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Lecture 10: Computation of Phase Diagrams

The thermodynamic theory covered in the earlier lectures (Part IA, course D) helps understand
solutions and has been used extensively in modelling their behaviour. The theory is, never-
theless, too complicated mathematically and too simple in its representation of real solutions.
It fails as a general method of phase diagram calculation, where it is necessary to implement
calculations over the entire periodic table, for any concentration, and in a seamless manner
across the elements. There have been many review articles on the subject (e.g. Kaufman,
1969; Chart et al., 1975; Hillert, 1977; Ansara, 1979; Inden, 1981). A recent book deals with
examples of applications (edited by Hack, 1996). We shall focus here on the models behind
the phase diagram calculations with the aim of illustrating the remarkable efforts that have
gone into creating a general framework.

One possibility is to represent thermodynamic quantities by a series expansion with sufficient
adjustable parameters to adequately fit the experimental data. There has to be a compromise
between the accuracy of the fit and the number of terms in the expansion. However, such
expansions do not generalise well when dealing with complicated phase diagram calculations
involving many components and phases. Experience suggests that the specific heat capacities
at constant pressure, CP , for the pure elements are better represented by a polynomial with a
form which is known to adequately describe most experimental data:

CP = b1 + b2T + b3T
2 +

b4

T 2
(1)

where bi are empirical constants. Where the fit with experimental data is found not to be
good enough, the polynomial is applied to a range over which the fit is satisfactory, and more
than one polynomial is used to represent the full dataset. A standard element reference state
is defined with a list of the measured enthalpies and entropies of the pure elements at 298 K
and one atmosphere pressure, for the crystal structure appropriate for these conditions. With

respect to this state, and bearing in mind that ∆H =
T2
∫
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CP dT and ∆S =
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T
dT , the Gibbs

free energy is obtained by integration to be:

G = b5 + b6T + b7T ln{T} + b8T
2 + b9T
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T
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Allotropic transformations can be included if the transition temperatures, enthalpy of trans-
formation and the CP coefficients for all the phases are known.

Any “exceptional” variations in CP , such as due to magnetic transitions, are dealt with sep-
arately, as are the effects of pressure. Once again, the equations for these effects are chosen
carefully in order to maintain generality.

The excess Gibbs free energy for a binary solution with components A and B is written:

∆eGAB = xAxB

j
∑

i=0

LAB,i(xA − xB)i (3)



For i = 0 this gives a term xAxBLAB,0 which is familiar in regular solution theory, where the
coefficient LAB,0 is, as usual, independent of chemical composition, and to a first approximation
describes the interaction between components A and B. If all other LAB,i are zero for i > 0
then the equation reduces to the regular solution model with LAB,0 as the regular solution
parameter. Further terms (i > 0) are included to allow for any composition dependence not
described by the regular solution constant.

As a first approximation, the excess free energy of a ternary solution can be represented purely
by a combination of the binary terms in equation 3:

∆eGABC =xAxB

j
∑

i=0

LAB,i(xA − xB)i

+ xBxC

j
∑

i=0

LBC,i(xB − xC)i

+ xCxA

j
∑

i=0

LCA,i(xC − xA)i

(4)

We now see that the advantage of the representation embodied in equation 4 is that for the
ternary case, the relation reduces to the binary problem when one of the components is set to
be identical to another, e.g. B ≡ C (Hillert, 1979).

There might exist ternary interactions, in which case a term xAxBxCLABC,0 is added to the
excess free energy. If this does not adequately represent the deviation from the binary sum-
mation, then it can be converted into a series which properly reduces to a binary formulation
when there are only two components:

xAxBxC

[

LABC,0 +
1

3
(1 + 2xA − xB − xC)LABC,1

+
1

3
(1 + 2xB − xC − xA)LBCA,1

+
1

3
(1 + 2xC − xA − xB)LCAB,1

]

Notice also that the terms LABC,1, LBCA,1 and LCAB,1, represent the concentration depen-
dence of the ternary interaction. If these three coefficients are equal, then the concentration
dependence of the ternary interaction should be zero. If they are equal then the preceding
terms in brackets, i.e. 1

3
(1 + 2xA − xB − xC) + 1

3
(1 + 2xB − xC − xA) + 1

3
(1 + 2xC − xA − xB)

sum to unity, making the ternary interaction coefficient concentration independent.

It can be seen that this method can be extended to any number of components, with the great
advantage that very few coefficients have to be changed when the data due to one component
are improved. The experimental thermodynamic data necessary to derive the coefficients may
not be available for systems higher than ternary so high order interactions are often set to
zero.
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