27Mn-5.02Ni and Fe-0.20C-2.5Mn-6.74Ni wt%.

7.7 NUCLEATION RATE

The nucleation rate can be expressed as a function of the activation energy using the Arrhenius type

equation which is characteristic of a thermally activated process:

I = b8 exp

{

−
G∗

RT

}

= b8 exp

{

−
b9 + b10∆Gm

RT

}

(7.8a)

where the bi are constants and the equation recognises the linear dependence of the activation energy

on the driving force according to Equation 7.3d. Noting the earlier assumption that the nucleation

rate at Th is identical for all steels, the equation can be rewritten in terms of the undercooling below
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Th:

I = ITh exp

{

−
b9∆T

RTTh
−

b10

R

(
∆Gm

T
−

GN

Th

)}

(7.8b)

where ITh , b9 and b10 are constants to be determined by fitting to experimental data. ∆T = Th −T is

the undercooling below the Th temperature.

Consider now two steels designated A and B; using Equation 7.8a the ratio of their Widmanstätten

ferrite nucleation rates at their respective start temperatures is given by

IA

IB
= exp

{

−
(b9 − b10b7)(WSB −WSA)

RWSBWSA

}

(7.9)

Since both steels are at their WS temperatures, the ratio must be unity in which case b9 = b7 × b10.

There are therefore only two unknowns in Equation 7.9 which can be reduced to

I = b11 exp

{

−
b9

RT
−

b9∆Gm

b7RT

}

. (7.10)

When I represents the nucleation rate per unit area of austenite grain surface, the constants obtained

by fitting to experimental data are b11 ≈ 7.38× 108 s−1 m−2, b9 ≈ 2.065× 104 Jmol−1 and b7 ≈
2540Jmol−1 [35].

7.8 CAPILLARITY

The growing tip of a Widmanstätten ferrite plate is curved. The addition of n new atoms will there-

fore lead to an increase in interfacial area dO that has to be provided for from the available free

energy. This is equivalent to a relative change in the positions of the free energy curves as illustrated

in Figure 7.14, where σ dO/dn is the additional energy due to the new α/γ surface created as an

atom is added to the α particle. The equilibrium between the ferrite and austenite therefore changes

with the new phase compositions identified by the subscript r for curved interfaces. This is known

as the Gibbs-Thomson capillarity effect [23].

From the approximately similar triangles (ABC and DEF),

µγ
C,r − µγ

C

σ(dO/dn)
=

1− xαγ

xγα− xαγ
(7.11a)

where x is the mole fraction of carbon. The chemical potential of carbon in austenite is µC = µ◦+

RT ln{Γγ
Cx} where Γγ

C{x} is the activity coefficient of carbon in austenite containing a concentration

x of carbon. It follows that

µγ
C,r − µγ

C = RT ln

{
Γγ

C{x
γα
r }x

γα
r

Γγ
C{xγα}xγα

}

(7.11b)

and
Γγ

C{x
γα
r }

Γγ
C{xγα}

=

[

Γγ
C{xγα}+(xγαr − xγα)

dΓγ
C

dx

]/

Γγ
C{xγα}

= 1+(xγαr − xγα)
dln{ΓC{xγα}}

dx
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(a) (b)

D

E

F
B

0 1

Figure 7.14 (a) An illustration of the Gibbs-Thomson effect. xαγ and xγα are the equilibrium compositions

of the ferrite and austenite respectively when the two phases are connected by a planar interface. The subscript

r identifies the corresponding equilibrium compositions when the interface is curved. (b) A magnified view.

µγ
C is the chemical potential of carbon in the austenite which is in equilibrium with ferrite at a flat interface.

µγ
C,r is the corresponding chemical potential when the interface has a radius of curvature r. The distance

AB & σ(dO/dn).

For a finite plate tip radius,

xγαr = xγα[1+(Ψ/r)] (7.11c)

where Ψ is called the capillarity constant [23]. It follows from these relations that

Ψ =
σVα

a

kT

1− xγα

xαγ− xγα

[

1+
d(lnΓC{xγα})

d(lnxγα)

]−1

. (7.12)

This assumes that the α composition is unaffected by capillarity, a reasonable approximation given

that xαγ always is small.

7.9 GROWTH OF WIDMANSTÄTTEN FERRITE

The partitioning of carbon is a thermodynamic necessity when Widmanstätten ferrite forms in steels,

even though the ratio of the iron to substitutional solute atoms remains constant throughout transfor-

mation. The displacive mechanism implies a glissile interface so the rate controlling factor during

growth is expected and found to be the diffusion of the partitioned carbon in the austenite ahead

of the interface [32, 36–39]. Particle dimensions during diffusion-controlled growth vary paraboli-

cally with time when the extent of the diffusion field in the matrix increases with particle size. The

growth rate then decreases with time. The diffusion-controlled lengthening of plates or needles can,

however, occur at a constant rate when solute can be partitioned to the sides of the plates or needles.

Thickening on the other hand, does follow parabolic kinetics due to the sideways accumulation of

solute.

A simple model for the growth of plates can be derived by assuming that the carbon concentration

gradient in the austenite ahead of the plate tip is constant and that the extent of the diffusion field (zd,

Figure 7.15) is equal approximately to the radius at the plate tip. Clearly, more carbon is partitioned

into the austenite as the interface advances; if the carbon concentration xγα is to remain unchanged,
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then the partitioned carbon has to be carried away by diffusion at a rate consistent with that of

partitioning. This condition at the moving interface can be expressed as follows:

(xγα− xγα)v! = D
γ
C(x− xαγ)/zd (7.13)

where v! is the rate at which the plate lengthens. The diffusion coefficient D
γ
C is the integrated

average diffusion coefficient of carbon in austenite, the integration being over the range of carbon

concentration present in the austenite, x to x
γα
r . On substituting the plate tip radius r for zd, it

follows that v! = f1D
γ
C/r, where f1 incorporates the concentration terms in Equation 7.13; the

calculated velocity then increases without limit as the tip radius decreases. However, this neglects

the capillarity effect due to the curvature in the growing interface.

Zener’s model assumes a hemispherical tip to the plate; for a spherical particle dO/dn = 2Vα
a /r

where Vα
a is the volume per atom of ferrite. The driving force consumed by capillarity will be

proportional to r−1. If the tip radius becomes a critical value rc, then all of the available driving

force is dissipated in creating new interface so the growth velocity becomes zero. It follows that the

ratio of the driving force consumed in the capillarity correction to the total available is simply rc/r:

∴ v! =
f1D

γ
C

r

(

1−
rc

r

)

. (7.14)

Figure 7.15 The gradient of concentration

ahead of the interface is constant in this Zener ap-

proximation, so it becomes zero beyond the diffu-

sion distance zd.

Equation 7.14 gives the velocity as a function of the plate tip radius; the function is illustrated in

Figure 7.16. In the absence of capillarity, the velocity increases indefinitely as the plate tip radius

becomes finer since the diffusion distance becomes correspondingly smaller. If capillarity is taken

into account then the velocity goes through a maximum at r = 2rc. This simple analysis of plate

growth is due to Zener and is based on a plate of constant thickness with a hemicylindrical edge of

radius r.

One difficulty with the Zener analysis is that the velocity is found to be proportional to the supersat-

uration f1 whereas for diffusion-controlled growth it should tend to infinity as f1 → 1 because solute

partitioning becomes unnecessary in the limit that xαγ = x. Hillert [40] gave an improved solution

by assuming that the concentration in the plane tangent to the plate tip decays exponentially with

distance normal to the habit plane of the plate. The resulting “Zener-Hillert” equation [41] has the

characteristics expected physically, that at low supersaturations the velocity is proportional to the
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concentration term but tends to infinity as the supersaturation tends to unity:

f1

(

1−
rc

r

)

= 4p(1+ 4p)−1 (7.15)

with f1(1− rc
r ) = p as f1(1− rc

r )→ 0

and f1(1− rc
r ) = 1− 1

4p as f1(1− rc
r )→ 1

}

where the Péclet number p, which is a dimensionless velocity, is given by p = v!r/2D11. With this

equation the Péclet number tends to infinity as the effective supersaturation f1 tends to unity.

(a) (b)

Figure 7.16 (a) The plate lengthening rate as a function of the plate-tip radius. (b) An illustration of the

shape of a parabolic cylinder, definitions of the tip radius r, the focal distance fc and the coordinates.

In fact, Ivantsov [42] gave an exact solution for diffusion-controlled growth of an interface which

advances at a uniform rate in the shape of a parabolic cylinder (Figure 7.16), i.e. for the lengthening

rate of a plate:

f1 = (π p)0.5 exp{p}erfc{p0.5} (7.16)

but this neglects capillarity effects.

Trivedi proposed a solution which does allow for capillarity and is able to deal with a variation in

the composition along the interface of the plate [43]. The assumed shape is again that of a parabolic

cylinder. As with Ivantsov’s method, the solution is shape preserving so the plate thickens and

lengthens at the same time. The plate lengthening rate at a temperature T for steady-state growth is

obtained by solving the equation:

f1 = (π p)0.5 exp{p}erfc{p0.5}
[

1+
v!
vI

f1S1{p}+
rc

r
f1S2{p}

]

. (7.17)

The function S2{p} depends on the Péclet number (Figure 7.17); it corrects for variation in compo-

sition due to changing curvature along the interface and has been evaluated numerically by Trivedi.

The term containing S1 is prominent when growth is not diffusion-controlled; vI is the interface-

controlled growth velocity of a flat interface. For diffusion-controlled growth, which is discussed

first, vI is large when compared with v! and the term containing it can be neglected. Trivedi’s

solution for diffusion-controlled growth assumes a constant shape, in this case a parabolic cylinder,
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Figure 7.17 Dependence of Trivedi’s functions

S1, S2, R1, and R2 on the Péclet number p.

but because x
γα
r varies over the surface of the parabolic cylinder the solution is not quite shape-

preserving. Trivedi claims that the variation in x
γα
r has a negligible effect provided the tip radius is

greater than 3rc.

Equation 7.17 on its own relates velocity and tip radius but does not allow these quantities to be

fixed; additional theory is needed to enable the choice of a particular r, and hence fix v!. Small

tip radii favour fast growth due to the point effect of diffusion, but this is opposed by the capillarity

effect since the driving force for growth tends to zero as r → rc. Zener proposed that the plate should

tend to adopt a tip radius that allows v! to be maximised but there is no fundamental justification nor

experimental evidence to support this hypothesis. Work on the dendritic growth of solid from liquid,

formally an almost identical problem, has demonstrated conclusively that the dendrites do not attain

a radius consistent with the maximum velocity hypothesis, the actual tip radius being determined by

a shape stability criterion [44, 45]. If these results can be extrapolated to solid-state transformations,

then any calculated velocities would be less than those given by the Zener hypothesis.

In the absence of reliable data on plate tip radii, the Zener hypothesis provides an upper limit for

v!. A comparison with experimental data shows that the actual αw lengthening rates in Fe-C alloys

always exceed the Zener maximum values [32]. This discrepancy can only increase if the maximum

velocity hypothesis is not valid, or if any appreciable part of the free energy is dissipated in interface

processes. It is possible that the shape of Widmanstätten ferrite may deviate from that of a parabolic

cylinder. It therefore is useful to compare experimental data with needle lengthening rates, even

though a needle shape is a poor representation of Widmanstätten ferrite with its definite habit plane.

Unlike the Zener-Hillert models, the ratio r/rc does not in the Trivedi model have a fixed value but

is a function of the supersaturation (Figure 7.18). However, there is an interesting consequence if

the maximum velocity criterion is applied. Figure 7.18 shows that the ratio r/rc is a function g of f1

so that r/rc = g{ f1}. From Equation 7.12, it is seen that

rc = Ψxγα/(x− xγα) so that r = Ψxγαg{ f1}(x− xγα). (7.18)

Substitution of r in Equation 7.11c then shows that x
γα
r does not depend on Ψ, and hence is not a

function of the interfacial energy σ when the maximum velocity criterion is used. Nevertheless, σ

affects the velocity v! because

v! = 2D
γ
C p/r = 2D

γ
C p(x− xγα)/Ψxγαg{ f1}. (7.19)
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Since p depends only on f1 and r/rc, it follows (within the maximum velocity hypothesis) that for

a constant supersaturation, the lengthening rate is inversely proportional to σ . Doubling σ halves

v!, and so the effect of interface energy on any lengthening rate calculated on the basis of the Zener

hypothesis is easily deduced.

1.00.4 0.6 0.8
100

101

102
Figure 7.18 Dependence of the ra-

tio r/rc with the normalised super-

saturation f1, as a function of the

parameter q, for the case where the

plates lengthen at the maximum rate.

Diffusion-controlled growth is the case

where q=∞ meaning that the interface

is very mobile (Equation 7.21).

Trivedi also has obtained a steady-state solution for the diffusion-controlled growth of paraboloids

of revolution (i.e. needles):

f1 = pexp{p}Ei{p}[1+
v!
vI

f1R1{p}+
rc

r
f1R2{p}] (7.20)

where the function R2{p} corrects for the variation in composition due to the changing curvature

of the interface and has been evaluated numerically by Trivedi (Figure 7.17). The critical radius rc

is found to be twice as large as that for plates. A comparison of experimental data with maximum

calculated needle lengthening rates shows that the plate model is a somewhat better representation

of Widmanstätten ferrite lengthening (Figure 7.19).

(a) (b)

Figure 7.19 Plots of the experimental versus calculated lengthening rates for Widmanstätten ferrite, assum-

ing (a) a plate shape and (b) needle shape. The calculations are based on the maximum velocity hypothesis and

the αw/γ interface energy is taken to be 0.2 J m−2. The details of the calculations are given by Bhadeshia [32]

but the experimental data are due to [36–38].
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7.9.1 INTERFACE-CONTROLLED GROWTH

Trivedi [43] has also given a more elaborate theory to take account of any free energy dissipated

in interface processes. In this, a second set of functions (S1{p} for plates and R1{p} for needles,

Figure 7.17) is introduced to allow for the variation in dissipation due to the changing orientation of

the interface. The velocity vI describing the case where growth is interface controlled is, for a flat

interface, written

vI = b12(x
γα− x)

where b12 is described as an interface kinetics coefficient. When growth is not diffusion-controlled,

the concentration of carbon at the interface will be depressed when compared with the case where it

is diffusion-controlled. The ratio of this depression to that due to capillarity at the interface is given

by p/q, where

q =
b12(xγα− x)

2D/rc
.

It is likely, because of the glissile nature of the transformation interface, that the growth of Wid-

manstätten ferrite is in the vast majority of cases controlled by the diffusion of carbon in the austen-

ite ahead of the interface. The exception to this would be when αW grows in interstitial-free iron

alloys or in steels containing very little carbon. The diffusion-controlled lengthening rate becomes

indefinitely large as x → xαγ so interfacial processes may then become rate-controlling. In typical

welding alloys used for steels, v! can exceed 500µms−1 during continuous cooling transformation

[46].

7.9.2 GROUPS OF PLATES

Several parallel plates of Widmanstätten ferrite often grow together, forming packets that originate

at an austenite grain surface. It is possible that in such cases the diffusion fields of adjacent plates

interfere and affect the growth kinetics described above. Trivedi and Pound [41] used the Ivantsov

solution to obtain an estimate of the effective diffusion distance zdn at the tip of a plate in a direction

normal to the lengthening direction. Soft impingement is expected if the separation zs of adjacent

plates is less than 2zdn. The concentration field in the matrix is given by

cγ− c = (cγα− c)[erfc{p0.5χn}/erfc{p0.5}]

where χn = [(χ2 + y2)1/2 + χ ]1/2

is a normalised parabolic coordinate and χ and y are dimensionless moving cartesian coordinates

illustrated in Figure 7.16,5 with origin at the focus of the parabolic interface, a distance fc below the

plate tip. The moving coordinates are related to the fixed Cartesian coordinates X and Y by

χ = (X − v!t)/r and y = Y/r.

Assuming that soft impingement becomes important when cγ − c = 0.1(cγα − c), the effective
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diffusion distance is obtained by solving:

erfc

{

p
1
2

[(
1

4
+

(
zdn

r

)2) 1
2

+
1

2

] 1
2
}

= 0.1 erfc{p
1
2 }

bearing in mind that the tip of the plate is located a distance fc = 1
2 r from the focus of the parabola.

Figure 7.20 shows the variation in the effective diffusion distance as a function of the Péclet num-

ber. The diffusion distance at small and typical values of p is large compared with the observed

plate half-spacings, meaning that the effects of soft-impingement cannot be neglected. The observed

growth rate should therefore be smaller than predicted for the growth of an isolated plate in an in-

finite medium, but this contradicts experimental data (Figure 7.19) which show the measured rates

to be somewhat greater than predicted. One possibility is that the shape of Widmanstätten ferrite is

not strictly that of a parabolic cylinder and that its shape may not be preserved as the plate length-

ens. Metallographic evidence shows that plates in colonies tend to advance as cusps which are quite

unlike parabolic cylinders. Thus, their major radii of curvature lie in the adjacent austenite (e.g.,

Figure 27, Townsend and Kirkaldy, [37]). There is a tendency also to adapt to soft-impingement by

changing shape. The effect of soft-impingement could be mitigated by favourable strain interactions

between adjacent plates.

Figure 7.20 The curve is a plot of the diffusion distance zdn between adjacent plates, normalised with the

plate tip radius r, against the Péclet number. Soft-impingement effects can be neglected when adjacent parallel

plates are spaced a distance greater than 2zdn. The data are from Townsend and Kirkaldy [37] who measured

the Widmanstätten ferrite plate spacings for Fe-0.385C wt% and Fe-0.405C wt% steels. Their measurements

have been divided by two in order to compare against zdn/r.

It is surprising at first sight that the calculation of effective diffusion distance is independent of

the plate length. This is because only the region at the plate tip is considered. Since the solution

for the growth of a parabolic cylinder is shape-preserving, the plate is expected to thicken at its

origin; indeed, plates are observed experimentally to thicken. It is likely therefore that its maximum

thickness will eventually exceed the estimated value of zdn so it is steric hindrance that prevents the

formation of an adjacent plate rather than the extent of the diffusion field.
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7.10 PLATE THICKENING

It has been emphasised that the Ivantsov and Trivedi solutions are shape-preserving; this is illus-

trated in Figure 7.21, with a series of identical parabolae which show the sequence of growth. The

parabolae are equidistant along X to illustrate a constant rate of lengthening. An observer located at

the origin would also notice that the plate thickens along Y but at an ever decreasing rate. It follows

necessarily from the parabolic shape that the thickness must increase with t
1
2 . The position of the

interface with respect to the moving coordinates χ ,y (Figure 7.16), is given by setting χn = 1:

χn = [(χ2 + y2)
1
2 + χ ]

1
2 = 1.

Making the substitutions X = 0 and Y = Yt gives

{[
v2
! t

2

r2
+

Y 2
t

r2

] 1
2

−
v!t

r

} 1
2

= 1, ∴ Yt = (r2 + 2v!tr)
1
2

where Yt is the plate half-thickness along Y at X = 0. The plate thickness will therefore vary parabol-

ically with time at a rate that is smaller than v!.

Figure 7.21 The translation of the

same parabola along X in the sequence

1-6 illustrates the nature of the shape-

preserving solution. The distance be-

tween adjacent parabolae is identi-

cal along X to represent the constant

growth rate in that direction.

123456

Figure 7.22a shows how the plate aspect ratio a = Yt/v!t decreases as the plate lengthens. The for-

mulation of the theory requires that the plate exists at time zero, with length X = 0.5r and Yt = r

because the focus is located at X = 0; the initial aspect ratio is therefore 2, which is an artefact of

the model, though the decrease in aspect ratio as the plate lengthens is observed experimentally. The

Widmanstätten ferrite plates start off rather stubby and become slender as they grow (Figure 7.1).

Consistent with many observations, the theory also predicts smaller aspect ratios at lower transfor-

mation temperatures.

The rate at which the plates thicken should compare against that at which allotriomorphs of fer-

rite thicken during diffusion-controlled growth. The thickness Z of the allotriomorph is given by

(Chapter 4)

Z = α1dt0.5 (7.21)

where α1d is the parabolic-thickening rate constant for one-dimensional growth; using this relation,
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(a) (b)

Figure 7.22 (a) The calculated aspect ratios of Widmanstätten ferrite plates as a function of the plate length

and transformation temperature. (b) A comparison of the parabolic thickening of Widmanstätten ferrite ver-

sus that of allotriomorphic ferrite under identical conditions. The growth of Widmanstätten ferrite is modelled

as in [32], but for comparison with allotriomorphic ferrite, the 50 J mol−1 of stored energy associated with

Widmanstätten ferrite is neglected; the thickness of the allotriomorphic ferrite is calculated at the time corre-

sponding to a particular length of the αW. The neglect of stored energy does not affect the relative positions

of any of the curves. The plate lengthening rates are 0.76×10−6 and 0.098×10−6m s−1 for 672 and 721◦C

respectively.

the ratio of plate to allotriomorph thickening rates is given by:

dYt/dt

dZ/dt
&

√
2v!r

α1d
when v!t . r

This ratio is found to be less than unity (Figure 7.22b) because of the dependence of the plate

thickening rate on the tip radius. The parabolic shape is geometrically constrained by the radius at

the tip; a finer radius leads to a smaller thickening rate.

The model described above can be compared against measurements [47] that confirm that the thick-

ening rate always decreases with time Figure 7.23. In some cases the plates thickened smoothly

(curve B) whereas in others it increased abruptly between sequences of smooth thickening (curves D

and E). The discontinuous thickening was attributed to irregularities in the shape of the interface.

Consistent with theory, the plate thickness was in many cases smaller than expected for an allotri-

omorph (curves B–C), but the opposite result was found in other instances (curve E), with very large

variations even within the same austenite grain. In some cases (curve C) the plates simply stopped

thickening. These detailed variations cannot be explained but might have something to do with the

fact that the growth theory neglects the effect of elastic and plastic strains caused by the displacive

mechanism of transformation, on the shape of the transformation product.
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A
E Figure 7.23 Schematic illustration of the dif-

ferent Widmanstätten ferrite plate thickening

behaviours reported by Kinsman, Eichen and

Aaronson [47]. Curve A represents the one-

dimensional carbon diffusion-controlled thicken-

ing of allotriomorphic ferrite.

7.11 GROWTH FROM ALLOTRIOMORPHIC FERRITE

Widmanstätten ferrite frequently grows from layers of allotriomorphic ferrite in circumstances

where the latter has an orientation with the austenite that is consistent with the displacive mech-

anism by which αW plates grow. The allotriomorph orientation must be in the “Bain region”, which

implies that no plane or direction can be rotated by more than about 11◦ from the Bain orientation

[48]. The actual condition may be more stringent since for Widmanstätten ferrite the close-packed

{1 1 1}γ and {0 1 1}α planes are unlikely to deviate by more than 1◦ from parallelism, and the

corresponding close-packed directions 〈1 1 0〉γ and 〈1 1 1〉α are unlikely to be more than about 6◦

from parallelism.

In some classic work, C. S. Smith [49] considered that allotriomorphic ferrite is likely to have a

good-fit orientation relationship with one of the austenite grains with which it is in contact; after all,

a small interfacial energy is conducive to easier nucleation. It is that side of the allotriomorph which

might develop into Widmanstätten ferrite (Figure 7.1).

It has been argued that the evolution of Widmanstätten ferrite from allotriomorphic ferrite can be de-

scribed in terms of an instability of the transformation interface during diffusion-controlled growth

[37]. If by chance a small region of the growing α advances ahead of the main interface then the

concentration gradient ahead of that perturbation increases, assuming that the ferrite grows with a

constant composition. The perturbation will therefore grow faster, making the interface unstable; the

instability is opposed by the capillarity because of the curvatures associated with the perturbation.

There is, therefore, a critical size of perturbations below which the interface will remain stable.

The general theory for the reaction of an interface to perturbations was given first by Mullins and

Sekerka [50, 51]. It is introduced here in the form applied by Townsend and Kirkaldy neglecting

elastic strain, anisotropy of interfacial energy and assuming local equilibrium all along the interface.

Instability is investigated by invoking a sinusoidal perturbation of wavelength λ at the planar in-

terface and determining whether it grows or decays. The perturbation that grows fastest is assumed

eventually to become the dominant one, with a wavelength λ given by

λ = 2π
√

3

[

ΨD
γ
C

cγα

v(cαγ− cr)

]1/2

(7.22)

where v is the velocity of the mean allotriomorphic ferrite/austenite interface. The dependence on

this velocity arises because the size of the critical fluctuation (as opposed to the one that grows
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fastest) decreases as the concentration gradient at the interface increases. The velocity is of course

time dependent:

v =
α1d

2t
1
2

,

and is large at first with λ correspondingly small, so that the interface is unstable as soon as it

moves. This is inconsistent with experimental evidence. Townsend and Kirkaldy used half the mea-

sured “incubation time” for Widmanstätten ferrite formation to set the velocity. Although they then

obtained good agreement between λ and the measured spacing between adjacent plates of Wid-

manstätten ferrite, the procedure for setting v remains unjustified and makes the concept dependent

on prior measurement.

There is an important difference in the mechanism by which Widmanstätten ferrite and allotriomor-

phic ferrite form. Unlike the α/γ interface, the αw/γ interface must be glissile. Consequently, even

when the allotriomorphic ferrite is suitably oriented, there must be a change in interface structure

for Widmanstätten ferrite to form. This “nucleation” barrier may not differ from the dislocation-

dissociation mechanism discussed in Section 7.5 in which case the same thermodynamic criteria

must apply. In these circumstances, the presence of a solute diffusion profile ahead of the allotri-

omorphic ferrite will tend to oppose the formation of Widmanstätten ferrite because the partitioned

solute would tend to stabilise the austenite. There are observations of Widmanstätten ferrite-depleted

zones at allotriomorph boundaries, in circumstances where the former can nucleate both at the al-

lotriomorphic ferrite and intragranularly at non-metallic inclusions [52].

But the basic concept of Widmanstätten ferrite simply being a perturbation of the allotriomorphic

form is deeply flawed. The fundamental difference in mechanism and the neglect of the fact that

the plate shape is determined by the minimisation of strain energy due to the shape deformation

is ignored in the application of perturbation theory. All models based on interface instability rely

on carbon diffusion fields, whereas Widmanstätten ferrite also occurs in interstitial-free iron alloys

where there are no diffusion fields. These are some of the reasons why the phase field models to

date simply do not capture the physics of the problem. The basic theory of the phase field method

has been described in Section 4.6.4.

The first treatment of the problem using phase field modelling, generated a two-dimensional plate

representation by imposing very strong anisotropy of αW/γ interfacial energy in a Fe-C alloy, with

plates initiated at a thin layer of allotriomorphic ferrite [53].6 That anisotropy of interfacial en-

ergy cannot explain the shape of αW is obvious given that similarly oriented allotriomorphs or id-

iomorphs can grow to a substantial size without developing plate shapes. Furthermore, both primary

and secondary Widmanstätten ferrite plates grow in interstitial-free iron alloys, Table 7.1. Primary

αW plates are not associated with any diffusion fields in interstitial-free alloys so the question of

morphological stability does not arise.7

There is a second type of application of phase field models where a plate exists, for example as a

half-ellipsoid, from time zero and is then allowed develop into one of much smaller aspect ratio. The

shape is controlled by introducing assumed anisotropy, in the form of interfacial energy or strain en-

ergy. These models essentially treat the growth of individual plates and can reveal phenomena that

are difficult to access experimentally. In a generic treatment of Widmanstätten-like structures, Cot-
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tura et al. considered that the levels of interfacial-energy anisotropy used to generate shape in phase

field models is unrealistic, so elastic anisotropy may be the root cause of the Widmanstätten mor-

phology [54]. As an example, they considered an invariant-plane strain in which there is only one

non-zero eigenstrain (0.03) so the elastic energy is zero when the strain in normal to the habit plane

and maximum when it lies in the habit plane. The transformation strain matrix for the more com-

plex problem of the γ→ α transformation was generated by assuming a Bain strain combined with

a rotation of 5.26◦ about the [100]γ or [010]γ directions to comply with the Kurdjumov-Sachs ori-

entation. However, this is not the correct set of operations that leads to the orientation relationship.8

An inconsistency is that there are just four minima in the energy density plot; the number of habit

plane variants is in fact 24. It is emphasised also that the shape of αW is determined by the shape

deformation, of which there are also 24 variants. Nevertheless, the conclusion that the elastic energy

plays the determining role in generating the shape is an advance in the modelling.9 In some later

work, Cottura et al. [55] incorporated viscoelasticity to model the relaxation of strains, which still

led to a constant though reduced lengthening rate associated with a larger tip radius; however, this

is not the same as plastic relaxation but rather, involves diffusion of all atoms and therefore does

not represent plastic relaxation due to the dislocation-driven deformation of austenite. Diffusional

relaxation is not expected within the time scale required to generate Widmanstätten ferrite.
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Notes
1It is common though inaccurate to state that αW grows on {111}γ, originating from the early descriptions of the struc-

ture. To quote Belaiew [1], “. . . a certain amount of the excess element will be forced to crystallise out ‘on the spot’, that is,

not on the boundary, but in the middle of the grain. Such separation will necessarily follow the crystallographic planes in a

face-centred cubic lattice, these planes will be the four octahedral planes. The separation of the excess element will follow

in space these planes. On a secant plane such octahedral sections will appear as Widmanstätten figures”.

2The terms interface and interface plane means the average plane determined on a macroscopic scale rather than a

particular component of its structure.
3Some of the basics are described already in Section 5.7.2, but are repeated here for clarity and context.

4 ∆Gγ→α+γ′
is smaller in magnitude than ∆Gm as illustrated in Figure 4.10, because in the former case, the change in

the composition of the austenite as the ferrite grows cannot be neglected.
5The equation for χn is stated incorrectly by Trivedi and Pound.
6There have been many similar simulations based essentially on the same principle of stability and induced anisotropy to

generate the shape, for example, [56, 57].
7A preferred habit plane can arise only if there is sufficient anisotropy in the interface energy or elastic properties [58].

If an enclosed particle is generated by a displacive mechanism then it is not possible for components of the interface to be
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incoherent while others have continuity of planes and vectors. It is wrong, as is often quoted in phase field based models of

αW, to state that the growing tip of the plate will be ‘disordered’ or incoherent. In fact, the major weakness of phase field

models is the lack of structure in interfaces which are set to unrealistic thicknesses.
8The crystallographic theory of martensite deals with this [p. 196, 59].
9A similar conclusion was reached by Lin et al. in their phase field modelling of iron containing carbon and nitrogen

[60]. The transformation strain used was identical to [54]. It has the same limitations.



8 Cementite

In the binary Fe-C system, cementite has a composition that approximates Fe3C; pure cementite

has a melting temperature of 1227 ◦C, estimated using its thermodynamic representation. It was

regarded originally as a phase that cements the structure of steel [1, 2]. In mineralogy, the carbide

is known as cohenite (Fe,Ni,Co)3C, after Emil Cohen, who was investigating material of meteoric

origin [3]. Together with ferrite, it is a most prolific phase to be found in steels and of course, is

seminal to the structure of pearlite. The morphology of cementite when in steel is illustrated in the

context of the other transformations, but Figure 8.1a shows that there is nothing particularly unusual

about the microstructure of polycrystalline cementite as a single phase. There are the grain boundary

junctions and the boundaries themselves are not strongly facetted even though the crystal structure

of cementite is anisotropic. Figure 8.1b shows dislocation arrays within deformed cementite; it is

not the lack of dislocations that makes cementite hard, but as seen later, the unit cell is large and

primitive which means that the Burgers vector of lattice dislocations must also be large, making it

difficult for dislocations to move. For the most common slip system in cementite, (010)[001], the

energy (neglecting elastic constant differences) of a dislocation will be roughly three times greater

than in ferrite. This comparison is valid because cementite is in fact metallic.

(a) (b)

Figure 8.1 (a) Orientation image of synthesised cementite showing grain boundaries and their junctions.

Reprinted from Mussi et al. [4] by permission of Taylor & Francis Ltd, http://www.tandfonline.com. (b) Dis-

location arrangement in cementite when a 1.25C wt% steel is deformed 92%. Reprinted from Inoue et al. [5]

with the permission of Elsevier.

Cementite often is said to be metastable with respect to graphite but this represents the case where

it is in contact with ferrite; when isolated, it is more stable than graphite, Figure 8.2a,b. This is

why during the carburisation of iron, cementite in contact with ferrite decomposes into a mixture

of ferrite and graphite, whereas it does not do so when lodged within coke [6]. Tiny particles of

cementite that are surrounded by a thin shell of carbon remain stable as cementite during heat-

381
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treatment at 700◦C [7]. Graphite cannot dissolve iron; when it encapsulates cementite it would be

necessary to nucleate ferrite for the cementite to decompose but it is hard to imagine that ferrite

could nucleate in the carbon-rich environment. So although the reaction Fe3C → 3Feα+ graphite

leads to a reduction in free energy, iron must be able to nucleate for the reaction to be possible at

all.

(a)

Figure 8.2 Phase diagram calculations for

100 kg total weight, using MTDATA [8] and

the SGTE thermodynamic database. (a) Fe-25C

at.%, permitting only cementite and graphite to

co-exist. (b) The average carbon concentration

is reduced slightly to allow ferrite to appear, in

which case the most stable mixture becomes that

of ferrite and graphite [9]. (c) Stability fields for

diamond, graphite and cementite, when present

in iron. Adapted from Lipschutz and Anders

[10].

(b) (c)

Figure 8.2c is an interesting phase diagram in that it is valid only in the presence of ferritic iron

as solvent. As expected, cementite is not stable relative to graphite under ambient conditions and

at very high pressures, but cementite dominates at high temperatures. At very high pressures, it

is diamond that replaces graphite, with the same tendency for the broader cementite phase field.

The diagram was constructed in the context of studies on meteorites, to explain the occurrence of

diamonds in some meteorites [10]. There are indications that the diamonds formed from cementite

under the shock associated with the impact of the meteorite with the Earth. Diamond has been

observed to grow from graphite during the detonation of cast iron [11].

It is difficult to explain on the basis of Figure 8.2c why cementite is present in meteorites, that

after all cool very slowly. It is speculated that the impurities in cementite give it a greater stability.

Meteorites, in addition to iron and carbon, contain nickel at concentrations in the range 5.5-8 wt%. It

seems that to retain cementite it must form at a temperature between about 640-610 ◦C. That which
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forms above the upper limit decomposes on cooling and cementite does not precipitate below the

lower limit. The temperature at which it actually forms is controlled by the nickel concentration in

meteoric iron. It will, for example, be retained when the average nickel content is 7Ni wt% but not

if it is 5 or 9 wt%, although the concentration of nickel in the cementite will be smaller than average

[12].

8.1 CRYSTAL STRUCTURE OF CEMENTITE

Cementite has an orthorhombic unit cell with lattice parameters as a= 0.50837 nm, b= 0.67475 nm

and c = 0.45165 nm, corresponding to the space group Pnma. There are twelve atoms of iron in the

unit cell and four of carbon, as illustrated in Figure 8.3. Four of the iron atoms are located on mirror

planes whereas the other eight are at general positions (point symmetry 1).

Figure 8.3 The crystal structure of cementite, consisting of twelve iron atoms (large) and four carbon atoms

(small, hatched pattern). The fractional z coordinates of the atoms are marked. Notice that four of the iron

atoms are located on mirror planes, whereas the others are at general locations where the only point symmetry

is a monad. The pleated layers parallel to (100) are in . . .ABABAB . . . stacking with carbon atoms occupying

interstitial positions at the folds within the pleats, with all carbon atoms located on the mirror planes. There are

four Fe3C formula units within a given cell.

The lattice type is primitive (P). There are n-glide planes normal to the x-axis, at 1
4 x and 3

4 x involving

translations of b
2 +

c
2 . The mirror planes are normal to the y-axis, and a-glide planes normal to the

z-axis, at heights 1
4 z and 3

4 z with fractional translations of a
2 parallel to the x-axis. The space group

symbol is therefore Pnma [13].
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Table 8.1

Wyckoff positions for space group Pnma [14]. Each Wyckoff position in this space
group is labelled with a letter (Table 8.1); thus, the eight iron atoms in general posi-
tions are labelled with the letter “d”, and the remaining four on mirror planes with
the letter “c”; the number preceding the letter, for example, the “8” in 8d, denotes
the number of equivalent positions in the cell.

Multiplicity Wyckoff Site Coordinates
letter symmetry

8 d 1 (x,y,z) (−x+ 1
2 ,−y,z+ 1

2 )

(−x,y+ 1
2 ,−z) (x+ 1

2 ,−y+ 1
2 ,−z+ 1

2)

(−x,−y,−z) (x+ 1
2 ,y,−z+ 1

2 )

(x,−y+ 1
2 ,z) (−x+ 1

2 ,y+
1
2 ,z+

1
2)

4 c .m. (x, 1
4 ,z) (−x+ 1

2 ,
3
4 ,z+

1
2 )

(−x, 3
4 ,−z) (x+ 1

2 ,
1
4 ,−z+ 1

2 )

4 b −1 (0,0, 1
2 ) (

1
2 ,0,0) (0,

1
2 ,

1
2 ) (

1
2 ,

1
2 ,0)

4 a −1 (0,0,0) ( 1
2 ,0,

1
2) (0,

1
2 ,0) (

1
2 ,

1
2 ,

1
2 )

8.1.1 TYPES OF INTERSTITIAL SITES

There are prismatic, octahedral and three kinds of tetrahedral interstices between the iron atoms in

the cementite unit cell; the space available within each is defined from the centre of the interstice

to the boundary of the nearest iron atom; the sizes are therefore 0.71, 0.53, 0.34, 0.26 and 0.28

Å [15]. The centres of the prismatic interstices lie on mirror planes so there are four per cell (4c,

Table 8.1) and they all are filled with carbon atoms in the stoichiometric form of cementite [16].

The smaller octahedral interstices, of which there are four per cell (4a, Table 8.1), are empty in pure

cementite unless the carbon concentration exceeds 25 at.%; the tetrahedral interstices are too small

to be occupied by carbon. When hydrogen enters the cementite lattice, it locates in the octahedral

[17] interstices because the prismatic ones are occupied by carbon.
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(a) (b)

Figure 8.4 Two kinds of interstices in the cementite unit cell. (a) Prismatic. The apex of the prism of iron

atoms is above the square base. (b) Octahedral. The red and orange coloured atoms are iron, with the latter

located on mirror planes.

8.2 CARBON CONTENT OF CEMENTITE

It has been known since 1855 that the carbide common in steels approximates to the formula Fe3C

or to a multiple of that formula [18]. But the structure of cementite could only be determined much

later to reveal that the carbon atoms in cementite are located in interstitial sites [16, 19]. Because of

the size of the carbon atom relative to the interstices available, deviations from the 3:1 Fe:C atom

ratio lead to lattice parameter changes [20], which therefore can be used to assess the concentration

of carbon. Thus, the specific volume of cementite in equilibrium with ferrite at ambient tempera-

ture is greater than expected assuming Fe3C, indicating a deficit of carbon [21, 22]. Calculations

similarly show how the density changes with the carbon concentration [23]. Furthermore, gradients

of carbon concentration spanning tens of micrometres have been measured within cementite during

carburisation experiments [24]. All of these observations indicate that there is some flexibility in the

3Fe:1C ratio that normally is associated with cementite.

These and other results form the basis of the thermodynamically assessed phase boundaries for the

equilibrium between cementite (θ) and α or γ, Figure 8.5a. Cementite has sometimes been depicted

as a line compound, but Figure 8.5b shows that the variation in free energy as a function of com-

position has a broad minimum which at high temperatures is not located at 25 at.% of carbon [25].

The fact that ferrite can precipitate from cementite equilibrated at elevated temperatures establishes

the increase in its carbon concentration on cooling, Figure 8.6 [26]. When pure cementite is de-

carburised, its density and Curie temperature change due to the deviation from the stoichiometric

composition [27].

Any deviations from stoichiometry are nevertheless limited because the bond energy between a

carbon atom and iron is greater than that between two iron atoms, so a deficit of carbon would lead

to a reduction in cohesion [28]. A carbon concentration beyond 25 at.% is less likely because the
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excess would need to be accommodated in the less-favoured interstices within the cementite lattice.1

(a) (b)
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Figure 8.5 (a) The composition of cementite that is in equilibrium with austenite or with ferrite in an Fe-C

alloy. The data are due to Leineweber et al. [23], determined by measuring the lattice parameters of cementite

following quenching from the appropriate temperature. (b) Free energy curve of cementite as a function of

chemical composition (referred to γ-Fe and graphite). After Gohring et al. [25].

Figure 8.6 Precipitation of fine

ferrite-platelets from cementite.

Reproduced with permission of

Taylor and Francis from [26]. The

crystallography of α precipitation

in θ is reported separately on a

different alloy, with the major

growth direction of the ferrite

being 〈111〉α ‖ [100]θ and with

the habit plane close to (010)θ in

the Pnma setting [29].
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8.3 MAGNETIC PROPERTIES

Cementite under ambient conditions is a metallic ferromagnet that becomes paramagnetic beyond

the Curie temperature TC of ≈ 186 ◦C, Figure 8.7 [30]. The average magnetisation at 0 K is about

1.86 µB. Calculations of the local magnetic moments on the four iron atoms located on mirror planes

(4c) and at the eight at general positions (8d) give estimates within the ranges 1.92-2.01 and 1.74-

1.957 µB respectively [30–33] at 0 K. The uncertainty has it origin on the size of the region (“muffin

tin”) over which the moment is calculated, together with numerical inaccuracies in the methods

used; the moment summed over the unit cell is nevertheless about the same in all the studies.
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Figure 8.7 Calculated magnetisa-

tion of cementite as a function of tem-

perature, adapted from Dick et al. [30].

There is a transition from ferromagnetic to nonmagnetic states at 25 GPa pressure and 300 K [34].

The term nonmagnetic is used here because it is not clear whether the magnetic collapse corre-

sponds to a loss of spin correlation or to a transition from a high-spin to a low-spin state. There is

a volume contraction of 2-3 % following the transition from the ferromagnetic state. The cementite

structure, with its orthorhombic symmetry, is magnetically anisotropic, with the ease of magnetisa-

tion increasing in the order [100]θ, [010]θ and [001]θ [35–37]. The magnetocrystalline anisotropy

energy is 334±20kJm−3 [37]. The dominant domain walls lie in the (001)θ plane, Figure 8.8 [38];

Hillert and Lange first observed magnetic domains in cementite [39].

Figure 8.8 Ferromagnetic domain

structure of cementite, observed us-

ing transmission electron microscopy.

Reprinted from [38], with the permis-

sion of AIP Publishing.

Substitutional solutes affect the magnetic properties of cementite. Nickel reduces the saturation

magnetisation because it replaces the iron atoms that have a greater magnetic-moment per atom.



388 Theory of Transformations in Steels

The same explanation applies in part to Mn and Cr, consistent with the average alloy magnetic-

moment per atom to be expected from the Slater-Pauling curve. The alloying has a minor effect on

the intrinsic magnetic moment of the iron atoms [40]. Manganese in cementite makes it magneti-

cally softer, i.e., reduces its coercivity [41]. The influence of substitutional solutes on the magnetic

moment of iron is, naturally, site-specific (Table 8.2).

Table 8.2

Magnetic moments (in units of µB per iron atom) as a function of a silicon atom
substituted into an 8d or 4c iron site. Data from Jang et al. [33]. Similar site-specific
data for chromium in cementite are available in Medvedeva et al. [42].

Fe3C (Fe11Si4c)C4 (Fe11Si8d)C4

Fe(4c) 2.059 2.021 1.881

Fe(8d) 1.957 1.793 1.852

The dilution of the magnetic moment is not the only consequence of manganese additions to ce-

mentite [43]. In (Fe1−xMnx)3C at 0 K, the spins on manganese atoms that locate on 8d positions

adopt an antiferromagnetic alignment, whereas the Fe and Mn at 4d positions have identical spins

(Figure 8.9). The total magnetisation per unit cell is then reduced as the Mn concentration is in-

creased. If the cell contains eight or more Mn atoms, the 8d layer assumes perfect antiferromagnetic

arrangement with the remaining atoms in the 4c positions in a ferromagnetic alignment [43]. Pure

Mn3C has an antiferromagnetic ground-state structure with a [001] magnetisation direction [44].

(a) (b)

Figure 8.9 Orthorhombic unit cell with eight metal atoms in the 8d positions (circles), four in the 4c loca-

tions (dashed circles) and four carbon atoms (small circles). The magnetic structures are from calculations rep-

resentative of 0 K. (a) Ferromagnetic Fe3C. (b) Mn3C. The 8d layers are perfectly antiferromagnetic, whereas

the four atoms at 4c locations have aligned spins making Mn3C a ferrimagnet. Adapted from Appen et al. [43].

Cementite exhibits a magnetocaloric effect [45]. The alignment of magnetic spins is reduced during

adiabatic demagnetisation. Since the total entropy remains constant during the adiabatic conditions,

the increase in magnetic entropy on the removal of the applied field is compensated for by a decrease

in temperature. If demagnetisation occurs isothermally, then the change in magnetic entropy leads to

a corresponding change in total entropy. Measurements indicate an adiabatic change in temperature
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of 1.76± 0.01K during a field change of 2 T. When the magnetic field is changed from 0 T to 20 T,

there is an entropy change under isothermal conditions of 3 JK−1 kg−1.

The is some uncertainty about the Curie temperature, TC, which depends on the carbon concentration

of cementite, Table 8.3, where the data represent the average compositions of samples synthesised

using mixtures of iron and graphite powders by heating to 1110 ◦C under a pressure of 1 GPa. It is

noteworthy that the Curie measurements are due to cementite alone. There is a pressure dependence,

with TC reduced to below ambient temperature in stoichiometric cementite for pressures in excess

of 6 GPa, whereas carbon-rich cementite remains ferromagnetic to higher pressures (≈ 7 GPa).

Table 8.3

Ambient pressure measurements of the Curie temperature of cementite as a func-
tion of its carbon concentration. Data from Walker et al. [46], determined by mak-
ing cementite as a part of a transformer. Choe [35] reports a somewhat lower Tc of
167.6 ◦C determined using a superconducting quantum interference magnetometer
for ambient pressure.

Phases present Nominal at% C TC / ◦C

cementite, graphite 26 174
cementite 25 186

cementite 25 187
cementite 23 173

cementite, Fe 22 173

An interpretation [47] of the change in magnetic properties with pressure attributes the phenomenon

to the volume dependent two-state theory for the high magnetic-moment to small-volume low mo-

ment transition. Using an X-ray technique and diamond anvil equipment, it has been determined

experimentally that the loss of ferromagnetism occurs at about 10 GPa. The change in volume re-

quired to induce the magnetic transition is about 5% [47, 48].

8.4 THERMAL PROPERTIES

The average thermal expansion coefficient of polycrystalline cementite changes from 6.8 ×
10−6 K−1 to 16.2× 10−6 K−1 as the sample is heated to beyond the Curie temperature, Figure 8.10

[49].

Figure 8.11 shows diffraction data [50–52] for each of the lattice parameters of cementite as a

function of temperature, of which a is most sensitive to the change from the ferromagnetic to para-

magnetic state, characterised by a contraction during heating within the ferromagnetic range. It is

not clear why the a parameter is most sensitive to the magnetic transition.
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Figure 8.10 The linear thermal ex-

pansion coefficient of polycrystalline

cementite as a function of temperature

and magnetic state. Adapted using data

from Umemoto et al. [49].

Figure 8.11 Neutron and X-ray diffraction data on the three lattice parameters a, b and c of cementite as a

function of temperature. Data from [51] (small circles with error bars), [50] (filled circles) and [52] (crosses).

The dashed line in each case identifies the Curie temperature. The calculated pressure dependencies of the

lattice parameters are as follows [53]: ∆a = 0.0041×P, ∆b = 0.00578×P and ∆c = 0.00374×P Å, where the

pressure P is in GPa.

8.5 SURFACE ENERGY

Cementite is found experimentally to cleave on the {101}, (001) and {102} planes [54]. While this

might seem inconsistent with the ranking of energies in Table 8.4, fracture in fact depends on the

difference between the energies of exposed and internal surfaces [55].

Table 8.4

Calculated surface energies of cementite in a vacuum.

Crystallographic indices Surface energy / J m−2 Method Reference

(001) 2.34 Interatomic potentials [56]

(001) 2.47 First principles [57]

(010) 2.00 Interatomic potentials [56]

(010) 2.26 First principles [57]

(100) 1.96 Interatomic potentials [56]
(100) 2.05 First principles [57]
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8.6 ELASTIC PROPERTIES OF SINGLE CRYSTALLINE CEMENTITE

Calculated elastic moduli are summarised in Table 8.5. The anisotropy is compared against Mn3C

which is isomorphous with Fe3C, and ferrite, in Figure 8.12. The orthorhombic carbides are as

expected, more anisotropic than the cubic-α, but it is particularly noticeable that the modulus C44

is small in cementite. A crystal subjected to an elastic strain is mechanically stable only if there is

a resulting increase in its internal energy [58]. For an orthorhombic crystal, this stability criterion

manifests as follows [59]:

C22 +C33 − 2C23 > 0

C11 +C22 +C33 + 2C12 + 2C13 + 2C23 > 0

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0

Hydrostatic compression leads to an increase in stiffness due to the increase in density accompany-

ing pressurisation, Figure 8.13.

Figure 8.12 Stereographic projections showing the variation of calculated single-crystal elastic moduli as a

function of orientation, for the setting Pnma. Fe3C and Mn3C are based on data from [60] and lattice parameters

from [61] and α-iron. Plots courtesy of Shaumik Lenka.

Figure 8.13 Experimentally deter-

mined plot of pressure versus den-

sity for polycrystalline cementite. Data

from Fiquet et al. [67].

There is experimental evidence [68] that first principles calculations relevant for 0 K overestimate

the moduli of cementite, bearing in mind that finite temperatures are expected to stiffen the ce-
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Table 8.5

Modulus data in GPa for cementite at 0 K and zero pressure unless otherwise indi-
cated. ∆Ci j =Ci j{400K}−Ci j{0K} is the change in heating from 0 K to 400 K. A more
comprehensive listing is available in [9].

Fe3C

C11 C12 C13 C22 C23 C33 C44 C55 C66 K

383 162 156 344 162 300 28 134 135 [62]

∆Ci j 39 10 6 19 −4 10 7 −11 −7 [62]

Cementite containing substitutional solutes

C11 C12 C13 C22 C23 C33 C44 C55 C66 K

(Fe2Mn)C 402 165 155 418 168 398 68 154 99 [63]

(Fe2Mn)C 266 105 58 286 115 263 44 135 144 150 [64]

(Mn2Fe)C 480 219 210 407 176 486 16 170 174 284 [64]

Mn3C 544 241 167 504 187 432 62 200 179 [60]

(CoFe2)C 375 164 128 295 136 334 −3 133 137 [65]

(Co2Fe)C 374 138 131 299 118 327 −75 129 93 [65]

(NiFe2)C 398 16 111 238 104 261 −9 113 80 [65]

(Ni2Fe)C 354 127 134 256 115 278 −69 103 46 [65]

(Fe2Cr)C 472 111 130 315 117 352 13 176 166 200 [64]

(Cr2Fe)C 452 179 220 443 162 450 123 128 186 273 [64]

Fe3C moduli at non-zero pressures

P = 15GPa 459 216 177 413 238 353 25 148 158 276 [66]

P =-6GPa 358 131 145 299 137 285 −3 122 118 196 [66]

P =-11GPa 305 104 108 260 110 234 −13 112 104 160 [66]

Single-crystal Young’s modulus E / GPa

Orientation Measured Calculated

[100] 262± 32 287

[001] 213± 45 221
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mentite [62]. Experimental measurements on single crystals of cementite prove that the Young’s

modulus is smaller than that calculated theoretically, even though the sample contained some man-

ganese [68]; the discrepancy between experiment and theory could therefore be larger given that

according to theory, manganese increases the modulus of cementite (Table 8.5).

8.7 ELASTIC PROPERTIES OF POLYCRYSTALLINE CEMENTITE

The pressure dependence of the bulk modulus of cementite is of importance in understanding the

iron-rich phases (including cementite) that may exist within a radius of 1200 km from the centre of

the earth. Measurements made using diamond anvil cells subjected to synchrotron X-rays to deter-

mine the pressure-volume relationship with the data fitted to modified Birch-Murnaghan equation

of state as follows [69]:

P =

{

Pr −
1

2
(3Kr − 5Pr)

[

1−
(

V

Vr

)−2/3]

+
9

8
Kr

(

K′
r − 4+

35Pr

9Kr

)[

1−
(

V

Vr

)−2/3]2}(
V

Vr

)−5/3

(8.1)

where Vr is the selected reference volume, and Pr, Kr and K′
r are the pressure, isothermal bulk modu-

lus and pressure dependence of that bulk modulus respectively, all at the reference volume, respec-

tively [70, 71]:

Magnetic state Kr/GPa Vr/Å
3

atom−1 Pr/GPa K′
r

Nonmagnetic, 300 K,25 ≥ P ≤ 187GPa 290± 13 9.341 0.0± 1.6 3.76± 0.18

The unmodified form of the Birch-Murnaghan equation is [70, 72]:

P =
3

2
Ko

[(
V

V0

)− 7
3

−
(

V

V0

)− 5
3
]{

1−
3

4
(4−K′

o)

[(
V

V0

)− 2
3

− 1

]}

(8.2)

where V0 = 155.28Å3 [70] and Ko are the volume and isothermal bulk modulus at 1 bar and 300 K

respectively, and K′
o is the first pressure derivative of Ko at 300 K [70]. The measured data using this

equation are in Table 8.6.

The calculated data from single-crystal elasticity can be used to estimate the elastic properties of

polycrystalline cementite by assuming uniform stress (Reuss) or uniform strain (Voigt) throughout
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Table 8.6

Measured equation of state data [34]. There are three sets of values stated for the
paramagnetic state studies by Litasov et al. [73] corresponding to different equa-
tions of state used to analyse the experimental data.

Magnetic state Ko / GPa K′
o Reference

Ferromagnetic 179.4± 7.8 4.8± 1.6 [34]

Ferromagnetic 175.4± 3.5 5.1± 0.3 [74]
“Nonmagnetic” 288± 42 4 [34]
Ferromagnetic 175 5 [73]

Paramagnetic 190 4.8 [73]
Paramagnetic 191 4.68 [73]

Paramagnetic 194 4.6 [73]

the cementite [75]:

KReuss = [S11 + S22+ S33 + 2(S12+ S23 + S13)]
−1

KVoigt = [C11 +C22 +C33 + 2(C12 +C23 +C13)/9

Es,Reuss =
15

4(S11 + S22 + S33 − S12− S23 − S13)+ 3(S44+ S55 + S66)

Es,Voigt =
C11 +C22 +C33 −C12 −C23 −C13

15
+

C44 +C55 +C66

5

E = 9KEs/(3K +Es) and ν = (3K/[2−Es])/(3K +Es)

(8.3)

where S represents a compliance, E , K and Es are the Young’s, bulk and shear moduli, ν is the

Poisson’s ratio; the absence of a subscript indicates an average of the Reuss and Voigt values. Us-

ing Jiang et al.’s single crystal data (Table 8.5) gives K = 227 GPa, Es = 75 GPa, E = 203 GPa and

ν = 0.35 for zero Kelvin. The Young’s modulus of pure polycrystalline cementite has been mea-

sured to be 196 GPa, but can be as high as 245 GPa when alloyed with solutes such as chromium

and manganese [49]. Measurements on thin (210 nm), polycrystalline films of cementite indicate a

Young’s modulus of 177 GPa, which gives a shear modulus of 70 GPa assuming that the Poisson’s

ratio is 0.26 within isotropic elasticity [76, 77]. The Poisson’s ratio measured on samples of cemen-

tite containing 28% porosity has been reported to decrease almost linearly from 0.254 to 0.246 as

the temperature is increased from 95 to 290 K [78].

8.8 SUBSTITUTIONAL SOLUTES

Alloying Fe3C with manganese increases its stability with respect to graphite [79]; it has long been

known that cementite becomes more stable when it “unites with manganese”, sometimes resulting
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in the growth of robust single-crystals known as Speigeleisenkristall [80]. Figure 8.14a shows that

the addition of manganese permits cementite to co-exist with graphite and ferrite, whereas in the

same circumstances, a Fe-25C at.% steel would, at equilibrium, consist only of a mixture of ferrite

and graphite. The cementite in the Fe-C-Mn alloy contains manganese, the equilibrium composition

of which at low temperatures is more akin to Mn3C than Fe3C (Figure 8.14b).

(a) (b)

Figure 8.14 Phase diagram calculations for 100 kg total weight, using MTDATA [8] and the SGTE thermo-

dynamic database. Fe-25C-4.08Mn at.%, permitting cementite, graphite and ferrite to co-exist. (a) Equilibrium

phase mixture as a function of temperature. (b) The equilibrium manganese concentration in cementite for the

calculations presented in (a).

Substituting an atom with a lower magnetic moment than iron reduces the saturation magnetisation

[40, 81]. Iron atoms in cementite have local magnetic moments of 1.97µB or 1.88µB per atom,

depending on whether they are located on the mirror or general positions [82]; the corresponding

values for manganese and nickel are about 0.8 and 0.6µB respectively when substituted onto the

mirror sites. Nickel therefore reduces the saturation magnetisation of the alloyed cementite, but

the Curie temperature, which depends on the coupling between the magnetic ions, increases [83].

Experimental data on Ni in cementite are limited because the θ tends to be unstable when nickel is

forced into its lattice by mechanical alloying, which leads first to the formation of an amorphous

phase, followed by the crystallisation of Ni-rich cementite its decomposition [84]. First principles

calculations show that the substitution of nickel (or cobalt) makes the cementite less stable with

respect to a mixture of α-iron and graphite [85]. This is not the case for all concentrations because

the free energy of formation over the range 10-50 at.% Ni is favourable, Figure 8.15.

Chromium has an affinity for carbon consistent with the free energy of formation decreasing sys-

tematically with concentration [42, 87]. Manganese too is a carbide former and once some complex

magnetic effects (Section 8.3) are accounted for, stabilises cementite. A compilation of data on a

variety of solutes affecting the formation energy of cementite at 0 K is presented in Figure 8.16. It

would be reasonable to assume that the uncertainty in the calculations is indicated by the scatter

in ∆F for pure cementite. The tendencies are that scandium, titanium, vanadium, zirconium, and

niobium substitutions into cementite make it more stable relative to its pure form [88], but their ef-

ficacy in this context may be compromised by the limits of solubility or the tendency to form other
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Figure 8.15 The free energy of for-

mation associated with the reaction

M+ 1
3 C → M3C occurring at 650 ◦C,

as a function of the manganese or

nickel concentrations. Adapted from

Grabke et al. [86]. aC stands for the ac-

tivity of carbon in cementite.

compounds.

Figure 8.16 shows that silicon reduces the stability of cementite, as is well-known in the design

of steels and cast irons. It is added to steel to delay cementite precipitation but at concentrations

(≈ 1wt%) small enough that graphite is avoided; therefore, carbon partitioned during ferrite for-

mation enriches the residual austenite, permitting it to be retained untransformed at ambient tem-

perature. The influence of silicon on the precipitation of cementite is substantially greater when the

matrix phase is supersaturated austenite, because the driving force for precipitation from supersatu-

rated ferrite is greater [89] – many applications that exploit the role of silicon in modern steels are

reviewed elsewhere [90–92].

Figure 8.16 The calculated formation

energy ∆F of cementite for the reac-

tion {FFe3(1−x)M3xC− [3(1−x)FFe+3xM+
Fgraphite]}/4, where ‘M’ stands for a metal

atom other than iron. Compilation of data

from [33, 43, 85, 87, 93].

Boron lodges within the prismatic interstices when it substitutes for carbon, but is a larger atom so

there is a net increase in volume but the lattice parameters change in a nonuniform manner [94]. Fig-

ure 8.17 shows that large concentrations of boron can be introduced into cementite without changing

its orthorhombic symmetry; the saturation magnetisation and the Curie temperature increase. He-
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lium atoms are relatively rigid so they tend to substitute for iron in cementite; the energy needed

to substitute C, Fe8d and Fe4c are 5.07, 3.34 and 3.52 eV respectively [95]. In contrast, the most

stable location for a hydrogen atom is an octahedral interstice, surrounded by six iron atoms, with

a lower energy than the corresponding interstice in ferrite [96]. Changes in the lattice parameters of

cementite due to the substitution of Mo, Mn, Cr and Ni are listed in Table 8.7 [97].

Figure 8.17 The lattice parameters of

Fe3C and Fe3(B,C) as boron substitutes for

carbon in the cementite unit cell. Adapted

from Nicholson [94].

Table 8.7

Change in the lattice parameters of cementite (Pnma) as a function of the concentra-
tion. The coefficients are derived from the work of Kagawa and Okamoto [97].

Solute ∆a / Å wt%−1 ∆b / Å wt%−1 ∆c / Å wt%−1 Concentration limit / wt%

Mo 0.001276732 0.007352941 0.002538071 3.2

Mn −0.002061431 0 −0.001239669 4.85
Cr −0.002328289 −0.001445087 −0.000874126 3.49

Ni −0.001637331 −0.000814332 −0.000404858 2.08

8.8.1 PRECIPITATES INSIDE CEMENTITE

Ferrite has been shown to precipitate in cementite when its carbon concentration in equilibrium with

α enriches as the temperature is reduced, Section 8.2. This probably happens only when the cemen-

tite size is large because otherwise the ferrite can precipitate at the interface with pre-existing α.

Other precipitates possible include copper or copper-rich particles that form within cementite dur-

ing tempering [98]. Figure 8.18 shows copper precipitates in identical orientation in the cementite

that forms a part of pearlite; it is likely that precipitate at the transformation front [99]. When both

austenite and copper particles are found within Widmanstätten cementite, they have a common ori-

entation relationship with the cementite so it might be safe to assume that the θ/Cu crystallography

is identical to that of θ/γ [100].

Whereas copper precipitates in both the ferrite and cementite of pearlite by an interphase mecha-

nism, presumably because it has a low solubility in both phases, vanadium carbides similarly pre-
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cipitate but only in the ferritic component of pearlite [101, 102]. This is because vanadium has a

greater solubility in cementite.

Figure 8.18 Dark-field electron mi-

croscope image of fine copper pre-

cipitates within the cementite compo-

nent of pearlite. Fe-1.45C-1.96Cu wt%

transformed at 670 ◦C. After Chairu-

angsri and Edmonds [99], reproduced

with the permission of Elsevier.

8.9 THERMODYNAMIC PROPERTIES

8.9.1 HEAT CAPACITY

There are estimates using a combination of density functional theory and quantum Monte Carlo

methods of the heat capacity of cementite [30]. These allow the individual contributions of phonon,

electronic and magnetic components to be studied and are consistent with conventional thermody-

namic assessments, Figure 8.19 [93]. The behaviour illustrated is typical with the electronic com-

ponent making only a minor contribution because only those electrons near the Fermi energy can be

promoted to unoccupied states. The vibrational component increases smoothly with temperature and

forms the majority contribution to the total heat capacity. The cusp in the total heat capacity curve

is therefore entirely due to magnetic changes in the vicinity of the Curie temperature of cementite.
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electronic Figure 8.19 The calculated compo-

nents of the heat capacity of cemen-

tite as a function of temperature at zero

pressure; adapted from Dick et al. [30].
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8.9.2 EQUILIBRIUM BETWEEN CEMENTITE AND MATRIX DISLOCATIONS

The theory of the yield point effect in ferritic steel relied on the reduction in energy when a misfitting

carbon-atom that is in solid solution reduces its energy by interacting with the strain field of a

dislocation [103]. This reduction, ≈0.5 eV, is so large that the carbon atom become more stable at

a dislocation core than in carbides such as ε and θ [104]. Very severe deformation can therefore

lead to the dissolution of cementite with the carbon relocating to dislocations. The reduction in

energy as the carbon segregates to dislocations can be incorporated into phase diagram calculations;

Figure 8.20 shows how the solubility of carbon in a mixture of ferrite and dislocations, that is in

equilibrium with cementite, is sensitive to the density of dislocations [105].

Figure 8.20 Phase diagram calcu-

lations showing how the α + ⊥/θ

phase boundary is affected by dislo-

cations present in the ferrite, where

⊥ represents dislocations the density

of which is indicated numerically near

each curve.

There is another reason why cementite can dissolve when the steel is severely deformed. The plas-

tic deformation thins the cementite by elongation, so increasing the θ/α interfacial area per unit

volume; the cementite may also be refined by the deformation cutting the particles as they pass

through [106]. Both of these factors reduce its stability until it is more energetically favourable for

the cementite to dissolve.

8.9.3 GRAPHITISATION AND SYNTHESIS

Cementite can be metastable relative to graphite in Fe-C binary alloys in the presence of austenite

or ferrite, Figure 1.12 [107–109].2 Cementite presumably is easier to nucleate in the solid-state than

graphite, hence its ubiquitous presence in most steels. Graphite does not have a good fit with the

ferrite lattice so the structural component of interfacial energy is expected to be large [110]. Whereas

there are reproducible orientation relationships between cementite, α and γ, there are none when it

comes to graphite precipitation inside steel. Indeed, iron that forms inside a carbon nanotube seems

to solidify in random orientations [111]. The fact that the formation of graphite from cementite leads

to a large expansion in volume must add to the difficulties of solid-state nucleation:

Fe3C
︸ ︷︷ ︸

Vθ

→ 3Fe
︸︷︷︸

0.911Vθ

+graphite
︸ ︷︷ ︸

0.227Vθ

= 1.138Vθ

where Vθ is the volume of cementite. It would be necessary for iron to diffuse in order to accommo-

date the growing graphite [112].
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One consequence of the metastability of cementite and its relative ease in nucleation, is the phe-

nomenon of metal dusting, in which cementite is generated during the desorption of gases such as

CO on the steel surface when the activity of carbon in the gas is sufficiently large [86]. The oxygen

partial pressure should be small enough to minimise oxidation. The cementite then decomposes into

fine particles of iron and graphite, i.e., the dust.

Cementite can be synthesised by gas (CH4 +H2 +Ar) carburising of iron-oxides at about 750 ◦C.

Figure 8.21 shows the thermal stability of such cementite in the form of time-temperature-

transformation curves, when the carbide is reheated to a variety of temperatures. The rate at which

it decomposes is a lot slower when made using titanomagnetite, attributed to titanium dissolving

in cementite and stabilising it [113]. However, phase equilibrium calculations show that there is a

negligible solubility of titanium in cementite Longbottom et al. [113]. On the other hand, when pure

cementite is in equilibrium with iron containing dissolved titanium, the cementite for some reason

becomes stable to the formation of graphite.

Figure 8.21 Time, temperature and 50% trans-

formation diagrams for the decomposition of

cementite into elemental iron and carbon. In

one case, the cementite is made by carburising

hematite ore (Fe2O3), and in the other by simi-

larly carburising titanomagnetite (Fe(1−x)TixO4).

Selected data from Longbottom et al. [113].

8.10 CEMENTITE PRECIPITATION IN METALLIC GLASS

Amorphous alloys of iron precipitate cementite when their carbon concentration is sufficiently large;

it is difficult to be specific because there is no phase diagram relating to the equilibrium between

cementite and the glassy alloy, or even whether an equilibrium mixture of glass and cementite is

possible. Figure 8.22a shows cementite and ferrite obtained by the devitrification of a binary glassy-

steel 500 nm thick film during heat treatment at just 300◦C. It is not clear why the cementite is

heavily faulted but its shape indicates that the growth process is reconstructive in nature. This would

require the diffusion of iron atoms, and indeed, the rate of transformation is found to be slower than

expected from the diffusion of carbon alone [114].

Metallic glasses are configurationally frozen at the glass transition temperature and hence have

a greater free volume than supercooled liquid. It is expected therefore that diffusion should be

easier than in the crystalline version of the material. The measurement of diffusion coefficients is

complicated because the glass may simultaneously undergo structural changes such as relaxation

and ultimately, devitrification. Experiments on the diffusion of iron in a variety of metallic glasses

in their relaxed condition show that there is indeed an enhanced diffusivity in the glassy state when

compare with that in ferrite, although this does not account for the possible effects of chemical
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composition (Figure 8.22b, [115]). It is entirely conceivable that solutes like boron (frequently a

component of metallic glasses) will lead to a general expansion of the mean inter-atomic spacing

(p. 396).

(a) (b)

8 12 16 20

10
10
10

Figure 8.22 (a) Cementite (majority phase, containing planar faults) and equiaxed ferrite, crystallised from

metallic glass films of composition Fe-13.6C at% by heat treatment at 300 ◦C for 3 h. Reproduced from Fillon

et al. [114] with the permission of Elsevier. (b) 59Fe tracer diffusion coefficients in Fe-Zr and Fe-B glassy

metals in the relaxed state. Self-diffusion data for iron in ferrite are included from [116, 117], for comparison

purposes. Selected data on the amorphous alloys from Horvath et al. [115].

8.11 CARBON NANOTUBES – ROLE OF CEMENTITE

The growth of carbon nanotubes from gaseous hydrocarbons is catalysed by fine particles of tran-

sition metals, particularly iron. The size of catalyst particles correlates with the diameters of the

nanotubes generated [e.g., 118]. Bulky iron or thin films of iron are not as effective as dispersed

particles [119]. Flat surfaces do not form good templates for the growth of tubes.

There has been discussion [120] about whether it is the iron particles or the cementite particles that

form subsequently, catalyse the carbon nanotubes. Environmental transmission electron microscopy

has provided clear evidence for “graphitic networks” forming first on cementite particles, followed

by the genesis of carbon nanotube growth [121, 122]. The process of carbon depositing on the

cementite particle is not uniform, so carbon diffuses through the cementite from the graphite-rich

region to uncoated areas, leading to the expulsion of carbon filaments [119].

Not everyone accepts these conclusions about the role of cementite; Tessonnier et al. [123] comment

on electron beam induced artefacts and the possible role of surface diffusion. Nevertheless, X-ray

diffraction experiments involving nanotube formation in a fluidised bed where a mixture of ethylene,

hydrogen and nitrogen is catalysed to decompose by iron supported on alumina, indicate that the iron

is converted into metastable cementite which then decomposes into a more stable mixture of iron and

carbon-nanotubes, rather like the ordinary process of graphitisation [124]. Mössbauer spectroscopy

and transmission electron microscopy of nanotubes synthesised by the catalytic decomposition of

acetylene on iron particles have shown that while α-iron is the active centre for the breakdown of

acetylene, it is cementite formation that induces the growth of the carbon nanotubes [125].

The presence of α-iron or cementite particles within carbon nanotubes can add a magnetic function

that has the potential for exploitation in devices. Tubes synthesised by the pyrolysis of liquid hy-
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drocarbon in a mixture containing ferrocene [Fe(C2H5)2] end up with some 90% of the enclosed

particles in cementite acting as single-domain ferromagnets [126].

8.12 DISPLACIVE MECHANISM OF CEMENTITE PRECIPITATION

Cementite can precipitate from supersaturated ferrite at temperatures below 200 ◦C, in time periods

long enough for carbon to partition but for iron to be immobile [127]. The resulting fine platelets

of cementite should then grow by a paraequilibrium mechanism with the rate controlled by the

diffusion of carbon in the supersaturated-ferrite, towards the growing cementite. This mechanism

would lead to the observed reproducible orientation-relationship between the cementite and the

matrix from which it precipitates.

The commonly stated α/θ orientation relationship associated with bainite and tempered martensite

is due to Bagaryatskii [128, 129]:

[1 0 0]θ ‖ [1 1 1]α ‖ z1

[0 1 0]θ ‖ [2 1 1]α ‖ z2

[0 0 1]θ ‖ [0 1 1]α ‖ z3. (8.4)

Here, the orthonormal basis ‘Z’ is formed by the unit vectors z1, z2 and z3. Figure 8.23 illustrates

the relationship between rows of atoms parallel to [111]α which transform into zig-zags with the

average direction [1 0 0]θ in the cementite. The displacements that can in principle produce the zig-

zags are all parallel to [1 1 0]α in the plane (1 1 2)α. Any homogeneous deformation that transforms

the crystal structure of ferrite to that of cementite would therefore need to be accompanied by the

shuffle of atoms to their ultimate positions (page 255).

[1 1 2][1 1 2]   

Ferr

Figure 8.23 The image on the left represents the disposition of iron atoms in ferrite, with rows of atoms

going into the plane of the diagram along [111]α. The figure on the right is the cementite cell in the Bagaryatskii

relationship with respect to the ferrite. The rows along [1 1 1]α turn into zig-zags with the average direction

[1 0 0]θ into the plane of the diagram.

The first attempt at a displacive transformation model for cementite precipitating in supersaturated

ferrite was due to Andrews [127], which assumes the Bagaryatskii orientation relationship with the
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pure deformation (Z S Z) referred to the orthonormal basis Z defined according to the identities in

Equations 8.4:

(Z S Z) =





k = 1.024957 0 0

0 g = 0.960242 0
0 0 m = 1.116120



 (8.5)

where k, g and m are the principal deformations. This homogeneous deformation on its own does

not generate the cementite lattice, shuffles are necessary to bring the iron atoms into positions con-

sistent with the space group Pnma. Since two of these principal deformations are expansions and

the third a contraction, it is not possible to find an invariant line between the two lattices without

adding a rigid body rotation as an additional deformation. However, any such rigid body rotation

would alter the orientation relationship from the observed Bagaryatskii relation.3 It follows that the

Andrews deformation cannot lead to a glissile interface between the ferrite and cementite, violating

a fundamental requirement for displacive transformation.

The θ/α orientation relationship found by Isaichev [130], using rational indices, can be expressed

as follows:

〈1 0 0〉θ ‖ 〈1 1 1〉α
{0 3 1}θ ≈‖ {1 0 1}α. (8.6)

It is important to note the approximation sign, because these planes are not exactly parallel, as

pointed out in the original paper by Isaichev [130]. There is an angle of some 1.5-2◦ between

{0 3 1}θ and {1 0 1}α.

In fact, the orientation relationship is likely to be irrational if the cementite grows without the diffu-

sion of the larger atoms. The Isaichev orientation relationship is close to that of Bagaryatskii making

them difficult to distinguish using conventional electron diffraction. It deviates from Bagaryatskii

by a rotation of 3.8◦ about the a-axis of the cementite [131]. Accurate measurements on tempered

martensite have repeatedly identified the Isaichev orientation relationship and this has led to the

suggestion that the Bagaryatskii orientation does not exist [132, 133]. It turns out the deformation

described in Equation 8.5, when combined with a rigid body rotation that converts the Bagaryatskii

orientation into that of Isaichev, renders the combination an invariant-line strain [134]:

(Z SI Z) =





1.024957 0 0

0 0.960242 0
0 0 1.116120





︸ ︷︷ ︸

‘Bain strain’

×





1 0 0
0 0.9978 −0.0663

0 0.0663 0.9978





︸ ︷︷ ︸

‘rigid body rotation’

=





1.02496 0 0
0 0.958129 −0.063664

0 0.073999 1.113660





︸ ︷︷ ︸

‘Isaichev strain’

. (8.7)
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The eigenvectors and eigenvalues (λi) for (Z SI Z) are:

[0 − 0.486527 0.873665]Z λ1 = 1.07245

[1 0 0]Z λ2 = 1.02496

[0 0.839485 − 0.543383]Z λ3 = 0.999338.

The third eigenvector is invariant because its magnitude is essentially unchanged; the maximum

elongation has been reduced to 7.2% compared with the 11.6% associated with the (Z S Z) Bagary-

atskii orientation.

The matrix (Z SI Z) can be converted to the cementite basis using a similarity transformation:

(θ SI θ) =





a 0 0

0 b 0
0 0 c









1.02496 0 0

0 0.958129 −0.063664
0 0.073999 1.113660









1/a 0 0

0 1/b 0

0 0 1/c





=





1.02496 0 0

0 0.958129 −0.063664 b
c

0 0.073999 c
b 1.113660





(θ SI θ)
−1 =





0.975648 0 0

0 1.039110 0.0594024 b
c

0 −0.0690456 c
b 0.893993



 .

The coordinate transformation matrix for the Isaichev relationship becomes:

(α J θ)
︸ ︷︷ ︸

coordinate

= (α C θ)
︸ ︷︷ ︸

correspondence

(θ SI θ)
−1

=





1 2 0
−1 1 −1
−1 1 1









0.975648 0 0

0 0.999569 0.0571418 b
c

0 −0.664178 c
b 0.859971





=

(
0.975648 2.078220 0.177038

−0.975648 1.085445 −0.805474
−0.975648 0.992774 0.982512

)

(θ J α) =





0.341653 −0.341653 −0.341653

0.319377 0.207124 0.112254
0.016555 −0.548553 0.565107



 .

The process described above for cementite, is analogous to that for the martensitic transformation

of austenite, where the Bain strain [135] changes the lattice but does not leave any line invariant,

and the orientation relationship implied by the Bain strain is not that observed. The correct irrational

orientation relationship that is observed, is obtained by adding a precise rigid body rotation that in

combination with the Bain strain becomes an invariant-line strain.

The Bagaryatskii deformation as described by Andrews does not leave any vector invariant, but

when combined with a rigid body rotation that generates the Isaichev orientation, the resulting
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total deformation is an invariant-line strain. Furthermore, the principal deformations associated with

this invariant-line strain are substantially smaller than those of the Bagaryatskii deformation. This

explains the occurrence of the Isaichev orientation relationship.

The analogy with the martensitic transformation of austenite (γ) is clear; the ηi are the principal dis-

tortions: The calculations will depend on the lattice parameters of cementite and ferrite, but as long

Transformation Pure deformation Pure deformation + Final orientation
rigid body rotation

γ→ α Bain strain Invariant-line strain Kurdjumov-Sachs type
ηi = 1.136, 1.136, 0.803 ηi = 1.124, 1, 0.922

α→ θ Bagaryatskii Invariant-line strain Isaichev
ηi = 1.116, 1.024, 0.960 ηi = 1.073, 1.025, 1

as the parameters are known as a function of temperature and composition, they are straightforward

to repeat.

The following observations now become compatible with the paraequilibrium, displacive precipita-

tion of cementite from supersaturated ferrite at temperatures where the mobility of iron and substi-

tutional solutes is limited:

• It is possible to define a homogeneous deformation which is an invariant-line strain for the

α→ θ transformation. This is a minimum condition for the existence of a glissile interface

between the parent and product lattices.

• Cementite variant selection occurs when elastically loaded martensite is tempered [136].

Such selection is characteristic of a strong interaction of the shape deformation accompa-

nying transformation, with the applied stress.

• The displacive precipitation of cementite would require the diffusion of carbon. However,

the iron to substitutional solute ratio must remain constant. This has been verified using the

atom-probe technique [137].

First principles calculations of displacive transformation

It is possible to calculate using first principles methods, the free energy of a phase as a function of

the configuration, usually for 0 K. These methods consider unconstrained transformation where each

state is estimated in isolation, i.e., strain energy due to the obvious displacements that accompany

transformations is ignored and interfacial structures are treated over very short ranges using rational

planes, so the defect structure and mobility of the interface cannot be assessed with confidence.

One recent calculation due to Zhang et al. [82] describes an intermediate phase that connects austen-

ite, ferrite and cementite during transformations between pairwise combinations of these phases.

The intermediate structure is meant to exist only at the transformation front. This interpretation is

essentially another way of representing the strain fields of coherency dislocations (p. 267) which

accomplish the lattice change.
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8.13 α/θ ORIENTATION RELATIONS IN PEARLITE

The level of reproducibility that characterises displacive transformations is not essential when the

mechanism is reconstructive. Focussing on data collected with sufficient precision to permit distinc-

tions, many orientation relationships have been observed between cementite and ferrite that form

pearlite [138]:

“New-2”

(0 3 1)θ ‖ (1 0 1)α

[1 0 0]θ 8.5◦ from [1 3 1]α

[1 1 3]θ ‖ [1 1 1]α

“New-3”

(0 3 1)θ ‖ (1 0 1)α

[2 2 0]θ 2.4◦ from [1 3 1]α

[1 1 3]θ ‖ [1 1 1]α

“New-4”

(1 0 2)θ ‖ (1 0 1)α

[1 1 3]θ 5.95◦ from [1 0 1]α

[2 1 1]θ ‖ [1 3 1]α

“New-5”

(0 3 1)θ ‖ (1 0 1)α

[1 1 3]θ 8.5◦ from [1 1 1]α

[1 0 0]θ ‖ [1 3 1]α

The New-2, New-3 and New-5 relations are close to but significantly different from the classical

Pitsch-Petch [139, 140] orientation:4

(0 1 0)θ ‖ (5 2 1)α

[0 0 1]θ 2.6◦ from [1 3 1]α

[1 0 0]θ 2.6◦ from [1 1 3]α (8.8)

but as Zhang and Kelly [138] pointed out, neither the Pitsch-Petch, nor the Bagaryatskii orientations

were found, and suggested that they may not actually exist if accurate measurements are made; only

the Isaichev relation was observed in addition to the new orientations relationships listed above.

The mechanisms required to explain these observations depend on the carbon concentration of the

steel [138]. In hypoeutectoid steel, the ferrite precedes the cementite and therefore influences its

nucleation, leading to the Isaichev orientation relationship. In hypereutectoid steels, the cementite

nucleates first while in contact with austenite, leading to the New-5 orientation relationship with the

ferrite; in this case the orientation of the ferrite within the pearlite is determined by its relationship

with the austenite. The mechanisms determining the New-2, New-3 and New-4 relationships are not

as clear, but apparently occur in eutectoid steel and are dominated by the relationship of the closest

packed planes with the cementite with the closest-packed planes in austenite and ferrite.
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8.14 PITSCH γ/θ ORIENTATION RELATIONSHIP

The Pitsch orientation relationship [140, 141] between austenite and cementite in the Pnma setting

is given by:

[100]θ ‖ [110]γ

[010]θ ‖ [225]γ

[001]θ ‖ [554]γ.

The [100]θ vector is not only parallel to [110]γ, but its length is almost identical, making it an

invariant line between the two lattices. For aγ = 0.3568nm, aθ = 0.50837nm, bθ = 0.67475nm,

cθ = 0.45165nm, the coordinate transformations become

(γ J θ) =

(
1.007488 −0.658402 0.791147
1.007488 0.658402 −0.791147

0 1.646005 0.632918

)

(θ J γ) =

(
0.496284 0.496284 0

−0.184101 0.184101 0.460251
0.478783 −0.478783 0.383027

)

.

Using the correspondence matrix due to Sleeswyk [142], configured to the Pnma space-group set-

ting, the deformation that converts the austenite lattice to that of cementite is given by:

(γ S γ) = (γ J θ)(θ C γ)

=





1.007488 −0.658402 0.791147
1.007488 0.658402 −0.791147

0 1.646005 0.632918



×
1

6





4 2 0
1 −1 −3

−3 3 −3





=





0.166352 0.841136 −0.066373

1.176970 −0.169478 0.066373
−0.042124 0.042124 −1.139460



 .

The eigenvectors and eigenvalues (λi) for (γ S γ) are given approximately by

[0.344239 0.46953 1]γ λ1 =−1.17374

[1 1 0]γ λ2 = 1.00749

[−1.60845 2.26399 1]γ λ3 =−0.976336.

The alternative correspondence defined by Sleeswyk [142]:

(θ C γ) =
1

12





7 5 3

1 −1 −6
−6 6 −6
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leads to the eigenvectors and eigenvalues for the deformation matrix as follows:

[0.26009 − 0.553681 1]γ λ1 =−1.17374

[1 1 0]γ λ2 = 1.00749

[−1.8993 1.97315 1]γ λ3 =−0.976336.

The deformations λi therefore are not different and it remains the case that the [100]θ ‖ [110]γ is

unrotated and almost unchanged in length, an invariant line.
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Rendus de l’Acadé,oe des Sciences, Paris, 1961, 253, 2358–2360.

28. A. H. Cottrell: ‘A theory of cementite’, Materials Science and Technology, 1993, 9, 277–280.

29. D. V. Shtansky, K. Nakai, and Y. Ohmori: ‘Mechanism and crystallography of ferrite precip-

itation from cementite in an Fe-Cr-C alloy during austenitizatio’, Philosophical Magazine A,

1999, 79, 1655–1669.
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Notes

1The atom probe permits the composition of cementite to be measured directly using time-of-flight mass spectroscopy.

There are, nevertheless, difficulties in measuring the carbon concentration of cementite [143]. It has not yet been possi-

ble to demonstrate small deviations from stoichiometry using such these high-resolution methods. Extremely small (4 nm)

cementite particles in severely deformed mixtures of ferrite and cementite, apparently contain only 16 at% of carbon, a con-

centration that recovers to the 25 at% when the mixture is annealed to reduce the defect density and coarsen the cementite
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[144]; the deformation is said to introduce defects into the cementite, with this somehow leading to the reduction in carbon

concentration. It is important to note, however, that the particles containing such a large deviation from stoichiometry have

not been proven to retain the orthorhombic crystal structure.
2However, if cementite and α-iron can somehow coexist at temperatures above the Fe-C eutectoid, then free energy of

formation data indicate that the mixture would be stable relative to α-iron+graphite, Figure 8.24.

Figure 8.24 The formation energy

∆F of cementite for the reaction

FFe3C − [3FFe +Fgraphite]/4. Data from

CALPHAD assessment by Hallstedt et

al. [93]. A negative value implies that

cementite becomes stable relative to

the mixture of α and graphite.

3Notice that in the case of the martensitic transformation of austenite, the pure Bain strain generates the correct lattice but

does not lead to the necessary invariant line. However, the Bain orientation is not that observed experimentally. When a rigid

body rotation is added that makes the combined deformation an invariant line strain, it generates the observed orientation

relationship.
4The original papers quoted in support of the Pitsch-Petch orientation relationship do not in fact show the orientation

relationships as stated in Equation 8.8. Petch states the orientation, expressed here with cementite in the Pnma setting, to be

(010)θ ‖ (5 2 1)α and [0 0 1]θ ‖ [1 3 1]α. The Pitsch paper considers the θ/γ orientation and then assumes a conversion

from austenite to ferrite to determine the θ/α relationship, which is not explicitly stated in the original work.





9 Other Fe-C carbides

9.1 GENERIC CONSIDERATIONS

There are several carbides in the binary Fe-C system that are richer in carbon than cementite. This

includes the ε-carbide [1], χ-carbide (Hägg) [2] and η-carbide [3]. In martensitic or bainitic steels,

these carbides are generally considered to be metastable relative to cementite, because the following

sequence of precipitation, or a part of the sequence, is observed experimentally [4]:

α′martensite → ε+α′ → η+α′ → χ+α′ → θ+α
︸ ︷︷ ︸

reduction in dissolved carbon in α =⇒

. (9.1)

During carburisation, when carbon is introduced, from an external source, into the steel via its

surface from an external source, the transition χ-carbide can overlay cementite when the activity

of carbon becomes sufficiently large [5]. Similarly, when carbon is ion-implanted into iron, only

η-carbide forms at the highest ion-fluence, with χ-carbide at intermediate fluences and cementite

at the lowest fluence [6]. It is particularly interesting that in these ion-implantation experiments, all

of the carbides (χ, η, θ) could form at −70 ◦C, i.e., without the long-range diffusion of iron [6].

Heating cementite in a hydrogen-CO mixture can also convert it into χ-carbide [7].1

Observations like these suggested domains on the iron-carbon equilibrium phase diagram where

mixtures of χ+α (or η+α) may have greater thermodynamic stability than α+θ [8, 9]. The mod-

ified Fe-C phase diagram shown in Figure 9.1 [10, 11] implies that if a mixture of α+θ is cooled

and held at 400 ◦C, then the cementite should transform into χ-carbide, and similar considerations

apply to the η+α phase field. Although this has never been observed in practice, it could be argued

that the driving force for that transformation and the carbon concentration of the ferrite are both

very small for η to be observed in a reasonable time period [12]. At large driving forces, such as

during precipitation from high-carbon martensite, both χ and η carbides do form, but it cannot be

claimed that they may not ultimately be replaced by cementite.

There is evidence that the modified phase diagram is not correct. Table 9.1 lists cases where ce-

mentite precipitation is observed in domains where Figure 9.1 would imply that other carbides are

thermodynamically more stable. Pearlite that has been aged for two thousand years under ambient

conditions, remains as a mixture of ferrite and cementite [13]; mixtures of ferrite and cementite are

found in meteorites that have cooled at extraordinarily slow rates, some 10 K per million years [14].

χ-carbide has been shown to begin to transform into cementite at 300 ◦C in iron implanted with car-

bon ions [6]. Mechanically synthesised mixtures of ε, χ and cementite decompose to just cementite

when heated to 400 ◦C [15].

First principles calculations of individual crystals can sometimes indicate an order of thermody-

namic stability although they do not consider coexistence in equilibrium with another phase, nor do

they include constraint when the precipitate is enclosed by a matrix. Table 9.2 represents the change

in internal energy when each of the transition carbides (and cementite) is formed from elemental

419
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Figure 9.1 Calculated Fe-C equilibrium phase diagram [10, 11]. The dashed line represents a temperature

below which a Fe-C solid solution would tend to undergo the clustering of carbon atoms which in turn may

lead to a conditional spinodal. ε-carbide is missing from this diagram because of the lack of appropriate ther-

modynamic data.

iron and carbon. Unfortunately, the discrepancies are sufficiently large to make the relative stabili-

ties of the carbides difficult to assess with confidence. These calculations usually are representative

of 0 K and zero pressure whereas the formation energies in practice are sensitive to temperature

[26]. Temperature-dependent calculations that account for magnetic and other heat capacity terms,

show that η-carbide is less stable than cementite beyond 57 ◦C [27].

9.1.1 OBSERVATIONS OF χ, η, ε AND θ CARBIDES IN TEMPERED Fe-C

Figure 9.2 shows specifically data from binary Fe-C steels using a Larson-Miller parameter [36] to

represent the kinetic strength of the heat treatment. Although empirical, the parameter is acknowl-

edged widely to rationalise the combined effects of time and temperature during tempering [e.g.,

37–39].

Two conclusions can be drawn from Figure 9.2. First, that cementite is the most stable phase over

a wide temperature range when the strength of the heat treatment is greatest within the scope of

the dataset. Secondly, that cementite is the only precipitate when the excess carbon concentration

is small. This would be expected for a phase of high stability because a small carbon concentration

in solution corresponds to a small driving force for precipitation. In such circumstances, transi-

tion phases (which by definition lead to a smaller reduction in free energy) would not be able to

precipitate.
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Table 9.1

Steels in which cementite is observed experimentally to precipitate at low tempera-
tures. Only the maximum tempering temperatures are listed from the data by Langer
[16], although cementite could be observed mixed with ε-carbide to tempering tem-
peratures as low as 166 ◦C [16]. The bainitic microstructures were all generated
isothermally, whereas both the ferrite and martensite were tempered isothermally.

Steel composition / wt% Heat treatment Structure Reference

0.05C-0.0019N-1.5Al 260 ◦C, 76 min; 1400 min ferritic [16]

0.02C-0.0034N-0.003Al 250 ◦C, 15-250 min ferritic [16]

0.02C-0.0186N-0.37Mn 260 ◦C, 187 min ferritic [16]

0.02C-0.0010N-0.015Al-1.0Ni
260 ◦C, 60 min; 250 ◦C, 362-5706 min; ferritic [16]

220 ◦C, 435-5650 min; 200 ◦C, 2807 min ferritic [16]

190 ◦C, 7980 min ferritic [16]

0.014C 150 ◦C, 170 h; 260 ◦C, 3-10 min ferritic [17]
0.49C-1.18Si-0.15Mn-1.22Cr-3.57Ni-0.26Mo 290 ◦C 5 h bainitic [18]

1.8C 150 ◦C, 5 days bainitic [19]

1.8C 200 ◦C, 55 h bainitic [20]

0.43C-3Mn-2.12Si 300 ◦C, 30 min; 247 ◦C, 30 min bainitic [21]

Fe-0.8C 316 ◦C, 60 min martensitic [22]
Fe-0.8C 427 ◦C, 60 min martensitic [22]

Fe-0.43C-3Mn-2.12Si 350 ◦C, 30 min martensitic [23]

Fe-1.30C 350 ◦C, 21 days martensitic [24]

Fe-0.11C-0.21Si-28Ni 150 ◦C, 48 h martensitic [25]

Table 9.2

First principles calculations of the change in internal energy ∆U at 0 K and zero
pressure for the reaction [∆U = UFenCm − nUFe −mUC]/(n+m). These are calculations
that consider the formation of the carbide as an isolated phase, from the constituent
atoms.

Carbide ∆U / kJ mol−1 Reference

Cementite Fe3C 5.38 [28–30]

Cementite Fe3C 5.89 [26]
Cementite Fe3C 5.60 [31]
Cementite Fe3C 5.21 [31]

Cementite Fe3C 2.51 [32]
ε-carbide Fe2.4C 6.23 [33]

ε-carbide Fe2.2C 4.26 [34]
η-carbide Fe2C 126.1 [35]

η-carbide Fe2C 4.00 [34]
η-carbide Fe2C 1.68 [32]

Häag χ-carbide Fe5C2 2.45 [32]
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Figure 9.2 The Larson-Miller parame-

ter T (log t + 20), where T is the absolute

tempering-temperature and t the tempering

time in hours. The data represent the evo-

lution of carbides in Fe-C binary steels as

a function of the strength of the tempering

treatment.

9.2 χ-CARBIDE

Hägg-carbide, also known as χ-carbide, has the approximate chemical composition Fe2.2C, often

written as Fe5C2. The unit cell is monoclinic (space group C2/c, four formula units in the cell) with

a = 1.1588nm, b = 0.4579nm, c = 0.5059nm and β = 97.75◦ [40–43]. The structure is illustrated

in Figure 9.3, with the b axis unique so the lattice points in the unit cell are at 0,0,0 and 1
2 ,

1
2 ,0. The

coordinates of the atoms are given in Table 9.3.

Table 9.3

Coordinates of atoms in the χ-carbide unit cell. Adapted data from [44]. There are
twenty iron atoms and eight carbon atoms in the monoclinic cell, 4×Fe5C2.

Atom Multiplicity Wyckoff Site Coordinates

letter symmetry x y z

Fe 8 f 1 0.097125 0.084171 0.417689
Fe 8 f 1 0.214975 0.58659 0.30585

Fe 4 c 2 0.214975 0.58659 0.30585
C 8 f 1 0.11732 0.30626 0.08025

The calculated single-crystal elastic properties (GPa) are as expected, anisotropic [44]:

C11 C22 C33 C44 C55 C66 C12 C13 C23 C46 C15 C25 C35

349 341 410 139 132 35 188 151 164 −11.5 −10.7 22.3 −1.4

Some of the steels in which χ-carbide has been observed experimentally are listed in

Table 9.4. Häag carbide is apparently more stable than either ε or η-carbide when in equilibrium

with ferrite; both ε and η are replaced by Hägg during the tempering of martensite. The ε-carbide

that forms during the implantation of high-carbon bearing steels with carbon, transforms into the

more stable χ-carbide on annealing [45]. At carbon concentrations greater than that of cementite, χ-

carbide can exist in stable equilibrium with cementite. Indeed, during carburisation reactions where
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Figure 9.3 Four unit cells of the monoclinic cell of χ-carbide projected on the (010) plane; this makes it

easier to see the symmetry elements. The fractional heights of the atoms along the b-axis are l= 0.07732,

l′ = 1−l, m= 0.57732, m′ = 1−m, n= 0.08417, n′ = 1−n, o= 0.59659, o′ = 1−o, p=0.30626, p′ = 1−p,

q= 0.80626, q′ = 1−q. The c-glide plane is parallel to the plane of the diagram at half height and the diad is

located at the iron atoms (heights m,m′) on the cell edges.
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the activity of carbon is sufficiently large, Hägg carbide precipitates in preference to cementite [5].

High-resolution electron microscopy of tempered martensite has demonstrated that what at first

sight appears to be faulted cementite, in fact consists of interpenetrating layers of cementite and χ,

described as microsyntactic intergrowth [46–49]. The {2 0 0}χ planes are found to be parallel to the

{0 1 0}θ planes (in the setting Pnma) of different spacing (0.57 and 0.67 nm respectively). Thus,

the faults in the cementite are regions of χ, each a few interplanar spacings thick and this intimate

mixture of cementite and χ consequently has a non-stoichiometric overall composition expressed

by Fe2n+1Cn, where n ≥ 3. Similar observations have been reported in [50], but for cementite in

both tempered martensite and lower bainite, in a Fe-0.7C wt% steel (Figure 9.4). In both cases, the

cementite particles contained regions of χ-carbide, lending support to the idea that the transforma-

tion from Hägg to cementite occurs by intergrowth [51]. When isolated χ-carbide is heat treated to

induce cementite, magnetic measurements indicate that the transition involves mixtures of the two

phases in changing proportions [52], consistent with the intergrowth mechanism.

Figure 9.4 Lattice image show-

ing the intergrowth of layers of

(010) cementite (Pnma setting, spac-

ing 0.67 nm) and (200) χ-carbide

(spacing 0.57 nm) formed during the

tempering of cementite. Image cour-

tesy of Professor Y. Ohmori, further

details in [50].

When cementite is prepared by mechanical alloying of an appropriate mixture of iron and graphite,

the process does leave some graphite unalloyed. When this cementite was severely deformed dur-

ing sliding wear, the graphite entered solution to transform cementite into χ-carbide. If any iron is

oxidised during the wear process, that would also enrich the carbon content and induce this trans-

formation [? ].

The Curie temperature of χ-carbide is 529 K [55] but also has been quoted as 520 K [56, 57] with the

average magnetic moment per iron atom calculated to be 1.69µB [44], which compares reasonably

well with measurements in the range 1.72-1.75µB for χ, ε and θ carbides [58].

In the context of steels, χ-carbide is known primarily for its precipitation during the tempering of

high-carbon martensite, tending to locate at transformation twin boundaries, plate boundaries and

sometimes within the matrix [53, 59]. The orientation that develops is interesting [51]:

(100)χ ‖ {112}α (010)χ ‖ {110}α [001]χ ‖ {111}α

because the twin plane of the martensite on which χ forms, is not in fact the {112}α ‖ (100)χ, the

twin boundaries act simply as heterogeneous nucleation sites [51].

χ-carbide is of particular importance amongst the iron carbides as a catalyst in the Fischer-Tropsch

process in which hydrocarbon products are synthesised from mixtures of carbon-monoxide and
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Table 9.4

Steels in which χ-carbide has been observed experimentally. The Ohmori experi-
ments [51] used virgin martensite samples heated at 5 ◦C min−1 to a particular tem-
perature and then quenched to ambient temperature.

Steel Heat treatment Reference

Fe-1.22C wt% 300 ◦C, 350 ◦C, 1 h [53]

Fe-1.22C-0.26Si-0.6Mnwt% 300-450 ◦C, anisothermal [51, 54]

Fe-1.0-1.7C-0.28Si-0.18Mnwt% 247-397 ◦C, 1-2 h [46]

Fe-1.5C wt% 277 ◦C, 48 h [47]
Fe-0.25C-16.08Co-4.97-Ni-0.71Cr-2.82Mowt% 510 ◦C, 5-15 min [48, 49]

hydrogen. Surface energies and the structure of relaxed surfaces have been calculated [60] but the

variations as a function of the crystallographic orientation of the surface are not large enough to

reach conclusions about the surface best suited for catalytic activity. The addition of platinum atoms

to the χ-carbide surface can promote catalytic activity; the (100)χ surface has a low activation

barrier for surface diffusion, making it possible for the Pt atoms to aggregate. In contrast, (111)χ

leaves the platinum atoms in a dispersed state because they are trapped by large barriers associated

with the structure of that surface [61].

9.3 η-CARBIDE

The tempering of martensite at low temperatures is associated with the precipitation of η-carbide

(Fe2C) [62], the crystal structure of which is orthorhombic [3], space group Pnnm with lattice pa-

rameters a = 0.4704nm, b = 0.4318nm and c = 0.2830nm [4], Figure 9.5a. Table 9.5 lists some of

the steels where η-carbide has been observed experimentally, in general verified using electron or

X-ray diffraction or Mössbauer spectroscopy. The crystallographic orientation between the carbide

and martensite is as follows [63]:

(010)η ‖ {011}α (001)η ‖ {100}α [100]η ‖ {011}α

The calculated elastic properties are as follows (GPa) [68]:

C11 C22 C33 C44 C55 C66 C12 C13 C23

323 340 378 110 97 136 189 136 158

K = 223 Es = 147 Es = 362 ν = 0.23

These have been used to estimate the fraction of η-carbide in a gear steel assuming that the Young’s

modulus of a composite mixture of martensite, austenite and the carbide scales with the respective

volume fractions [68]. In that study, η-carbide was induced to precipitate in a carburised steel by

cooling to 77 K, which is too low to permit any diffusion of substitutional atoms including iron. The
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Table 9.5

Steels in which η-carbide has been observed experimentally. The cryogenic treat-
ment refers to cooling the sample to −180 ◦C prior to the tempering heat-treatment.

Steel Heat treatment Reference

Fe-1.13C wt% 120 ◦C, 1-100 days [3]

Fe-1.22C wt% 125 ◦C, 16 h [62]

Fe-0.39C-24.9Niwt% 100, 150 ◦C, 1 h [64]
Fe-0.88C-14.8Niwt% 100, 150 ◦C, 1 h [64]

Fe-1.44C-0.3Si-0.4Mn-12.2Cr-0.84Mo-0.43Vwt% cryogenic + 180 ◦C, 30 min [65]

Fe-0.28C-3Mo wt% 200 ◦C, 10 min [66]

Fe-14.7Ni-0.92Cwt% 25 ◦C, 2-3 years [67]

change in crystal structure to η is therefore achieved by a deformation according to the crystallo-

graphic theory [69–72] with the following parameters [73], referred to the martensite lattice:

Habit plane of η p = (0.4049 0.0627 − 0.9122)

Displacement direction d = [−0.4919 0.0597 − 0.8686]
Magnitude of shape deformation m = 0.2626
Magnitude of lattice-invariant deformation n = 0.1855

Shear strain on habit plane s = 0.211

Dilatational strain normal to habit plane ζ = 0.157

Figure 9.5b shows the morphology of thin η-carbide precipitates; it is telling that they form as

lenticular plates with sharp tips, because this is the shape that minimises the elastic strain energy

due to the shape deformation [74]. High resolution imaging also shows evidence within the η-plates

of fine structure corresponding to the lattice-invariant deformation [73].

The Curie temperature of η-carbide is 267 ◦C [52].
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(a) (b)

Figure 9.5 (a) The orthorhombic unit cell of η-carbide projected on to the {001} plane. The fractional

coordinates along the c axis are marked for those atoms not located at heights 0,1. The four iron atoms are

located at coordinates 1
6 ,

1
4 ,

1
2 and at all other symmetry related positions, whereas the two carbon atoms are

located at 0,0,0 and equivalent positions. (b) η-carbide plates in an Fe-25Ni-1C wt% transformed into marten-

site and then tempered at 150◦C for 1 h. Micrograph reprinted by permission of Springer Nature from [73],

https://link.springer.com/article/10.1007/BF02670168.

9.4 ε-CARBIDE

The crystal structure of ε-carbide is best described by the space group P6322 with lattice parameters

a= 0.4767 nm and c= 0.4354 nm [75]. The six iron atoms are in a close-packed hexagonal stacking

at the 6g locations whereas the carbon atoms occupy octahedral interstices (Table 9.6). There are

three sets of octahedral sites, labelled 2b, 2c and 2d in the Wyckoff notation; the carbon atoms order

on the 2d sites because that leads to the greatest C-C distance. It has been shown using first principles

calculations that a disordering of the carbon atoms, i.e. a distribution over the 2b, 2c and 2d sites is

not favoured [76]. Even the 2d sites will not be fully occupied because the chemical composition of

ε-carbide is approximately Fe2.4C as identified using the atom probe, where peak concentrations of

carbon at just under 30 at.% have been measured in precipitates assumed to be ε [76, 77]. It follows

that there will be some carbon atoms in addition to those in the occupied sub-lattice of octahedral

sites illustrated in Figure 9.6, to account for the Fe:C ratio of 2.4.

If the carbon atoms are distributed at random on all of the octahedral sites, ε-carbide is indexed as

hexagonal close-packed with the space group P63/mmc and unit cell parameters ah = 0.2752 nm (so

that a =
√

3ah) and ch = c = 0.4354nm. The difference is illustrated in Figure 9.7. With the point

group P6322, only one sub-lattice of octahedral interstices is occupied, thus reducing the symmetry.

In Figure 9.7b, it is assumed that the carbon atoms are dispersed at random on all three sub-lattices

of octahedral interstices, making the overall symmetry is greater, and indeed, consistent with that of

hcp-iron. As pointed out by Nagakura [75], not all of the observed diffracted intensity is explained

by indexing the structure as P63/mmc, and furthermore, first principles calculations indicate that it
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Table 9.6

Wyckoff positions for space group P6322 of ε-carbide. Adapted from [75]. The oc-
tahedral interstices consist of three independent Wyckoff sites, 2b, 2c, 2d, each of
which has a multiplicity of two. Here, only the 2d sites are occupied because the
carbon atoms are then the most widely separated.

Multiplicity Wyckoff Site Coordinates
letter symmetry

6 g .2. 1
3 , 0, 0; 0, 1

3 , 0; 1
3 , 1

3 , 0

1
3 , 0, 1

2 ; 0, 1
3 , 1

2 ; 1
3 , 1

3 , 1
2

2 d 3.2 1
3 , 2

3 , 3
4 ; 2

3 , 1
3 , 1

4

2 c 3.2 1
3 , 2

3 , 1
4 ; 2

3 , 1
3 , 3

4

2 b 3.2 0, 0, 1
4 ; 0, 0, 3

4

Figure 9.6 Projection on to the basal

plane of the unit cell of ε-carbide, consis-

tent with the space group P6322. The car-

bon atoms are shaded and occupy octahedral

interstices. In practice, there will be an addi-

tional small quantity of carbon in other octa-

hedral interstices so that the chemical com-

position complies with Fe2.4C.

is energetically favourable for the carbon atoms to reside in a single sub-lattice of octahedral sites,

although it is emphasised that the calculations refer to 0 K [78].

ε-carbide often precipitates during the tempering of martensite in steels [24, 79–81]; it also is com-

mon within lower bainitic ferrite [22, 76, 82–93]. The orientation relationship between the carbide
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(a) (b)

Figure 9.7 2×2 cell structure-projection on to the basal plane. The iron atoms coloured blue are at height
1
2 whereas the smaller carbon atoms that are hatched and cross-hatched are at heights 3

4 and 1
4 respectively.

(a) Space group P6322 with one set of octahedral interstices (2d) occupied by carbon and some further carbon

(not illustrated) in the 2b sites which would be 25% occupied to make the overall structure consistent with the

formula F2.4C. (b) The carbon atoms (not illustrated) are now randomly distributed in any of the three kinds of

octahedral interstices, so that the overall symmetry becomes P63/mmc.

and martensite is reported as [94]:

(211)α′ ‖ (1010)ε ≡ (100)ε, (100)ε ‖ [210]ε ≡ [1010]ε

(111)α′ ‖ (1210)ε ≡ (120)ε, (120)ε ‖ [010]ε ≡
1

3
[1210]ε

{011}α′ ‖ (0001)ε ≡ (001)ε, (001)ε ‖ [001]ε ≡ [0001]ε (9.2)

stated to an accuracy of about ±2◦. The coordinate transformation matrices for converting the in-

dices of directions u or plane normals h between the two lattices are as follows:

(ε J α′) =
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3 − k

3
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3
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k
3
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[ε;u] = (ε J α′) [α′;u]

(h;α′) = (h;ε)(ε J α′)
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1
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[α′;u] = (α′ J ε) [ε;u]

(h;ε) = (h;α′)(α′ J ε)

where the constants are ratios of lattice parameters, k =
√

6aα′/
√

3aε, g =
√

3aα′/aε and m =√
2aα′/cε. The orientation relationship is close to that proposed by Jack [24].

The pure deformation that converts the bcc structure of ferrite to that of ε-carbide can be derived
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assuming the correspondence proposed for a similar transformation in titanium [95]:

z1 ‖ [100]α′ → [110]ε ≡ [1120]ε

z2 ‖ [011]α′ → [110]ε ≡ [1100]ε

z3 ‖ [011]α′ → [001]ε ≡ [0001]ε (9.3)

where z1, z2, and z3 define an orthonormal basis Z whose basis vectors are parallel to the prin-

cipal axes of the deformation (Figure 9.8a). Using the lattice parameters aα′ = 0.2867nm, aε =

0.4767nm and cε = 0.4354nm, the pure deformation is given by:

(Z S Z) =





η1 = 0.959888 0 0

0 η2 = 1.175716 0
0 0 η3 = 1.073855





where the ηi are the distortions, i.e. the ratio of the length of the vector in α′ following the defor-

mation to its original magnitude.

(a) (b)

1210
111

011
0001 211

1010

100
1120

5.26

α

1100
011

Figure 9.8 (a) Projection of the ε-carbide structure on the basal plane, with superimposed {011}α′ plane

(dashed lines) to illustrate the lattice correspondence. The iron atoms in blue are located height half. Adjacent

carbon atoms are at heights 1/4 and 3/4 respectively. (b) Stereographic projection to illustrate the rotation

required to supplement the pure deformation so that the total is consistent with the observed orientation rela-

tionship.
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In the crystallographic basis, this becomes:

(α′ S α′) = (α′ J Z)(Z S Z)(Z J α′)

=
1

aα′






1 0 0

0 − 1√
2

1√
2

0 1√
2

1√
2










η1 0 0
0 η2 0
0 0 η3



aα′






1 0 0

0 − 1√
2

1√
2

0 1√
2

1√
2






=





0.959888 0 0
0 1.124790 −0.050931

0 −0.050931 1.124790



 . (9.4)

This pure deformation corresponds to the relations identified in Equation 9.3 but does not represent

the observed orientation relationship in Equation 9.2. An additional right-handed, rigid body rota-

tion of 5.26◦ about [011]α′ is required to restore the observed orientation relationship (Figure 9.8b),

so the total deformation becomes:

(α′ S2 α′) =





0.959888 0 0
0 1.124790 −0.050931

0 −0.050931 1.124790





︸ ︷︷ ︸

pure deformation





0.995789 0.064824 −0.064824
−0.064824 0.997894 0.002106

0.064243 0.002106 0.997895





︸ ︷︷ ︸

rigid rotation

=





0.955846 0.062224 −0.062224
−0.076185 1.122310 −0.048454

0.075561 −0.048454 1.122310



 . (9.5)

The eigenvectors and eigenvalues (λi) for (α′ S2 α′) are

[−0.805796 − 0.985771 1]α′ λ1 = 1.10919

[0 1 1]α′ λ2 = 1.07386

[−2.04386 − 1.0226 1]α′ λ3 = 1.01742. (9.6)

These eigenvalues are consistent with the relatively low theoretical density of ε-carbide

(6.96gcm−3) but the deformations listed are large when compared with cementite precipitation

in ferrite (page 480). Furthermore, the principal deformations are all positive, making it impossible

to find any lines that could be invariant between ε and ferrite. The large principal distortions prob-

ably can only be accommodated when the particle size is small. This may explain why ε-carbide is

always observed as fine particles visible only using transmission electron microscopy. The carbide

precipitates as platelets [87]. The habit plane when precipitated in martensite has been reported to

be close to {100}α′ [79].

ε-Carbide in steel, given time, definitely transitions into cementite; the evidence supports this

over a large temperature range. One example given in Figure 9.9 represents a time-temperature-

transformation diagram for this transition [16]. Given that ε-carbide is less stable than cementite,

and that the principal deformations needed to generate ε are larger than for cementite, it is not clear

why ε-carbide is a precursor to cementite. Possible explanations are as follows:
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Figure 9.9 Carbide precipitation during the tempering of a 0.02C-1Ni wt% steel. Precipitation begins with

ε which is then replaced gradually by cementite. The crosses refer to the case where both carbides can be

observed simultaneously. Adapted using data from Langer [16].

• It is energetically more favourable for carbon atoms to segregate to dislocations rather than

to precipitate [96]; the binding energy of a carbon atom to the core of a dislocation in

iron is about 0.5 eV, whereas that with ε-carbide is much smaller [97] and with cementite

slightly less than 0.5 eV [98]. Figure 9.11 shows calculations for both cementite and ε-

carbide, where carbon concentrations below each line would be accommodated entirely at

dislocations. For example, ε-carbide will not precipitate if the concentration in the matrix

is less than 0.2 wt% at a dislocation density of 2× 1016 m−2, and the threshold of concen-

tration would be smaller with respect to cementite precipitation. This would explain why

ε-carbide mostly in steels containing large carbon concentrations (Table 9.7 and 9.8).

• Processes that precede the precipitation of ε-carbide. Carbon in solution within martensite

will tend to form clusters to reduce the overall strain energy. The clusters are anisotropic,

forming along specific crystallographic orientations. Multiplets, i.e., clusters with many

aligned carbon atoms, are described as having a base-centred monoclinic structure of chem-

ical composition Fe3C, which after the further migration of carbon into the monoclinic mul-

tiplet, undergoes an in situ transformation into ε-carbide of composition Fe9C4 [99, 100].

Such a transformation leads to the correct orientation relationship of the ε-carbide with

the martensite matrix. Direct observations using the atom probe [101] confirm the oriented

segregation of carbon in tempered martensite, with peak carbon concentrations reaching

up to 10 at%, Figure 9.10.

Suppose that the segregation of carbon in the manner illustrated expands the lattice param-

eter from the 0.2867 nm using in calculating (Z S Z) in Equation ?? is increased to 0.29 nm,
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Figure 9.10 Three dimensional

atom-probe tomograph showing an

atom map of the oriented segregation

of carbon in Fe-0.19C-215.5Ni wt%

martensite, tempered at 22 ◦C for

1000 h, prior to the precipitation of

ε-carbide. Image reproduced from

Zhu et al. [101] with permission of

Elsevier.

the eigenvectors and eigenvalues (λi) for (α′ S2 α′) become

[0 − 2.41438 1]α′ λ1 = 1.13275

[0 0.414184 1]α′ λ2 = 0.990366

[1 0 0]α′ λ3 = 0.9494, (9.7)

thereby recovering the necessary condition for the displacive formation of ε-carbide. Fur-

thermore, the invariant line [0 0.414184 1]α′ lies in the habit plane of the form {100}α′ .

• Most calculations of the relative stabilities of ε-carbide and cementite deal with the binary

Fe-C system. It is feasible that other solutes affect this. Silicon inhibits cementite precipi-

tation from ferrite or austenite but thermodynamic calculations show that ε-carbide is even

more inhibited than cementite; it has been argued that the effect of silicon is to alter the lat-

tice parameters in a manner that enhances coherency [33]. Both manganese and aluminium

additions to steels enhance the stability of ε-carbide [33].

Figure 9.11 The dislocation density required to prevent the precipitation of either ε-carbide or cementite;

this would happen if the carbon concentration in the matrix falls below the line. After Kalish and Cohen [96].
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Table 9.7

Compositions of steels (wt%) in which ε-carbide has been found in lower bainite. The
carbon concentration quoted for the alloy studied by [90] represents an estimate of
the concentration in the austenitic matrix of an austempered ductile cast iron. That
for [76] also represents the estimated carbon in the austenite prior to transforma-
tion [102], neglecting that locked in proeutectoid cementite. The temperature refers
to that at which bainite was generated. There are also four alloys with carbon con-
centrations less than 0.05 wt%, in which ε-carbide is obtained on tempering below
250 ◦C; these are listed in Table 9.1.

C Si Mn Ni Cr Mo V T / ◦C Reference

0.87 - - - - - - 260 [22, 103]
0.95 0.22 0.60 3.27 1.23 0.13 - αlb [82]
0.60 2.00 0.86 - 0.31 - - αlb [82]
1.00 0.36 - 0.20 1.41 - - αlb [82]
0.58 0.35 0.78 - 3.90 0.45 0.90 αlb [82]
1.00 2.15 0.36 - - - - 400 [83]
0.60 2.00 0.86 - 0.31 - - 350 [84]
0.60 2.00 - - - - - 350 [85]
0.41 1.59 0.79 1.85 0.75 0.43 0.08 300 [86]
0.54 1.87 0.79 - 0.30 - - 275 [87]
0.74 2.40 0.51 - 0.52 - - 380 [89]
1.30 3.09 0.17 - - - - 400 [90]
0.40 2.01 - 4.15 - - - 215 [91]
0.71 1.83 0.52 0.02 0.5 0.19 - 400 [92]
0.57 1.39 0.74 0.44 320 [93]
0.77 0.30 0.23 0.07 1.38 0.02 260 [76]
1.8C 150 [19]
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Table 9.8

Compositions of steels (wt%) in which ε-carbide has been found in martensite tem-
pered at the temperature indicated. The ≤ sign indicates tempering by continuous
heating to the temperature indicated. The temperatures marked by an asterisk rep-
resent special heat treatments including autotempering or isothermal martensitic
transformation. Q& P stands for a quench and partitioning heat treatment [104] with
the temperature of the partitioning component included in brackets.

C Si Mn Ni Cr Other T / ◦C, t/h Reference

1.30 - - - - - 120, 960 [24]
≈ 0.8 - - - - - 204, 1; 260, 1 [22]

0.11 0.21 - 28.0 < 0.10 - 100, 48 [25]
0.52 0.04 0.14 19.1 - - 135, 1 [94]
0.49 3.88 0.10 - - - 520, 0.17 [94]
0.81 < 0.02 < 0.02 < 0.02 - - 125, 1 [94]
1.00 < 0.35 0.4 - 1.4 - 100, 200 [105]
1.80 0.05 0.01 - - - 73∗, 240 [19]
0.69 - - - - - ≤ 150 [81]
1.03 0.36 0.68 - - - ≤ 150 [81]
0.49 1.19 1.20 0.98 - 0.21Nb Q&P (400) [106]
0.41 1.27 1.30 1.01 0.56 - Q&P (180) [107]
0.28 - - - - 3.0Mo 200 [66]

ε-carbide in austenite

There is a single study showing the homogeneous precipitation of ε-carbide in carbon-rich austenite

[108], Figure 9.12, with the orientation relationship:

{111}γ ‖ (0001)ε

〈110〉γ ‖ (1 2 1 0)ε.

The precipitates are in the form of fine, coherent particles homogeneously distributed throughout

the austenite and form in at least three variants of the orientation relationship (Figure 9.12). When

the austenite transforms into martensite, only two of these variants adopt the Jack orientation rela-

tionship with the martensite.

9.4.1 ELASTIC MODULI OF ε-CARBIDE

Experimental single-crystal modulus data are not available so it is necessary to resort to first-

principles calculations limited to 0 K and 0 pressure. For a hexagonal crystal, mechanical stability

requires that [109–111]:

C11 > 0, C11 > |C12|, C44 > 0

(C11 +C12)C33 > 2C2
13

One difficulty in doing the calculations is that the carbon atoms are not distributed at random and

the overall composition is not precisely fixed. The ε-carbide structure then corresponds to the P6322
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Figure 9.12 The homogeneous precipitation of ε-carbide in austenite. Micrograph courtesy of Dr Isabel

Gutierrez.

space group, covering the compositions Fe6C2, Fe12C5, and Fe6C3. When C is located at the par-

tially occupied octahedral interstices, additional Fe-C bonds are formed with six nearest Fe atoms.

Therefore, the Fe atoms are grouped into atoms without (Fe1) and with (Fe2) nearest bonding to C

located at partially occupied positions. Table 9.9 shows the results [112]. An increase in the carbon

concentration causes a stiffening of the ε-carbide. The values obtained indicate that all three compo-

sitions of the ε-carbide are mechanically stable at zero Kelvin and zero pressure. Unlike cementite

[113], the Voigt averaged Young’s modulus of ε-carbide exceeds that of iron. In a mixture of ferrite

and carbide, a greater carbide-modulus would make it more difficult for the carbide to participate

in plastic deformation [114] whereas the obvious plasticity of cementite in steel is the basis of the

design of strong pearlitic-steel ropes.

The ductility of relatively brittle materials is often modelled in terms of the ratio of the shear to bulk

modulus (Es/B) on the grounds that the resistance to plastic deformation is related to Es whereas the

brittle-fracture strength is proportional to B [115–117]. A low value of Es/B is then an indication

of malleability whereas a high value corresponds to brittleness. For all compositional varieties of

ε-carbide, Es/B is found to be much greater at 0.48 than is the case for cementite at 0.33. In the

case of α-iron and nickel the ratios are 0.33 and 0.34 respectively [116, 117]. Therefore, ε-carbide

is expected to be brittle, more so than cementite which has demonstrated capabilities of plastic

deformation either in its pure state [118] or when incorporated in steel [119]. There is no direct

experimental evidence on the brittleness of ε-carbide, presumably because of the difficulties in syn-

thesising large enough samples. The only evidence is anecdotal, that ε-carbide causes a deterioration

in the toughness of steel when the maximum carbide-size becomes about 200 nm [120].

The Poisson’s ratio of ε-carbide (0.35) is greater than that of cementite (0.30 [121]), the effect

of which would be to partition more of the strain energy associated with the precipitation into the

carbide with a smaller portion residing in the surrounding matrix [pp. 469-470, ref. 122]. Therefore,

the coherency strain fields associated with ε-carbide should have a smaller extent than is the case
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Table 9.9

Elastic constants (Ci j / GPa) and bulk modulus (B / GPa) , shear modulus (Es / GPa),
Young’s modulus (E / GPa) and Poisson’s ratio (ν) of ε-carbide [112]. Key: a [123],
b [124],c [125]

Fe6C2 Fe12C5 Fe6C3

C11 324.3 (325a, 322b) 356.3 (337c) 378.7

C33 332.6 (339a, 332b) 375.9 (348c) 379.2

C44 131.1 (121a, 129b) 137.5 (121c) 147.2

C12 154.9 (144a, 138b) 137.6 (157c) 144.8

C13 156.9 (134a, 140b) 189.2 (173c) 208.4

B 213.2 (202a, 201b) 235.6 (226c) 251.1

Es 103.6 115.1 (99c) 120.6

E 267.4 296.9 (260c) 311.9
ν 0.29 0.29 (0.3c) 0.29

c11 − c12 169.4 218.7 233.9

Es/B 0.486 0.489 0.480

c12 − c44 23.8 0.1 −2.4

for cementite.
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125. R. Salloom, and S. Srinivasan: ‘Elastic constants and structural stability of non-stoichiometric

epsilon ε-Fe2.4C carbide’, Materials Chemistry and Physics, 2019, 228, 210–214.

Notes
1Therefore, the concept of stability as implied by Equation 9.1 does depend on conditions, in this case the activity of

carbon in the gas.





10 Nitrides

The concentration of nitrogen in typical steels tends to be small, typically 10-30 parts per million, so

much of the information about nitrides in steels comes from studies of nitrogen-enriched surfaces.

Nitrogen can be introduced into the surface of iron within practical timescales at temperatures in

excess of about 500 ◦C, with the aim of coating it with hard nitrides (≈ 1000HV) that resist wear

[1, 2]. The layer that forms normally consists of the ε-Fe3−zN (0≤ z ≤ 1) on top with cubic γ′-Fe4N

underneath, followed by nitrogen in solid solution within the ferrite. There are significant structural

differences between these two nitrides, neither of their compositions are exactly stoichiometric. The

nitrogen atoms are not necessarily located in the ideal positions described below, there is a degree

of disorder, that is greater for the ε than γ′ nitrides. This is part of the reason why the self-diffusion

coefficient of nitrogen is much greater in ε-nitride than in γ′ [1]. There is a further nitride, the

orthorhombic ζ, which has a composition close to Fe2N [3]. All of the nitrides, with the exception

of ζ, are ferromagnetic at ambient temperature.

Figure 10.1 Part of the iron-nitrogen phase diagram calculated using the TCFE8 thermodynamic database.

This database does not contain information about ζ-nitride, which is incorporated instead from Wriedt et al.

[4]. The calculations treat γ′ as a stoichiometric compound, but its composition can accommodate nitrogen

over the range 5.6-5.9 wt% (19.3-20 at.%) [4]. The illustrated extent of the ζ phase field needs verification.

Calculations courtesy of Shaumik Lenka.

The iron-nitrogen phase diagram in Figure 10.1 shows that ε-nitride exists over a large composition

range, essentially from Fe3N to Fe2N, whereas γ′ and ζ nitrides have more narrowly defined com-
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positions. Nevertheless, γ′ is not exactly stoichiometric with its concentration of nitrogen increasing

at low temperatures. As a result, plates of ferrite precipitate from γ′ during the cooling of nitrided

specimens [5].

10.1 γ′-NITRIDE

The composition of γ′-nitride assuming stoichiometry is Fe4N, consistent with the primitive cubic

crystal structure, space group Pm3m. The four iron atoms occupy the corners and face-centres of

the unit cell, with the single nitrogen atom located in the octahedral interstice at the centre of the

cell (Figure 10.2a). In this ordered state, the octahedral interstices at the cell edges ( 1
2 ,0,0; 0, 1

2 ,0;

and 0,0, 1
2 ), are unoccupied. If the actual composition of the γ′ deviates from 20 at.% nitrogen, the

lattice parameter becomes a function of the nitrogen concentration [6, 7]:

aγ′ /nm = 0.37988+ 0.095315

(

yN −
1

4

)

where yN is the occupied fraction of the sublattice of octahedral sites. The linear thermal expansion

coefficient is (7.62± 0.75)× 10−6K−1.

The lattice parameter of γ′ is similar to that of austenite; it is found therefore to exhibit a cube-

cube orientation relationship when it precipitates in austenite in a Fe-9.8N at% alloy during ageing

at 210 ◦C [8]. The resulting local depletion of nitrogen stimulates the austenite to transform into

ferrite accompanied by the further precipitation of γ′ (Figure 10.2b). An approximate orientation

relationship between ferrite and the nitride has the closest packed planes parallel [9]:

(111)γ′ ‖ (110)α [011]γ′ ‖ [0.49 0.49 0.72]α
︸ ︷︷ ︸

10◦ from [111]α

.

(a) (b)

Figure 10.2 (a) Projection of the crystal structure of cubic Fe4N on to {100}, with fractional heights indi-

cated for all atoms other than those at heights 0,1. (b) Fe-N alloy transformed at 225 ◦C, consisting of α and

γ′. After Jiao et al. [9], reproduced with permission from Elsevier.
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The nitride is ferromagnetic below the Curie temperature of 767±10 K with an average magnetic

moment per iron atom of 2.2 µB [10–12], similar to that of α-iron even though its structure could be

considered to be similar to that of austenite expanded by nitrogen. However, this is consistent with

the fact that the two-state model of austenite where the high-volume form is indeed ferromagnetic

(p. 31).

The development of a nitrided surface on steel begins with the nucleation and growth of γ′ at the

surface, followed by that of the more nitrogen-rich ε-nitride on top of the γ′. The thickening of the

γ′ layer is treated assuming nitrogen diffusion control, a flat interface with the steel and the absence

of a defect structure [13, 14]. The α/γ′ equilibrium-solubility of nitrogen in ferrite is much less

than in the nitride, so the diffusion flux through the nitride determines the thickening kinetics. If the

concentration of nitrogen in equilibrium with the surface (S) in contact with the active atmosphere

is cγ
′S, and that in equilibrium with ferrite is cγ

′α, then assuming a constant concentration gradient

through the nitride,

(cγ
′α− cαγ′

)
∂Z

∂ t
= D

γ′

N

∂c

∂ z

∣
∣
∣
∣
z=Z

≈ D
γ′

N

cγ
′S − cγ

′α

Z
(10.1)

which gives and Z = α1d
√

t (Equation 4.12), i.e. parabolic thickening.1 When nitriding pure iron,

the region near the surface will consist of ε whereas that underneath in contact with the ferrite

will be the γ′ nitride with its smaller nitrogen concentration; most nitriding conditions make the ε

the thermodynamically more stable phase so the γ′ is essentially a transition phase, Figure 10.3.

The ε will therefore grow into the γ′ as nitriding progresses. It is necessary then to consider the

two nitride-layers and ferrite to be connected in series with local equilibria maintained at contact

surfaces; this can be implemented numerically but the overall outcome still results in a parabolic

thickening of each of the components of the compound layer [13, 15]. This is to be expected with

the assumption of diffusion-controlled growth because the diffusion distance increases with the

layer thickness making the gradients shallower as thickening proceeds. Figure 10.3 also illustrates

porosity in the ε, which develops when the nitrogen potential of the active gas is greater than can be

absorbed by the growth of the nitride itself [16].

The kinetic theory described above is incomplete because there is no treatment of the nucleation of

the nitrides, nor of the time taken for the dissociation reactions that must occur at the surface of the

iron. The quality of the iron surface has a role in promoting such reactions [17]. On clean surfaces,

nucleation of the nitride not surprisingly begins at grain boundaries, with growth leading to allotri-

omorphs that decorate the boundaries. A layer of wuestite on the surface of the iron can promote

the nucleation of particular nitrides but the reasons for this are not clear [18]. The incubation time

towards the establishment of a layer depends also on the surface reactions. Most nitriding steels will

contain solutes such as Cr or Al, both of which are strong nitride formers; the analysis does not

account for substitutional solute diffusion.
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Figure 10.3 Schematic illustra-

tion of the development of a poly-

crystalline compound layer during

nitriding. [N] indicates dissolved

nitrogen. Adapted from Somers

and Mittemeijer [13].

10.2 ε-NITRIDES

ε-Iron nitride (Fe3N) has a primitive hexagonal crystal structure, space group P6322, with the ni-

trogen atoms occupying octahedral interstices as illustrated in Figure 10.4a [19]. The nitrogen-rich

phase Fe2N has the structure shown in Figure 10.4b, with a reduced symmetry given by the space

group P31m. The lattice parameters as a function of concentration are given by [20, 21]:

a/nm = 0.44652+ 0.06851yN slowly cooled nitride

c/nm = 0.42433+ 0.03903yN

a/nm = 0.44542+ 0.07111yN quenched from 573 K

c/nm = 0.42535+ 0.03662yN

where yN is the occupied fraction of the sublattice of octahedral sites, with yN = 1
2 for Fe2N and 1

3 for

Fe3N. These equations are derived from data covering the range 0.33 < yN < 0.47 (0.0 < x < 0.4).

The quenched samples are said to represent the state of equilibrium at 573 K with a greater disorder

in the distribution of nitrogen amongst the variety of octahedral interstices. The equations can be

used to estimate the nitrogen content of the ε-nitrides, as long as the cooling conditions involved in

the preparation of the nitride are accounted for [21]. An intermediate nitride where the composition

is not stoichiometric, Fe2N1−x has the space group P312. All of these structures are based on the

iron atoms forming a hexagonal close-packed cell with nitrogen in the octahedral interstices. The ε-

nitride Fe2N may, over a narrow composition range close to the stoichiometric ratio, transform into

an orthorhombic structure (ζ) [19], which represents a distortion of the ε due to a rearrangement of

the nitrogen atoms.

Fe2N is ferromagnetic with a Curie temperature and magnetic moment per iron atom that is sensitive

to the exact nitrogen concentration (Figure 10.5) and can contain carbon.
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(a) (b)

Figure 10.4 (a) The structure of Fe3N (space group P6322), (b) Fe2N (space group P31m); for a nitride

with a composition between Fe2N and Fe3N; the sites at 0.0. 3
4 would be occupied partially so the space group

would reduce to P312. In both the cases, the structure is projected on to the basal plane, with the fractional

coordinates along the c-axis indicated. Structures according to Jack [19].

(a) (b)

Figure 10.5 (a) The measured Curie temperatures for ε-nitrides Fe2N(1−x) and carbonitrides. Data on pure

nitrides from [22–24] and for the carbonitrides from [23, 25]. (b) The magnetic moment per iron atom, as a

function of the nitrogen concentration for the hexagonal iron nitrides. Data adapted from Wold et al. [26].
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Table 10.1

Fractional coordinates of iron atoms and octahedral interstices in the hexagonal
representation of the unit cells of ε-nitrides, presented here with a consistent origin.
There are six iron atoms in the cell which has lattice parameters that depend on the
nitrogen concentration, but are approximately a = 0.48nm and c = 0.44nm. Two of the
structures are illustrated in Figure 10.4.

Fractional coordinates Occupied interstices

Iron atoms Octahedral interstices P6322 P31m P312

1
3 ,0,0

1
3 ,0,1

2
3 ,0,

1
2

1
3 ,

2
3 ,

1
4 Fully Fully Fully

0, 1
3 ,0 0, 1

3 ,1
1
3 ,

1
3 ,

1
2

1
3 ,

2
3 ,

3
4 – – –

1, 1
3 ,0 1, 1

3 ,1 0, 2
3 ,

1
2

2
3 ,

1
3 ,

1
4 – – –

2
3 ,

2
3 ,0

2
3 ,

2
3 ,1 1, 2

3 ,
1
2

2
3 ,

2
3 ,

3
4 Fully Fully Fully

1
3 ,1,0

1
3 ,1,1

2
3 ,1,

1
2 0,0, 1

4 – – –

0,0, 3
4 – Fully Partly

10.3 ζ-Fe2N

ζ-Nitride crystallises with the space group Pbcn, the unit cell containing four Fe2N formula units,

and lattice parameters a = 0.44373nm, b = 0.55413nm and c = 0.48429nm [27]. The structure is

illustrated in Figure 10.6. Unlike γ′ and ε nitrides, ζ is not ferromagnetic and has a small magnetic

moment per iron atom of just ≈ 0.19 µB [26]. Although orthorhombic, the structure can still be

conceived as consisting of a close-packed hexagonal stacking of iron atoms with nitrogen residing

in octahedral interstices, but the arrangement of nitrogen atoms is different from ε which can have

a similar chemical formula. ζ and ε nitrides are neighbours on the phase diagram, Figure 10.1;

the former can be induced to transform into the latter at 1600 K and 15 GPa pressure, even though

ε-Fe2N is less dense than ζ-nitride [28]. The high pressure in those experiments was necessary

to stop the compounds from releasing nitrogen; the experiments revealed the pressure dependence

(Equation 8.2) of the bulk moduli to be Ko = 162 GPa, K′
o = 5.24 and V0 = 118.09Å3, for η, and

Ko = 172 GPa and K′
o = 5.7 for ε-Fe3N1.08 [28].
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Figure 10.6 A projection of the

crystal structure of ζ-nitride, with frac-

tional heights along the c-axis marked.

The space group is Pbcn; the n-glide

planes are parallel to the plane of the

diagram and at height 1
4 and 3

4 .

10.4 α′′-Fe16N2

Precipitation of α′′ occurs when nitrogen-rich austenite is quenched to generate body-centred tetrag-

onal martensite, followed by tempering [29]. There is a giant magnetic moment of 3 µB associated

with its iron atoms [30]; although the extent of the exceptional magnetic properties remains a sub-

ject for debate, it is clear that its saturation magnetisation at 222 emu g−1 is greater than that of

α-iron (192 emu g−1) [31]. The Curie temperature for nanoparticles of α′′ is about 634 K [32] but

has been reported to be 813 K when the nitride is in the form of thin films [33]. Isolated α′′ tends to

decompose into a mixture of γ′-Fe4N and α-Fe at temperatures as low as 460 K [32, 34, 35].

The crystal structure has the tetragonal space group I4/mmm, with the lattice parameters a =

0.57176nm and c = 0.6288 nm [19, 35]. The fractional coordinates of the atoms in the cell are

listed in Table 10.2. The structure, Figure 10.7, can be regarded as a cell consisting of a distorted

set of eight body-centred cubic cells of α-iron [19]. A careful scrutiny of Figure 10.7b shows why

the observed orientation relationship between α′′ and α is as follows [34]:

{100}α ‖ {001}α′′ and 〈100〉α ‖ 〈001〉α′′ .

The good fit between the {100}α and {002}α′′ planes is not matched in other orientations so the

nitride forms as thin plates on the cube planes of the ferrite, as illustrated in Figure 10.7c.
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Table 10.2

Fractional coordinates of atoms in the unit cell of α′′-Fe16N2 [35].

Atom Multiplicity Wyckoff letter Fractional coordinates

Fe 4 e 0, 0, 0.208

Fe 4 d 1
2 , 0, 1

4

Fe 8 h 1
4 , 1

4 , 0

N 2 b 0, 0, 1
2

(a) (b)

(c)

Figure 10.7 (a) The tetragonal unit cell of α′′-Fe16N2. The nitrogen atoms are in irregular octahedral inter-

stices. (b) Same as (a) but highlighting a distorted body-centred cubic cell. (c) α′′ plates in ferrite, after Hayes

et al. [34], reproduced with permission of Elsevier.
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10.5 Z-PHASE

(a) (b)

(c) (d) Vanadium
0

m
Z

Figure 10.8 The structure of Z-phase, space group P 4
n mm [36]. (a) The fractional distance along z is indi-

cated, together with the glide plane at 0,0, 1
2 , identified by the dashed line. Note that the y-axis is not quite in the

plane of the diagram. (b) Projection of 2×2×1 unit cells on to (001); traces of mirrors are indicated by dashed

lines. (c) Fe-0.09C-12.2Cr-0.35Mo-1.97W-0.25V-0.06Nb-0.06N wt% aged at 660 ◦C, showing Z-phase form-

ing on vanadium nitride. Reproduced with permission from Elsevier, from Gopayegani et al. [37]. (d) Ternary

diagram showing the composition range over which Z-phase forms at 600 ◦C, in creep-resistant steels, adapted

from [38, 39].

Z-phase is a nitride of chromium and niobium (CrNbN), known originally to precipitate in austenitic

stainless steels [40]. It became particularly prominent after it was discovered that its precipitation as

Cr(Nb,V)N during the long-term testing of 12CrMoVNb martensitic steels leads to microstructural

instability with consequent reduction in creep rupture strength [41]. This is because it is a more

stable phase than common strengthening precipitates such as nitrogen-rich MX and M2X, which

tend to dissolve when Z-phase forms. Its precipitation at the austenite grain boundaries causes the

decomposition of the strengthening precipitates which focuses the deformation at the weakened

grain boundary zone, leading to accelerated creep rupture [38]. Steels which perform well in creep

for many tens of thousands of hours, weaken dramatically with the onset of Z-phase precipitation.

The crystal structure of CrNbN has the space group P 4
n mm with lattice parameters a= 0.304 nm and
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c= 0.740 nm, Figure 10.8. It often nucleates on VN when present because there is a good fit between

the (001) planes of Z-phase and VN [37]. Chromium is known to increase the thermodynamic

stability of Z-phase relative to NbN and VN; it substitutes into the Z-phase as (Cr,V,Nb)N [42], but

the relative stabilities of these nitrides can depend on the overall chemical composition; for example,

Z-phase loses its thermodynamic advantage relative to NbN if the niobium to nitrogen ratio of the

steel is reduced [43].

10.6 Nb(CN), CrN, TiN, Cr2N, AlN

Niobium is relevant particularly as a microalloying addition to steels, because its precipitation dur-

ing hot deformation helps control the austenite grain size. Nb(C,N) can be thought of as a solid solu-

tion between NbC and NbN, both of which have a cubic-F lattice with the space group Fm3m with

interstitial atoms located in the octahedral spaces between the Nb atom framework, Figure 10.9a.

Indeed, there is a linear relationship between the lattice parameter of Nb(CN), NbC (0.4469 nm)

and NbN (0.4389 nm) as a function of the ratio of carbon and nitrogen concentrations. The orien-

tation relationship when precipitated in ferrite is like that of Bain (often designated Baker-Nutting)

with [001]Nb(C,N) ‖ [001]α, [100]Nb(C,N) ‖ [110]α, and a cube-cube orientation when the carbonitride

precipitates within austenite.

(a)

Figure 10.9 Crystal structures. (a)

Nb(C,N), CrN and TiN. (b) Cr2N

with fractional heights indicated ex-

cept when at 0,1. (c) AlN showing the

two interpenetrating hcp lattices of Al

and N.

(b) (c)

Titanium often is used in boron-containing steels to getter nitrogen in order to allow boron to re-

main in solid solution so that it can segregate to austenite grain boundaries and increase the overall
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hardenability. It similarly is added to low-carbon steels in order to remove carbon from solid solu-

tion, for example in the so-called interstitial-free steels or in titanium-stabilised stainless steels. At

typical concentrations, it has a much stronger affinity for interstitial elements than does niobium.

The crystal structure of TiN is as shown in Figure 10.9a, with a lattice parameter of 0.427 nm. The

nitride has a golden-yellow colour which becomes more copper-like when the interstitial sites con-

tain a mixture of nitrogen and carbon [44]. The colour comes from the electronic structure of TiN.

Certain wavelengths of white light are absorbed by inducing electronic transitions in the TiN, and

hence are absorbed so the reflected components appears coloured. The band gap between electronic

transitions depends on the composition and lattice parameter of TiN, so the colour can be controlled

by manipulating these parameters. Titanium carbide also is coloured, Figure 11.2a.

(a) (b)

Figure 10.10 (a) Morphology of titanium nitride precipitates in steel. Reproduced from Fu et al. [45] with

permission of Elsevier. (b) Golden colour of drill bits coated with titanium nitride.

TiN precipitates tend to be cuboidal in shape (Figure 10.10. First principles calculations of the sur-

face energy of the (001) surface of TiN at 0 K, when in equilibrium with N2, indicate a surface

energy of 1.30 Jm−2; the nitrogen terminated and titanium terminated (111) surface energies are

1.36 and 5.54 Jm−2, respectively [46]. While these calculations are not representative of precipita-

tion from steel, the order of interfacial energies is consistent with the observed cuboidal shape.

High nitrogen stainless steels, although difficult to produce, have significant applications including

impellers and high-performance bearings [47, 48]. They contain up to about 0.6 wt% of nitrogen so

are prone to the precipitation of chromium nitrides following heat treatment. The less common CrN

has a cubic crystal structure with space group Fm3m and lattice parameter 0.294 nm, Figure 10.9a;

it does not ordinarily occur in steels but may have uses as coatings for its hardness, friction char-

acteristics and oxidation resistance. Nitrided layers have been shown to precipitate thin platelets of

CrN on {100}α planes in the Bain orientation with the ferrite [49], Figure 10.11. When the alloy

to be nitrided contains both Cr and Al, a mixed Cr1−xAlxN with the same crystal structure as CrN

forms with a Bain orientation relationship with the ferrite [50].

The nitride Cr2N with its lower nitrogen concentration can precipitate directly from ferrite or austen-
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Figure 10.11 Thin platelets of CrN

in nitrided Fe-3Cr wt% alloy. There are

three orthogonal variants, the one par-

allel to the thin foil is just visible as

discs. After Skiba et al. [49], repro-

duced with the permission of Elsevier.

ite; its crystal structure is trigonal (P31m, a = 0.4796nm, c = 0.4470nm) when the nitrogen atoms

are ordered into three of the six sublattices of octahedral interstices within the hexagonal close-

packed arrangement of Cr atoms [51], Figure 10.9b. If the nitrogen atoms are randomly dispersed

on the interstices, the space group becomes P63/mmc with lattice parameters a = 0.2748 nm and

c = 0.4438 nm. When Cr2N precipitates in duplex stainless steels, it acts as a nucleant for austen-

ite. Depending on the nitrogen concentration and heat treatment, the precipitation can occur by a

cellular mechanism γ → γdepleted +Cr2N or as discrete particles with both mechanisms occurring

simultaneously, Figure 10.12. The cellular reaction, also known as discontinuous precipitation, oc-

curs when two phases grow cooperatively at a common transformation front, but one of them is

the same as the parent, albeit with a different chemical composition and possibly, crystallographic

orientation. The orientation relationship between the depleted austenite and Cr2N is [52, 53]2

(0001)Cr2N ‖ (111)γdepleted [1100]Cr2N ‖ [110]γdepleted .

(a)
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(b)

Figure 10.12 (a) Time-temperature-precipitation diagram for chromium nitride (Cr0.73Fe0.17Mn0.10)2N

precipitation in Fe-19Cr-5Mn-5Ni-3Mo-0.024C-0.69N wt%, adapted from [54]. (b) Cellular precipitation of

Cr2N. There are alternating lamellae of nitride and austenite. Micrograph courtesy of Patricia Almeida Car-

valho [55].

Small quantities of aluminium and nitrogen in steels, often present as residuals in parts-per-million,

from the steelmaking process where aluminium is used to deoxidise the melt, can influence the

development of austenite grain structure. AlN precipitates are stable at high temperatures and there-

fore effective in pinning grain boundaries, Figure 10.13. The unit cell has the space group P63mc
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with lattice parameters a = 0.3111 nm and 0.4978nm [56], Figure 10.9c. The structure consists of

two interpenetrating hexagonal close-packed lattices consisting of aluminium and nitrogen atoms

respectively. Although aluminium carbonitrides can be made [56], it is likely that the precipitates

found in steels are pure nitrides because their formation depends critically on the nitrogen concen-

tration in the steel. Diffraction data are also inconsistent with the carbonitrides that have different

crystallographic space groups.

Cubic AlN (space group Fm3m) is sometimes observed to precipitate in a Bain orientation relation-

ship with ferrite on a habit plane with the approximate indices {100}α [57, 58]. There is a tendency

to transform into the hexagonal form, although the kinetics of the transformation to the more stable

nitride may be constrained by difficulty of nucleating the hexagonal form.

Aluminium nitride has a large misfit with the ferrite lattice so its precipitation is relatively slow

when compared with chromium nitride even though aluminium has a greater affinity for nitrogen

than chromium [59].

Figure 10.13 A thin, hexagonal

plate of aluminium nitride that has

precipitate at a prior austenite grain

boundary. Micrograph courtesy of

Hector Pous.
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γ′

N = 1.675 × 10−9 exp{−64000Jmol−1/RT}m2 s−1, assumed to be concentration independent [60]. Dε
N = 2.1 ×

10−8 exp{−93517Jmol−1/RT}m2 s−1 [15].
2The orientation relationship between the depleted austenite and Cr2N in [61] does not seem to be correct in terms of the

angles involved.





11 Substitutionally alloyed
precipitates

11.1 TiC, NbC

There are many kinds of metallic carbides that exist in pure forms or as precipitates in a variety

of alloy systems, but the focus here is on alloys of iron. Ti, Zr, Hf, V, Nb and Ta when dissolved

in austenite or ferrite, have a tendency to precipitate as carbon-rich MC carbides with the rock salt

crystal structure (space group Fm3m). In this structure, there is one octahedral interstitial site per

metal atom, which when fully occupied, yields the composition MC; when half the sites are vacant,

the carbide becomes M2C. And there can be a significant deviation from these stoichiometric com-

positions.1 Although MC-type plutonium and uranium carbides have not been shown to precipitate

in steels, when they function as fuel for fast breeder nuclear reactors, they are clad in stainless steel.

They can then release carbon into the stainless steel, thereby compromising its ductility.

The binary carbides all have a metallic character, are paramagnetic and melt at very high melting

temperatures. It is quite common therefore for titanium or niobium carbides to precipitate in liquid

steel prior to its solidification. TiC and NbC melt at 3250 ◦C and 3500 ◦C respectively. In hardfacing

alloys, the deliberately large volume fractions of carbides form first in liquid. The shape of the

carbides is close to their equilibrium morphology when they form unconstrained by the liquid.

Figure 11.1 shows the three-dimensional shape of a NbC dendrite that is strongly facetted, reflecting

its cubic symmetry; when observed in cross-sections, the shapes still reveal some features of cubic

symmetry and strong faceting. In contrast, TiC when it forms from liquid maintains a cuboidal shape

[1]; however, dendritic TiC is observed when the cooling rate is large [2], indicating perhaps a role

of constitutional supercooling.

When precipitating in steels, the metal sublattice may contain a limited mixture of metal atoms,

for example, (Ti,Mo)C, (Ti,Nb)C, (Ti,V)C [3] and (Ti,Cr)C [4]. The chemical composition is not

usually stoichiometric because some of the octahedral interstices are vacant. The vacant interstitial

sites may be randomly distributed or in an ordered array; in the latter case, they are known as

constitutional vacancies because of their influence on crystal symmetry. The range of compositions

possible in TiC1−x with 0.52 < x < 1 as a single phase rather than as a precipitate in steel, leads to

order-disorder transformations in TiC0.59−0.62 [5]:

rhombohedral R3m
770◦C−−−→ diamond cubic Fd3m

790◦C−−−→ disordered cubic Fm3m

There is an interesting consequence of a flexible titanium carbide composition in the manufacture

of ceramic matrix composite with steel [6]. When TiC0.57 is heat treated in contact with a eutectoid

steel, the pearlite fraction in the vicinity of the contact surface decreases dramatically. The carbide

absorbs carbon as it approaches a state of equilibrium with the steel. When a similar treatment is

465
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(a) (b)

Figure 11.1 (a) Three-dimensional form of a dendrite of NbC in Fe-34Cr-5Nb-4.5C wt%. Micrograph cour-

tesy of Berit Gretoft. (b) Cross sections of NbC dendrites in Fe-1.4C-6Cr-8Nb-1Si wt%. Micrograph courtesy

of Mario C. Cordero-Cabrera. In both cases, the alloys were deposited using arc welding.

carried out with low carbon steel, TiC dissipates titanium into the adjacent steel in order to achieve

a composition closer to its stoichiometric concentration. TiC is therefore defined to be chemically

active because when bonded to steel, it stimulates ferrite formation from austenite, by locally de-

carburising the austenite, Figure 11.2a [7, 8]. Given its wide range of composition, the carbon in

TiC can be displaced by neutron irradiation of a stainless steel, thereby inducing the precipitation

of chromium-rich M23C6, which then grows to engulf the titanium carbide, Figure 11.2b [9].

(a) (b)

Figure 11.2 (a) TiC particles bonded between steel samples stimulate the formation of ferrite between the

TiC/γ interfaces. The ferrite engulfs the carbide particles, although it is notable that the layers of ferrite are

polycrystalline. Micrograph courtesy of Toshiko Koseki. (b) Spheroidal TiC particle surrounded by octahedral

M23C6 precipitate in an irradiated stainless steel. Reproduced from Kestermich and Nandedkar [9], with per-

mission of Elsevier.

Non-stoichiometric niobium carbide (NbCy) can have structural modifications due to the ordering of

carbon atoms. There is a disorder-order transformation from cubic NbC0.83 (Fm3m, a = 0.4458nm)

to a monoclinic Nb6C5 (C2/m, a = c = 0.546nm, b = 0.9458nm, β = 109.47◦) on cooling below

1300 K [10]. Other ordered forms of niobium carbide have been proposed but the space group C2/m

is the only one that has been verified experimentally [11, 12].

Nb2C has an orthorhombic structure (orthorhombic Pnma a = 0.1091nm, b = 0.30954nm, c =

0.49746nm) that transforms into the hexagonal form (P31m, a = b = 0.54169nm, c = 0.49719nm,
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α = 120◦) at about 1470 ◦C [13]. The carbide is rare in steels [14] but can be found in association

with NbC in coatings containing gradients in the concentration of carbon [15, 16].

Titanium carbide can be induced into martensitic transformation during deformation, Figure 11.3

[17]. Plates of martensite develop on the {111}F planes, where the subscript refers to the form

with space group Fm3m (a = 0.4327nm), growing along the 〈112〉F. The transformed structure

is hexagonal (designated H), with a = 0.306nm, c = 1.838nm, P63/mmc, and (111)F ‖ (0001)H,

[121]F ‖ [0110]H. There is a large volume contraction of 8% normal to the habit plane and a shear

along [121]F of 0.7677. The habit plane of the martensite is perfectly coherent with its parent phase.

The shape deformation is [17]:

(F P F) =





1.14 0.14 0.14
0.14 1.14 0.14

−0.36 −0.36 0.64



 for p =
1√
3
(111), md = [0.242 0.242 0.623],

where p and d are the unit normal to the habit plane and unit displacement vector respectively, and

m is the magnitude of the shape deformation.

The martensite forms with a thickness of four layers, each layer consisting of titanium atoms parallel

to {111}F; such “quadlayers” have a rhombohedral structure with α = β = γ = 63.73◦ and a = b =

c = 0.29nm, R3m. It is when coarsening occurs by further martensitic transformation with adjacent

quadlayers in alternating twin orientations (all parallel to the same habit plane) that the structure is

interpreted as the hexagonal form with the large c-parameter.

The ability for different solutes to substitute on to the metal sublattice in TiC is of considerable

technological significant because the lattice parameter of the carbide can be manipulated. In one

variety of automotive steel, following hot deformation the steel transforms into allotriomorphic

ferrite with the interphase precipitation of fine arrays of (Ti,Mo)C [18, 19], Figure 11.4a. Coarsening

can occur after coiling the hot steel but this can be reduced by adjusting the Ti/Mo ratio so that the

interfacial energy is reduced. First principles calculations relevant for 0 K indicate that the solution

of molybdenum in TiC is not favoured from a thermodynamic point of view, the introduction of

molybdenum reduces the lattice parameter of (Ti,Mo)C relative to TiC, permitting a better match

[20]. Substitution of tungsten can achieve the same goal [21], as can the mixing on the same lattice

of the carbide with certain nitrides [22], Figure 11.4b.

Both TiC and NbC adopt a cube-cube orientation relationship when precipitating in austenite. If

the austenite subsequently transforms into ferrite then the carbide inherits the γ/α crystallogra-

phy. However, when nanometre-sized precipitation occurs at an γ/α interface, TiC adopts the Bain

orientation with the ferrite, but on coarsening, the particles rotate to the Nishiyama-Wasserman

relationship [23]; this observation is particularly interesting because it demonstrates that the Bain

orientation, which may be forced during the nucleation of a small particle, must rotate as the particle

grows in order to minimise strain energy. The Bain orientation also is observed when fine niobium

carbide precipitates in ferrite, but it would be interesting to see whether that is maintained when

particles coarsen. Coarse NbC particles in coatings have been identified to have a Kurdjumov-Sachs

orientation relationship with the ferrite [16].
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(a)

(b) (c) (d)

Figure 11.3 (a) Transmission electron micrograph showing martensite plates in a single crystal of TiC, the

transformation established using detailed diffraction analysis. (b–d) High-resolution images of transformed

plates in edge-on orientation, with one, two and seven quadlayers, respectively. Reproduced from Chien,

Clifton and Nutt, [17], with the permission of the American Ceramic Society and Blackwell Publishing.

(a) (b)

Figure 11.4 (a) Interphase precipitation of (Ti,Mo)C in ferrite in Fe-0.06C-1.5Mn-0.1Si-0.1Ti-0.2Mo wt%

(after Yen et al. [19], reproduced with the permission of Elsevier). (b) Lattice parameter of (Ti,M)(C,N), from

pureTiC to the various pure nitrides. The concentration axis therefore represents the proportions of the end-

phases. Adapted using data from Duwez and Odell [22].
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11.2 VANADIUM CARBIDE

Vanadium carbides form as fine, square-shaped platelets that precipitate on the {100}α planes,

Figure 11.5. The shape at the early stages of precipitation in austenite is octahedral with facets

parallel to {111}γ [24].

The fine particles that form in ferrite or tempered martensite are associated with coherency strain

fields that not only harden the steel but can trap hydrogen, thereby mitigating embrittlement due to

the ingress of diffusible hydrogen into the metal. It is diffusible hydrogen that is responsible for the

embrittlement of steel [25, 26].

Figure 11.5 Three crystallographic variants of vanadium carbide forming on the cube planes of the ferrite.

The plates have square shapes. After Yamasaki and Bhadeshia [27].

The vanadium carbide that precipitates in steel was thought originally to be V4C3 [28] with space

group Fm3m and lattice parameter 0.4157 nm. However, a detailed examination of electron diffrac-

tion patterns, both new and those published in the past, has demonstrated that it is V6C5 with a

monoclinic structure containing ordered vacancies in the carbon sublattice (Figure 11.6) [29, 30].

The space group is C2/m, with lattice parameters a = 0.509 nm, b = 0.882nm, c = 1.018nm,

β = 109.47◦.

The lattice parameters of the monoclinic form are related to those of the V4C3 as follows:

aV6C5
=

√

3

2
aV4C3

︸ ︷︷ ︸

=| 1
2 [112]aV4C3

|

bV6C5
=

3√
2

aV4C3

︸ ︷︷ ︸

=| 3
2 [110]aV4C3

|

cV6C5
=

√
6aV4C3

︸ ︷︷ ︸

=|[112]aV4C3
|

.

Given that the literature is full of interpretations based on V4C3, the following conversions apply,

noting that the basis symbols ‘M’ and ‘C’ refer to the monoclinic and cubic forms respectively, and
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that [M;u] = (M J C)[C;u] and (h;M∗) = (h;C∗)(C J M):

(M J C) =





0.500365 0.500365 −0.500365
−0.333430 0.333430 0.000000

0.250182 0.250182 0.250182



 (11.1a)

(C J M) =





0.499635 −1.499563 0.999271

0.499635 1.499563 0.999271
−0.999271 0.000000 1.998542



 (11.1b)

(001)V6C5
‖ (111)V4C3 [201]V6C5

‖ [001]V4C3

(010)V6C5
‖ (110)V4C3 [0.500365 0.333430 0.250182]V6C5

‖ [010]V4C3

(100)V6C5
‖ (111)V4C3 [0.500365 0.333430 0.250182]V6C5

‖ [100]V4C3 .

Therefore, the classical Baker-Nutting orientation relationship between vanadium carbide and fer-

rite,

〈001〉V4C3 ‖ 〈001〉α {110}V4C3 ‖ {010}α

becomes 〈201〉V6C5
‖ 〈001〉α {132}V6C5

‖ {010}α.

Vanadium carbide at the early stages of precipitation in austenite has the following orientation rela-

tionship:

〈001〉V4C3 ‖ 〈001〉γ {010}V4C3 ‖ {010}γ

becomes 〈201〉V6C5
‖ 〈001〉γ {132}V6C5

‖ {010}γ.

Another vanadium carbide V8C7 has a cubic crystal structure (P4332, a = 0.832nm) when the

carbon vacancies are ordered. The disordered form also is cubic but with about half the lattice

parameter; the order-disorder temperature is about 1125 ◦C [31]. V8C7 occurs only in vanadium-

rich steels such as those used in the manufacture of dies [32].
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(a) (b)

Figure 11.6 (a) Monoclinic unit cell of V6C5. The unique axis b is normal to both a and c. The open circles

represent ordered vacancies in the carbon sites. (b) Projection of the cell on the {001} plane, with percentage

heights of the atoms indicated. The values in italics refer to the vacancies. There are alternating planes of

carbon atoms with and without vacancies. The carbon atoms are octahedrally coordinated by iron atoms.

11.3 WC

Tungsten carbide with lattice parameters a = 0.292 nm, c = 0.284nm, γ = 120◦ has the space group

P6m2.
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Figure 11.7 Crystal structure of WC projected on to the basal plane.

11.4 M23C6

The chromium carbide Cr23C6 is rarely observed in its pure form within steels because many other

metal atoms (‘M’) such as Fe, Co, Mo, Mn, are able to substitute for Cr into its structure. Indeed, it

is possible to obtain M23C6 in chromium-free steels, for example, in ternary Fe-Mo-C and Fe-W-C

alloys [33]. The carbide nucleates most easily at grain boundaries (Figure 11.8), followed by less-

coherent twin boundaries, coherent twin boundaries and other defects such as dislocations [34]. In

many steels that are welded, it is important to control or avoid the precipitation of this carbide in

the heat-affected zone of the weld, because it results in chromium-depleted regions [35] that then

become susceptible to intense, localised corrosion, often referred to as weld decay. In alloys that at

ambient temperature consist of ferrite and M23C6, heating to sufficiently high temperatures where

austenite formation is possible, causes at first the formation of particles of M6C in the ferrite, by the

diffusion of carbon from M23C6. At a sufficiently high temperature, M23C6 can decompose into a

eutectoid mixture of M6C and austenite [33].
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(a) (b)

Figure 11.8 Creep-resistant austenitic stainless steel (≈ Fe-20Cr-25Ni-1Mn-1.5Mo-0.26Nb-0.06C wt%),

aged 100 h at 1023 K. (a) Precipitation of M23C6 at a grain boundary in an austenitic stainless steel. The

boundary is almost completely decorated by M23C6. (b) Platelets of M23C6 at a less-coherent twin boundary.

Micrographs courtesy of Thomas Sourmail.

The lattice parameter of Cr23C6 is very nearly three times that of austenite, both of which have

a cubic-F lattice. So when the carbide precipitates in austenite, it adopts a cube-cube orientation

relationship, so the cube edges of the two unit cells are parallel [36]. Its orientation relationship

with ferrite is the same as that between austenite and ferrite [37]. It follows that the three-phase

crystallography, when the carbide precipitates in contact with both ferrite and austenite is given

approximately by [38]:

{111}γ ‖ {110}α ‖ {111}M23C6

〈110〉γ ‖ 〈111〉α ‖ 〈110〉M23C6
.

and a similar orientation is observed when the carbide precipitates directly from ferrite [37]. A

greater variety of orientations has been observed between M23C6 particles precipitated at boundaries

and sub-boundaries in tempered martensite [39], presumably because the local crystallography of

the boundary influences that of the carbide.
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Table 11.1

Locations of atoms in the unit cell of Cr23C6, space group Fm3m, lattice parameter
1.065 nm [40]. For chromium atoms, x = 0.38199, y = 0.16991 and for carbon atoms,
x = 0.2751 [41].

Atom Multiplicity Symmetry Fractional coordinates

Cr 48 m.m 2 (0,y,y) . . .

Cr 32 .3m (x,x,x) . . .

Cr 8 43m ( 1
4 ,

1
4 ,

1
4) . . .

Cr 4 m3m (0,0,0)

C 24 4m. m (x,0,0) . . .

Figure 11.9 Projection on {001} of the unit cell of Cr23C6, divided into four quadrants related by mirror

planes. The numbers indicate the percentage height along the z-coordinate normal to the diagram. The z-

coordinate is identical for all quadrants (top left for Cr atoms, bottom right for C atoms) defined by the mirror

planes. Within the labelled quadrants, the atoms at 0 or 100% height do not have their z-coordinates listed.

Some of the carbon atoms are lightly coloured because they are hidden by Cr atoms.

11.5 M6C

M6C often nucleates on M23C6; the two structures have similar lattice parameters although their

crystal symmetries are Fd3m (Figure 11.10, Table 11.2) and Fm3m respectively. In low-alloy

bainitic or martensitic steels such as the creep-resistant varieties used in the power plant indus-



Substitutionally alloyed precipitates 475

Table 11.2

Locations of atoms in the unit cell of Cr6C, space group Fd3m, lattice parameter
approximately 1.1 nm. For chromium atoms, x = 0.1978 and y =−0.1703 [42].

Atom Multiplicity Symmetry Fractional coordinates

Cr 48 2.mm (x,0,0) . . .

Cr 32 .3m (y,y,y) . . .

Cr 16 .3m ( 5
8 ,

5
8 ,

5
8 ) . . .

C 16 .3m ( 1
8 ,

1
8 ,

1
8 ) . . .

Figure 11.10 Projection on {001} of the unit cell of Cr6C, divided into four quadrants related by mirror

planes. The numbers indicate the percentage height along the z-coordinate normal to the diagram. The cell is

divided into four segments related by mirror planes. Within the labelled segments, the atoms at 0 or 100%

height do not have their z-coordinates listed. Some of the carbon atoms are lightly coloured because they are

hidden by Cr atoms.

tries, M6C is not an equilibrium phase [43] but forms as a transition carbide before being replaced

by M23C6 [44]. This sequence is reversed in austenitic stainless steels that contain large concentra-

tions of chromium and very little carbon so M23C6 precipitation precedes that of M6C, with both

carbides enclosed by austenite [45–47]:

(111)γ ‖ (111)M23C6
‖ (111)M6C

[010]γ ‖ [010]M23C6
‖ [122]M6C.

However, on direct precipitation from austenite or from ferrite the M6C it adopts a cube-cube orien-

tation relationship [46],2 although there are many variants reported [48] indicating perhaps that the
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interfacial energy during nucleation is insensitive to orientation. Consistent with this, Figure 11.11a

illustrates the shapes of the precipitates, which do not seem to be strongly facetted. Some of the

other orientation relationships include

{111}γ ‖ {211}M6C

〈110〉γ ‖ 〈011〉M6C

{111}γ ‖ {111}M6C ‖ {111}M6C twin

〈110〉γ ‖ 〈321〉M6C ‖ 〈321〉M6C twin.

The carbide sometimes contains twins (Figure 11.11b) which have a shape that indicates they are

growth twins rather than the mechanical variety. For reasons that are not clear, when the carbide is

internally twinned, neither of its component orientations has a cube-cube or twin relationship with

the austenite [49].

(a) (b) (c)

Figure 11.11 (a) M6C in Fe-16Cr-0.8Nb wt% ferritic alloy following heat treatment at 1000 ◦C for 100 h.

Micrograph courtesy of Nobuhiro Fujita. (b) Twin inside a M6C particle. After Peng and Chou [49], reproduced

with the permission of Elsevier. (c) M6C growing from metastable Mo2C. After Kurzydłowski and Zieliński

[50] with the permission of Taylor and Francis.

In ferritic steels or composites, when Mo2C is metastable relative to M6C but forms at an earlier

stage, the M6C nucleates on the needles of molybdenum carbide/ferrite interface [50, 51], Fig-

ure 11.11c.

11.6 M7C3

M7C3 has an orthorhombic crystal structure, space group Pmcn with lattice parameters a =

0.701 nm, b = 1.2142 nm and c = 0.4526 nm [52], Figure 11.12. Because the ratio b/c is almost

equal to
√

3, the structure can also be represented as a hexagonal cell with space group P63mc,

a = b = 1.402nm and c = 0.4526nm. The transformation of coordinates between the orthorhombic
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(basis O) and hexagonal (basis H) using the three index system) is given by

(O J H) =





1 1 0
−1 1 0

0 0 1



 (H J O) =






1
2 − 1

2 0
1
2

1
2 0

0 0 1




 (11.2)

with [H;u] = (H J O)[O;u] and (h;H∗) = (h;O∗)(O J H).3 When M7C3 forms at the interface

between cementite and ferrite, the orientation relationship is [53]:

(001)M7C3 ≡ (0001)M7C3 ‖ (011)M3C ‖ (011)α

(010)M7C3 ≡ (1120)M7C3 ‖ (100)M3C ‖ (011)α.

When austenite transforms into pearlite consisting of α+M7C3, a number of other orientation

relationships are observed between the ferrite and the carbide [54], but it is not clear whether these

are coincidental, governed by the first phase to nucleate.

(a) (b)

1.2142 nm

1.402 nm

1.
40

2 
nm

orthor c
representation

al repr

Figure 11.12 (a) Projection of the structure of M7C3 on to the (001) plane with a and b along the horizontal

and vertical axes respectively. The percentage height along z is indicated for each atom. There are two mirror

planes parallel to the bc face, intersecting a at 1
4 a and at 3

4 a. The red atoms represent carbon and the others

are metal atoms. (b) Relationship between hexagonal and orthorhombic representations of crystal structure. (b)

The structure can be represented either as a hexagonal cell or one that is orthorhombic as long as the ratio in

the latter case of b/c =
√

3.

When b/a 3=
√

3, the M7C3 subdivides into domains none of which have a six-fold axis of sym-

metry with domain boundaries on {110} planes [55]. There often are faults (Figure 11.13) in the
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structure on {110}M7C3 and if these faults occur in an ordered sequence then the carbide is said

to develop polytypes; the symmetries consistent with the periodic faulting have been identified ex-

perimentally as the space groups P21/b and Pbca [56]. A recent detailed crystallographic study of

M7C3 in a high-entropy alloy suggests that the faults are not in fact stacking defects, but represent

the coexistence of two crystallographic variants of the carbide, each about 5-10 nm thick [? ]; in the

alloy studied, the carbide could only be indexed as the hexagonal structure with space group P63mc,

particularly when the locations of the metal and carbon atoms are taken into account.

(a) (b)

Figure 11.13 (a) Large, facetted primary M7C3 carbides in a hardfacing alloy. (b) Transmission electron

micrograph showing streaks which are faults within the M7C3. More detail in [57].

11.7 Mo2C

The Mo2C that precipitates in steels has been described as a hexagonal close-packed arrangement

of molybdenum atoms with half the octahedral interstitial sites between the close-packed planes

occupied by carbon. The lattice parameters are ah = 0.2861 nm and ch = 0.4726nm [58, 59]. This

structure was deduced originally by Westgren and Phragmen [60] using X-ray diffraction. Assuming

that the space group is P63/mmc, the Mo atoms would be located at 1
3 ,

2
3 ,

1
4 and 2

3 ,
1
3 ,

3
4 ; the carbon

atoms would be at 0,0,0 and 0,0, 1
2 . Carbon atoms have a weak X-ray scattering power so their

positions were not identified experimentally in the original work. Neutron diffraction does not have

this difficulty because the scattering powers of carbon and molybdenum atoms are similar. Using

neutron diffraction, it has been demonstrated that the structure is in fact orthorhombic with space

group Pbcn, in which the molybdenum atoms are located at 8d positions and the carbon at 4c

(Table 11.3); the lattice parameters are a = 0.4724 nm, b = 0.6004 nm and c = 0.5199 nm [61]. In

both the hexagonal and orthorhombic representations, the relative positions of the metal atoms are

identical.

The structures are illustrated in Figure 11.14. The relationship between the hexagonal and or-

thorhombic basis is given by a ≈ ch, b ≈ 2ah and c ≈
√

3ah. Noting that the basis symbols ‘H’

and ‘O’ refer to the hexagonal and orthorhombic forms respectively, and that [H;u] = (H J O)[O;u]



Substitutionally alloyed precipitates 479

(a) (b)

Figure 11.14 Crystal structure of Mo2C that precipitates in steels with percentage heights indicated. (a) The

hexagonal cell with space group P63mmc but with the carbon atom (red) positions unverified. Projection on

{0001}. (b) The correct representation, an orthorhombic cell with space group Pbcn. Projected on (100).

Table 11.3

Wyckoff positions for atoms in orthorhombic Mo2C with space group Pbcn.

Multiplicity Wyckoff Site Coordinates
letter symmetry
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and (h;H∗) = (h;O∗)(O J H),

(H J O) =





0.000000 2.098567 1.049159
0.000000 0.000000 2.098319

0.999577 0.000000 0.000000





(O J H) =





0.000000 0.000000 1.000423

0.476516 −0.238258 0.000000
0.000000 0.476572 0.000000



 .

The orientation relationship between ferrite and Mo2C is close to [58, 59]

〈100〉α ‖ [2110]H ≡ [010]O {011}α ‖ (0001)H ≡ (100)O.
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The coordinate transformation matrices for this orientation relationship are therefore

(α J O) =

(
0.000000 2.094175 0.000000
1.165111 0.000000 1.282263
1.165111 0 −1.282263

)

(O J α) =

(
−0.000000 0.429144 0.429144

0.477515 −0.000000 0.000000
0.000000 0.389936 −0.389936

)

.

The correspondence matrix (O C α) [p.164 62] can be written by inspection of (O J α) as follows:






0 1
2

1
2

1
2 0 0

0 1
2 − 1

2




 and since (α S α) = (α J O)(O C α)

where (α S α) is the deformation that carries the carbide into the ferrite structure for the observed

orientation relationship. It follows that

(α S α) =

(
0.000000 2.094175 0.000000
1.165111 0.000000 1.282263
1.165111 0 −1.282263

)





0 1
2

1
2

1
2 0 0

0 1
2 − 1

2






=

(
1.04709 0.00000 0.00000
0.00000 1.22369 −0.05858
0.00000 −0.05858 1.22369

)

.

The eigenvectors and the eigenvalues for this deformation are:

[0 1 1]α λ1 = 1.28227

[0 1 1]α λ2 = 1.16511

[1 0 0]α λ3 = 1.04709

which means that there cannot exist an invariant line between the two lattices. However, the distor-

tion along [1 0 0]α ‖ [010]O is small in comparison with those along the orthogonal directions. It is

not surprising therefore that Mo2C grows as needles in order to minimise the strain energy by limit-

ing dimensions along the directions where the greatest distortions arise. The needles grow along the

〈100〉α directions so there are three crystallographic variants in a crystal of ferrite, (Figure 11.15a).

This growth direction with respect to ferrite, corresponds specifically to the [010]O ‖ [2110]H direc-

tion according to the analysis presented above. It is notable that when Mo2C is synthesised for the

purpose of catalysis, the particles do not have a needle shape, rather, they approximate spheroids

[63]; Figure 11.15b shows the particles are spheroidal, or in the form of facetted-plates, when un-

constrained by precipitation from matrix-α, proving that the needle shape is a consequence of lattice

fit with the ferrite. Similarly, Mo2C that grows during the chemical vapour deposition of graphene

on liquid copper contained in a molybdenum crucible, does so as well-defined facetted-platelets

[64].
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(a) (b)

(b)

Figure 11.15 (a) Needles of molybdenum carbide. They grow along the 〈100〉α with the thin foil parallel

to {100}α. There are, therefore, two orthogonal needles, and the third variant is normal to the plane of the

foil so has circular cross-sections. Micrograph courtesy of Shingo Yamasaki. (b) Synthetic crystals of Mo2C

on carbon substrate. Reprinted (adapted) with permission from Fei et al. [63], copyright (2016) American

Chemical Society. (c) Molybdenum carbide platelets that form during the vapour deposition of graphene on

liquid copper contained in a molybdenum crucible. Micrograph courtesy of Maryam Adnan Saeed.

The orientation relationship with austenite has never been measured because as Figure 11.16 shows,

at typical steel compositions, the carbide is not stable in a mixture with austenite alone; it has been

assumed that {111}γ ‖ (0001)H and 〈110〉γ ‖ 〈2110〉H [65]. Molybdenum carbide sometimes pre-

cipitates as long fibres, ordinarily interpreted as growing during the advance of the austenite/ferrite

interface. However, the orientation relation observed is not that between α and Mo2C, nor can it

be explained assuming a KS orientation between α and γ. It was concluded therefore that the car-

bide forms in the austenite; the growth directions of the fibres was not parallel to 〈100〉α. Direct

observations of precipitation in austenite are not available.

Although not conclusive, atom-probe data indicate that there is no detectable clustering of molyb-

denum and carbon, or of molybdenum atoms by themselves, in austenite [66].
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Figure 11.16 Vertical section of a

part of the Fe-2Mo-C at.%, adapted

from Andersson [67].

11.8 κ-CARBIDE

The simplest way to reduce the density of steel is to add solutes that either increase the lattice param-

eter of pure iron, or reduce the average atomic mass of the alloy, or both. The earliest work focused

on reduced-density steels by alloying with aluminium, comes from Russia [68, 69], although alu-

minium has long been considered as a solute that enhances the oxidation resistance of steel [70].

Aluminium reduces the stability of austenite and can eliminate the austenite phase field entirely at

large enough concentrations, thus negating the possibility of controlling the microstructure using

allotropic transformations. Low-density alloys therefore contain significant concentrations of man-

ganese and carbon to balance the effect of aluminium by increasing the thermodynamic stability of

austenite. The Russian low-density steels contained typically Fe-25Mn-10Al-1Cwt%; it is notable

that Mn and C, being lighter elements than iron, both lead to small but significant reductions in

density, so the Fe-Mn-Al-C alloy ends up with a density of about 6.8 g cm−3 [68].

The use of relatively large concentrations of manganese and aluminium can lead to the formation of

κ-carbide, which usually adversely affects the mechanical properties of the alloys. The carbide has

the chemical composition Fe3AlC, (Fe,Mn)3AlC or Mn3AlC, with a primitive cubic crystal struc-

ture,4 space group Pm3m (Figure 11.17). It is possible that exact stoichiometry is not maintained

with vacancies on the octahedral interstices; indeed, it has been proposed on the basis of experi-

ments that in Fe-Al-C alloys the phase should be regarded as a solid solution rather than a carbide,

with a composition Fe4−yAlyCx with x = 0.42-0.71, y = 0.8-1.2 corresponding to Fe3.2Al0.8C0.71

and Fe2.8Al1.2C0.42 respectively [72]. In other words, aluminium can substitute on to the Fe sites,

and when it does so, it makes the octahedral interstice at the centre less favourable for carbon, thus

reducing its concentration. The lattice parameter at ambient temperature is a function of chemical

composition [71, 72]:

aκ /nm = 0.3625+ 0.00014aAl+ 0.00072aC+ 0.000145aMn

where aAl etc. represent the atomic percentages of the solute concerned. The effect of manganese
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Figure 11.17 The primitive cubic unit cell of κ-carbide. There are in principle three different kinds of

octahedral interstices available for carbon. Each octahedron has three dumbbells of paired atoms. The three

types are therefore, Mn-Mn and two Fe-Fe pairs (thermodynamically most stable) [71]; Al-Al and two Fe-Fe

pairs; Mn-Mn, Al-Al and Fe-Fe pairs.

is deduced from calculations for 0 K and 0 pressure. The same calculations show that the addition

of manganese reduces the formation energy of κ-carbide, and that the octahedral interstice at the

centre of the unit cell is the most favoured for carbon [71].

Not surprisingly, given the lattice parameter and structure of κ-carbide, it orientation relationship

with the austenite in which it precipitates is cube-cube (unit cell edges parallel). When it precipitates

from ferrite, the orientation relationship has been measured accurately to be Kurdjumov-Sachs [73].

11.9 LAVES PHASE

Laves phase in its idealised form has the composition Fe2X, where X may be Cr, Nb, Si, Mo or W,

but usually has multiple solutes depending on the steel concerned, for example, (Fe,Ni,Cr)2(Nb,Si)

[74] or (Fe,Cr)2(W,Mo) [75]. The phase is more difficult to nucleate than many of the carbide pre-

cipitation reactions that precede it so it tends to be coarse. This can lead to embrittlement and a loss

in properties that rely on solid-solution strengthening; there are circumstances, such as interphase

precipitation, where the Laves phase can be evenly precipitated as a fine dispersion, in which case

it improves creep resistance [76]. The crystal structure when Laves phase precipitates in common

steels is primitive hexagonal (space group P63/mmc), Figure 11.18, with the basal plane usually par-

allel to the close-packed plane of austenite, and the x and y cell-edges parallel to 〈112〉γ directions

in the austenite [77]:

(0001)Laves ‖ (111)γ [2110]Laves ‖ [121]γ .

Laves phase also precipitates in tempered martensite of the type common in creep-resistant power

plant steels, where a myriad of other precipitates usually precede the formation of Laves particles.

Figure 11.18c illustrates an association between M23C6 which forms first during tempering and

Laves phase. Laves precipitates are stimulated to nucleate in the chromium-depleted regions near

the chromium-rich carbides or nitrides, regions which at the same time are enriched in molybdenum
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[78].

When nucleating at grain boundaries in tempered martensite, Laves precipitates show similar ten-

dencies to allotriomorphic ferrite (Figure 4.7), that they adopt a more coherent orientation with

respect to the grain in which they grow the least. The orientation relationship is found to be [79]:

(1013)Laves ‖ (110)α [2110]Laves ‖ [113]α.
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(a) (b)

(c)

Figure 11.18 (a) The crystal structure of Laves phase, in this case Fe2Nb, projected on to the basal plane

of the hexagonal unit cell with lattice parameters a = 0.4835 nm and c = 0.7881 nm; the fractional heights of

atoms along the c-axis are labelled. The open circles represent iron atoms, and those shaded represent niobium

atoms. The space group of the hexagonal unit cell is P63/mmc. The screw axis is located at the corner of the

cell and there are mirror planes normal to that axis at heights 1
4 and 3

4 . (b) Positions of atoms on the basal plane

of Laves phase relative to those on the close-packed plane of austenite. (c) The association of Laves phase

precipitates with chromium rich M23C6 particles (reproduced from [75] with permission of Elsevier).

11.10 OTHER INTERMETALLIC COMPOUNDS

Table 11.4 lists some of the intermetallic precipitates that form in alloys of iron. Fe3(Al,Zr) has

a lattice parameter that is approximately four times that of ferrite; it precipitates in a cube-cube

orientation with the ferrite to form a dispersion that resists coarsening because of the low solubility
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of Zr in the matrix, and possibly the low interfacial energy between the precipitate and ferrite [80].

11.10.1 NiAl

NiAl has a primitive cubic structure with a motif of a Ni atom at 0,0,0 and aluminium atom at 1
2 ,

1
2 ,

1
2

associated with each lattice point. Plates of the precipitate are reported to adopt a Kurdjumov-Sachs

orientation relationship with austenite [81] but this would result in 24 possible crystallographic

variants in any given austenite grain; it is surprising therefore that only two variants seem to form in

each austenite grain. In fact, the reported orientation, e.g. (121)NiAl ‖ (112)γ and [011]NiAl ‖ [111]γ

is incorrect since the direction [011]NiAl does not lie in (121)NiAl. Other work has identified a cube-

cube orientation relationship between NiAl and ferrite [82, 83].

Both Laves phase and NiAl can precipitate simultaneously, and NiAl need not be plate-shaped.

Figure 11.19 shows an atom-probe tomograph of a precipitation-hardened maraging alloy of iron,

that has been heat treated to form fine dispersions of both of these phases. Fe, Cr and Mo have been

found to dissolve in NiAl that forms in complex ferritic alloys [84].

Figure 11.19 Atom-probe tomograph showing extremely fine Laves phase (molybdenum-rich, dark) and

NiAl (green) precipitates in a tempered martensitic microstructure – the image is a projection of a three-

dimensional sample so the volume fractions are much smaller than appear at first sight. The alloy is Fe-3.58Al-

7.91Co-9.72Cr-1.17Mo-8.71Ni-0.6W at.% aged at 540 ◦C for 7.5 h [85].

11.10.2 σ -PHASE

σ-phase in binary alloys is an approximately equiatomic mixture of iron and a substitutional so-

lute, such as, FeCr, FeMo, FeRe and FeW, but many other solutes can substitute in higher order

alloys; the phase can occur in stainless steels designed to be exceptionally corrosion resistant, with

substantial additions of chromium and molybdenum. It generally is regarded as being detrimental

to the properties of steels, especially when present in a coarse form (Figure 11.20a). The crystal

structure has the tetragonal space group P42/mnm; the unit cell contains thirty atoms and has the

lattice parameters a = 0.88nm, c = 0.4544nm (which will vary with chemical composition) [86].

Figure 11.20b shows a projection of the atom positions on to the (001) plane, but it does not dis-

tinguish between the different species of atoms. The corresponding Figure 11.20c has the Wyckoff

letters along each atom to help identify those that share common point symmetries. In FeCr, the 4f

sites are predominantly occupied by Cr atoms whereas the 2a and 8id sites are mostly iron atoms
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[87]. Glissile dislocations have never been observed in σ [88], which may explain why it is hard and

brittle [89].

(a)

(b) (c)

Figure 11.20 (a) σ-phase in a super-duplex stainless steel. Micrograph courtesy of S. Sharafi [90]. (b) Pro-

jection of the tetragonal unit cell of σ-phase on (001). The fractional heights of atoms along [001] are indicated

except when they are located at heights 0,1. There is a mirror plane at height 1
2 , normal to the 42 screw axis.

(c) Atoms with the same Wyckoff letter are located at positions with identical point symmetry.

The α→ σ transformation in chromium-rich alloys is sluggish even when the composition of ferrite

is close to that of the precipitate. It is possible that the partial ordering required controls the growth

process. It has been known for some time that deformation accelerates the transformation; this is

why the solid-state friction stir welding of stainless steel, which introduces ferrite in an ordinarily

austenitic steel, in combination with severe localised deformation, greatly accelerates σ phase for-

mation [91]. The orientation relationship (110)σ ‖ (110)α and [001]σ ‖ [002]α [82]. The orientation

relationship when precipitating from austenite does not appear to be unique:

(111)γ ‖ (140)σ [110]γ ‖ [001]σ [92]

(110)γ ‖ (110)σ [112]γ ‖ [113]σ [93]

(111)γ ‖ (001)σ [110]γ ‖ [140]σ [94–96]

(111)γ ‖ (001)σ [110]γ ‖ [110]σ [94, 97]
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Figure 11.21 shows that the last two of these orientation relationships are related by a rotation of

approximately 1◦ about [001]σ [93, 95, 98]. The preponderance of orientation relationships suggests

that there is little coherence between the phases. It is likely therefore that the nucleation of σ is

difficult due to a large interfacial energy, contributing to the observed slow rate of transformation

and the fact that it occurs at the late stages of heat treatment after other transition precipitates that

presumably are easier to nucleate. In duplex steels, it tends to nucleate heterogeneously at the most

incoherent α/γ interfaces [99, 100].

Figure 11.21 Indexed electron diffraction pat-

tern of σ-phase with the beam direction along

[001]σ ‖ {111}γ . The dashed lines represent the

directions along which 〈110〉γ reciprocal lattice

vectors lie.

11.10.3 µ-PHASE

µ-phase has the formula Fe7M6 where the metal atom ‘M’ is usually tungsten or molybdenum. The

space group is R3m and in its hexagonal unit cell notation contains 39 atoms, with a,b= 0.47402 nm

and c = 2.6003nm (Figure 11.22). The atom positions can be summarised as follows assuming

Fe21Mo18 [101]:

Atom Fractional coordinates Wyckoff symbol Point symmetry

Fe 0,0,0 3a 3m

Fe 0.332237,0.166123,0.256750 18h .m

Mo 0,0,0.34837 6c 3m

Mo 0,0,0.45128 6c 3m

µ-Phase usually precipitates at grain boundaries in creep-resistant steels subjected either to pro-

longed heat treatment or extensive service at elevated temperatures. In carbon-free alloys µ-phase re-

inforces the grain boundaries leading to an increase in creep ductility [102]. Plasma-facing nuclear-

fusion reactor devices are subjected to high temperatures and displacements per atom; a candidate

composite for this purpose consists of a creep-resistant steel and tungsten, but experiments suggest

that Fe7W6 (enriched in Cr) can form during manufacture, leading to a reduction in thermal conduc-

tivity which would compromise the application [103]. In general, when considering a macroscopic
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(a)
(b)

(c)

Figure 11.22 Crystal structure of µ-phase. (a) Projection on (001). The inversion triad is through the origin,

parallel to the c-axis. (b) Slightly inclined to show the complexity of the underlying structure. (c) Projection on

(110) plane – the mirror plane is (110) which is normal to [110]. There is a centre of symmetry at 1
2 ,

1
2 ,

1
2 .

scale, the compound is regarded as brittle, a property attributed to its complex crystal structure. Nev-

ertheless, indentation experiments indicate significant ductility at ambient temperature in spite of its

strength (> 3 GPa) [103]; this would imply some dislocation mobility. Indentation and micropillar

experiments indicate that slip in Fe7Mo6 occurs predominantly on the basal planes, but prismatic

slip can be triggered when the resolve shear stress on the basal planes is inadequate [104].

11.10.4 IRON-ZINC COMPOUNDS

There are a number of intermetallic compounds in the iron-zinc system that are commercially im-

portant because they form by the reaction of steel dipped into a Zn-rich liquid at about 460 ◦C during

the galvanising process. The resulting coating is not uniform, but consists of multiple phases that are

richer in zinc on progressing further from the interface with steel. The galvanising bath usually is

not pure zinc but may contain aluminium, silicon and phosphorus as deliberate additions. The hot-

dip galvanised coatings may be annealed to encourage the reactions that generate the intermetallic

compounds, because they can offer improved corrosion resistance and other properties associated

with painting and spot-welding, when compared against pure zinc coatings. The reactions with iron

also help wet the steel and bind the coating to the substrate.

Figure 11.23 shows a part of the iron-zinc phase diagram with a number of intermetallic “com-
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Table 11.4

Intermetallic precipitates found in alloys of iron. The lattice parameters are approxi-
mate and the compounds may contain other solutes. Exact alloy compositions can
be obtained from the original sources.

Compound Space group Lattice Alloy Ref.
parameters / nm

(Fe,Ni,Cr)2(Nb,Si) P63/mmc a = 0.4835 Fe-20Cr-30Ni-2Nb-5Alwt% [74]
(Laves phase) c = 0.7881

Fe3(Al,Zr) Fd3m 0.1169 Fe-2Al-5Cr-0.5Zr at.% [80]

NiAl Pm3m 0.2880 Fe-21Ni-14Cr-4.5Al-0.12Zr- [81]
0.02Y-0.025C wt%

σ-CrFe P42/mnm a,b = 0.8799 Fe-13Cr-15Ni wt% [82]
c = 0.4556

µ-phase R3m a,b = 0.47402 Fe-17Cr-14Ni-7W wt% [102]
c = 2.6003

Ni3(Al,Ti,Si) Pm3m 0.3565 Fe-0.5Si-13Ni-17Cr-2.5Mo wt% [105]

Ni3Nb I 4
m mm a = 0.362 Fe-20Cr-30Ni-2Nb at.% [106]

c = 0.741

Fe3Zn10 Γ-phase I43m 0.9018 [107]

Fe11Zn39 Γ1 F43m 1.7963 [108]

FeZn10 δ1p P63/mmc a = 1.2787 [109]
c = 5.7222nm

FeZn7 δ1k P63/mcm a =
√

3× 1.2787 [110]
c = 5.7222nm

FeZn7 δ1k R3c a =
√

3× 1.2787 [110]
c = 3× 5.7222nm

FeZn13 ζ C2/m a = 1.08721 [111]
b = 0.76050
c = 0.50742
β = 100.82◦
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pounds” identified; each of the phases actually has a range of compositions which is not particularly

narrow. Therefore, although the phases are identified in Table 11.4 with particular ratios of Fe to

Zn atoms, these may in fact vary. Recent work claims that FeZn10 may be better represented as

Fe13Zn126 [112], but this is based on the study of isolated crystals. When the compounds exist in

equilibrium or local equilibrium with other Fe-Zn phases, Figure 11.23 shows that they do not have

a fixed chemical composition, which may also vary with temperature.

The δ in Figure 11.23 is in a single phase field whereas Table 11.4 indicates that there is more than

one crystalline form of this phase. The phase δ1k is an ordered form of δ1p with the two space groups

listed corresponding to different forms of order [110, 113].

70 80
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e 
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1

Figure 11.23 The Zn-rich region of the Fe-Zn equilibrium phase diagram, adapted from [114, 115]. The

phase field identified here as δ does not distinguish between δ1p and δ1k, but the former (disordered version) is

believed to be stable at temperatures above those illustrated here.

The crystal structures of the Fe-Zn compounds are important in the sense that they determine some

of the mechanical properties of the coating. The FeZn13 ζ-phase has a monoclinic structure with

space group C2/m. Micropillar deformation experiments suggest that it slips on {110}ζ〈112〉ζ but

since there are only two variants of the slip system, the phase shows limited plasticity in its polycrys-

talline state (≈ 0.5% plastic strain) whereas 20% plastic strain has been recorded in its single-crystal

form [116]. The Γ-phase with its cubic symmetry (I43m), is the richest in iron content and in direct

contact with the steel. It exhibits the greatest ductility, which must help retain the coating on the

steel when the latter is deformed during forming operations. The other compounds, δ1p and Γ1 are

found to be brittle; both of these phases have extremely large lattice parameters (Table 11.4) which

may contribute to the poor plasticity since any Burgers vectors of dislocations would scale with the

parameters. Laves phase, which exhibits a limited amount of ductility, has the same space group as

δ1p but much smaller lattice parameters.

11.11 COMPETITIVE PRECIPITATION AND DISSOLUTION

Most steels destined for long-term mechanical stability at elevated temperatures contain a variety

of solutes designed to precipitate substitutionally alloyed phases. Because their formation requires

atomic mobility for iron and substitutional solutes, they are introduced by tempering the steel at

around 600 ◦C, making the microstructure resistant to change when the steel is applied at somewhat

lower temperatures. Such secondary-hardened steels are of vital importance in power plant and
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steam turbines. Nevertheless, the service lives of such engineering structure extends over decades

so changes are expected, and can be estimated as long as two parameters, the interfacial energy

and number density of nucleation sites, are available for each of the precipitate phases that can in

principle form. Table 11.5 lists, for creep-resistant steels, the parameters obtained empirically by

fitting to experimental data.

This emphasises the limitations of kinetic models since the parameters are not universal; the num-

ber density of nucleation sites depends much on the state of the overall microstructure. The use of

a single parameter for interfacial energy is obviously not sound given that a precipitate will have an

enclosing set of interfaces with different energies, and furthermore, the energy may depend on site,

size and chemical composition. The method still is useful because the parameters must be chosen

in such a way that the correct sequence of precipitation is predicted. A combination of a large in-

terfacial energy and low number density of nucleation sites will greatly retard precipitation, which

may reflect reality if equilibrium phases such as Laves are to form at the late stages of service.

Figure 11.24 shows some example calculations, where obtaining the fitting parameters for one tem-

pering temperature enables the estimation of behaviour for a different temperature. The method can

therefore be used to calculate TTT diagrams for precipitation.

Table 11.5

Carbide-ferrite interfacial energy and site density data for some precipitate phases,
derived by fitting to experimental data for creep-resistant steels [43].

Phase σcarbideα / Jm−2 Nucleation site density / m−3

M2X 0.248 2.7× 1016

M23C6 0.269 2.7× 1015

Laves 0.331 2.7× 108

(a) (b)

Figure 11.24 Changes in carbide precipitates during the tempering of a 10CrMoW steel at the temperatures

indicated. After Brun et al. [117].
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Notes
1Indications that cubic-TiC tends to undergo a transformation into a rhombohedral lattice when subjected to hydrostatic

pressures beyond 18 GPa at 300 K [118] do not seem to be correct [119].
2The Kurdjumov-Sachs and Nishiyama-Wasserman orientation relationships have also been found between ferrite and

M6C during interphase precipitation [120], but this could be a consequence of the precipitate adopting a cube-cube orientation

with the austenite.
3In the four index hkil notation for planes i =−(h+ k). The conversion for directions is a little more involved

U − J = u

V − J = v

W = w

→
u = 2U +V

v =U +2V

w =W

and

U = 1
3 (2u− v)

V = 1
3 (2v−u)

J =− 1
3 (u+ v)

(11.3)

4Not face-centred cubic as is often stated in the literature.



12 Pearlite

12.1 SHAPE

The classic metallographic observations of pearlite are based on polished and etched planar sec-

tions which reveal a lamellar mixture of ferrite and cementite, Figure 12.1. This mixture acts like

a diffraction grating so interference colours are observed when viewed in white light. The colours

vary as a function of the apparent spacing of the lamellae at the surface, giving rise to iridescence.1

The name pearlite is an adaptation of the fact that natural pearls that have layered structures also

exhibit iridescence.

(a) (b)

Figure 12.1 (a) Nodules of pearlite separated by lighter regions containing a mixture of bainite and marten-

site (micrograph courtesy of Hala Salman Hasan). The lamellar structure is not clearly resolved. The iridescent

colour of the pearlite nodules is evident. (b) The structure of a colony of pearlite, showing that the crystallo-

graphic orientations of the ferrite and cementite are essentially identical at all locations. The arrows show a

low-misorientation boundary between adjacent colonies, with a change in the direction in which the cementite

grows. Reproduced with the permission of Elsevier from Koga et al. [1].

The two phases within pearlite are each connected in three dimensions as was demonstrated by

Hillert [2] using serial sectioning, and by Dippenaar and Honeycombe [3] who showed that an

individual pearlite colony is best visualised as an interpenetrating bicrystal of cementite and ferrite,

Figure 12.1b. The term ‘colony’ is sometimes used specifically to refer to a region of a pearlite

‘nodule’ within which the ferrite and cementite grow in the same direction. A nodule, which is

roughly spherical in shape, may therefore contain several colonies with different growth directions.

501



502 Theory of Transformations in Steels

The ferrite orientations may differ slightly between the adjacent colonies within a nodule, and within

a colony itself [4]. Micrographs, such as Figure 12.1, of pearlite show a great deal of detail that is

not included in theoretical treatments of pearlite, for example:

• Nodules of pearlite have irregular shapes that deviate significantly from idealised spheres.

The shape necessitates the branching of cementite as the nodule size increases. Growth

occurs in all directions so in the absence of impingement, it would be necessary for the

cementite lamellae to branch in order to maintain a spacing that is on average, uniform.

• Individual cementite lamellae are not uniform in thickness and exhibit significant pertur-

bations in shape.

• In two-dimensional sections there are discontinuities in the cementite lamellae, even

though there is no change in spacing ahead of the break. It is likely that some of these

represent holes in the sheets of cementite. Such holes are believed to be imperfections in

the lamellar growth process [5].

Notwithstanding the complexity of the structure of pearlite, the defining characteristic of pearlite

is that the product phases grow cooperatively, i.e., the carbon partitioned as the ferrite grows is

absorbed by the adjacent cementite so the diffusion distance within the austenite is limited to some

fraction of the interlamellar spacing. This implies that in a binary Fe-C system, there is no net change

in the chemical composition of the austenite so the pearlite can continue forming until all of the

austenite is consumed. This is not the case with substitutionally alloyed steels when transformation

occurs in a three-phase field where austenite, ferrite and cementite can coexist in equilibrium.

The shape of pearlite is not always nodular. Figure 12.2a–c shows the appearance of pearlite fol-

lowing partial transformation so that the shapes can be examined without the consequences of im-

pingement, in a eutectoid steel [6]. Transformation at 684 ◦C leads to the classical nodules, but the

pearlite adopts a spiky form at lower temperatures, that can be mistaken for bainite. This unusual

shape represents the breakdown of cooperative growth, the ferrite advances more rapidly into the

austenite than the cementite which becomes discontinuous so the structure no longer is lamellar,

Figure 12.2d. It is important to understand that the spiked pearlite remains a reconstructive trans-

formation. Figure 12.2e,f shows that there are no displacements recorded in the nodular or spiked

pearlitic regions, when a polished sample of austenite is transformed at 550 ◦C; in contrast, bainite

plates are seen clearly to lead to a surface relief that is an invariant-plane strain with a large shear

component.
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Figure 12.2 Partial isothermal-transformation to pearlite, followed by quenching so the residual austenite transforms into martensite [6]. The steel has the composition

Fe-0.79C-0.98Mn wt%. (a) Transformed at 684 ◦C. (b-d) Transformed at 550 ◦C. (e,f) Corresponding images from the surface relief experiments. Micrograph (e) was

obtained by polishing, austenitising and then transforming, and the sample is unetched. The dark-etching spiky form of pearlite where the ferrite and cementite do not

grow at a common transformation front does not exhibit any surface upheavals. Nor does any of the pearlite. It is only the few plates of lighter-etching bainite (arrowed)

that show the surface relief. (a) Unetched sample, (b) after light etching.
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Spiky pearlite tends to form at low transformation temperatures [7, 8]. The Gibbs free energy

changes due to the decomposition of γ into (a) a mixture of α+θ; (b) an equilibrium mixture of α

and carbon-enriched γ, and (c) an equilibrium mixture of θ and carbon-depleted γ are illustrated in

Figure 12.3. The reduction in free energy is greatest for reaction (a), which clearly is advantageous

when ferrite and cementite to grow together. However, at greater undercoolings, the advantage in

cooperative growth is diminished because the reaction (b) leads to a smaller though comparable

free energy reduction. So the motivation for cooperative growth diminishes, explaining why spiky

pearlite is generated at large undercoolings.

(a) (b)

Figure 12.3 Gibbs free energy change associated with the decomposition of austenite, as a function of

temperature, in a binary Fe-C alloy. γ′ refers to austenite with composition altered due to the formation of α

or θ. (a) Eutectoid composition, 0.76 wt% carbon. (b) Hypereutectoid steel containing 1 wt%.

12.2 NUCLEATION

Pearlite is of course, a mixture of two phases, both of which are required to establish the cooperative

growth that leads to the lamellar structure. There are several scenarios to consider with respect to

the initiation of pearlite:

• the predominant sites for the heterogeneous nucleation of pearlite in most steels are the

austenite grain boundaries. It would be reasonable to assume that the process begins with

the nucleation of ferrite in hypoeutectoid alloys and cementite in hypereutectoid steels.

Figure 12.3a shows that up to the eutectoid temperature, the driving force for ferrite pre-

cipitation from austenite is far greater than that for cementite. Since most steels are hy-

poeutectoid, it is assumed during the mathematical modelling of microstructural evolution

that the nucleation rate for pearlite can be taken to be identical to that for allotriomorphic

ferrite [9].

• In hypereutectoid steels, there is no driving force for the precipitation of ferrite alone

from austenite at small undercoolings, but with increasing undercooling, |∆Gγ→γ′+α| >
|∆Gγ→γ′+θ|, Figure 12.3b.
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• In steels where transformation is not from the fully austenitic state, the presence of prior

phases must influence the evolution of the pearlite. Figure 12.4a shows cementite, as a

component of what eventually becomes pearlite, evolving from an allotriomorph of ce-

mentite. The bulbous cementite particle has the same crystallographic orientation as the

allotriomorph of cementite, which is related crystallographically to the austenite on the

other side (γ1) [3]. It is presumed that the advance of cementite by a reconstructive mech-

anism is easier into γ2, with which it has a less-coherent and hence less-mobile interface.

Figure 12.4b,c illustrates two further scenarios developing in the same sample during

isothermal transformation, with pearlite nucleating from the α/γ interface, from an iso-

lated cementite particle that is in contact with the austenite.

• Mixtures of bainitic ferrite and carbon-enriched austenite generally contain two morpholo-

gies of the latter phase, film and blocks of retained austenite. When tempered at an elevated

temperature to induce the austenite to decompose, it is only the larger blocky regions that

transform into pearlite, whereas discrete precipitation of cementite (accompanied by epi-

taxial growth of ferrite) is observed when the thin films of austenite decompose. This is

because there is no opportunity to establish cooperative growth if the austenite is limited

in size [p.95, 10].

Although there are now numerous determinations of the α/θpearlite orientation relationship [3, 12,

13], there has been no serious attempt to discover any consequences on the practical applica-

tions of pearlite. This is in contrast to models for estimating the transformation texture due to the

γ→ α transformation [14]. Some of the studies using conventional electron diffraction or electron

backscattered diffraction are not of sufficient accuracy to establish crystallography. The popular

α/θ Bagaryatskii orientation relationship (page 403) seems to be an imprecise representation of the

closely-related Isaichev orientation [15–17]. When pearlite begins with the nucleation of cementite,

with the ferritic component forming on this cementite, the orientation relationship is that due to

Isaichev [18]. In hypoeutectoid steels where ferrite nucleates first, other orientation relationships

occur (Section 8.13).
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(a)

(b) (c)

Figure 12.4 Evolution of a pearlite colony. (a) From proeutectoid cementite layer present at the austenite

grain boundary, prior to the onset of pearlite (micrograph courtesy of R. Dippenaar) [11]. (b) From pre-existing

ferrite/austenite interface. (c) From pre-existing cementite/austenite interface. Micrographs courtesy of Hala

Salman Hasan.
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12.3 GROWTH

The growth models to be described here are necessarily simplistic. The morphology of pearlite is

complex [2, 3, 5, 19]. Growth occurs in three-dimensions whereas the models treat the problem

essentially as the one-dimensional advance of the transformation front. It therefore is necessary

for the cementite to branch when the interlamellar spacing deviates sufficiently from the ‘ideal’,

meaning that there will be perturbations in the growth rate. The cementite and ferrite within pearlite

are known to be feature-rich, with curvature, striations, discontinuities and holes [5, 19]. Some

of the complexity is illustrated in Figure 12.5; it is noteworthy that the ferrite bulges out at the

transformation front, presumably because |∆Gγ→γ′+α| is greater than the corresponding driving

force for cementite precipitation (Figure 12.3).

(a) (b)

Figure 12.5 Transmission electron micrographs of pearlite in a Fe-0.79C-11.9Mn wt% steel transformed

partially at 630 ◦C. (a) The shape of the transformation front with austenite, and an illustration of the fact that

the local spacing at the interface with austenite is not uniform. (b) The arrow indicates a cementite branching

event. The α/θ interface-plane can be identified by both depth fringes and the interfacial dislocation structure.

The interface clearly is not flat along the length of a single θ-lamella. Micrographs courtesy of Professor R.

Dippenaar [11].

The pearlite transformation in steels is unique in having both a source and a sink for solute that is

partitioned into the austenite. Cementite (θ) is rich in carbon whereas ferrite (α) accommodates

very little when it is in equilibrium with either cementite or austenite (γ). It therefore is necessary

for carbon to be redistributed at the common transformation front that the α, θ have with the parent

austenite. In a binary Fe-C system, the cementite would absorb all the carbon that is partitioned into

the austenite by the growth of ferrite. This can happen by diffusion through the adjacent austenite,

in a direction parallel to the transformation front, and also by a flux of carbon through the trans-

formation interface. There is therefore no net accumulation of carbon in the austenite, leading to a

constant growth rate [20, 21].

The process is illustrated in a simplified manner in Figure 12.6, where all the fluxes are essentially

parallel to the transformation front, JV being via the austenite ahead of the front, and JB through the

averaged interface between the austenite and pearlite. The proportion of ferrite and cementite within

the colony is determined by the average carbon concentration of the austenite cγ together with the
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equilibrium concentrations cαθ and cθα. Using the lever rule, it follows that

SαI
SI

=
cθα− cγ

cθα− cαθ
,

SθI
SI

=
cγ− cαθ

cθα− cαθ
, Vθ

V =
SθI
SI

(12.1)

where Vθ
V is the fraction of cementite within the pearlite. Given that ferrite and cementite both

Figure 12.6 Schematic representation of a growing pearlite colony. The dashed arrows indicate the diffusion

paths for the carbon, either through the austenite ahead of and parallel to the interface, or through the γ/θ and

γ/α interfaces. The interfaces are assumed to be of uniform thickness δb. SI is the interlamellar spacing. This

diagram represents a simplified view of the three-dimensional structure of pearlite.

are necessary to form pearlite, the austenite must be metastable with respect to both of the product

phases; this means that the following condition would need to be satisfied: cγθ ≤ cγ ≤ cγα, (Fig-

ure 12.7a) – this condition defines what is sometimes called the Hultgren extrapolation region. As

long as this is true, it becomes possible for the austenite to transform completely into pearlite, even

though cγ does not correspond to the eutectoid composition. In a time-temperature-transformation

diagram for a hypoeutectoid steel, ferrite would not have to precede pearlite once an undercooling

is achieved whereby cγθ ≤ cγ ≤ cγα (Figure 12.7b).

The diffusion distance parallel to the interface can be approximated as b19SI where b19 is a fraction

usually set to 1
2 , on the basis that diffusion occurs in both directions parallel to the transformation

front; the average diffusion distance must in practice be smaller than SI given that the ferrite and

cementite are in a lamellar arrangement. Assuming at first that the diffusion flux is entirely through

the volume of the austenite (i.e., JV), the rate at which solute is partitioned per unit area of the trans-

formation front (taking account of the fractional areas presented by each phase at the transformation

front) from α and absorbed into θ must be equal,

v
SαI (c

γ− cαγ)

SI
︸ ︷︷ ︸

partitioning of C into austenite

= v
SθI (c

θγ− cγ)

SI
︸ ︷︷ ︸

absorption of C from austenite

where v is the speed of the growth front. It can be shown using Equations 12.1 that each of these
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(a) (b)

Figure 12.7 (a) Phase diagram with extrapolated phase boundaries to identify the concentrations in the

austenite which is in equilibrium with cementite or ferrite. The region below the eutectoid temperature where

the thermodynamic condition for the simultaneous formation of both cementite and ferrite is satisfied, is often

referred to as the Hultgren extrapolation. (b) Schematic time-temperature-transformation diagram for a hy-

poeutectoid steel, showing the undercooling required if it is to transform into a fully pearlitic microstructure

even though the carbon concentration of austenite may differ from the eutectoid composition.

terms is equivalent to:

vSθI SαI
S2

I

(cθα− cαθ).

Since the rate of solute partitioning must equal the flux of solute at the interface, it follows that

vSθI SαI
S2

I

(cθα− cαθ) = D
γ
C

(cγα− cγθ)

b19SI

v = D
γ
C

SI

b19SθI SαI

cγα− cγθ

cθα− cαθ
(12.2)

where D
γ
C is the diffusivity of carbon in austenite.2 Notice that this equation gives only the velocity

as a function of the interlamellar spacing and furthermore, the velocity is predicted to increase

indefinitely as the spacing decreases. This is because the diffusion distance decreases with SI.

However, SI cannot decrease without constraint, because the creation of α/θ interfaces consumes

energy. The minimum value of interlamellar spacing possible is a critical spacing SC
I = 2σαθ/∆G

where σαθ is the interfacial energy per unit area and ∆G is the magnitude of the driving force for

transformation in Joules per unit volume. The effective driving force is therefore given by:

∆Gnet = ∆G−
2σαθ

SI
(12.3)
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and since ∆Gnet = 0 when SI = SC
I , it follows that

∆Gnet =
2σαθ

SC
I

−
2σαθ

SI
so that

∆Gnet

∆G
= 1−

SC
I

SI
. (12.4)

Therefore, to allow for the energy consumed in the process of interface creation, Equation 12.2 is

modified by a term 1− [SC
I /SI] as follows:

v = D
γ
C

SI

b19SθI SαI

cγα− cγθ

cθα− cαθ

(

1−
SC

I

SI

)

. (12.5)

Figure 12.8 plots the growth rates using Equations 12.2 and 12.5 for two values of α/θ interfacial

energy and reasonable values of all the other terms. The curve corresponding to Equation 12.2

has σαθ = 0Jm−2, whereas the one with a maximum in the growth rate has σαθ = 0.3Jm−2. The

physical reason for the maximum in the growth rate expressed as a function of interlamellar spacing,

is that a large spacing SI increases the diffusion distance, whereas a small SI means that a greater

amount of the driving force is consumed in creating α/θ interfaces, making growth impossible

when SI = SC
I .

Figure 12.8 The calculated growth rate of pearlite, controlled by the diffusion of carbon in the austenite

ahead of the transformation front. The growth rate increases indefinitely as the interlamellar distance is reduced,

if the α/θ interfacial energy is zero. For the case where σαθ = 0.3Jm−2, the critical interlamellar spacing

when the growth rate becomes zero is 0.042µm.

The growth equations clearly do not have a unique solution for the growth rate, but rather, as a

function of the interlamellar spacing. One assumption is that the spacing will correspond to that

consistent with the maximum growth rate, i.e., when SI = 2SC
I [20]. Alternatively, during isothermal

transformation, the pearlite may adopt a spacing consistent with the maximum entropy production

rate [22]; for isothermal transformation, this is of course equivalent to the maximum free energy
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dissipation rate. The rate of entropy production is [22, 23]

Ṡ =
v∆Gnet

T
. (12.6)

At small undercoolings, the free energy change ∆G ≈ ∆H∆T/TE, where ∆H is the enthalpy change,

TE the eutectoid temperature and ∆T = TE −T . Using Equation 12.4, the rate of entropy production

is

Ṡ = v
∆H∆T

TE

(

1−
SC

I

SI

)

= D
γ
C

SI

b19SθI SαI

cγα− cγθ

cθα− cαθ

∆H∆T

TE

(

1−
SC

I

SI

)2

. (12.7)

The maximum in entropy production Ṡ occurs at SI = 3SC
I . The two criteria, maximum growth rate

and maximum entropy production rate, yield different interlamellar spacings so the relevant criterion

must be selected by experiment.

Supposing now that in addition to the flux through the austenite, there is additional solute trans-

port through the averaged interface of thickness δ b between the pearlite and austenite, defined by

an overall boundary diffusion coefficient Db
C. An additional flux must therefore be considered in

Equation 12.2, leading to [24]

v =

(
D
γ
C

b19
+

δ bDb
C

b20SI

)
SI

SθI SαI

cγα− cγθ

cθα− cαθ

(

1−
SC

I

SI

)

. (12.8)

The concentration terms for the boundary are not in general expected to be identical to those deter-

mined by local equilibrium between the product phases and austenite. One assumption is that the

concentration in the boundary is still represented by the phase diagram but scaled by an empirical

distribution coefficient; since this coefficient is assumed to apply to all of the concentration terms,

it can simply be incorporated into b20. Figure 12.9 shows how the flux through the boundary be-

comes the dominant mechanism of carbon transport during pearlite growth at temperatures not far

below TE. For the calculations illustrated, because there now are two diffusion paths, the interlamel-

lar spacing based on a maximum Ṡ is between 2.01-2.17SC
I , and the corresponding values for the

maximum growth rate criterion are 1.36-1.53SC
I [24].
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Figure 12.9 Relative contributions of volume diffusion through austenite, and boundary diffusion fluxes,

during the growth of pearlite in a Fe-0.8C wt% steel. The details of the parameters used in the calculations can

be found in [24].

12.4 Fe-C-X: GROWTH WITH LOCAL EQUILIBRIUM

The well-known complication is that the diffusivities of the substitutional and interstitial solutes are

vastly different, so unlike the case for binary steels, it becomes necessary to discover conditions

where the two or more solute fluxes can keep pace whilst maintaining equilibrium locally at the

interface [22, 25–28]. And there is no doubt that substitutional solutes are partitioned between the

phases at all temperatures where pearlite is observed [29–31].

Fe-C-X steels contain a substitutional solute (X) in addition to interstitial carbon. Local equilibrium

requires the compositions at the interface to be maintained at levels that are consistent with a tie-line

of the Fe-C-X phase diagram. At a constant temperature, this is in general not possible to achieve

for the tie line passing through cMn,cc because the rate at which each solute is partitioned must then

equal that at which it is carried away from the interface by diffusion. It is necessary therefore that

at α/γ interface:













v(cγαC − c
αγ
C ) =−D

γ
C

∂cC

∂ z

v(cγαMn − c
αγ
Mn ) =−D

γ
Mn

∂cMn

∂ z

(12.9)

at θ/γ interface:













v(cγθC − c
θγ
C ) =−D

γ
C

∂cC

∂ z

v(cγθMn − c
θγ
Mn) =−D

γ
Mn

∂cMn

∂ z

(12.10)

where the subscripts identify the solute. Given that D
γ
Mn - D

γ
C, it becomes impossible to simulta-

neously satisfy either Equation sets 12.9 or 12.10 if the tie-line passing through cMn,cc is selected.
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The solution of the conditions appropriate for the interface requires the following two equations [6]:

vC =

(

2
D
γ
C

b19
+ 12

Db
Cδ b

b20S

)
SI

SαSθ

(
c
γα
C − c

γθ
C

c
θγ
C − c

αγ
C

)(

1−
SC

I

SI

)

vMn =

(

2
D
γ
Mn

b19
+ 12

Db
Mnδ b

b20SI

)
SI

SαSθ

(
c
γα
Mn − c

γθ
Mn

c
θγ
Mn − c

αγ
Mn

)(

1−
SC

I

SI

)

(12.11)

where the velocities vC and vMn are calculated on the basis of the diffusion of only carbon or only

manganese, respectively. Clearly, since there is only one transformation front, the equations must be

solved such that vC = vMn. Bearing in mind that the interlamellar spacing is also identical in these

equations, a further condition arises that:

DC

DMn
=

RMn

RC
with









Di ≡
D
γ
i

b19
+

6Db
i δ b

b20SI

Ri ≡
c
γα
i −c

γθ
i

c
θγ
i −c

αγ
i

(12.12)

The Ri condition ensures that the weighted average of the ferrite and cementite yields the mean

composition of the steel, assuming that there is no long-range diffusion of manganese into the bulk

of the parent phase. With these two constraints and in addition the local equilibrium condition, it be-

comes possible to find unique interface compositions at the growth front by coupling the conditions

and the velocity equations to thermodynamic data using the following procedures:

• a trial θ/γ interface composition is set, selected from possible such tie-lines for the given

transformation temperature.

• The α/γ interface composition tie-line is selected such that c
αγ
C,Mn, c

θγ
C,Mn 8 c̄C,Mn, where

c
αγ
C,Mn, c

θγ
C,Mn means the line connecting the compositions of ferrite and cementite. c̄C,Mn is

average composition in the system.

• If Equation 12.12 is not satisfied by these choices then the process is repeated until a

solution is found.

• This solution provides the interface compositions to substitute into Equation 12.11 to cal-

culate the single velocity v = vC = vMn of the transformation interface.

One of the difficulties in applying the type of theory described here is data on boundary-diffusion

coefficients. For substitutional solutes, a good source is an assessment by Fridberg et al. [32], and

the corresponding diffusion coefficient for carbon has been derived to be [6]

DC
b = 1.84× 10−3 exp

(

−
124995Jmol−1

RT

)

m2 s−1

Figure 12.10 shows that an order of magnitude agreement can be achieved between the calculated

[6] and measured [33] pearlite growth rates in Fe-Mn-C steels, assuming that the flux of each of the

solutes occurs both through the volume ahead of the transformation front and via the boundaries

associated with the front itself. The chemical compositions of the cementite and ferrite are also
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well predicted [6]. Just an order of magnitude closure between theory and experiment might be

disconcerting, but there are so many approximations involved: usually unspecified errors in the

experimental data, the oversimplification of shape, a lack of information on interfacial energies,

uncertain criteria regarding interlamellar spacing, and the assumption of local equilibrium at all

interfaces. It is difficult in these circumstances to use the theory in alloy development, so most

development programmes rely simply on the well-established qualitative trends when solutes are

added to steels. Indeed, it is not possible to identify a single case where the theory has been applied

in the design of new steels.

Figure 12.10 Curves showing the calculated

diffusion-controlled growth rate of pearlite, in 1.0

and 1.8 wt% manganese eutectoid steels as a func-

tion of the transformation temperature [6]. The so-

lute flux is both through the austenite ahead of the

interface and through the interface itself. The cor-

responding data are from [33].

It is possible in a ternary system for the austenite to be supercooled into the three phase α+γ+θ

phase field where they can exist together in equilibrium. The pearlite that grows does not then have

the average composition of the austenite, but carbon and the substitutional solute partition between

the parent and product. The resulting change in the composition of the austenite reduces the driving

force, eventually to zero when equilibrium is reached and transformation stops before all of the

austenite is consumed. The reduction in driving force as equilibrium is reached also leads to a

progressive change in the interlamellar spacing to ever larger values, resulting in what is known as

divergent pearlite [34], Figure 12.11.

12.4.1 LOCAL EQUILIBRIUM?

Whereas it is well established that both the cementite and ferrite associated with the bainite reac-

tion inherits the substitutional content of the austenite, such that the substitutional solute to iron

ratio remains constant during transformation, pearlite shows different characteristics even when the

transformation temperature is identical to that for bainite.

Tsivinsky et al. [35] first reported that chromium and tungsten partitioned from austenite into ce-

mentite during the growth of pearlite, but not during that of bainite. Chance and Ridley [30] found

that for upper bainite in a Fe-0.81C-1.41Cr wt% alloy, the partition coefficient kCr, defined as (wt%

Cr in θ)/(wt% Cr in α), could not be distinguished from unity (Figure 12.12). Chance and Ridley

suggested that partitioning occurs during the pearlite reaction but at the same temperature does not



Pearlite 515

Figure 12.11 Fe-2.5C-5.4Mn at.% steel transformed from austenite supercooled into the α+γ+θ phase

field. The interlamellar spacing increases as the colony enlarges. After Hutchinson et al. [31], reproduced with

the permission of Elsevier.

occur with bainite because there is a fast diffusion path along the incoherent interface for pearlite.

This could be paraphrased as the difference between the reconstructive transformation mechanism

for pearlite and the displacive mechanism for bainite. Figure 12.12 emphasises that the partition

coefficient for pearlite is vastly different from that indicated by equilibrium; this means that when

pearlite forms at low temperatures, the condition for local equilibrium at the transformation inter-

faces does not in fact hold. The solution to this must lie in including interface response functions

that deal with solute trapping in the analysis (p. 217).

Figure 12.12 Measured ratio of chromium in cementite to that in ferrite (i.e., partition coefficient based on

wt%), when the cementite is a part of bainite or pearlite, [30].
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12.5 FORCED VELOCITY PEARLITE

When a cylinder of austenite traverses a temperature gradient, on reaching an undercooled domain,

pearlite grows along the direction of heat flow until the traverse-speed reaches some critical value.

Beyond that value, the transformation front is unable to match the traverse speed so the pearlite

forms the usual colonies with multi-directional growth [36]. These experiments have been reveal-

ing in that the interlamellar spacing during forced-velocity growth matches that in regular pearlite

when the comparison is made at the same speed. Later work established the temperature at which

the pearlite forms, thus providing comprehensive velocity, temperature and interlamellar spacing

information for Fe-C system [37]. Including data from isothermal experiments, the relationship be-

tween the undercooling below the eutectoid temperature and the interlamellar spacing is found to

be SITE = 8.02µm◦C. This relationship of course applies to binary steels, whereas all practical al-

loys contain other solutes. Takahashi [38] derived the following empirical equations from published

experimental data to cover a range of substitutionally alloyed steels as a function of temperature

(◦C):

log{SI/µm} = −2.21358+ 0.09863 wMn
︸︷︷︸

0-1.8

−0.05427 wCr
︸︷︷︸

0-9

+0.03367 wNi
︸︷︷︸

0-3

− log

{
TE −T

TE

}

(12.13)

with temperature in the range 600-790 ◦C. There clearly will be other limits to applying this equation

which assumes linear combination and unjustified logarithmic terms.

12.6 PEARLITE NOT CONTAINING CEMENTITE

In some steels containing relatively large concentrations of strong carbide-forming substitutional

solutes such as chromium, it is possible to generate lamellar pearlite consisting of a mixture of

an alloy carbide and ferrite that grow cooperatively [39, 40]. The transformation temperature must

be sufficiently high to permit the diffusion of substitutional solutes. A Fe-11.8Cr-0.23 wt% alloy

transformed from austenite in the range 775-700 ◦C leads to the formation of pearlite in which the

carbide is M23C6, with the lamellar spacing decreasing as the transformation temperature is reduced,

Figure 12.13. The alloy pearlite shows many of the characteristics of normal pearlite; the crystal-

lographic orientation of M23C6 within a colony is mostly uniform, although several orientations

have been reported for the fibrous form of the precipitate [41]; there is evidence of branching, and

a common transformation front. The overall shape of a colony can be nodular but tends to be spiky

at lower temperatures just as in Fe-C pearlite; transformation at low temperatures also requires a

much longer time to accomplish given that the diffusion of substitutional atoms is then sluggish.

Figure 12.13 illustrates these features using two different steels. Given that both chromium and car-

bon partition during the process, the transformation cannot reach completion if the temperature is

in the three-phase M23C6 +α+γ field.
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(a) (b)

Figure 12.13 Pearlite containing alloy carbides. (a) Fe-0.23C-11.8Cr wt%. Transformed isothermally at

775 ◦C for 30 min; pearlite with M23C6 as the carbide component. (b) Fe-0.23C-11.8Cr wt%. Transformed

isothermally at 750 ◦C for 15 min illustrating the cooperative growth of M23C6 and ferrite from austenite. Re-

produced from Campbell and Honeycombe [40] with permission from Taylor and Francis.

Alloy-pearlite which is a mixture of ferrite and M7C3 has been observed during the transformation

of austenite in Fe-8.2Cr-0.96C wt% steel [42, 43], Figure 12.14.

(a) (b)

Figure 12.14 Fe-0.3C-4.08Cr wt% transformed isothermally at 478 ◦C for 43 days. The carbide component

is now M7C3. (a) Illustrates the transformation front showing cooperative growth. (d) The overall microstruc-

ture where carbide continuity is sometimes lost, and occasional branching is observed.

12.7 DIVORCED EUTECTOID TRANSFORMATION

When particles of proeutectoid cementite exist in austenite, cooling to a temperature where eutectoid

transformation become possible can lead to divorced pearlite. In this, the pre-existing cementite

particles simply grow to absorb the excess carbon partitioned at the γ/α transformation front. There

is, therefore, no cooperative growth of the ferrite and cementite as occurs in conventional pearlite.

This kind of transformation is important as a rapid mechanism of obtaining a spheroidised instead

of lamellar cementite [44].

The mechanism [45] is illustrated schematically in Figure 12.15. The mixture of austenite and proeu-

tectoid cementite when cooled below Ae1 leads to the flux of carbon towards cementite particles in
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both the austenite and ferrite, Figure 12.15. To maintain equilibrium at the α/γ interface as it ad-

vances, the carbon partitioned must equal that absorbed in the cementite:

(cγα− cαγ)v = Dγ
cγα− cγθ

λγ
+Dα

cαγ− cαθ

λα
(12.14)

where the distances λγ,α are defined in Figure 12.15. If ∆T is the undercooling below the temper-

ature at which ferrite may first form, an approximate equation for the velocity of the α/γ interface

is given by3

v ≈
2Dα

λγ+λα

∆T
27

[
0.28

Dα/Dγ
+ 0.009

]

0.75+ ∆T
27 × 0.225

(12.15)

where v is the velocity of the α/γ interface. By comparing this velocity against that for the growth

of lamellar pearlite, it is possible to identify the domains in which divorced pearlite can be favoured

over the lamellar form, Figure 12.15.

(a) (b) (c)

Figure 12.15 (a) Mechanism of the divorced eutectoid transformation of a mixture of austenite and fine

cementite [46]. (b) Carbon fluxes in this model. (c) Low undercoolings below the eutectoid temperature and

fine spacings between cementite particles favour the formation of divorced pearlite. The calculations [46] are

for a plain-carbon eutectoid steel.

The phase field simulation illustrated in Figure 12.16 [47] confirms the basic circumstances by

which divorced pearlite can be induced, but revealed in addition that it is possible for cementite

particles both at the γ/α interface and those ahead of it to absorb partitioned carbon.
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initial
configuration

Figure 12.16 Phase field simulation

showing the transition from lamellar

to divorced eutectoid as a function

of spacing and undercooling below

the eutectoid temperature. Reproduced

with permission of Elsevier, from Ku-

mar et al. [47].
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Notes
1Sorby first observed the mother-of-pearl appearance of what Howe later named as pearlyte, perlite and finally pearlite

[48].
2The term SI/SθI SαI is proportional to 1/SI because both SθI and SαI are in turn proportional to SI when the volume fraction

of cementite is constant.
3The terms deduced from the phase diagram, for 700◦C, are cγα − cγθ ≈ ∆T (0.28/0.27), cαγ− cαθ ≈ ∆T (0.009/27),

cγα− cαγ ≈ 0.75+∆T (0.225/27).



13 Aspects of kinetic theory

13.1 GRAIN GROWTH

A real, three-dimensional grain structure cannot ever be in equilibrium because the space-filling

grain-shape prevents the balancing of interfacial tensions. A uniform, hexagonal grain structure in

two dimensions can, on the other hand, be metastable because the boundary triple-points exhibit

three-fold symmetry so the tensions are balanced, assuming that the interfacial energy is identical

for all boundaries. In a single-phase material, there will exist a distribution of grains sizes with some

grains having a greater number of sides than others; the distribution of sizes is in general unimodal

with a maximum that is twice as large as the mean value [1]. In such a structure, annealing enables

the larger grains to grow at the expense of those that are smaller, but the unimodal distribution

of sizes is maintained even though the mean size increases. The process is driven entirely by the

excess energy present in the structure due to interfaces. On a local scale, grain boundaries tend to

migrate towards their centre of curvature as atoms located at a curved boundary move into positions

where they have more correctly positioned near-neighbours. The attempt at balancing tensions at

grain boundary junctions leads to curvature that in turn promotes the growth of the larger grains,

Figure 13.1.

(a) (b)

Figure 13.1 (a) An exaggerated illustration in which the grains all have flat faces so interfacial tensions are

not balanced at grain boundary junctions. The dashed circle highlights one such junction where if the boundary

energies are all identical, then the forces at the junction are not balanced. (b) A relaxed grain configuration

where boundary segments are curved to help maintain a semblance of balance at grain boundary junctions.

They therefore migrate towards their centres of curvature.

When the grain size L is measured as a mean lineal intercept, the boundary surface per unit volume

is given by 2/L, so the excess energy locked up in the form of grain boundaries is 2σ/L. This excess

523
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energy drives the coarsening of the three-dimensional grain structure; σ is the grain boundary energy

per unit area, assumed to be single-valued.

The microstructure might contain obstacles to grain boundary motion, for example, precipitates.

Suppose that there is a random array of particles, volume fraction VV with NV uniformly-sized,

spherical particles per unit volume, each of radius r then NV = 3VV/4πr3 and the number of particles

intersected by a unit area of boundary is 2rNV so the force opposing boundary motion is 3σVV/2r.

This force is the Zener drag on the boundary [reviewed in 2]. A limiting grain size Llim can be

defined when the particle pinning force equals the driving force for grain growth, i.e., when 2σ/L =

3VV/2r, so that Llim = 4r/3VV.

For small driving forces, the average boundary migration velocity is equal to a boundary mobility

Mb multiplied by the net driving force (Equation 4.64), an approximation justified at small driving

forces:

v = Mb2σ

(
1

L
−

1

Llim

)

.

If the boundary velocity is written as dL/dt and the temperature dependence of the mobility can be

separated as Mb = Mbo exp(−Q/RT ), then it follows that [3]

dL

dt
= 2σMbo exp

{

−
Q

RT

}[
1

L
−

1

Llim

]

(13.1)

where t is the time during isothermal growth and Q is an activation energy for grain growth. If Llim =

∞ then integration would lead to a relationship where L varies with
√

t assuming that the initial grain

size before coarsening is neglected.1 But in general, integration of Equation 13.1 gives [3]

−LLlim −L
2
lim ln

{

1−
L

Llim

}

+LoLlim +L
2
lim ln

{

1−
Lo

Llim

}

= 2σMbo exp

{

−
Q

RT

}

t

(13.2)

where Lo is the initial grain size. When considering austenite grain growth in large components, the

time taken to reach the heat-treatment temperature can be taken into account. The steel becomes

fully austenitic at a temperature Ac3 so Lo is set to that austenite grain size that exists at that tem-

perature. During continuous heating followed by isothermal holding at a temperature T ′ for time t,

the term on the right hand side of Equation 13.2 becomes [4]

. . .= 2σMbo

[

exp

{

−
Q

RT ′

}

t +
1

Ṫ

∫ T ′

Ac3

exp

{

−
Q

RT

}

dT

]

where Ṫ is the heating rate between Ac3 and T ′. The activation energy Q is about 200 kJ mol−1,

somewhat less than that for the self-diffusion of iron; much larger values have been reported but are

a consequence of overfitting to limited experimental data [4].

There are circumstances in which some grains grow much more rapidly than the general coarsen-

ing described above. Figure 13.2 illustrates a steel containing boundary-pinning AlN particles that
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are stable at the lower austenitisation temperature of 840 ◦C, but begin to dissolve in the austenite

at 940 ◦C. In this latter regime of borderline particle stability, some regions will become depleted

of particles before others, where relatively rapid grain growth can occur locally, leading to a bi-

modal distribution of grain sizes. Other heterogeneities that promote abnormal grain growth include

anisotropy in crystal orientations, in boundary energy or boundary mobility. The conditions lead-

(a) (b)

(c) (d)

Figure 13.2 Austenite grain growth in a nuclear pressure vessel steel containing a small fraction of alu-

minium nitride precipitates. The austenite grains are revealed using thermal grooving that occurs during

austenitisation as grain boundary and surface tensions are balanced. (a) Following austenitisation at 840 ◦C, (b)

following austenitisation at 940 ◦C. (c, d) Respective distributions of lineal intercepts [4], showing that there is

a bimodal distribution for the sample austenitised at 940 ◦C.

ing to abnormal grain growth have been modelled [1, 5], suggesting that grains with a size about

1.4 times the average will tend to grow abnormally. The practical application of this requires some

mechanism by which such a size anomaly can appear in the microstructure.

13.2 RECRYSTALLISATION

In normal circumstances, any reduction in the density of dislocations, introduced during plastic

deformation, is small during the process of recovery. The deformed grain structure is also largely

unaffected by recovery. It takes the growth of new grains to initiate a much larger change, i.e., recrys-

tallisation. New grains are stimulated in regions where the dislocation density is large (Figure 13.3).

This can happen when an existing grain boundary bows into the grain containing a somewhat greater

density of dislocations, in which case the crystallographic orientation of the grain with the lower
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dislocation density is maintained in the recrystallised region, with consequences on the development

of a recrystallisation texture.

If the steel contains relatively hard particles that resist changes in shape, then deformation can lead

to plastic strain gradients around the particles. When these gradients are large, they can lead to

particle-stimulated recrystallisation where the new grain may have a large misorientation relative

to its surroundings. Large particles are more effective since there are greater deformation gradi-

ents around them and hence are expected to be more effective in inducing recrystallisation. The

deformation gradients extend approximately to the size of the coarse particles [6].

(a)

high 
dislocation 

density

low
dislocation

density

(b)

nucleation at high
strain regions near
inclusions

particle

(c) (d) n

re
co

ve
ry

Figure 13.3 Nucleation of recrystallisation, (a) by grain boundary bowing that propagates the orientation

of the grain on the left, (b) particle stimulated nucleation, which may lead to a highly misoriented grain. (c)

Development of misorientation by polygonisation. (d) Variation in recrystallised grain size as a function of the

amount of deformation prior to isothermal annealing.

Both of the mechanisms described require a certain misorientation to develop within the deformed

matrix in order to define the genesis of a recrystallisation nucleus. Suppose that nucleation begins

in a jumble of dislocations. The local rearrangement of free dislocations can lead to the creation of

a region that is essentially free from dislocations, Figure 13.3c. If it is assumed that a new grain

forms when a region accumulates a misorientation θ = 10◦ & 0.2rad with its neighbours and a size

z1, both arrived at by polygonisation, then:

θ =
b

z2
=&

3× 10−10 m

z2
& 0.2rad (13.3)

so that z1 = 15× 10−10 m. Given that z1 is typically 0.1-1µm, the critical dislocation density re-

quired to generate the misorientation, ρ∗
⊥ = 1/z1z2 & 1015 → 1016 m−2. The actual dislocation den-
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sity required has to be somewhat larger if some of the defects are annihilated during recovery. Large

dislocation density differences are usually only to be found in localised regions.

A greater nucleation rate leads ultimately to a finer recrystallised grain size (Figure 13.3d) during

isothermal annealing. There is a level of deformation below which recrystallisation does not occur

because recovery processes reduce the defect density. While the extent of the plastic strain prior to

annealing is a key parameter influencing recrystallisation behaviour, other factors affect the nature

of the defects introduced during deformation:

• changes to the shapes of the grain following deformation. For example, during plane-strain

deformation (rolling), austenite grains are deformed in the rolling direction more severely

than in other directions. This pancaking, that increases the amount of boundary per unit

volume from SV0 in the undeformed state to SV following plastic deformation, which adds

to the stored energy of the material. For grains that initially are equiaxed, in the form of

space-filling tetrakaidecahedra [7, 8]:

SV

SV0

=
η11 + 3(η11

√

1+ 2η2
33+

√

η2
11 + 2η2

33 +η33

√

2(1+η2
11)

3(2
√

3+ 1)

LV

LV0

=
1+η11+ 2

√

1+η2
11+ 2η2

33

6

where η11 and η33 are the principal distortions with the true strains along the principal

directions given by εii = lnηii; LV is the grain edge length per unit volume, with initial

value LV0.

Because plastic deformation is not homogeneous, boundaries are roughened by slip [9] and

heterogeneous slip introduces deformation bands. There may also exist annealing twins

within the austenite grains. These effects are not predictable, but certainly affect the stored

energy. When considering austenite grains, the effects are represented empirically; the ad-

ditional SV due to twins and bands is taken to be proportional to ε2
p [10]. If the flow stress

σP is known, then the dislocation density is often taken to be proportional to (σP/Esb)2,

with the proportionality constant containing the Taylor factor and an empirical constant

[11].

• If a hole in a matrix is sheared, then the distortion accompanying the hole can be restored to

its original shape by an appropriate deformation of the matrix, or by local matrix rotations

[12, 13]; this process in effect models what happens when a material containing a rigid

inclusion is deformed. The lattice rotations may be expressed in the form of subgrains

which deviate sufficiently from the original orientation [14].

The deformation field around the inclusion is heterogeneous and results in plastic strain

gradients that play a role in recovery and recrystallisation. However, it is possible for such

deformation to relax, for example by the dissipation of defects into the surroundings, es-

pecially when the inclusions are small in size. For large inclusions, features such as dis-

location loops cannot be removed from the neighbourhood of the particles so relaxation
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processes become less effective. As a consequence, particles that are generally several

micrometres in size act to stimulate recrystallisation. Therefore, fine dispersions, such as

those associated with microalloyed steels, retard recrystallisation by pinning boundaries or

dislocations, rather than accelerating it.

• Given the mechanism by which recrystallisation nucleates, i.e., grain boundary bowing

or polygonisation, it is natural that the crystallographic character of boundaries in the de-

formed state will influence the development of crystallographic texture in the recrystallised

form. It has, for example, been found that in recrystallisation experiments on ferritic bicrys-

tals, an initial “γ-fibre”2 texture results in recrystallised grains that are significantly rotated

but still on the γ-fibre of the orientation distribution function [14].

13.2.1 PHENOMENOLOGICAL TREATMENT OF RECRYSTALLISATION

Thermomechanical processing is routine in the production of structural steels, with the aim of refin-

ing the austenite grain size and hence the ferrite grain size following transformation. But the rate of

production is impressively large; the time spent within the austenite phase field during rolling may

be less than two seconds during each rolling reduction, although the delay between rolling-passes

may be of the order of two minutes. The structural changes during these short time scales are special

and yet relatively simple to model empirically [15].

During hot deformation, the stress required to deform the steel is a function of the plastic strain

(εp), the plastic-strain rate (ε̇p) and temperature. That stress is a function f{εp} of plastic strain, as

is well-understood from any tensile test of a steel. Zener and Holloman proposed [16, 17] that the

effects of strain rate and temperature can be combined by writing σ = f{ε,Zk} with Zk, now known

as the Zener-Hollomon parameter, defined as

Zk = ε̇p exp

(
Q

RT

)

s−1 (13.4)

where Q is an unspecified heat of activation since most rates are associated with an activated event.

The material work hardens during hot-rolling but softens beyond a critical strain ε∗p corresponding

to the recrystallisation of austenite, with

ε∗p = b22(Lo)
b23 Z

b24
k (13.5)

where Lo is the austenite grain size prior to deformation and bi are empirical constants. Typical

values of the empirical constants are Q = 312kJmol−1; b22 = 6.97× 10−4; b23 = 0.3 when the

grain size has units of micrometres, and b24 = 0.17 when the strain rate has units of reciprocal

seconds [18].

If the strain ε∗p is reached while the steel is still being rolled, then the process of change is known as

dynamic recrystallisation. On the other hand, metadynamic recrystallisation is said to occur when

recrystallisation follows immediately after a rolling pass when the strain retained in the austenite

exceeds that needed to induce recrystallisation. The recrystallised austenite grain size will in general
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be smaller than the initial size, and grain growth during the interval between passes is inevitable, as

illustrated in Figure 13.4 [19]. The full theory for recrystallisation and grain growth is not presented

here because it tends to be alloy specific, but can be accessed from extensive literature on the subject

[20, 21].
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Figure 13.4 (a) Influence of a single pass of rolling deformation to a strain εp = 0.3, on the austenite grain

size and residual strain (0.3 multiplied by the fraction of unrecrystallised austenite) (b) Influence of four rolling-

passes on the austenite grain size and residual strain. In each pass, recrystallisation is complete at points such

as ‘a’, followed by grain growth in regions such as ‘b’. The units of ε̇p are in s−1. Selected data from Bombac

et al. [19].

The general features of controlled rolling are summarised in Figure 13.4. Really quite sophisticated

process models now exist to treat the entire sequence of rolling [22, 23], microstructural develop-

ment [24] and properties [25, 26], so much so that some of these are now used in the on-line control

[27] of rolling mills using machine learning methods [28] to ensure product uniformity.

13.2.2 THERMOMECHANICAL PROCESSING: LIMITS TO GRAIN REFINEMENT

Grain size refinement using thermomechanical processing is an important method for improving

both the strength and toughness of steels. It is useful therefore to consider the smallest ferrite grain

size that can be achieved using this manufacturing method, by balancing the driving force for trans-

formation from austenite to ferrite against the stored energy due to grain boundaries [29]:

|∆G
γα
V |≥ σαSαV −σγS

γ
V (13.6)

which for equiaxed grains becomes

|∆G
γα
V |≥

2σα

Lα
−

2σγ

Lγ
. (13.7)

It follows that the smallest ferrite grain size that can be achieved is when all of G
γα
V is used up in

creating α/α grain boundaries:

L
min
α =

2σα

|∆G
γα
V |+ 2σγ/Lγ

. (13.8)
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The term 2σγ/Lγ supplements the driving force the ferrite when it forms, eliminates the austenite

grain boundaries. Obviously, a reduction in the austenite grain size should always lead to finer

ferrite grains but the magnitude of the change depends also on |∆G
γα
V |, i.e., on the undercooling at

which the γ → α transformation occurs. The austenite grain size becomes less important at large

undercoolings.3

Figure 13.5 shows the ferrite grain size (L
min
α ) as a function of the driving force using Equation 13.7

with σα = 0.6 J m−2. Also illustrated are data from industrial processing. At large undercoolings,

the size achieved is much bigger than expected theoretically. This is because of recalescence caused

by the larger enthalpy of transformation at greater undercoolings, which heats the steel to higher than

intended temperatures, thereby reducing ∆G
γα
V . Once this is accounted for, the analysis indicates

that it probably is not possible to obtain allotriomorphic ferrite grain-sizes much smaller than 1µm

using thermomechanical processing of the type used in mass production.

Figure 13.5 Plot of the logarithm of ferrite grain size versus the free energy change at Ar3. The ideal curve

represents the values of L
min
α . The points are experimental data; in some cases it is assumed that the grain size

quoted in the literature corresponds to the mean lineal intercept. The sources of the data are quoted in [29].

13.3 OVERALL TRANSFORMATION KINETICS

13.3.1 ISOTHERMAL TRANSFORMATION

The evolution of phase fraction as a function of parameters such as temperature, free energy, chemi-

cal composition is important in the design of steels. To estimate the necessary transformation kinet-

ics requires an understanding of the nucleation and growth mechanisms and rates, but impingement

between precipitates that originate from different locations must be taken into account in order to

calculate the phase fraction. This can be accomplished using the extended volume concept, where

impingement is ignored so transformation can occur in all regions of the original matrix, irrespec-

tive of whether a particular region already contains a precipitate [30–34]. Figure 13.6 shows two

precipitates existing at time t; a small interval ∆t later, new particles a, b form, and c identifies

increments in the sizes of the original pair. The net increase in the extended volume dVα
e therefore

comes a+ b+ c, where α refers to the precipitate phase. However, only those newly transformed
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regions that lie in previously untransformed matrix can contribute to a change in the real volume

dVα of the product phase:

dVα =

(

1−
Vα

V

)

dVα
e (13.9)

where it is assumed that the microstructure develops randomly, and V is the total volume. Multiply-

ing the change in extended volume by the probability of finding untransformed regions has the effect

of excluding regions such as b, which clearly cannot contribute to the real change in volume of the

product. For a random distribution of precipitated particles, this equation can easily be integrated to

obtain the real volume fraction:
Vα

V
= 1− exp

{

−
Vα

e

V

}

. (13.10)

Figure 13.6 The concept of extended volume. Two precipitates have nucleated together and grown to a finite

size in the time t. During a further time increment ∆t, particles a and b form, of which b lies in a region that

already is transformed. The original particles have an increment of growth during ∆t, indicated by the regions

c.

The extended volume Vα
e is straightforward to calculate using nucleation and growth models while

neglecting any impingement effects. Suppose the α grows isotropically at a constant rate v and

where the constant nucleation-rate per unit volume is IV; the volume of a particle nucleated at time

t = τ is given by

vτ =
4

3
πv3(t −τ)3. (13.11)

The change in extended volume over the interval τ and τ+ dτ is

dVα
e =

4

3
πv3(t −τ)3 × IV×V× dτ. (13.12)

Substituting into Equation 13.10 and writing ξ =Vα/V gives

dVα =

(

1−
Vα

V

)
4

3
πv3(t −τ)3IVV dτ

so that − ln{1− ξ}=
4

3
πv3IV

∫ t

0
(t −τ)3 dτ

and ξ = 1− exp{−πv3IVt4/3}. (13.13)
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This equation has been derived for the specific assumptions of random nucleation, a constant nucle-

ation rate and a constant growth rate. There are different possibilities but they often reduce to the

general form:

ξ = 1− exp{−kAtn} (13.14)

where kA and n characterise the reaction as a function of time, temperature and other variables.

This equation often is used empirically, but only as an economic way of representing experimental

data rather than having a significant predictive capability. The temptation to deduce mechanistic

information from an empirical application of the Avrami equation should be avoided even if it

accurately fits the data, since the fitting parameters can be ambiguous. The fact that Equation 13.14

is applied empirically is sometimes interpreted to be a weakness of the theory, but this is misleading

because the application can be rigorous as shown for specific circumstances in the derivation of

Equation 13.13.

The example considered here is particularly simple because the nucleation and growth rates are

constant. A constant nucleation rate is possible only if the number density of nucleation sites is

unlimited and assuming that the interfacial energy and driving force for transformation remain un-

changed throughout the process. If the composition of the product phase is identical to that of the

parent, then the latter does not enrich or deplete in solute as transformation proceeds. Examples

include martensitic transformation and pearlite formation in binary Fe-C alloys.

Many scenarios cannot in reality be handled using analytical equations because the boundary condi-

tions change during the course of transformation. For reactions involving the partitioning of solute,

transformation will stop before all of the austenite is consumed, i.e., when an equilibrium fraction

of ferrite has been achieved. Given that the whole of the sample volume (V) cannot then transform,

ξ 3= Vα/V, but rather, ξ = Vα/Vαγ, where Vαγ is the volume of ferrite that is in equilibrium

with austenite within the total volume V. Partitioning of solute leads to changes in the boundary

conditions for both growth and nucleation as transformation proceeds, leading to soft-impingement,

which often is accounted for by a mean-field approximation whereby the composition of the trans-

forming matrix is averaged incrementally as transformation proceeds.

13.4 SIMULTANEOUS TRANSFORMATIONS

A simple modification is necessary when applying the extended-space concept to the simultaneous

formation of two precipitates, say α and β. Equation 13.10 becomes a coupled set of two equations,

dVα =

(

1−
Vα+Vβ

V

)

dVα
e and dVβ =

(

1−
Vα+Vβ

V

)

dVβ
e . (13.15)

This can be done for any number of reactions happening together [35, 36]. The resulting set of

equations must in general be solved numerically, although a few analytical solutions are possible

for special cases [36, 37], with the severe limitation that the different transformation products are

related linearly.

A suitably complex scenario closer to reality involves the formation of allotriomorphic ferrite, Wid-

manstätten ferrite and pearlite forming simultaneously during continuous cooling [36]. Allotriomor-
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phic ferrite nucleates at austenite grain boundaries; it is necessary therefore to consider the impinge-

ment of α-grains along the austenite grain surfaces, together with the gradual elimination of the

nucleation sites themselves. Cahn [38] treated this problem by a double application of the Avrami

extended space concept. If OB is the total γ-γ grain boundary area within the sample, in a system

of n precipitating phases, then the total area intersected by the ith phase on a plane parallel to the

boundary (also of area OB) at a distance y normal to that boundary is, for the jth phase:

∆O j,y =

(

1−
Σn

i=1Oi,y

OB

)

︸ ︷︷ ︸

unused fraction of plane at y

∆Oe
j,y (13.16)

where ∆O j,y and ∆Oe
j,y represent the change in real area intersected by the plane at y by the phase

j, and the corresponding change in extended area, respectively. These changes are during the time

interval mt to mt +∆t where m is an integer and m∆t the current time. So the net contribution to the

extended area on the plane located at distance y, due to phase j at the time m∆t is

∆Oe
j,y = OBΣm

k=0(I j,k∆τA j,k,y∆t)

where I j,k is the nucleation rate per unit time per unit area, of phase j during the interval k∆τ to

(k+1)∆τ , where so that the number of particles nucleated during ∆τ is OBI j,k∆τ assuming extended

space. Using Equation 13.16 to convert extended area to real area, the updated total real-area of

intersection of phase j with the plane at y at time t +∆t = (m+ 1)∆t is

O j,y,t+∆t = O j,y,t +∆O j,y.

The change in extended volume of phase j, on one side of the austenite grain boundary, over the

time interval t to t +∆t, is given by integrating numerically:

∆V e
j = ∆yΣy′

y=0∆O j,y with ∆Vj =

(

1−
Σn

i=1Vi

V

)

∆V e
j (13.17)

where y′ is the maximum in y where phase j intersects the test plane. In this way, the real volume of

each phase can be calculated as a function of time increments as long as the nucleation and growth

functions of each phase are known.

13.4.1 BASIS OF MICROSTRUCTURAL MODELS

It is seems obvious that the application of kinetic theory requires an understanding of the mecha-

nisms of transformations that occur in steels. This is particularly so when several transformations

occur together. Table 13.1 summarises the key features of each of the major transformation products,

with more elaborate explanations in the appropriate chapters that precede this one. Any mathemati-

cal model should ideally be consistent with these features in order to embed known phenomena.

13.4.2 ALLOTRIOMORPHIC FERRITE

Classical theory is often used to express the heterogeneous nucleation rate of allotriomorphic fer-

rite. Whereas the theory can be quite sophisticated in its detail [40, 41], there will be for practical
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Table 13.1

Key transformation characteristics in steels. The designations are martensite α′,
lower bainite αlb, upper bainite αub, acicular ferrite αa, Widmanstätten ferrite αW, al-
lotriomorphic ferrite α, idiomorphic ferrite αi, pearlite P, substitutional solutes X.
Acicular ferrite is the term used for intragranularly nucleated bainite. Consistency
of a comment with the transformation concerned is indicated by =, inconsistency
by 3=; a bullet • identifies the case where the comment is only sometimes consis-
tent with the transformation. The term parent γ implies the γ grain from which the
product phase grows. Adapted from [39].

Comment α′ αlb αub αa αW α αi P

Nucleation and growth reaction = = = = = = = =

Plate shape = = = = = 3= 3= 3=
IPS shape change with large shear = = = = = 3= 3= 3=
Lattice correspondence during growth = = = = 3= 3= 3= 3=
Co-operative growth of ferrite and cementite 3= 3= 3= 3= 3= 3= 3= =

High dislocation density = = = = • 3= 3= 3=
Necessarily has a glissile interface = = = = = 3= 3= 3=

Always has an orientation within the Bain region = = = = = 3= 3= 3=
Grows across austenite grain boundaries 3= 3= 3= 3= 3= = = =

High interface mobility at low temperatures = = = = = 3= 3= 3=
Acoustic emissions during transformation = = =

Reconstructive diffusion during growth 3= 3= 3= 3= 3= = = =

Bulk redistribution of X atoms during growth 3= 3= 3= 3= 3= • • •
Displacive transformation mechanism = = = = = 3= 3= 3=
Reconstructive transformation mechanism 3= 3= 3= 3= 3= = = =

Diffusionless nucleation = 3= 3= 3= 3= 3= 3= 3=
Only carbon diffuses during nucleation 3= = = = = 3= 3= 3=
Reconstructive diffusion during nucleation 3= 3= 3= 3= 3= = = =

Often nucleates intragranularly on defects = 3= 3= = 3= 3= = 3=
Diffusionless growth = = = = 3= 3= 3= 3=

Local equilibrium at interface during growth 3= 3= 3= 3= 3= • • •
Local paraequilibrium at interface during growth 3= 3= 3= 3= = 3= 3= 3=
Diffusion of carbon during transformation 3= 3= 3= 3= = = = =

Carbon diffusion-controlled growth 3= 3= 3= 3= = • • •
Incomplete reaction phenomenon 3= = = = 3= 3= 3= 3=



Aspects of kinetic theory 535

purposes some fitting parameters due to the inability to predict for real materials, features such as

the number density of nucleation sites, the interfacial energy and its anisotropy with any confidence.

The fitting constants (bi) hopefully have generic value over a wide range of steels. If transients are

neglected, the steady state γ-grain boundary nucleation rate per unit area is given by

IαA = b20
2

Lγ

kT

h
exp

{

−
G∗+Q

RT

}

(13.18)

where b20 is an empirical constant, 2/Lγ gives the austenite grain boundary area per unit volume; Lγ

is the mean lineal intercept defining the austenite grain size. The activation energy for the barrier to

the transfer of atoms across the interface is Q ≈ 200Jmol−1, that for nucleation is G∗ = b21σ3/∆G2,

where σ ≈ 0.022Jm−2 is an effective interfacial energy per unit area.

The emphasis on the interfacial energy term is because the actual scenario is far more complicated.

Given the anisotropy of the crystal structures of ferrite and austenite, the interfacial energy will

depend on the usual five degrees of freedom and hence cannot be assumed to be constant. For het-

erogeneous nucleation at the austenite grain boundary, the balancing of interfacial tensions may

need to be accounted for and it may not be reasonable to assume that the energy is independent

of the size and shape of the embryo. None of this information is available. In real materials, there

may be segregation of solutes to the interfaces, which would be expected to change the interfacial

energies. The shape of the nucleus will determine how much of the austenite grain boundary is con-

sumed (an energy gain) when the ferrite nucleates so the rate equation should strictly include several

interfacial energies including that of the austenite grain boundary, which itself will be a function of

the five degrees of freedom and hence of the crystallographic texture. The activation energies, and

number densities of nucleation sites, for grain face, edge and corner nucleation are expected to be

different, with all three contributing to the overall nucleation rate [38]. There is no way in practice

of accounting for these complexities so the fitted σ must be regarded as a global approximated value

that hopefully represents a large class of steels if the analysis is to be of value as a predictive tool,

albeit with some uncertainty. Similarly, the strain energy associated with the nucleation event is an

unknown dependent on similar variables (shape, mechanism, role of heterogeneous nucleation site,

diffusional relaxation etc.). A thorough treatment of nucleation theory is given in [40, 41].

The allotriomorphic ferrite often is approximated as growing under paraequilibrium conditions, in

the form of discs that grow on both sides of the austenite grain boundary. The ferrite thickness Z

normal to the boundary increases parabolically with time as Z = α1d(t − τ)1/2 and the dimension

parallel to the boundary is taken to be ηZ, where η ≈ 3 [42]. For anisothermal growth, the change

during a time interval dt for a particle nucleated at time t = τ = k∆τ is therefore

dZ =
1

2
α1d(t − τ)

1
2 ,

which in a form for numerical solution becomes

Z(m+1)∆t = Zm∆t +
1

2
α1d(m∆t − k∆τ)−

1
2 ∆t. (13.19)
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The rate of change of the area of intersection on a plane y, of a disc of allotriomorphic ferrite

nucleated at time k∆τ , at time m∆T , is given by

Ȧα
k,y = πα2

1dη2 Z(m+1)∆t > y

Ȧα
k,y = (πη2Z2

(m+1)∆t)/∆t Z(m+1)∆t = y

Ȧα
k,y = 0 Z(m+1)∆t < y

Equation 13.17 can then be used to calculate the change in extended volume, but this only represents

half the change since the ferrite grows into both of the adjacent austenite grains.

13.4.3 WIDMANSTÄTTEN FERRITE AND PEARLITE

During unhindered growth, the length Z of a plate of αW, nucleated at time τ , is given by v!(t − τ)

(Chapter 7). For anisothermal transformation,

Z(m+1)∆t = Zm,∆t + v!∆t.

If the shape of αW is modelled as a tetragonal prism of thickness to length ratio η ≈ 0.02, then:

Ȧ
αW
k,y = 2ηv2

!(m∆t − k∆τ) Z(m+1)∆t > y

Ȧ
αW
k,y = ηZ2

(m+1)∆t
/∆t Z(m+1)∆t = y

Ȧ
αW
k,y = 0 Z(m+1)∆t < y.

The transformation is displacive so the plates are confined to the γ-grains in which they grow, which

means that Equation 13.17 can be applied directly to calculate the change in extended volume as a

function of the nucleation and growth rates.

When the shape of pearlite is approximated as a disc which has the same length as diameter (η = 1),

its half thickness when nucleated at time τ assuming a constant growth rate is given by

Z = vP(t − τ) with Z(m+1)∆t = Zm∆t + vP∆t,

so that
ȦP

k,y = 2πη2v(m∆t − k∆τ) Z(m+1)∆t > y

ȦP
k,y = πη2Z2

(m+1)∆t/∆t Z(m+1)∆t = y

ȦP
k,y = 0 Z(m+1)∆t < y.

Any error in the calculation of the first phase to form propagates into subsequent transformation

products; an exaggerated value of allotriomorphic ferrite fraction naturally leads to an underes-

timation of the Widmanstätten ferrite content. It is noticeable that pearlite forms over a narrow

temperature range because once the austenite composition falls within the Hultgren extrapolation

region (page 508), the cooperative growth rate of ferrite and cementite is relatively large.

Following validation against experimental data, Figure 13.7 [36], typical calculations are illustrated

in Figure 13.8a–d to show the influence of austenite grain size and cooling rate on the development

of microstructure. At a given austenite grain size, a greater cooling rate suppresses transformation
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Figure 13.7 Calculated microstructures for a variety of steels, austenite grain sizes and cooling rates, com-

pared against experimental data due to Bodnar and Hansen [43].

to lower temperatures, thus increasing the proportion of Widmanstätten ferrite. A smaller austenite

grain size, on the other hand, results in a significantly smaller amount of Widmanstätten ferrite.

These results are consistent with experimentally observed trends.

Idiomorphic ferrite can be induced on heterogeneous nucleation sites that are introduced deliber-

ately into the austenite [44–46]. The resulting refinement of microstructure improves toughness

[47]. There is then a competition between grain boundary nucleated allotriomorphic ferrite, and

intragranularly nucleated idiomorphic ferrite. This kind of a competition is ideally suited for the

simultaneous transformations method; some calculations for isothermal transformation are illus-

trated in Figure 13.9, for a case where idiomorphic ferrite nucleates on boron nitride particles. The

relative fractions of allotriomorphic and idiomorphic ferrite are related to the corresponding ratio

of grain boundary and intragranular nucleation sites. A coarse austenite grain structure therefore

favours idiomorphic ferrite. Nucleation at the austenite grain boundaries is usually associated with

a lower activation energy than from intragranular sites. When Lγ is relatively small, the initial rapid

formation of allotriomorphic ferrite partitions carbon into the austenite, which makes the forma-

tion of idiomorphic ferrite even more difficult. As a result, the fraction of idiomorphic ferrite is

considerably reduced.

In some steels, nucleation at the austenite grain boundaries can be rendered ineffective, either by

poisoning the sites due to the segregation of solutes such as boron, or by introducing a thin layer of

slow-growing allotriomorphic ferrite. Figure 13.10 shows such a case where the continuous layer

of α leaves only the intragranular sites where αW can form [48]. The competition between grain

boundary and intragranularly nucleation apply also to the bainite transformation [49].
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Figure 13.8 Calculations showing the evolution of microstructure; (a-d) from austenite in a Fe-0.18C-

1.15Mn wt% steel as a function of the austenite grain size and constant cooling rate [36].
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Figure 13.9 Microstructural evolution during isothermal transformation at 720◦C in Fe-0.13C-0.23Si-

1.44Mn-0.003B-0.0074N wt%, for two different austenite grain sizes [47].
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Figure 13.10 Intragranular Widmanstätten ferrite stimulated to form intragranularly by the complete dec-

oration of austenite grain boundaries by slow-thickening, thin layers of allotriomorphic ferrite. The original

austenite grain boundaries are eliminated as potential nucleation sites by the formation of allotriomorphic fer-

rite in the manner illustrated. [48].

13.5 TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS

Isothermal transformation diagrams contain curves, each of which represents a specific degree of

transformation for a specific product, as a function of temperature, time and the austenite grain struc-

ture (usually represented as a grain size). The curves have a characteristic C-shape because driving

force is limited at higher temperatures whereas mobility is limited at low temperatures. The max-

imum rate is therefore obtained at some intermediate temperature. The corresponding equilibrium

phase diagram sets the thermodynamic limits for the decomposition of austenite so TTT diagrams

and equilibrium phase diagrams are somewhat connected (Figure 13.11); it might be expected that

all C-curves for α and αI begin at the Ae3 temperature. The upper limit of the temperature at which

pearlite can form is set by the requirement that cementite and ferrite must both be able to precipi-

tate from austenite (Figure 12.7). The comparison with the equilibrium phase diagram fails for the

displacive transformations which require even greater undercoolings; Widmanstätten ferrite, bainite

and martensite C-curves have their maximum limits defined by the WS, BS and MS temperatures

respectively (Figure 13.11).

Figure 13.11 also shows the isothermal transformation curve for austenite formation. The trans-

formation rate increases indefinitely with superheating because both the diffusion coefficients and

driving force for austenite formation increase when T > Ae3.

An essential feature of accurately determined TTT diagrams is that they can be divided into two

regimes, the higher temperature one corresponding to the domain where iron and substitutional

solutes are able to diffuse over the length scales of the microstructure, and a lower temperature

regime where displacive transformations have a kinetic advantage. The diagram therefore consists

of two main C-curves, one set for reconstructive and the other for displacive transformations (Fig-

ure 13.12). Solutes that decrease the driving force for the decomposition of austenite retard the rate
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Figure 13.11 The relationship between a TTT diagram for a hypoeutectoid Fe-C alloy with a concentration

x of carbon, and the corresponding binary phase diagram; equilibrium phase boundaries are continuous lines,

whereas the T0 curve is dashed to indicate that it is not an equilibrium boundary except in the phase diagram

for pure iron. The TTT diagram illustrates the transformation of supercooled austenite, or during superheating,

the formation of austenite.

of transformation and cause both of the C-curves to be displaced to longer times. At the same time

they depress the martensite-start temperature. The retardation is always more pronounced for re-

constructive reactions where all atoms have to diffuse over distances comparable to the size of the

transformation product. This diffusional lag exaggerates the effect of solutes on the upper C-curve

relative to the lower C-curve.
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Figure 13.12 Calculated TTT diagrams showing the C-curves for the initiation of transformation, for a

variety of steels.
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As predicted by Zener [50], when the two curves can be distinguished clearly, the lower C-curve has

a flat top. This can be identified with the Widmanstätten-start or bainite-start temperature, whichever

is the larger in magnitude [51].

13.5.1 CONTINUOUS COOLING TRANSFORMATION DIAGRAMS

Figure 13.8 represents the evolution of transformation that occurs during continuous cooling. The

ability to calculate such diagrams as a function of specific cooling conditions, the steel composi-

tion and the parent austenite grain structure can be very useful in the the design of steels. After

all, large steel components cannot be transformed isothermally into a homogeneous microstructure

because the temperature distribution within the component will not be uniform. The fact that the

surface regions will experience a greater cooling rate than those within the depths of the sample can

sometimes be used to advantage. Large diameter concrete-reinforcing steel bars in their austenitic

condition, when quenched into water form untempered martensite at the surface, but the residual

heat within the core then diffuses and tempers the martensite, thus optimising properties. The vast

majority of steel produced undergoes anisothermal transformation; the sort of information presented

in Figure 13.8 is traditionally represented as continuous cooling transformation (CCT) diagrams,

usually determined using a dilatometer.

In comparison with a TTT diagram, the first phases (e.g. α, P) to form from austenite will occur at a

greater undercooling during continuous cooling transformation. What happens to subsequent trans-

formations is more complex. Any changes in the composition of the austenite due to the preceding

phases can suppress or elevate the rate of transformation (e.g. of αb) depending kinetics depending

on how the changes influence the stability of the residual austenite. Figure 13.13 shows schemati-

cally how the initiation of bainite is affected beyond the vertical line c because of the prior formation

of α. Although bainite is depressed to lower temperatures by the prior formation of allotriomorphic

ferrite as the cooling rate decreases, the temperature range over which bainite forms is reduced

eventually. This is because very slow cooling rates give ample opportunity for transformation to be

completed over a smaller temperature range as illustrated by the rising curve de. Because the ferrite

and bainite domains are separated by a time gap, the continuity of constant volume fraction contours

is interrupted, but they must still be plotted so that their loose ends are connected by a cooling curve

as illustrated by ab. Naturally, the temperature at which martensite is initiated also depends on prior

transformation.

The rate of transformation in a given steel with a known austenite grain size can be described with

just one TTT diagram. However, a different CCT diagram is required for each cooling function,

e.g. whether the cooling rate is constant or Newtonian. It is therefore necessary to plot the actual

cooling curves used in the derivation of the CCT diagram. Each cooling curve must begin at the

highest temperature where transformation becomes possible (usually the Ae3 temperature). Each

CCT diagram requires a specification of the chemical composition of the steel, the austenitisation

conditions, the austenite grain size and the cooling conditions. The diagrams are therefore specific

to particular processes and therefore lack the generality of TTT diagrams.

It may be possible to adapt TTT diagrams, for dealing with the many variables that determine
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austenitisation temperature (i.e. normalising) and furnace cooling.

continuous cooling transformation. In the Scheil additive reaction rule [52], a cooling curve is

treated as a combination of a isothermal reaction steps. In Figure 13.14, a fraction ξ = 0.05 of

transformation is achieved during continuous cooling when

∑
i

∆ti

ti
= 1 (13.20)

with the summation beginning as soon as the parent phase cools below the equilibrium temperature.

Figure 13.14 The Scheil method for converting between isothermal and anisothermal transformation data.

The C-curves plotted represent isothermal transformation to two different volume fractions. The continuous

cooling curve is divided into isothermal steps (dashed line).

The rule can be justified if the reaction rate depends solely on ξ and T . This is unlikely, but there
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are examples where the rule has been empirically applied to bainite with success [53].
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Notes
1This parabolic relationship arises because the driving force for grain growth decreases as L increases.
2If the specimen axes consist of the rolling direction, transverse direction and the direction normal to the planar sample,

then the γ-fibre refers to the case where in a polycrystalline sample, the 〈111〉 directions tend to be parallel to the normal

direction.
3The analysis presented is not quite correct because the relationship between SV and L depends on the shape of the grains.



Indices

547



548 NOTES

Author index
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Guimarães JRC, 309

Guo D, 154

Guo H, 235

Guo J, 154

Guo W, 424

Gurry RW, 431

Gutfleisch O, 388, 451

Guthrie RIL, 44

Gutierrez I, 523

Gutterman VM, 151

Guttman L, 32

Guy AG, 152

Guzev AI, 464

Guzmán Arasanz J, 419
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Kučera J, 137

Kubaschewski O, 108, 115, 151

Kubic̃ek P, 148

Kulin SA, 399, 431

Kumar A, 514

Kundu S, 313, 314, 501

Kuntz M, 334

Kuo KH, 473

Kurdjumov GV, 171, 305, 316

Kurimura T, 524

Kurzykłowski KJ, 473

Kushima H, 453

Kusunoki M, 422

Kuvshinov GG, 401

Kuzucu V, 464
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Orientation relationships, 170

Bain, 171

Kurdjumov-Sachs, 171

Nishiyama-Wasserman, 171

Overall transformation kinetics, 526

martensite, 300

simultaneous reactions, 528

Paraequilibrium, 207

thermodynamic condition, 208

transition from equilibrium, 212

zirconium hydride, 356

Paramagnetism, 25, 135, 136, 387, 463

Pearlite, 497

divorced, 513

growth, 503

nucleation, 500

orientation relationships, 406

overall kinetics, 532

shape, 497

substitutionally alloyed, 508

Phase diagram

Fe-C, 419

Fe-N, 445

pure iron, 2, 4

Phase field method, 192, 211

divorced pearlite, 514

Widmanstätten ferrite, 375

Pressure effects, 47

Pure iron

phase diagram, 4

transformation temperatures, 2

Quasichemical solution, 57

carbon in austenite, 61

carbon in ferrite, 70

zeroth order, 67

Quench and partitioning, 335

Rationalisation of transformations, 361

Recalescence, 287

Reconstructive transformation, 165

atomic mechanism, 6

diffusion, 6

Recrystallisation, 521

phenomenological modelling, 524

Regular solution, 55

generalised model, 77

stoichiometric phases, 73

Reversibility, 89

Segregation

interphase interfaces, 235

Shape deformation

plastic relaxation, 354, 375

Short range order, 30

Short-range magnetic order, 136

Short-range order, 86

Shuffles, 255

Snoek effect, 149

ordering, 110

Solute drag, 231

boundary diffusion field, 232

interphase boundaries, 235

Solute trapping, 6, 185, 210, 337

Aziz model, 213

Solvent trapping, 210

Spin waves, 27

Step mechanism

see ledge mechanism, 220

Superlattice, 87
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Thermodynamics, 17

Thermomigration, 153

Thin films, 34, 39, 178

face-centred tetragonal iron, 1

square lattice of iron, 2

trigonal iron, 2

Tie-line shifting, 202

Titanium carbide, 463

Transformation texture, 312

Trigonal iron, 39

TTT diagrams, 504, 535

Vacancies, 131

association with C, 117

condensation, 103

constitutional, 463

host, 335

ordered, 467

Vanadium carbide, 467

Widmanstätten ferrite, 349

groups of plates, 370

interfacial structure, 356

nucleation, 294, 359

overall kinetics, 532

plate thickening, 372

secondary, 374

start-temperature, 357

zirconium hydride, 356

Z-phase, 453

Zener drag, 519

Zener ordering, 71, 113




